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Abstract. In this paper sufficient second order optimality conditions are established for opti-
mal control problems governed by a linear elliptic equation with nonlinear boundary condition, 
where pointwise constraints on the control are given. The second order condition requires 
coercivity of the Lagrange function on a suitable subspace together with first order sufficient 
conditions on a certain set of strongly active points. 
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1. Introduction 

Optimal control problems governed by nonlinear elliptic partial differential equations 
have already been considered by many authors. We refer only to the papers of Casas 
[2, 3], to the book of Tiba [16], and to the references therein. Meanwhile, the existence 
of optimal controls and first order necessary optimality conditions of the maximum-
principle type are well investigated. It is known that in the case of nonlinear equations 
the first order conditions are in general not sufficient for optimality. In this paper we 
are going to derive a second order sufficient optimality condition for a class of semi-
linear elliptic boundary control problems. For parabolic boundary control problems 
second order sufficient optimality conditions were established in papers by Goldberg 
and Tröltzsch [7, 81. It is more or less obvious that these optimality conditions can be 
transferred by the same technique to elliptic problems. However, a comparison of the 
results in [7, 81 with second order optimality conditions for optimization problems in 
spaces of finite dimension reveals that the gap between the sufficient optimality condi-
tions in [7, 81 and corresponding second order necessary optimality conditions is quite 
large. Taking into account the active set of optimal controls, this gap can be partially 
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closed. The known difficulty in the theory of sufficient optimality conditions for cx-
tremal problems in function spaces is the so-called two-norm discrepancy. This problem 
was resolved, for instance, by loffe [10] and Maurer [14]. 

In recent years further considerations have shown that some weaker sufficient op-
timality conditions can be established for abstract optimization problems in Banach 
spaces and for optinial control problems governed by ordinary differential equations. 
We refer, for instance, to Dontchev et al. [5] and Malanowski [13]. The main idea is 
to introduce a third norm taking into account the measure of positivity of some terms 
occurring in the variational inequality. We will use this idea to derive a second order 
sufficient optimality condition in the case of elliptic partial differential equations. 

2. Formulation of the optimal control problem 
We consider the optimal control problem to minimize 

	

F(w, u) = j (w(x)) dx + f V, (u(x), w(x)) dS	 (1)

subject to

	

—Iw(x) + w(x) = 0	 in 91 

	

5w	 (2) 

	

(x) = b(w(x),u(x))	on F 
a—n 

and to the constraints on the control u E U0d , where 

	

U° = V E Lc,o(F)a <_ V ( X ) <ub a.e. on r}	 (3) 

where Ua,Ub E R with Ua	Ub.	is a non-empty, bounded, convex, and closed 
subset of L(F). In this setting

	

	denotes the normal derivative (in the direction of an 
the outward normal vector n on I'), and dS is the Lebesgue surface measure defined 
on r. 

The solution of the boundary value problem (2) is considered in the following weak 
sense. 

Definition 1. A function w E W2(Q) is said to be a weak solution of the boundary 
value problem (2), if for all v E W () the equation 

/n 

	

f (5w Ov	 =	(w,u)vdS1	 (4) —+wvldx	b 

	

j4-Sx	I	Jr 
is valid. 

To make the optimal control problem (1) - (3) well defined we impose the following 
assumptions (Al) and (A2): 

(Al) The function W : a--+ JR and all derivatives up to the second order are globally 
Lipschitz continuous. The functions 0: JR x lii — JR and b: JR x JR — JR are
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twice continuously differentiable with respect to both arguments. Furthermore, 
the function b is monotone decreasing with respect to the first argument and 
all partial derivatives of I' and b up to the second order are globally Lipschitz 
continuous. 

This property of the function b guarantees the existence of a unique weak solution of the 
boundary value problem (2) for each fixed u E (cf. Kinderlehrer and Stampacchia 
[liD. 

(A2) The set Q C IR" is assumed to be a bounded domain with a sufficiently smooth 
boundary r such that the weak solution w of the boundary value problem (2) 
is an element of W I (Q) with some fixed p > n and W'(cl) is continuously 
embedded into C(). Moreover, we suppose that for all admissible controls 
tL1 t2 E U and the corresponding solutions w 1 and w2 of the boundary value 
problem (2) the estimate 

lw1	w21IW,(ci) 5 c ,11 u 1 - u21IL(r)	 (5) 

is valid. 
Note that assumption (A2) implies 

11 w 1	W2llc() < C ll w i - W211W 1 (Q)	e'11 1 - u21lL(r) < c .11 u l - U2IIL(f'). 

We have stated assumption (A2) in order to underline that our method can be trans-
ferred to more, general elliptic equations, for instance including some elliptic operators 
with bounded and measurable coefficients. 

Next, we shall show that assumption (A2) can be fulfilled for sufficiently regular 
domains ft For instance, suppose that Q is a bounded domain with a C'-boundary F. 
Then we can use the following regularity result of Gröger. 

