# On the Operator-Valued Nevanlinna-Pick Problem 

A. Ionescu


#### Abstract

In this note we construct a specific Schur-Nevanlinna type algorithm that will be used in describing more precisely the solutions of the operator-valued Nevanlinna-Pick problem with the so-called method of Weyl circles. We also present an approach to the Pick criterion in the operator-valued setting.


Keywords: Cascade transformations, contractions, elementary rotations, operator-valued functions, positive definiteness
AMS subject classification: Primary 47 A 57, secondary 30 E 05 , 42 A 82, 47 A 20, 93 A 20

## 1. Introduction

The main purpose of this note is to present a variant of a Schur-Nevanlinna type algorithm for the operator-valued Nevanlinna-Pick problem, and we also describe the solution structure using the method of Weyl circles. We obtain the connections between the solvability of the operator-valued Nevanlinna-Pick problem and the classical Pick criterion.

Let us give a short description of the results obtained in this note. In Section 2 we consider an operator-valued setting of the scalar Schur-Nevanlinna algorithm using the Redheffer product [15]. We develop an operator-valued Schur-Nevanlinna type algorithm similar to the scalar one (cf. [10: p. 202]), which yields the solutions ofthe operator-valued Nevanlinna-Pick problem and extends the results in [4]. Then, as in the scalar case, we obtain the correspondence between the operator-valued Nevanlinna-Pick problem data and the associated Schur sequence. In Section 3 we derive the generalized method of Weyl circles, which precisely describes the solution structure in the operatorvalued case. In Section 4 we obtain the well known Pick criterion in the operator-valued setting, reflecting the close connection between the Pick matrices of the operator-valued Nevanlinna-Pick problem and the Toeplitz matrices of the operator-valued Schur problem, and generalizing the approach in [4] and [11]. For a different approach to the Pick criterion for the Nevanlinna-Pick problem see also [2: p. 398], [7: p. 197] and [16: p. 25]. Such interpolation problems are of great interest in systems theory (see [2: Chapter 23] and [8: Chapter 6]).

[^0]
## 2. The operatorial Nevanlinna algorithm

We assume that the reader is familiar with the scalar Schur and Nevanlinna-Pick problems and the associated algorithms (see [10: p. 202]). We now introduce some notation and terminology that are needed to formulate the problem in the operator-valued case. Let $I N$ be the set of positive integers, and let us denote by $\mathbb{D}$ the open unit disc and by $\boldsymbol{T}$ the unit circle in the complex plane $\boldsymbol{C}$. Let $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$ be complex Hilbert spaces, $\mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ the set of bounded linear operators from $\mathcal{H}_{1}$ into $\mathcal{H}_{2}$, and $\mathcal{S}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ the set of analytic and contractive operatorial-valued functions $\Theta: \mathbb{D} \rightarrow \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$. Then we consider the following operator-valued Nevanlinna-Pick problem:
(ONPP) Given any set of distinct points $\left\{z_{n}\right\}_{n>1} \subset \mathbb{D}$ and any set of contraction operators $\left\{W_{n}\right\}_{n \geq 1} \subset \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$, does there exist a function $F \in \mathcal{S}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ satisfying $F\left(z_{n}\right)=W_{n}$ for all $n \in \mathbb{N}$ ?

A sequence $\left\{z_{n}, W_{n}\right\}_{n \geq 1} \subset\left(\mathbb{D}, \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)\right)$, where $\left\{W_{n}\right\}_{n \geq 1}$ are contraction operators, is called a set of initial data. Let $T \in \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ be a contraction and denote, as usual (see [13: p. 7]),

$$
D_{T}=\left(I-T^{*} T\right)^{1 / 2} \quad \text { and } \quad \mathcal{D}_{T}=\left(D_{T} \mathcal{H}_{1}\right)^{-} .
$$

