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Abstract. We prove the existence of a bounded positive critical point for
a class of functionals such as

J(v) =
1

2

∫
Ω

[a(x) + b(x)|v|γ ] |∇v|2 −
∫
Ω

|v|p

for Ω a bounded open set in R
N , N > 2, γ + 2 < p < 2N/(N − 2), γ > 0,

γ �= 1 and a(x), b(x) measurable function satisfying 0 < α ≤ a(x) ≤ β,
0 ≤ b(x) ≤ β almost everywhere in Ω.

1. Introduction

The existence of critical points for integral functionals defined on the Sobolev space
W 1,r

0 (Ω) by

I(v) =

∫
Ω

J (x, v,Dv), v ∈ W 1,r
0 (Ω),

is widely studied. Unfortunately, the differentiability of I can fail even for very
simple examples of functionals defined through smooth functions J (x, s, ξ), so that
the Ambrosetti–Rabinowitz theorem cannot be employed. In this paper, we carry
on the study of critical points for multiple integrals of the calculus of variations by
studying the functional I : W 1,2

0 (Ω) �→ R ∪ {+∞} defined by

(1.1) I(v) =
1

2

∫
Ω

[a(x) + b(x)|v|γ ] |∇v|2 − 1

p

∫
Ω

|v|p,

where Ω is a bounded open set in R
N , N > 2, γ and p are positive numbers such

that

(1.2) 0 < γ < p− 2 <
4

N − 2
,
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and a and b are measurable functions satisfying the following condition:

(1.3) 0 < α ≤ a(x) ≤ β, 0 ≤ b(x) ≤ β.

The interest in the study of this class of functionals has increased in the last
decades also due to the relation with the so called “modified Schrödinger equa-
tions”. This kind of models arises in different physical phenomena (see [14], [15]
and the references therein). Many papers deal with functionals having

(1.4) a(x) ≡ b(x) ≡ 1 and γ = 2.

The first existence results in the whole RN appeared in [23], [18], where constrained
minimization arguments are used in the case γ = 2. Then, taking advantage
of (1.4), many authors tackled the problem via suitable changes of variable in
order to recover a semi-linear equation to deal with. This kind of strategy has
been frequently used in the whole R

N (see [1], [11], [19], [20] and the references
therein). Studying the problem on bounded domains leads to the following quasi-
linear variational problem:

(1.5)

⎧⎨
⎩−div(A(x, u)∇u) +

1

2
∂sA(x, u)|∇u|2 = |u|p−2u in Ω,

u = 0 on ∂Ω,

with A(x, s) given by

(1.6) A(x, s) = a(x) + b(x)|s|γ .

Every solution of equation (1.5) can formally be seen as a critical point of the
associated action functional I given by (1.1). Unfortunately, I is not well defined
in the whole W 1,2

0 (Ω) and it is not of class C1, as 〈I ′(u), v〉 can be computed only
for v ∈ W 1,2

0 (Ω) ∩ L∞(Ω) and not for all u ∈ W 1,2
0 (Ω).

In the 90’s, two different approaches have been introduced to handle general
functionals which are not differentiable. An abstract, general theory of critical
point for lower semi-continuous functionals has been developed by Marco Degio-
vanni et al. in [10] and [12]; a version of the Ambrosetti–Rabinowitz theorem
(see [2]) for non-differentiable functionals is proved, with a different approach,
in [3]. By means of these abstract results it is possible to study the existence of
critical points for non-differentiable functionals, and this has been done in the case
in which the coefficient in the principal part is uniformly bounded with respect
to s in [3], [10], [21], [24]. The case of unbounded coefficients a(x, s) which are
differentiable with respect to s (which includes our situation when γ > 1) has been
considered (either exploiting [3] or [12]) in [4], [6], [9], [22] for p < 2N/(N − 2).
On the other hand, when b(x) ≡ 1, it is possible to allow the exponent p to over-
come the usual critical Sobolev exponent 2N/(N − 2). Indeed, the new critical
exponent depends on γ and for a(x, s) = 1 + |s|γ it is given by (γ + 2)N/(N − 2).
This effect has been seen in R