Lemma 1 (see Gröger [9])• The weak solution w of the linear boundary value 
problem

—L,w+w=O in 

	

aw	 1(6)!
Fn g on  

is an element of W'() (1 < p' < ) provided the function g is an element of L(r). 
Let w 1 and w2 denote the solutions of the equation (6) corresponding to 91, 92 E L(F), 
respectively. Then the estimate 

	

11 w 1 - W2IIW I ,(fl)	c L IIg - 921IL,(r) 

is valid, where the constant CL does not depend on the choice of gi and g. 

This lemma ensures the assumed regularity of the weak solution of problem (2). To 
verify estimate (5), we proceed in the following way.
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A unique solution w E W2' (Il) of the state equation (2) exists due to the assumptions 
(Al) and (A2) on b and ft Furthermore, we have for the solutions w 1 and w2 of the 
state equation (2) corresponding to admissible controls u 1 and u 2 from Uab, respectively, 
the following:

2  
II wi W2Ilwi(() j (^: (ô 	—W2)

ôx	) 
+ (w - w2)2) dx

i=1 

=jr(b(w i ,u i )_b(w2 ,u 2 ))(W I —w2)dS 

=Jr(b(w i ,u i ) - b(w 2 ,u 1 ))(w i - w2)dS 

+ J r(b(W 2 ,U) - b(w 2 ,u 2 ))(w 1 - w2)dS1. 

The first integraxid is non-positive. Using the trace theorem and the Lipschitz property 
of b, we conclude finally

1w1 - W2I1Wi(cl) < c]u 1 - U21lL2(0). 

The trace theorem shows that the trace rw on r is in W2 '2 (F). This space is embedded 
into (I') with some p' = 2E > 2 because of known embedding theorems. In the 
case ri = 2 we can choose for instance p' = 3. Owing to the Lipschitz property of b and 
to the inclusion u E L(F), we can identify the function b(w( . ), u( . )) with a function 
g € L1 (r). Lemma 1 implies that the solution w belongs to W, (Q). Moreover, Lemma 
1 and the estimate of 1 1w, - w211 in W21 (Q) imply with a generic constant c 

1w1 - 	11 W1, (1)	lI b(w i , u 1 ) - b(w2 , U 2)11 L 1 (F) 

5c (II rw i - TW2 11 L P , (F) + lI u i -	IlL,, (r)) 

<c (c*ll w i	W2I1W 1 (l) + II u i - U 2IILP , (r)I) 

c lI u i —u2IIL,,(r). 

So we have proved property (A2), if n = 2. In the case n > 2 we repeat the consider-
ations starting with p' instead of 2. In this way the solution w of the state equation 
(2) is seen to be an element of W'2 (l) with some p2 > p', and the stated estimate 
can be proved in W'2 (cl). Repeating this bootstrapping argument sufficiently often, we 
construct a sequence {pt}, where p1 > p'. It can be shown (see Eppler and Unger [61) 
that it is possible to choose Po = 2 and p = p' + n 2 2 for i = 1,2.....So we are sure 
to arrive at p> ri after a finite number of steps. The assumed estimate follows from the 
last estimation replacing the spaces W, 1 (), LP , (r) and W() by L.+1(r) 

and W,(cl) for i = 1,2,..., respectively. As a further corollary we have that the norm 
of all feasible states u is uniformly bounded in W ( a), since Uad is bounded. 

If we assume in addition that the cost functional F(w, u) is convex with respect to 
u and the function b in (2) is linear with respect to u, the existence of a solution of the
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optimal control problem (1) - (3) follows by standard methods (cf., for instance, Eppler 
and Unger [61). However, we shall not rely on this assumption. We just suppose that a 
fixed reference control u 0 is given, satisfying certain optimality conditions. 

Let us introduce the Lagrange function £ = £(w, u, y) for our optimal control prob-
lem (1) - (3) in the following way: 

£(w,u,y) 
= J ço(w)dx + I O(w, u) dS 

3way
+wyI 

\ 
dx+fb(w,u)dSz. -	

--- 
ç	t=i	

, 0x	j	
1' 

This function is well defined and twice continuously differentiable with respect to the 
space (C(1) fl W,' (Q)) x L,(r) x (C() fl W'(1)). 

Standard considerations apply to derive first order necessary optimality conditions 
at u0 . They can be written in the form 

£w(wo,U O ,yo) = 0	(adjoint equation) 

and

£u(wO ,u O ,yO )(U - u 0 ) ^! 0 for all u E U°'	(variational inequality). 

Subscripts denote as usual associated partial derivatives. In detail, the adjoint equation 
for y = I/o reads	 - 

—y + y = ,(WO)	 in ci 

0y 

	

5n 7 b(wo,uo)y+(wo, uo)	on r. 
The variational inequality admits the form; 

	

(i,b(wo,uo) + b(wo,uo)yo)(u - uo)dS > 0	for all u 

To simplify the notation we dénotè inthe sequel - the pair (w,u) by v. 

Definition 2. The pair v = (w, u) is called admissible, if u belongs to Ud and w 
is the weak solution of the boundary value problem (2) corresponding to u. 