Let further $z \in \mathbb{D}$. In this context, we can define

$$
J\left[T \left\lvert\,(z)=\left[\begin{array}{cc}
T & z D_{T^{*}}  \tag{1}\\
D_{T} & -z T^{*}
\end{array}\right]\right.\right.
$$

and then, clearly, $J[T](z)$ is an operator from $\mathcal{H}_{1} \oplus \mathcal{D}_{T^{*}}$ into $\mathcal{H}_{2} \oplus \mathcal{D}_{T}$. It is easy to see that $J[T]$ is inner from both sides and that $J[T](1)$ is the elementary rotation of $T$ (see [13: p. 16]). In the operator-valued setting, it is useful to replace Möbius transformations by the so-called cascade transformations (see [3] and [8: Chapter 6]). Let $\mathcal{K}_{1}$ and $\mathcal{K}_{2}$ be Hilbert spaces and let

$$
S=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \in \mathcal{L}\left(\mathcal{H}_{1} \oplus \mathcal{K}_{1}, \mathcal{H}_{2} \oplus \mathcal{K}_{2}\right)
$$

be a contraction. For an arbitrary contraction $X \in \mathcal{L}\left(\mathcal{K}_{2} ; \mathcal{K}_{1}\right)$ and $I=I_{\mathcal{K}_{2}}$, we define the cascade transformation

$$
C_{S}(X)=A+B X(I-D X)^{-1} C
$$

whenever the inverse of $(I-D X)$ exists. One immediately verifies that $C_{S}(X)$ is a contraction. In a similar way, we may define the cascade transformation for operatorvalued functions, and we have the following result (see [3]).

Theorem 1: For any $G \in \mathcal{S}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ the equation $G=C_{J[T]}(F)$ has a unique solution $F \in \mathcal{S}\left(\mathcal{D}_{T}, \mathcal{D}_{T^{*}}\right)$ where $T=G(0)$.

We now present a way by which we may construct the Schur-Nevanlinna algorithm. For each contraction $T \in \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$, number $z \in \mathbb{D}$ and integer $n \in \mathbb{N}$ one defines the generalized elementary rotation

$$
J^{n}[T](z)=\left[\begin{array}{cc}
T & b_{n}(z) D_{T^{*}} \\
D_{T} & -b_{n}(z) T^{*}
\end{array}\right] \quad \text { where } \quad b_{n}=\frac{\left|z_{n}\right|}{\overline{z_{n}}} \frac{z_{n}-z}{1-\overline{z_{n}} z}
$$

We then consider the following cascade transformation of $F$ in $\mathcal{S}\left(\mathcal{D}_{T}, \mathcal{D}_{T^{*}}\right)$ :

$$
C_{J^{n}[T]}(F)=\left.T\right|_{\mathcal{D}_{T}}+\left.b_{n}(z) D_{T^{*}} F(z)\left[I+b_{n}(z) T^{*} F(z)\right]^{-1} D_{T}\right|_{\mathcal{D}_{T}}
$$

Clearly the operator $C_{J^{n}[T]}(F)$ makes sense because for $|z|<1$ we have $\left|b_{n}(z)\right|<1$, and since $T$ and $F(z)$ are contractions, $\left[I+b_{n} T^{*} F(z)\right]$ is invertible. A short computation shows that

$$
\begin{aligned}
& I-C_{J^{n}[T]}^{*}(F)(z) C_{J^{n}[T]}(F)(w) \\
& =\quad D_{T}\left[I+\overline{b_{n}(z)} F^{*}(z) T\right]^{-1} \\
& \quad \times\left.\left[I-\overline{b_{n}(z)} b_{n}(w) F^{*}(z) F(w)\right]\left[I+b_{n}(w) T^{*} F(w)\right]^{-1} D_{T}\right|_{\mathcal{D}_{T}}
\end{aligned}
$$

and, therefore, it results that, for each $n \in \mathbb{N}, C_{J^{n}[T]}(F) \in \mathcal{S}\left(\mathcal{D}_{T}, \mathcal{D}_{T^{*}}\right)$. Thus, we have obtained the following result.

Corollary 2: Let $G \in \mathcal{S}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ and $\left\{z_{n}\right\}_{n \geq 1} \subset \mathbb{D}$; and let us denote for each $n \in \mathbb{N}, T_{n}=G\left(z_{n}\right)$. Then the equation $G=C_{J^{n}\left[T_{n}\right]}(F)$ has a unique solution $F=$ $F_{n} \in \mathcal{S}\left(\mathcal{D}_{T}, \mathcal{D}_{T^{*}}\right)$.