N in all the above quoted papers when (1.4) holds,
and in bounded domains in [5] (see also [17]) for more general coefficients a(x, s)
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uniformly bounded from below by α0 + β0|s|γ for α0, β0 ∈ R
+. Here we consider

a coefficient a(x, s) given by (1.6), so that it depends on the spatial variable and
it is not possible to make a change of variable. Moreover, the coefficient b(x) is
only supposed to be greater or equal than zero, so that we cannot expect the expo-
nent p to overcome the Sobolev critical exponent. That is the reason why we have
assumed the bound from above on p in (1.2). Our existence result in the model
case is stated as follows.

Theorem 1.1. Assume (1.2), (1.3). Then there exists a function u ∈ W 1,2
0 (Ω) ∩

L∞(Ω), u > 0 in Ω, such that b(x)uγ−1|∇u|2 ∈ L1(Ω) and u satisfies∫
Ω

[a(x) + b(x)uγ ]∇u∇v +
1

2

∫
Ω

b(x)uγ−1|∇u|2v −
∫
Ω

up−1v = 0,

for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Since we will look for positive critical points of I we will prove Theorem 1.1 for
the functional J : W 1,2

0 (Ω) �→ R ∪ {+∞} given by

(1.7) J(v) =

⎧⎨
⎩

1

2

∫
Ω

a(x, v)|∇v|2 − 1

p

∫
Ω

(v+)p, if J(v) < +∞,

+∞ otherwise.

We will handle the case γ > 1 in the Appendix, where we give a new proof
of the existence result. Analogously to [6], [9], our argument relies strongly on
the knowledge of the boundedness of a weak limit of a “Palais–Smale” sequence,
before knowing that it is actually a critical point of J .

Our main interest will however, be to face the case γ ∈ (0, 1). In this range
of exponents, the situation is completely different since that principal part is still
unbounded from above when “u is large”, while the derivative is unbounded from
above when “u is small”. Indeed, in this case we have, at least formally,

〈J ′(u), v〉 =
∫
Ω

[a(x) + b(x)(u+)γ ]∇u∇v +
γ

2

∫
Ω

b(x)|∇u|2
(u+)1−γ

v −
∫
Ω

(u+)p−1v,

so that it is not enough to differentiate along direction v ∈ W 1,2
0 (Ω) ∩ L∞(Ω),

nor to know that u ∈ L∞(Ω), but it is crucial to show that u is strictly positive.
This strong irregularity of J forces us to proceed, as done in [4] for γ > 1, by
approximating J with functionals with a C1 coefficient a(x, s) in the principal
part. We will be able to study the approximating functionals by using the existence
result obtained for γ > 1, and then we will pass to the limit.

2. Small exponents: γ < 1

In this section we will prove our main result, that is Theorem 1.1 when γ ∈ (0, 1).
In order to stress this difference with the case γ > 1, we will denote γ as θ.

In this context, the definition of a critical point of the functional J defined in (1.7)
is clarified in the following definition.
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Definition 2.1. A function u is a critical point of J if u ∈ W 1,2
0 (Ω) ∩ L∞(Ω),

u > 0 in Ω, b(x)|∇u|2/u1−θ ∈ L1(Ω) and u satisfies

(2.1)

∫
Ω

[
a(x) + b(x)uθ

]∇u∇ϕ+
θ

2

∫
Ω

b(x)
|∇u|2
u1−θ

ϕ =

∫
Ω

up−1ϕ,

for every ϕ ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Then proving Theorem 1.1 is equivalent to show the existence of a critical point
of J under the following condition on θ:

(2.2) θ ∈ (0, 1), θ + 2 < p <
2N

N − 2
.