Two norms of v = (w, u) corresponding to the spaces 

V2 =W21 (Q)xL2 (r)	and	V,o=W,(ci)xL(f) 

are given by

I 

lI v I2 = (II w IIv ( 0 ) + II1LIIL2(r)) 
2	

and	I v ilco -= max {IIw IIwi(fl), IIulIL(r)},
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respectively 

The simplest second order sufficient optimality condition which can be transferred 
to our elliptic optimality problem (1) - (3) from the parabolic case can be formulated 
as follows: 

Assume that for an admissible pair vo = (w0 , uo) the first order necessary optimality 
conditions are satisfied. Let I/o be the associated adjoint state. Suppose the existence of 
an a > 0 such that the second order derivative of the Lagrange function £ = £((w, u, y) 
with respect to w and u fulfils the estimate 

.Cvv(vo, yo)[(h, 6), (h, 6)] ^! a II( h , 6 )II	 (7) 

for all (h, b), where 6 = u - u0 with u e U and h is the weak solution of the corre-
sponding linearized equation 

—Lh+h=0	 in 
ah

= bw (v ij )h + b(vo)fi	on I'. 

In this condition, the second order derivative of the Lagrange function £ has to fulfil 
the estimate with respect to all admissible controls u. From the theory of optimization 
in spaces of finite dimensions 'weaker second order sufficient optimality conditions are 
known. More precisely, an estimate of type (7) has to be fulfilled only with respect to 
all u from some subset of the admissible set U0d. Using ideas of Doritchev et al [5] 
and Malanowski [13] we will derive such a sufficient optimality condition in the next 
sections. 

3. Motivation of a second order sufficient optimality condition 
Let us.consider the following mathematical programming problem: 

(P) Minimize 1(x) subject to x e R' and h(x) = 0 as well as g(x) ^! 0 

where f, h and g are smooth functions. For this problem the following econd order 
sufficient optimality condition is known (cf., for instance, Collatz and Wetterling [4] or 
Spellucci [15]). 

Theorem 1. Let x be an admissible point of problem (F) satisfying the first order 
necessary optimality condition with associated Lagrange multipliers 12* and ). Them 
the point x is a strong local minimizer, if an a > 0 exists such that 

zT ( V 2f(x) - 
Mk 

 AV2 g j (x) —	V2h(x*)) z ^ azTz	(8) 

for all z satisfying the conditions 

zTvh1(x*) = 0	 (9) 
zTvgj(x*) 0 if g(x) = 0	 (10) 

zTvgj(x) = 0 if A > 0.	 (11)
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Comparing this sufficient optimality condition with the sufficient optimality condi-
tion (7) for the elliptic control problem (1) - (3) we observe: 

Estimate (8) corresponds to estimate (7). Equation (9) can be viewed as a represen-
tation of the linearized partial differential equation in the sufficient optimality condition 
for the control problem (1) - (3). Inequality (10) means that = f + az is admis-
sible with respect to the linearized inequality constraints for sufficiently small a. In 
the context of the control problem (1) - (3) this corresponds to restrictions on 6 in the 
sufficient optimality condition for the elliptic control problem (1) - (3). However, there 
is no corresponding term for condition (11). It is this additional condition, which we 
shall add to the sufficient optimality condition. 

Usually, necessary optimality conditions for optimal control problems have to be 
satisfied for all u from some control set U°4 . To simplify the presentation, let this set 
be described by

Uad = {u E L00 (r) I u(x) > 0 a.e. on r}. 

Introducing formally a Lagrange multiplier function A with respect to the inequality 
constraints, the variational inequality reads 

/ (lj u (wo,uo) + b(wo,uo)yo - A)(u - uo)dS > 0 

for all u from the whole space L(r). Thus, the left factor under the integral sign has 
to vanish identically on r. In this way, we can identify A with (wo,uo)+b(wo,uo)yo 
in some sense. The formal multiplier function A plays in this case the same role as the 
vector A' in Theorem 1. A suitable interpretation of condition (11) on z is now given 
in the case of the optimal control problem (1) - (3) by 

U(X) - U 0 (X) = 0 if cb(wo(x),uo(x)) + b(wo(x),uo(x))yo(x) ^! e >0. 

In the next section we will modify this intuitive additional condition and prove the 
sufficiency of a corresponding second order optimality condition.
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4. Second order sufficient optimality condition 

In what follows let v0 = ( w0 , uo) be an admissible reference pair for the optimal control 
problem (1) - (3). We do not assume that v0 achieves the global minimum of this 
optimal control problem. However, wesuppose that the first order necessary optimality 
conditions are fulfilled at v0 with the associated adjoint state yo This is the optimality 
system

P'. (vo) + b(vo)yo)(u - uo)dS1 2 0 for all u E Uad (var. inequ.) 1 
r	 I 

yo+yo = w( Vo)	 in 

5Yo	 (adjoint equ.) I 
=bw (vo)yo+bw (vo)	onr	 (12) 

an 

—wo+ wo = O	 in Q	 I 
Ow0 .	 (state equ.). 

J an = b(wo,uo)	 on r 

In other words, v0 = ( w0 ,uo) is a stationary pair, which need not be optimal in any 
sense. It is well known that the variational inequality holds if and only if 

(b(vo(x)) + bu(vo(x))yo(x)) (u - U0 (X)) 2 0 

almost everywhere on r for all u E [ua, ub]. 