The main object used for the description of the Schur-Nevanlinna algorithm is the Schur sequence. A set of contractions $\left\{\Gamma_{n}\right\}_{n \geq 1}$ is called a Schur sequence if $\Gamma_{1} \in$ $\mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ and, for each $n \in \mathbb{N}$, we have $\Gamma_{n}: \mathcal{D}_{\Gamma_{n-1}} \rightarrow \mathcal{D}_{\Gamma_{n-1}^{*}}$ where by definition $\mathcal{D}_{\Gamma_{0}}=\mathcal{H}_{1}$ and $\mathcal{D}_{\Gamma_{0}}=\mathcal{H}_{2}$.

Theorem 3: The collection of solutions of the Nevanlinna-Pick problem (ONPP) with initial data $\left\{z_{n}, W_{n}\right\}_{n \geq 1} \subset\left(\mathbb{D}, \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)\right)$ is defined by the set of contractive operator-valued functions $F_{n+1} \in \mathcal{S}\left(\mathcal{D}_{\Gamma_{n}}, \mathcal{D}_{\Gamma_{n}^{*}}\right)(n \in \mathbb{N})$ satisfying

$$
F_{n}=C_{S_{n}}\left(F_{n+1}\right) \quad \text { where } \quad S_{n}=\left[\begin{array}{ll}
A_{n} & B_{n} \\
C_{n} & D_{n}
\end{array}\right]
$$

such that, for some set of contractions $\Gamma_{n+1}: \mathcal{D}_{\Gamma_{n}} \rightarrow \mathcal{D}_{\Gamma_{n}} \quad(n \in \mathbb{N})$, the operator. valued functions $A_{n}, B_{n}, C_{n}$ and $D_{n}$ are given in the following way:

$$
\left.\begin{array}{rl}
A_{1}(z)= & \Gamma_{1}, \quad B_{1}(z)=b_{1}(z) D_{\Gamma_{i}}, \quad C_{1}(z)=D_{\Gamma_{1}}, \quad D_{1}(z)=-b_{1}(z) \Gamma_{1}^{*} \\
A_{n+1}(z)= & A_{n}(z)+B_{n}(z) \Gamma_{n+1}\left[I-D_{n}(z) \Gamma_{n+1}\right]^{-1} C_{n}(z) \\
B_{n+1}(z)= & b_{n+1}(z) B_{n}(z) \Gamma_{n+1}\left[I-D_{n}(z) \Gamma_{n+1}\right]^{-1} D_{n} D_{\Gamma_{n+1}^{*}}  \tag{2}\\
& +b_{n+1}(z) B_{n}(z) D_{\Gamma_{n+1}^{*}} \\
C_{n+1}(z)= & D_{\Gamma_{n+1}}\left[I-D_{n}(z) \Gamma_{n+1}\right]^{-1} C_{n}(z) \\
D_{n+1}(z)= & b_{n+1}(z) D_{\Gamma_{n+1}}\left[I-D_{n}(z) \Gamma_{n+1}\right]^{-1} D_{n}(z) D_{\Gamma_{n+1}}-b_{n+1}(z) \Gamma_{n+1}^{*} .
\end{array}\right\}
$$

Proof: Let $F \in \mathcal{S}\left(\mathcal{D}_{T}, \mathcal{D}_{T^{*}}\right)$ be a solution of the Nevanlinna-Pick problem (ONPP) with initial data given by the sequence $\left\{z_{n}, W_{n}\right\}_{n \geq 1} \subset\left(\mathbb{D}, \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)\right)$. Using Corollary 2 one can define an algorithm similar to the scalar one (see $\{12,14,17]$ ). Let $F_{1}(z)=$ $F(z)$ and $\Gamma_{1}=F_{1}\left(z_{1}\right)=W_{1}$. Then $F_{n+1}$ and $\Gamma_{n+1}$ are implicitly defined by the equations

$$
\begin{equation*}
F_{n}=C_{\left.J^{n} \mid \Gamma_{n}\right]}\left(F_{n+1}\right) \quad \text { and } \quad \Gamma_{n+1}=F_{n+1}\left(z_{n+1}\right) \tag{3}
\end{equation*}
$$

where $\Gamma_{n+1}: \mathcal{D}_{\Gamma_{n}} \rightarrow \mathcal{D}_{\Gamma_{n}^{*}}$ is a contraction and $F_{n+1} \in \mathcal{S}\left(\mathcal{D}_{\Gamma_{n}}, \mathcal{D}_{\Gamma_{n}^{*}}\right)$. We readily deduce from (3) that

$$
\begin{equation*}
F=C_{J^{1}\left[\Gamma_{1}\right]}\left(C_{J^{2}\left[\Gamma_{2}\right]} \cdots\left(C_{J^{n}\left[\Gamma_{n}\right]}\left(F_{n+1}\right) \cdots\right)\right) . \tag{4}
\end{equation*}
$$