Let us be more precise about the ranges of exponents we will deal with.

Remark 2.2. In hypothesis (2.2) it is implicitly assumed that

θ <
2N

N − 2
− 2 ⇐⇒ θ <

4

N − 2
;

this condition is always satisfied when N ≤ 6, because θ < 1. While for N > 6, our
existence result does not hold for every θ ∈ (0, 1) but only for θ ∈ (0, 4/(N − 2)).

When p ∈ (2, θ+2) the situation is more delicate even if b(x) ≡ 1, as illustrated
in Theorem 4.2 in [5] (see also [17]).

As already explained, we will proceed by approximating our functional J by
a sequence of C1 functionals to which it is possible to apply the result of the
Appendix. Namely, for every δ > 0, let us define the functional Jδ : W

1,2
0 (Ω) �→

R ∪ {+∞} by

(2.3) Jδ(v) =

⎧⎨
⎩

1

2

∫
Ω

aδ(x, v)|∇v|2 − 1

p

∫
Ω

(v+)p if Jδ(v) < +∞,

+∞ otherwise,

where the function aδ(x, s) : Ω× R �→ R
+ is defined by

(2.4) aδ(x, s) = a(x) + b(x)
[
(δ + s+)θ +

δθ

(1 − θ)(δ + s+)1−θ

]
.

The function aδ(x, s) is measurable with respect to x ∈ Ω and C1 with respect to s
and its partial derivative is given by

(2.5) ∂saδ(x, s) = b(x)
θs+

(δ + s+)2−θ
.

Taking into account hypotheses (1.3) and (2.2), one observes that aδ(x, s) satisfies
hypotheses (A.2) and (A.3) with β(s) given by

(2.6) β(s) := β ξδ(s), with ξδ(s) = 1 + (δ + s+)θ + δθ
θ

(1 − θ)
.
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Concerning the derivative of aδ(x, s) with respect to s, condition (A.4) is satisfied
with η(s) given by

(2.7) η(s) := β θ(δ)θ−2s+.

Moreover, notice that for every s ∈ R the assumptions (1.3), and (2.2) imply that
aδ(x, s) satisfies condition (A.5). Indeed, for for s ≤ 0, (A.5) is a direct consequence
of (2.5) as

(2.8) (p− 2)aδ(x, s)− ∂saδ(x, s)s = (p− 2)aδ(x, s) ≥ (p− 2)α;

on the other hand, for s > 0, (2.2) and (1.3) imply

(p− 2)aδ(x, s)− ∂saδ(x, s)s

≥ (p− 2)α+
b(x)

(δ + s)2−θ

{
(p− 2)

[
(δ + s)2 +

δθ

1− θ
(δ + s)

]
− θs2

}
≥ (p− 2)α.

Finally, hypothesis (A.6) is also satisfied.

Remark 2.3. One may think that the natural approximating functional should
have the coefficient

aδ(x, s) = a(x) + b(x)(δ + s+)θ.

But in this case aδ(x, s) would not satisfy hypothesis (A.6).

2.1. Proof of Theorem 1.1

In order to prove Theorem 1.1, it is possible to use the existence results in [6], [9],
and [22], or Theorem A.3, obtaining the existence of a positive, bounded, critical
point uδ of Jδ. Namely, uδ satisfies

uδ ∈ W 1,2
0 (Ω) ∩ L∞(Ω), uδ ≥ 0, Jδ(uδ) = cδ > 0,(2.9) ∫

Ω

aδ(x, uδ)∇uδ∇v +

∫
Ω

∂saδ(x, uδ)|∇uδ|2v =

∫
Ω

up−1
δ v,(2.10)

for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

In the next proposition we derive uniform bounds on cδ and on the norm of uδ

in W 1,2
0 (Ω) with respect to δ . Before starting the proof of Theorem 1.1, let us

observe that, in the whole paper, we will denote the norm of W 1,2
0 (Ω) with ‖ · ‖,

while the norm in the Lebesgue space Lp(Ω) will be denoted with ‖ · ‖p. Moreover,
for every measurable set A, we will denote with |A| the Lebesgue measure of A.