Next, we define a set of positivity. 
Definition 3. For e > 0 theset of positivity r denotes the measurable subset of 

IF such that
+ bo (vo (x)) yo (x) 2 C 

holds for almost all x E F. 

Ti.
Remark. Owing to the assumptions on dl, the adjoint state yo is continuous on 

. Thus, the function t,b(vo) + b,L (vo)yo is measurable on r, and the definition makes 
sense. It is possible that the set of positivity is of measure zero. 

Corollary 1. The estimate 

f((vo(x)) + bu(vo(x))yo(x)) (U (X) - uo(x))dS1 2 e  - 

holds true for all u E U°' 

Before we start to discuss second order sufficient optimality conditions we derive 
some useful technical results. In all what follows, c denotes a generic constant. At first 
we remind of the continuity of the adjoint state y. Therefore, the assumptions on the 
functions standing in the objective (1) and in the equations (2) allow us to prove the 
following statements.
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Lemma 2. The second order derivative of the Lagrange function £ = £(v, y) at 
(v0 , yo) with respect to v fulfils the estimates 

£vv(vo, yo)[(h i , 8 1 ), (h2,62)]	cj II( h i, S i ) ih lI( h2, 82)112	 (13) 

and

£vv(vo, yo) [(h,5),(h,8)] - £vv(v, yo) 1(h,5),(h,8)] <C,liv - vollli(h,8)ii 

for all (h, 6), (h, S,), V E W(Q) < L2(r). 

Proof. The second order derivative £,, of the Lagrange function £ is given by 

8 1 ), (h2,52)] 

/ (b(vo)h 1 h 2 + b(vo)h i S2 + b(vo)6i h 2 + b(vo)S152)y0 

+J (ww(vo)h i h2 + 0..(vo)h 1 62 +	(vo)Sih2 + 0.. (vo)81S2)dS1 

+ f ww(wo)h i h2 dx. 

The control u 0 is bounded in the sense of L(f), and the state w is bounded in the sense 
of C(). Therefore, all second order derivatives under the integral sign are uniformly 
bounded in the sense of L(r). The adjoint state yo is continuous on . For that 
reason we are able to estimate 

£ 0 (vo, yo)[(h i , 8 1 ), (h2,62)) 

<cJhi h 2 dx +J (h i h2+ 11182 +8 1 h 2 +8152)ds1 

+ / (h 1 h2 + h 1 52 + 8 1 h 2 + 

c ll( h i , 8 i)1211( h2, 82)112. 
To prove the second estimate we easily find 

£vv(vo,yo)I(h,5),(h,S)] —r(v,yo)[(h,8),(h,5)] 

= J ((w0 ) — ww(w))h2 dx +f {(w(vo)_ ww(v))h2 

+ 2(i 0 (vo) -	(v))h8+ (buu(vo) - 

+ / {(b(vo) - b(v))h2 

+2(bw(vo) - b,11 (v))h+ (b(vo) _b(v))o2}yodS.
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The second order derivatives of cp, b and b are assumed to be Lipschitz continuous. 
Therefore, 

C.,, (vo, yo)[(h, 6), (h, 6)].— L,,,, (v, yo)[(h, 6), (h, 8)] 

<c (Iwo - w 1 h2dx +f ( i vo - v I h2 + 2 1 v0 - vi IhI 161 + Ivo - vi62)dS 

+f(i vo — v I h2 + 2 i vo _viihiiSi+ivo_vi62)yod5z 

Now the second estimate follows immediately I 
The next results are concerned with properties of remainder terms. We will use the 

following notations: 
r (vo,v ) = b(v) - b(vo) - bo (vo)(v - vo) 

(first order remainder term of b at vo) 

r(vo, yo, v ) = £ ( v, yo ) - £(vo,yo ) - £(v - vo ) -	vv(vo,yo)[v - vo,v - vo]

(second order remainder term of £ at ( vo, yo)) 
with.bo (vo)(v - vo ) = b(vo)(w - wo ) - b(vo)(u - uo). In the sequel the sign ill denotes 
either the absolute value, if 1 is a real number, or the Euclidean length of 1, if 1 is a 
vector. 

Unfortunately, the Nemytskii operator b is not Fréchet differentiable from L2 (r) x 
L 2 (r) to L2 (r), since

11r(vo,v)iiL2(r) .7L_+ 0 
li v.— vail L2(r) 

as li v - VOiiL2(r) —4 0. However, we have 
Lemma 3. For the first order remainder term r(vo, v) of b at v 0 the estimate 

lir(vo,v)IiL2(r) < c,.v	voiloo	 (14) 
iiv - Va 112 

is valid for all v E W'(1) x L(F). 