It is easy to check that for any two contractions

$$
S_{i}=\left[\begin{array}{ll}
A_{\mathrm{i}} & B_{\mathrm{i}} \\
C_{\mathrm{i}} & D_{\mathrm{i}}
\end{array}\right] \quad(i=1,2)
$$

we have

$$
C_{S_{1}}\left(C_{S_{2}}(X)\right)=C_{S_{1} * S_{2}}(X)
$$

where $\star$ is the Redheffer product (see [15]) and $S_{1} \star S_{2}$ is defined by the matrix

$$
\left[\begin{array}{cc}
A_{1}+B_{1} A_{2}\left(I-D_{1} A_{2}\right)^{-1} C_{1} & B_{1} A_{2}\left(I-D_{1} A_{2}\right)^{-1} D_{1} B_{2}+B_{1} B_{2} \\
C_{2}\left(I-D_{1} A_{2}\right)^{-1} C_{1} & C_{2}\left(I-D_{1} A_{2}\right)^{-1} D_{1} B_{2}+D_{2}
\end{array}\right]
$$

whenever the inverse of $\left(I-D_{1} A_{2}\right)$ exists. Then, (1) and (4) give the relation

$$
F=C_{J^{1}\left[\Gamma_{1}\right] * J^{2}\left[\Gamma_{2}\right] \star \ldots * J^{n}\left[\Gamma_{n}\right]}\left(F_{n+1}\right) \quad(n \in \mathbb{N}) .
$$

Considering the matrix functions

$$
S_{n}=\left[\begin{array}{ll}
A_{n} & B_{n} \\
C_{n} & D_{n}
\end{array}\right]=J^{1}\left[\Gamma_{1}\right] \star J^{2}\left[\Gamma_{2}\right]_{\star} \ldots \star J^{n}\left[\Gamma_{n}\right]
$$

we get

$$
\begin{equation*}
F=C_{S_{n}}\left(F_{n+1}\right) . \tag{5}
\end{equation*}
$$

By definition,

$$
S_{0}(z)=\left[\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right]
$$

and for $n \geq 1$, by induction, it easily follows that the operator-valued functions $A_{n}, B_{n}$, $C_{n}$ and $D_{n}$ satisfy the relations (2)

Corollary 4: For every $n \in \mathbb{N}$ we have the correspondence

$$
W_{n}=C_{S_{n-1}}\left(\Gamma_{n}\right)
$$

between the set of parameters $\left\{W_{n}\right\}_{n \geq 1}$ of the Nevanlinna-Pick problem (ONPP) and the associated Schur sequence $\left\{\Gamma_{n}\right\}_{n \geq 1}$.

The set $\left\{\Gamma_{n}\right\}_{n \geq 1}$ is a so called Schur (-Nevanlinna) sequence and, obviously, $\left\{\Gamma_{n}\right\}_{n \geq 1}$ is uniquely determined by $F$.

In order to study the converse, let us consider for each $n \in \mathbb{N}$ the decomposition

$$
\begin{aligned}
F(z)-A_{n}(z)= & C_{S_{n-1}}\left(F_{n}\right)(z)-C_{S_{n-1}}\left(\Gamma_{n}\right)(z) \\
= & B_{n-1}(z)\left\{F_{n}(z)\left[I-D_{n-1}(z) F_{n}(z)\right]^{-1}\right. \\
& \left.-\Gamma_{n}\left[I-D_{n-1}(z) \Gamma_{n}\right]^{-1}\right\} C_{n-1}(z)
\end{aligned}
$$