Proposition 2.4. There exist three positive constant σ1 < σ2 and L, such that

0 < σ1 ≤ cδ ≤σ2,(2.11)

‖uδ‖ ≤ L.(2.12)

Proof. Hypothesis (1.3) and definition (2.4) imply that Jδ(v) ≥ α
2 ‖v‖2 − 1

p‖v‖pp,
so that, from Sobolev embedding theorem one deduces that, for every v with norm
‖v‖ = R, it results

Jδ(v) ≥ R2
[α
2
− CRp−2

]
=

αR2

4
, with R =

( α

4C

)1/(p−2)

.
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Then the left-hand side inequality in (2.11) is satisfied for σ1 = αR2/4. In order to
prove the right-hand side inequality we note that (A.8) implies that cδ is smaller
than the maximum of Jδ(t ϕ1) for t ∈ [0, T ]. Then, hypothesis (2.6) yields

cδ ≤ Jδ(t ϕ1) ≤
t2

2p

[
pβξδ(‖ϕ1‖∞)‖ϕ1‖2 − 2tp−2‖ϕ1‖pp

]
so that

cδ ≤ σ2 := max
[0,T ]

g(t), with g(t) := t2
[
βξδ(‖ϕ1‖∞)‖ϕ1‖2 − tp−2‖ϕ1‖pp

]
.

To show (2.12), we compute pJδ(uδ)− 〈J ′
δ(uδ), uδ〉 and use (2.8), (2.9) and (2.10)

to obtain

2pcδ =

∫
Ω

[(p− 2)aδ(x, uδ)− ∂saδ(x, uδ)uδ] |∇uδ|2 ≥ (p− 2)α‖uδ‖2.

Then (2.11) gives the conclusion. �

The next proposition is the key result in the compactness argument. It has
also been employed in [6],[9] in the case of unbounded, regular coefficients, and
in the Appendix we will give a self-contained prove in that context (see the proof
of (A.15)).

Every uδ is a bounded function; now we prove that the sequence {uδ} is
bounded in L∞(Ω). In doing this, we will often use the functions Tk, Gk : R �→ R

defined, for every k > 0, as

Tk(s) = max(−k,min(k, s)), Gk(s) = s− Tk(s).(2.13)

Proposition 2.5. There exists a positive constant M such that

(2.14) ‖uδ‖∞ ≤ M.

Proof. Condition (1.2) allows us to choose a positive number λ such that

(2.15) max
{
0, p− N + 2

N − 2

}
< λ < min

{
p− 1, 2− (p− 1)

N − 2

N + 2

}
.

Taking Gk(uδ) as test function in (2.10) and using Sobolev inequality, yields

αS
[ ∫

Ω

Gk(uδ)
2∗
]2/2∗

≤ ‖uδ‖λ∞
∫
Ω

uδ
(p−1−λ)Gk(uδ).

Applying Hölder’s inequality on the right-hand side with exponents

2∗

p− 1− λ
, 2∗,

(
1− p− λ

2∗
)−1

one obtains

αS
[ ∫

Ω

Gk(uδ)
2∗
]2/2∗

≤ ‖uδ‖λ∞ ‖uδ‖p−λ−1
2∗

[ ∫
Ω

Gk(uδ)
2∗
]1/2∗

|Ak|1−(p−λ)/2∗ ,

where Ak = {x ∈ Ω : uδ(x) > k}.
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From (2.12) and using the Hölder inequality one deduces that

(2.16)

∫
Ω

Gk(uδ) ≤
[ ∫

Ω

Gk(uδ)
2∗
]1/2∗

|Ak|1−1/2∗ ≤ Bδ |Ak|1−(p−λ)/2∗+1/2+1/N ,

where

(2.17) Bδ = CL ‖uδ‖λ∞.