Proof. We have by definition of r b and the known mean value theorem in integral 
form:

11r(vo,v)I12(r) =1 (bv_ b(v) - bv(vo)(v - vo))dS 
r

/ (I (bv(vo + s(v - vo )) - bv(vo))(v - vo)ds) 2 dS 

<f	cis(v_vo)Iiv_voids)2dsz
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(the last estimate follows from the Lipschitz property of b,, = (b, be)). Therefore, 

iI r (vo,v)iiL ( r ) < c/v - 

< c li v - VOiIc()xL 
(r) f iv - vo12dS1 

1' 

<c li v - voii f I  - voI2dS.
r 

Note that W' (cl) is continuously embedded in C(). So we end up with 

li r ( vo, v )ii 2( r )	c li v - voiioil v - VOil2 

and the lemma is proved I 
Lemma 4. For the second order remainder term r(vo,yo,v) of £ at (vo,yo) the 

estimate
ir(vo,yo,v)i 

2 <Cr VVO 
li v - voii2 

is valid for all v E W(1l) x L(r). 

Without limitation of generality we can use the same constant Cr in Lemma 3 and 
Lemma 4. 

Proof of Lemma 4. We have 
r(vo,yo,v) 

= £(v, yo) - £(vo,yo) - *CV (vo,yo)(v - vo) -	vv(vo,yo)[v - v 0 ,v - Vol 

= f 'C v (Vo + s(v - vo ), yo) (v - vo)ds 

- £v(vo, yo) (v - vo) - r(vo,yo)[v - v 0 ,v - vol 

=1 (],C vv (Vo + T(V —vo),yo)fv - vo,v - vo]dT +(vo,yo)(v - vo))ds 

- £v(vo,yo)(v - vo) - r0(vo,yo)Ev - v0,v - vol 

= )/vv(vo +r(v—vo), yo) [v —v 0 ,v — vo]drds 

-	00 (vo,yo)[v - v0 ,v - vol
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= If (vv(vo + T(v - vo),yo)[v - v0,v - vol - £vv(vo,yo)[v - vo,v - vol)dTds. 

Invoking Lemma 2 we conclude 

is 
lr(vo,yo,v)i	cffr li v - voji v - vodrds < c li v - voiili v - voii 

00 

and the assertion is proved I 

Now we are able to establish a strengthened second order sufficient optimality con-
dition. 

Theorem 2. Suppose that the assumptions (Al) and (A2) are fulfilled. Let VO = 
(wo,uo) be admissible for the optimal control problem (1) —(3) and fulfil the optimality 
system (12) with the associated adjoint state Yo Choose e > 0 and the corresponding 
set of positivity r. Suppose the existence of an i > 0 such that 

£vv(vo, yo)[(h, z), (h, z)l 2a il( h , z ) ii	 (16) 

holds for all z = u - no, where u E Uad and u(x) uo(x) for almost all x E F, and h 
is the solution of the linearized equation 

—Ah+h=0	 mci 

= bw(vo)h + b(vo)z	on F.	
(17) 

Then there exist 6 > 0 and p> 0 such that 

F(v) > F(vo) + 0 li v - voii 

for all admissible pairs v with li v - voii	p 

Remark. The solution h of the linearized equation (17) exists as b(v) is non-
positive. 

Proof of Theorem 2. a) Preparatory estimation of the cost functional F = F(v). 
Let v = (u, w) be an admissible pair. Suppose that v 0 fulfills the assumptions of the 
theorem. We have F(v) = £(v, yo) since v is admissible. By means of  Taylor expansion 
of the Lagrange function £ £(v, y) at v0 with respect to v we get 

F(v) = £(v, yo) 

= £(vo,yo) + £u(vo,yo)(u - u 0 ) + £w(vo,yo)(w - w0) 

+ 1 Cv,,(vo,yo)[v - v0 ,v - vo] + r(vo,o,v).
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The admissibility of vo yields £(V, yo) = F(vo). Moreover, the necessary optimality 
conditions are fulfilled at v0 with adjoint state yo Thus, the third term is equal to zero. 
On the other hand, the second term is non-negative due to the variational inequality in 
(12). However, we get even more. The definition of re yields 

£u(vo,yo)(u - uo) =J ((v) + b(vo)yo)(u - uo)dS 
(t(vo) + b(vo)yo)(u - uo)dS1 

^ C I JU - U011L1(f'). 

Therefore, we have 

F(v) ^: F(vo) + e ll u - uollL, ( r) + r(vo,yo,v) +	vv(vo, yo)Iv - vo,v - Vol. 

b) Splitting of the optimal control according to the set of positivity r. Next, we 
discuss the second derivative of the Lagrange function £ = £(v, y). Here, we intend to 
exploit the estimate (16). To this aim, a new control ü is introduced by 

f uo(x) u(x)	
u(x) on r \ re. 

Let zi' be the state corresponding to the control ü, i.e. 

—Lt7v+z2=0	in ci 
azb —=b( - - w, ii) ) on F. 