Then, from (2), we obtain

$$
B_{n}(z)=\prod_{k=1}^{n} b_{k}(z) \widehat{B}_{n}(z) \quad \text { for } \quad \hat{B}_{n} \in \mathcal{S}\left(\mathcal{D}_{\Gamma_{n}}, \mathcal{H}_{2}\right)
$$

and it follows that

$$
\begin{equation*}
F(z)-A_{n}(z)=\prod_{k=1}^{n} b_{k}(z) \widehat{F}_{n}(z) \tag{6}
\end{equation*}
$$

where $\widehat{F}_{n}$ is a bounded operator-valued function. As a consequence of (6), the sequence $\left\{A_{n}\right\}_{n \geq 1}$ converges uniformly to $F$ on compact subsets of $\mathbb{D}$ if and only if the product $\prod_{k=1}^{n} b_{k}(z)$ converges uniformly to 0 on compact subsets of $\mathbb{D}$, and this happens if and only if $\sum_{n \geq 1}\left(1-\left|z_{n}\right|\right)=\infty$. In this case the function $F$ is uniquely determined by the set $\left\{\Gamma_{n}\right\}_{n \geq 1}$ and, moreover, $\left\{\Gamma_{n}\right\}_{n \geq 1}$ uniquely determines the sequence $\left\{A_{n}\right\}_{n \geq 1}$.

## 3. The method of Weyl circles

In order to present the Method of Weyl circles in the operator-valued case we shall restrict our study to the non-degenerate case, where we have at least one solution of the problem (ONPP). The matrix case is intensively analysed in many papers (see, e.g., [4, 5, 9]). For the sake of simplicity we consider $\mathcal{H}_{1}=\mathcal{H}_{2}=\mathcal{H}$ and $\mathcal{S}(\mathcal{H})=\mathcal{S}(\mathcal{H}, \mathcal{H})$. Let us consider a set of initial data $\left\{z_{k}, W_{k}\right\}_{k=1}^{n}$ for the problem (ONPP) and define, for each $z \in \mathbb{D}$,

$$
\mathcal{W}_{n}(z)=\left\{W \in \mathcal{L}(\mathcal{H}) \mid W=F(z), F \in \mathcal{S}(\mathcal{H}), F\left(z_{k}\right)=W_{k} \quad(k=1, \ldots, n)\right\}
$$

Then, $\mathcal{W}_{n}(z)$ is characterized by the following result.
Theorem 5: For the elements $W \in \mathcal{W}_{n}(z)$ we have the representation

$$
\begin{aligned}
W= & {\left[A_{n}(z)+B_{n}(z) D_{n}^{*}(z) D_{D_{n}^{*}(z)}^{-2} C_{n}(z)\right] } \\
& +\left[B_{n}(z) D_{D_{n}(z)}^{-2} B_{n}^{*}(z)\right]^{1 / 2} \cdot Z\left[C_{n}^{*}(z) D_{D_{n}^{*}(z)}^{-2} C_{n}(z)\right]^{1 / 2}
\end{aligned}
$$

where $Z \in \mathcal{L}(\mathcal{H})$, and the operator-valued functions $A_{n}, B_{n}, C_{n}$ and $D_{n}$ are given by (2).

Proof: As a consequence of (5) we get

$$
\mathcal{W}_{n}(z)=\left\{W \in \mathcal{L}(\mathcal{H}) \mid W=C_{S_{n}(z)}(\Gamma), \Gamma \in \mathcal{S}\left(\mathcal{D}_{\Gamma_{n}}, \mathcal{D}_{\Gamma_{\dot{n}}}\right)\right\}
$$

and thus, for each $W \in \mathcal{W}_{n}(z)$ we have the decomposition

$$
\begin{equation*}
W=A_{n}(z)+B_{n}(z) \Gamma\left[I-D_{n}(z) \Gamma\right]^{-1} C_{n}(z) \tag{7}
\end{equation*}
$$

Let us consider the relations

$$
Y=\Gamma[I-D(z) \Gamma]^{-1} \quad \text { and } \quad Y=[I+Y D(z)] \Gamma
$$

which give

$$
Y Y^{*}=[I+Y D(z)] \Gamma \Gamma^{*}\left[I+D^{*}(z) Y^{*}\right] \leq[I+Y D(z)]\left[I+Y D^{*}(z) Y^{*}\right]
$$

and we obtain

$$
Y\left[I-D(z) D^{*}(z)\right] Y^{*}-Y D(z)-D^{*}(z) Y^{*}-I \leq 0
$$

A short computation yields

$$
\begin{aligned}
& \left\{Y\left[I-D(z) D^{*}(z)\right]^{1 / 2}-D^{*}(z)\left[I-D(z) D^{*}(z)\right]^{-1 / 2}\right\} \\
\times & \left\{Y\left[I-D(z) D^{*}(z)\right]^{1 / 2}-D^{*}(z)\left[I-D(z) D^{*}(z)\right]^{-1 / 2}\right\} \leq\left[I-D^{*}(z) D(z)\right]^{-1}
\end{aligned}
$$