It is easy to see that the function

(2.18) y(k) := ‖Gk(uδ)‖1 =

∫
Ω

Gk(uδ)

satisfies y′(k) = −|Ak|. Here we follow [16] and we write inequality (2.16) as

(2.19) y ≤ Bδ(−y′)1+μ, μ = − (p− λ)

2∗
+

1

2
+

1

N
.

From (2.15) we get that p−λ < (N+2)/(N−2), so that μ > 0 and 1/(μ+1) ∈ (0, 1).
Integrating for t ∈ [0, k] we get

k ≤ C1 B
1

1+μ

δ [y(0)
μ

1+μ − y(k)
μ

1+μ ]

and, taking into account (2.18) and (2.12) one obtains

C1 B
1

1+μ

δ

[ ∫
Ω

Gk(uδ)
] μ

1+μ ≤ −k +B
1

1+μ

δ C̃L.

When we choose k = kδ = B
1/μ+1
δ C̃L, we obtain y(kδ) = 0, that is equivalent to

say that

0 ≤ uδ ≤ kδ = B
1/μ+1
δ C̃L.

Passing to the supremum and using (2.17) yield

(2.20) 0 ≤ ‖uδ‖∞ ≤ ‖uδ‖λ/(μ+1)
∞ CL.

Finally, (2.15) implies that λ < μ + 1, because, from (2.19) it follows that this is
equivalent to

(2.21) λ <
2N

N + 2
− p

N − 2

N + 2
+ 1 = 2− (p− 1)

N − 2

N + 2

which is exactly assumed in (2.15). Then (2.20) yields (2.14). �

Propositions 2.4 and 2.5 imply that there exists a function u in W 1,2
0 (Ω) ∩

L∞(Ω), u ≥ 0, such that, up to a subsequence,

uδ ⇀ u weakly in W 1,2
0 (Ω),(2.22)

uδ → u strongly in Lq(Ω) for q ∈ [1,∞) and almost everywhere.(2.23)

Because of the presence of a singular term in the derivative of J , we need to know
that u > 0 in Ω in order to show that u is a critical point of J . This will be proved
in the next proposition, the proof of which relies on an argument similar to [7].
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Proposition 2.6. The weak limit u is positive in Ω.

Proof. Let us define the real function Hδ : [0,+∞) �→ [0,+∞) by

(2.24) Hδ(t) =

∫ t

0

s

(δ + s)2−θ
ds,

and consider v = e−bHδ(uδ)φ, with φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω), φ ≥ 0, and b chosen as

b = θβ/2α. Notice that Proposition 2.5 yields

|∇v| = ∣∣e−bHδ(uδ) [−bH ′
δ(uδ)∇uδφ+∇φ]

∣∣ ≤ |∇φ| + bM

δ2−θ
‖φ‖∞|∇uδ|,

so that v ∈ W 1,2
0 (Ω)∩L∞(Ω) and we can take it as test function in (2.10), obtaining∫

Ω

aδ(x, uδ)∇uδ∇φ e−bHδ(uδ)

=

∫
Ω

up−1
δ e−bHδ(uδ)φ+

∫
Ω

|∇uδ|2e−bHδ(uδ)φ
[
baδ(x, uδ)H

′
δ(uδ)−1

2
∂saδ(x, uδ)

]
.(2.25)

Since H ′
δ(uδ) > 0, from (1.3), (2.5) and (2.24), it follows

baδ(x, uδ)H
′
δ(uδ)− 1

2
∂saδ(x, uδ) ≥ αbH ′

δ(uδ)− θ

2

βuδ

(δ + uδ)2−θ

=
uδ

(δ + uδ)2−θ

[
αb− θ

2
β
]
= 0,(2.26)

where the last equality follows from the choice of b. Using this information in (2.25)
one gets

(2.27)

∫
Ω

aδ(x, uδ)∇uδ∇φ e−bHδ(uδ) ≥
∫
Ω

up−1
δ e−bHδ(uδ)φ.