Let denote the pair (t1, u). Inserting these notations, we obtain by means of (13) 

£vv(VO,Yo)[v - vo,v - Vol 

= £vv(vo,yo)[v -i3 + - v0 ,v —13 + 13— vol 

= £(vo,yo)[v-13,v-13] 

+ £ (vo, yo)E13 - v0 ,13 - Vol + 2 (vo, yo)I13 - vo,v —13] 

> £(vo,yo)[13_vo,13_vo]_clI13—vll—Ell13—vll2Il13—voll2. 

c) Linearization - linearized state Wt. Moreover, we introduce Wj as the solution of 
the linearized state equation at v0: 

-LWj + Wt = 0 
awe = b(vo) + b(vo)(wj - wo) + b(vo)(ü - u0).
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Setting Vt	(W t , Ü) and invoking (13), we continue by 

£vv(vo,yo)[—vo;—Vol 

= £vv(vo,yo)[_vt+vi_vo,i3_v+v_v0] 

=	- Vj,V - vt] 

+ £vv (vo , yo)[v t - Vo,Vj - VO ] + 2 vv( Vo, yo)[vj - v0 , - vt] 

^ Cvv(Vo,yo)[vj - Vo,Vj -Vol _ 
 c l1i3 - vtii 

-	ik -. V jli2IJ vt - V0112. 

For the first term of the last equation the estimate (16) applies. To handle the second 
and the third term we consider first the difference - Vj. By definition we have 

li v - -1 1112 = (ii	- Wi ilw i () + 11
	= ii	- W111(Q) 

and ?i' - wj fulfils the equations 

0= —A(—w)+(th—wt) 
- Wg) - 
an	

— b(t5,ü) - b(wo,uo) - b(w 0 ,tz 0 )(w - w0 ) - b(wo,uo)(ü - u0). 

For the right-hand side of the boundary condition we get 

b( th , i) - b(wo, u 0 ) - b(w 0 , UO)(Wt - wo) - b. (wo, u 0 )( ,& - u0) 

= b(t3,ü) - b(wo,uo) - b(wo,uo)(D —wo) 

- b. (wo, uo)(ü - uo) - b(wo, uo)(ü - wt) 

= r(vo,i)) - b(wo,u 0 )(th - Wi). 

Thus the boundary condition is equivalent to 

- Wt) 

an	
+ b(wo,u 0 )(th - Wi) = 

Lemma 1 yields	 . 

— v12 =	- W tIlwi (cl)	C ii r ( vo, 3 )iiL 2 (r),	 (18) 

the decisive estimate of the difference between state and linearized state.
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d) Exploiting the second order condition (16) and the estimate (18). Using (16) and 
(18) we estimate 

£ (vo, yo)[i3 —v,i3 —VO] 

>— £,(vo, yo)[vt - vo, Vj - Vol - c	- vtIi -Ell i5 - v 1112I1 v i - you2 

• a ll v - Va ll - c ll r (vo, )lli 2( r ) - ll f (vo, v )ll L 2 (r) lltt - V0 112 

• a p - voll - 2a ll v t - ll2ll - v0112 - c II r ( vo, *)IlL(r) 

- ll r (vo, )llL2 ( r*Iivt - vu2 - ll r (vo, i5 )11L2 ( r ) 1k3 - y012!

• a  - V011 - c ll r (vo, )11, 2( r ) -	IT i (O, v )ll L2(r) Il v - V0 112 

	

2 (	c ll r ( vo, )lli 2( r )	lI r ( vo, )iIL2(r) 
^ 1k*	vail2 l	 2 1k' - V01l2	liv - V0 112 

By (14),

£vv(vo,yo)k'Vo,i3 
Vo l ^! 

lk*_voIl(a_clk*_vollo_lli3—volloo) 

If v is sufficiently close to v0 with respect to the V,-norm, then Ik*— voll is sufficiently 
close to zero, too. Therefore, the term in the brackets is greater or equal to & > 0 for 
all admissible v such that li v - voll < p. In this way we conclude that 

£(vo,yo)Ei3—vo,—Vol ^!&ili3—voll 

holds for all admissible v with li v - voll <p and all corresponding pairs ij. 

e) Transformation back to the original quantity v = (w, u). Further, 

£(vo,yo)tv - vo,v - Vol 

^ & lk* - 
	

-dii' - v lI - li i* - V II2II V - v0112 

> alIv—v+v—voll2—cllv—v112—clIv—vll2liv—v+v—voll2 

^ &v - vo	- 2&lIv - voil2li v - v 112 - c II - VII - li i* - V 11211 v - v0II2 

^ & II v - voIl - c 1k* - v il - li i* - V II2II V - V0112. 

f) Final estimation using the first order sufficient optimality condition. Now we are
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able to complete the estimation of the cost functional F _F(v). We have
F(v) 2 F(vo)+eI!uuoll L , ( r ) +r(vo,yo,v) - 

+ 1 L ""(VO , yo)(v - v0 ,v - v0] 

> F(vo)+eIlu—uoIiLi(r)+r(vo,yo,v) 

+ (a ll - VoiI - c iI - vl - EP - V I1211 V - V0112) 

2 F(vo)+eIIu—uoIIL,(r)r(vo,yo,v) 

1 
+ & ll v -voll - c il i - v ii - E	- V 1I2II V - V0112. 