and we also have the factorization

$$
Y\left[I-D(z) D^{*}(z)\right]^{1 / 2}-D^{*}(z)\left[I-D(z) D^{*}(z)\right]^{-1 / 2}=\left[I-D^{*}(z) D(z)\right]^{-1 / 2} X
$$

for $X \in \mathcal{L}(\mathcal{H})$. It results that $Y=D^{*}(z) D_{D(z)}^{-2}+D_{D(z)}^{-1} X D_{D^{*}(z)}^{-1}$ and by (7) we infer that, for some $X \in \mathcal{L}(\mathcal{H})$,

$$
W=A_{n}(z)+B_{n}(z) D_{n}^{*}(z) D_{D_{n}(z)}^{-2} C_{n}(z)+B_{n}(z) D_{D_{n}(z)}^{-1} X D_{D_{n}^{*}(z)}^{-1} C_{n}(z)
$$

Another factorization leads to

$$
\begin{aligned}
W= & {\left[A_{n}(z)+B_{n}(z) D_{n}^{*}(z) D_{D_{n}(z)}^{-2} C_{n}(z)\right] } \\
& +\left[B_{n}(z) D_{D_{n}(z)}^{-2} B_{n}^{*}(z)\right]^{1 / 2} Z\left[C_{n}^{*}(z) D_{D_{n}^{*}(z)}^{-2} C_{n}(z)\right]^{1 / 2}
\end{aligned}
$$

where $Z=E X F$ for some $E, F \in \mathcal{L}(\mathcal{H})$
Corollary 6: For any $z \in \mathbb{D}$ and for every $n \in \mathbb{N}$ the set $\mathcal{W}_{n}(z)$ may be thought of as a closed sphere with "center"

$$
O(z)=A_{n}(z)+B_{n}(z) D_{n}^{*}(z) D_{D_{n}(z)}^{-2} C_{n}(z)
$$

and right and left "radii" given by

$$
R_{n}^{\mathrm{r}}(z)=C_{n}^{*}(z) D_{D_{n}(z)}^{-2} C_{n}(z) \quad \text { and } \quad R_{n}^{1}(z)=B_{n}(z) D_{D_{n}^{( }(z)}^{-2} B_{n}^{*}(z)
$$

respectively.

## 4. The Pick criterion

In this section, following the method in [11] (note that the same method is used in the matricial case by the authors of [4]), we consider the connection between the problem (ONPP) and the classical Pick criterion.

Let $\mathcal{C}(\mathcal{H})$ be the Carathéodory class of positive operator-valued analytic functions on $\mathbb{D}$. We then define for each $G \in \mathcal{C}(\mathcal{H})$ the function $F \in \mathcal{S}(\mathcal{H})$ given by

$$
\begin{equation*}
F(z)=[I-G(z)][I+G(z)]^{-1} \quad(z \in \mathbb{D}) \tag{8}
\end{equation*}
$$

This also yields a one-to-one correspondence between the functions $F \in \mathcal{S}(\mathcal{H})$ with $F(0)=0$ and the functions $G \in \mathcal{C}(\mathcal{H})$ with $G(0)=I$. For any set $\left\{z_{n}\right\}_{n \geq 0} \subset \mathbb{D}$ and for any sequence of contractions $\left\{W_{n}\right\}_{n \geq 0} \subset \mathcal{L}(\mathcal{H})$ (by definition $z_{0}=0$ and $W_{0}=0_{\mathcal{H}}$ ) one can define the sequence of matrices

$$
P_{n}=\left[\frac{I-W_{k}^{*} W_{l}}{1-\overline{z_{k}} z_{l}}\right]_{k, l=0}^{n} \quad(n \geq 0)
$$

Let us assume that the inverse of ( $I+W_{n}$ ) exists for $n \geq 0$, and consider the correspondence given by

$$
\begin{equation*}
Y_{n}=\left(I+W_{n}\right)^{-1}\left(I-W_{n}\right) \quad \text { and } \quad W_{n}=\left(I-Y_{n}\right)\left(I+Y_{n}\right)^{-1} \tag{9}
\end{equation*}
$$

For the problem (ONPP) with initial data $\left\{z_{n}, W_{n}\right\}_{n>0}$ and a solution $F$ such that $F\left(z_{n}\right)=W_{n}$ we clearly have $G\left(z_{n}\right)=Y_{n}(n \geq 0)$, where the $Y_{n}$ are given by (9). For $n \geq 0$ and $k=0,1, \ldots, n$ let

$$
\zeta_{k}=\prod_{\substack{0 \leq 1 \leq n \\ \neq k}}\left(z_{k}-z_{l}\right)^{-1} \quad \text { and } \quad U_{n}=\left[\zeta_{k}\left(I+Y_{k}\right)\left(z_{k}\right)^{l}\right]_{k, l=0}^{n} .
$$

Thus, we conclude that $M_{n}=\frac{1}{2} U_{n}^{*} P_{n} U_{n}$ is an $(n+1) \times(n+1)$ Hermitian Toeplitz matrix for $n \geq 0$. It is easy to see from the definitions that each $M_{n}$ is a compression of each $M_{N}$ with $N \geq n$. Therefore, the sequence $\left\{M_{n}\right\}_{n \geq 0}$ can be used to define a single Toeplitz form, indexed by $Z$, which we denote by $\mathcal{T}$. The positivity of $\mathcal{T}$ is equivalent to the positivity of each $M_{n}$ for $n \geq 0$. In this case, we obtain that $\mathcal{T}$ on $Z$ is a realization of a semispectral measure $E$ on $\boldsymbol{T}$ (a semispectral measure on $\boldsymbol{T}$ is a linear positive map $E: C(T) \rightarrow \mathcal{L}(\mathcal{H})$ where $C(T)$ denotes the set of continuous functions on $T)$. For every $m \in Z$ we define $S_{m}=E\left(e_{m}\right)$ and $e_{m}\left(e^{i t}\right)=e^{i m t}$. Obviously, we have $S_{-m}=S_{m}^{*}$. Let us assume that $P_{n}$ are non-negative definite for all $n \geq 0$. Taking into account (8) we may define $G_{n} \in \mathcal{C}(\mathcal{H})$ that satisfies problem (ONPP) with data $\left\{z_{k}, Y_{k}\right\}_{k=0}^{n}$. First we consider the semispectral measure $E_{n}: C(T) \rightarrow \mathcal{L}(\mathcal{H})$ defined by

$$
E_{n}(f)=\frac{1}{2} E\left(\left|m_{n}\right|^{2} f\right) \quad \text { where } \quad m_{n}\left(e^{i \theta}\right)=\prod_{k=0}^{n}\left(e^{i \theta}-z_{k}\right)
$$

and the family of continuous functions

$$
g_{z}: T \rightarrow \mathcal{L}(\mathcal{H}) \quad \text { given by } \quad g_{z}\left(e^{i \theta}\right)=\frac{e^{i \theta}+z}{e^{i \theta}-z}
$$

We then consider

$$
G_{n} \in \mathcal{C}(\mathcal{H}) \quad \text { given by } \quad G_{n}(z)=E_{n}\left(\dot{g}_{z}\right) \quad(z \in \mathbb{D})
$$

A short computation shows that

$$
\frac{G_{n}^{*}\left(z_{k}\right)+G_{n}\left(z_{l}\right)}{1-\overline{z_{k}} z_{l}}=\frac{Y_{k}^{*}+Y_{l}}{1-\overline{z_{k}} z_{l}} \quad(k, l=0,1, \ldots, n)
$$

and it is clear that, for a fixed $n \geq 0$ and for any $k=0,1, \ldots, n, G_{n}\left(z_{k}\right)=Y_{k}$. On the other hand, for the problem (ONPP) with initial data $\left\{z_{n}, W_{n}\right\}_{n \geq 0}$ let us consider the sequences

$$
\begin{array}{llll}
\left\{G_{n}\right\}_{n \geq 0} \subset \mathcal{C}(\mathcal{H}) & \text { satisfying } & G_{n}\left(z_{k}\right)=Y_{k} & (0 \leq k \leq n) \\
\left\{F_{n}\right\}_{n \geq 0} \subset \mathcal{S}(\mathcal{H}) & \text { satisfying } & F_{n}\left(z_{k}\right)=W_{k} & (0 \leq k \leq n)
\end{array}
$$

(see (5) and (8)). The sequence $\left\{F_{n}\right\}_{n \geq 0}$ has a subsequence converging (weakly) to an operator-valued function $F \in \mathcal{S}(\mathcal{H})$ which clearly satisfies the problem (ONPP) with initial data $\left\{z_{n}, W_{n}\right\}_{n \geq 0}$.