The next term under consideration is	- V112 11V - V0112- Youngs inequality implies 
IV - V 11211V - V0112 < ?C	li v - v li +	li v	voll 

for all r, > 0. Moreover, we have by construction hi - v 2 c ll u - u JIL(r), where the 
term on the right-hand side is uniformly bounded. Thus, we continue with 

F(v)> F(vo) + E Il u - U ollL i (r) + r(vo, yo, v) 

1 
+ & ll v	V0112 - C	- v fI - C V	v 112il v - volI2 

> F(vo)+ellu—uoll L , ( r ) +r(vo, yo, v) 

+ & Jl v - volj - C lu - U ! l 2 (r ) - (n—' lu - ull L(r) + li v - voll) 

> F(vo) + E lu - uoll L i ( I* ) - Ck *ll u - UllL(r) 

2 (&	lr(vo,yo,v)l\ 
+ 1k*

_ V0 112	-	
-	li v - voll	) 

By (15) we have that

lr'(vo,yo,v)l < cIiv—vohjIIv--voIl 
Therefore, for 11  - voll	P3 P2 and tc sufficiently small, the term in the brackets is 
greater than or equal to a 1 > 0 for all admissible v with ll v - vo	p3. Hence 

	

F(v) > F(vo) + e ll u - 1L OIIL 1 (r) - ci	lu - U 11L
2 (F) + a1 li v - V011 

2- 
Furthermore, ü differs from u only on r, where ü is equal to u 0 provided that ll v - 
voll	< p3 again. Therefore the norm ll u - u ll ( r ) is equal to JJUO - U 112 2(r)
p31l u - U OIIL 1 (r) . Now we take p3 sufficiently small such that e - e(ic')p3 > 0. Then 
we are allowed to omit the terms with Ilu - uoliL i (r and arrive at 

F(v) 2 F(vo) + a iil v - voll 
for all admissible v with 11 v - voll	P = P 
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Re-formulating this result we arrive at 
Theorem 3. Suppose that the assumptions of Theorem 2 hold true. Then u0 is a 

locally optimal control in the sense of L(r). 

Proof. We choose u E U0d such that 11 U - uollL,,(r)	min{p/C,p}	p. By the
estimate (5) we conclude for the state w corresponding to u 

ii W — w011W(0) C min {-,p} <p. 

Therefore, we have li v - volI < p. Now the statement follows directly taking into 
account that li v - voll ^ Il u - Uoll (F) 

5. Remarks 

The results of the preceding sections ensure local optimality of the control UO in a 
sufficiently small neighbourhood in L(r). If jumps of u 0 cannot be excluded, all 
functions in this neighbourhood must have jumps at the same position. This is too 
strong for many applications. Aiming to weaken this, we consider now the optimal 
control problem (1) -(3) under stronger assumptions. We shall show that in this case 
the assumptions of Theorem 2 are sufficient for local optimality in the sense of L(r), 
where p < oo is sufficiently large (cf. Section 2). To do so we suppose the following 
additional properties on b and b: 

The functions and b fulfil the assumptions (Al) and (A2) of Section 2 and have 
the form

b(w, u) = b i (w) + b2(w)u
(19) 

T,b(w, u) = 01(w) + 02 (w)u + yu2 

where -y E L() with -y (x ) > 0 almost everywhere on r. We assume that the func-
tions b 1 , b2 and 01, 02 and all of their derivatives up to the second order are uniformly 
Lipschitz continuous. 

The crucial point in the proof of Theorem 2 were the estimates of the first and 
second order remainder terms r(vo, v) and rf (vo, Yo, v) of b and the Lagrange function 
£, respectively. In general, these estimates are valid only with respect to the norm in 
W() x L(r). For that reason, Theorem 3 states only local optimality in the sense 
of L(F). The additional assumptions (19) allow us to improve the estimates of the 
remainder terms. We set for convenience 

il v ll = ll(w , u )il = I w IIyi	+ llhull,(r)- 

Lemma 5. The first order remainder term r(vo,v) of b fulfills the estimate 

Ii r (v0, v )11L2(r)	Cr,p li v - v011211v - vollp 

for all y = (W, U) E W,(Q) x L,,. (r).
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Proof. We have 

r(vo, v ) 2 11L2(r) = J (b(v) - b(vo) - b(v0 )(v - vo))dS 
I,

(

1	 2	 (20) 

J(b(vo+s(v_vo)) _bv(vo))(v_vo)ds) dS1. 

Making use of the special structure of b we can rewrite the integrand at almost all x E r 
in the following way: 

{b(vo(x) + s(v(x) - VU(S))) - bv(vo(x))}(v(x) - 

= {b1 (WO(S) + s(w(x) - WO(S))) - b1(wo(x)) } (w(x) - 

+ {b2 (wo(x) + s(w(x) - WO(S))) (u O (x) + s(u(x) - uQ(x))) 

- b2w(wo(x))uo(x)} (w(x) - 

+ {b2 (wo(x) + s(w(x) - WU(S))) - b2 (WO (x)) } (U ( X ) - UO(X)) 

The functions b1 and b2 and the corresponding derivatives are assumed to be Lipschitz 
continuous. Using u0 E L(r), we get 

I{ VO(x) + s(v(x) - Vø(x)) - b(v0(x))}(v(x) - VO(X)) 