Theorem 7: A necessary and sufficient condition for the solvability of the problem (ONPP) is that, for each $n \geq 0, P_{n}$ is non-negative definite.

Proof: Sufficiency was already proved, and necessity is a consequence of the RieszHerglotz theorem for functions in the class $\mathcal{C}(\mathcal{H})$

Remark: This paper is part of the author's Ph.D. thesis, written at Texas A\&M University under the direction of Professor Carl Pearcy.

## References

[1] Adamjan, V. M., Arov, D. Z. and M. G. Kreìn: Infinite Hankel matrices and generalized problems of Carathéodory-Fejèr and I.Schur. Funkc. Anal. Pril. 2 (1968), 1-17.
[2] Ball, J. A., Gohberg, I. and L. Rodman: Interpolation of Rational Matrix Functions. Basel - Boston - Berlin: Birkhāuser Verlag 1990.
[3] Constantinescu, T.: Operator Schur algorithm and associated functions. Math. Balkanica (New Series) 2 (1988), 244-252.
[4] Delsarte, P., Genin, Y. and Y. Kamp: The Nevanlinna-Pick problem for matrix valued functions. SIAM J. Appl. Math. 36 (1979), 47 - 61.
[5] Dubovoj, V. K., Fritzsche, B. and B. Kirstein: Matricial Version of the Classical Schur Problem (Teubner-Texte zur Mathematik: Vol. 129). Stuttgart - Leipzig: B. G. Teubner 1992.
[6] Fedčina, I. P.: A criterion for the solvability of the Nevanlinna-Pick tangent problem. Mat. Issled. 7 (1972), 213-227.
[7] Foias, C. and A. E. Frazho: The Commutant Lifting Approach to Interpolation Problems. Basel - Boston - Berlin: Birkhäuser Verlag 1990.
[8] Kailath, T.: Linear Systems. Englewood Cliffs, N.J.: Prentice Hall 1980.
[9] Kovalishina, I. V. and V. P. Potapov: An indefinite metric in the Nevanlinna-Pick problem. Akad. Nauk. Armjan. SSR Dokl. 59 (1974), 129-135.
[10] Krein, M. G. and A. A. Nudel'man: The Markov Moment Problem and Extremal Problems. Providence, N.J.: Amer. Math. Soc. 1977.
[11] Krein, M. G. and P. G. Rehtman: On the problem of Nevanlinna and Pick. Trudi Odes'kogo Derž. Univ. Mat. 2 (1938), 63-69.
[12] Nevanlinna, R.: Über beschränkte Functionen, die in gegebene Punkten vorgeschriebene Werte annehmen. Ann. Acad. Sci. Fenn. (Ser. A) 13 (1919), 1-71.
[13] Sz.-Nagy, B. and C. Foiaş: Harmonic Analysis of Operators on Hilbert Space. Amsterdam - Budapest: North Holland Publ. Comp. 1970.
[14] Pick, G.: Über die Beschränkungen analytischer Functionen, welche durch vorgegebene Functionswerte bewirkt sind. Math. Ann. 13 (1916), 7-23.
[15] Redheffer, R. M.: Inequalities for a matrix Riccati equation. J. Math. Mech. 8 (1959), 349-377.
[16] Rosenblum, M. and J. Rovnyak: Hardy Classes and Operator Theory. Oxford: University Press 1985.
[17] Sarason, D.: Generalized interpolation in $H_{\infty}$. Trans. Amer. Math. Soc. 127 (1967), 179 - 203.
[18] Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. Part I. J. Reine Angew. Math. 147 (1917), 205-254.
[19] Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. Part II. J. Reine Angew. Math. 148 (1918), 151-163.

Received 02.08.1994


[^0]:    A. Ionescu: Texas A \& M University, Dept. Math., College Station, TX 77843-3368, USA Current address: Texas Lutheran College, Dept. Math./CS, Seguin, TX 78155, USA