<c(s(w(x) - WO(S)) (w(x) - WO(S)) + s (u(s) - uO(x)) (w(x) - 

x Iuo(x)I Is(w(x) - wo(x))(w(x) - 

<c(s(w(x) - WO(S)) (w(x) - WO(S)) + s (u(x) - UO(X)) (w(x) - WO(S)) D. 
Inserting this into (20) we find 

II r (vo, v )Il 2 (r) <cJ(J {s(w(x) - WO(X))(W(X) - 

+ s (u(s) - uo(x)) (w(s) - WO(S)) }ds) dS 

<C! {(w(x) - WO (X)) + (u(s) - UO(X))(W(X) - 

< cJ {lw - w01 4 + 1w - w0I 3 I u - uol + 1w - w0I 2 I u - u0I2}dS
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C lw - Woilc() / {l w - wol 2 + 1w - wollu - uol + u - u12}dS 

C 11 w - woil W 1 (cZ)lI V - Voil 

cllv—volllIv_voll. 

The statement of the Lemma is now a simple conclusion U 
To prove estimates on the second order remainder term r(vo, yo, v) of the Lagrange 

function £ = £(v, y) we have used in the general case the Lipschitz argument of Lemma 
2. This general result cannot be transferred to our special case replacing the co-norm 
by the p-norm. However, we are able to show the following 

Lemma 6. For the Lagrange function £ = £(v, y) the estimate 

Cvv(vo + r(v - vo),yo) [v - VO,V voj - £vv(vO,yO)[v - V0,V - vol 

< ct,, li v - vfl p v - voII 

holds for all admissible pairs V E W,(cl) x L() and r E (0, 1) 
Proof. The form (19) of the functions t' and b implies 

£vv(vo,yo)[v - vo,v - vo] = / c-*ww(
Wo)(w - wo)2dx 

+ / { (i(wo) + tb2(wo)uo)(w - wO)2 

+ 2,2 (wo)(w - wo)(u - u 0 ) + 27(u - uo)2}dS 

+ / yo{ b iww(wo)(w - wo) 2 + b2(wo)uo(w - w0)2 

+ 2b2 wu(wo)(w - wo)(u - uo)}dS. 

Analogously we have with w,. = w0 + r(w - wo) and u,. = Uo + r(u - uo) 

£vv(vr,yo)[v - v0 ,v - v0] J ww (w r )(w - wo)2dx 

+ / { (i,biww(wr) + 02ww(wr)ur)(w - 

+ 2 2 (w)(w - w0 )(u - uo) + 27(u - uo)2}dS 

+ / yo{biww(wr)(v - wo) 2 + b2ww(Wr)ur(W - w0)2 

+ 2b2 wu(wr)(w - wo)(u - uo)}dS.
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Using the Lipschitz continuity of the partial derivatives of W. , t,i and b, we can estimate 

.Cvv(vr,yo)[v - vov - vol - £vv(vo,yo)Ev - VO,V - Vol 

< cf {lw r - wol(w - wo) 2 + lUr - uol( w - w0)2 

+ lwr - wol (u - uo)(w - wo)l} dS +J lw - wol(w - wo)2dx 

c/ { I w - wol(w - wo) 2 + u - u ol(w - w0)2 

+ 1w - wo(u - uo)(w - wo)l} dS + 11w - wol(w - wo)2dx 

cw - WoIIc() (f {(w - wo)2 + Iu - Uo I 1w - wol 
F 

+ (u - uo)(w - wo)I}dS + f w wol 1w - wol dx) 

cIIv—voIIpIIv—voII. 
In particular, the embedding result II W IIc()	cIIwIIwi(fl) was used. Therefore, the 
statement of the lemma holds true I 

The next statement is an immediate consequence. 
Lemma 7. The second order remainder term r(vo, yo, v) of the Lagrange function 

= £(v, y) at (vo,yo) satisfies the estimate 

Ir(vo,yo,v)I	Ct,pIIv—voIIpIIv—voII 
for all admissible v E WP (Q) x L(f). 

Proof. The proof is along the lines of the proof of Lemma 4. We only have to use 
Lemma 6 instead of Lemma 2 for the Lipschitz estimate  

Summarising up we arrive at 
Theorem 4. Let the general assumptions (Al), (A2), and (19) be fulfilled. Suppose 

further that the assumptions of Theorem 2 are satisfied. Then the reference control u0 
is locally optimal in the sense of L(r). 

Proof. The proof of local optimality of u0 in the sense of L00(r) was mainly based 
on W()-regularity of the state w0 , on differentiability of the non-linearities in C() x 
Loop, and on the estimates of the remainder terms r(vo,v) and r(vo, yo, v) of band 
£, respectively. The W(l)-regularity is preserved for controls u E L(r). Due to the 
strengthened assumptions on the appearance of u, the differentiability is guaranteed in 

x L(r), too. Therefore, to prove the statement of Theorem 4, we can proceed 
along the lines of the proofs of Theorem 2 and Theorem 3. The only difference is the 
use of estimates according to Lemma 5 and Lemma 7 instead of Lemma 3 and Lemma 
4, respectively I
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