Condition (2.4) and (2.23) imply that aδ(x, uδ) converges to a(x) + b(x)uθ al-
most everywhere in Ω. Moreover, taking into account Proposition 2.5 and that
uδ ≥ 0, one can apply Lebesgue dominated convergence theorem to get that
aδ(x, uδ)∇φ e−bHδ(uδ) converges strongly to

[
a(x) + b(x)uθ

]∇φ e−bH0(u) in L2(Ω),
where H0(t) is defined in (2.24) choosing δ = 0. Then, taking limit in (2.27) we
obtain

(2.28)

∫
Ω

[a(x) + b(x)uθ]e−bH0(u) ∇u∇φ ≥
∫
Ω

up−1e−bH0(u)φ.

Define

w := P (u), where P (s) =

∫ s

0

e−bH0(t)dt,

so that w ∈ H1
0 (Ω) is a super-solution of the linear problem

(2.29)

{
−div(B(x)∇w) = g(x) in Ω,

v = 0 on ∂Ω,

with
B(x) = a(x) + b(x)(u(x))θ , g(x) = (u(x))p−1e−bH0(u(x)).
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Condition (1.3), Proposition 2.5 and the positiveness of u imply that

α ≤ B(x) ≤ β[1 +Mθ], 0 ≤ g(x) ∈ L∞(Ω).

Therefore, the strong maximum principle for linear operators with bounded coef-
ficients (see [13]) implies that, either w > 0 in Ω or w ≡ 0. Assume, by contradic-
tion, that w ≡ 0. Then, as P is a strictly increasing function, it follows that u ≡ 0
and (2.23) becomes

uδ → 0 strongly in Lq(Ω) for q ∈ [1,∞) and a.e..(2.30)

Let us take v = uδ as test function in (2.10) and use (2.5) and the positivity of uδ

to obtain

Jδ(uδ) +
1

p

∫
Ω

(uδ)
p =

1

2

∫
Ω

aδ(x, uδ)|∇uδ|2 ≤ 1

2

∫
Ω

up
δ .

Taking into account (2.30), we deduce that Jδ(uδ) → 0 which contradicts (2.11).
Then, w > 0 and, as the map s �→ P (s) is strictly increasing, u > 0 in Ω. �

Remark 2.7. Notice that, since w > 0, the strong maximum principle for lin-
ear operators with bounded coefficients also states that, for every compact set
K ⊂ Ω, there exists mK > 0 such that w(x) ≥ mK > 0 onK; and then u(x) ≥
P−1(mK) > 0 on K.

As a consequence of the previous results we have obtained that u belongs to
W 1,2

0 (Ω) ∩ L∞(Ω) and it is positive in Ω. It is left to show that it satisfies all the
requirements in Definition 2.1.

Lemma 2.8. The sequence ∇uδ(x) converges almost everywhere to ∇u(x).

Proof. First of all, we show that the following estimate holds:

(2.31) 0 ≤ θ

2

∫
Ω

b(x)uδ

(δ + uδ)2−θ
|∇uδ|2 ≤

∫
Ω

(uδ)
p−1 ≤ Mp−1|Ω|.

Indeed, following [7], let h > 0 and choose v = Th(uδ)/h in (2.10). Using (1.3)
and (2.13), we obtain, dropping a positive term,

1

2

∫
Ω

∂saδ(x, uδ) |∇uδ|2 Th(uδ)

h
≤

∫
Ω

up−1
δ .

Letting h tend to zero and exploiting (2.5), (2.13), and (2.23) yield (2.31). Now, uδ

is a distributional solution of the equation

−div
([

a(x) + b(x)(δ + uδ)
θ +

δθ

(1− θ)(δ + uδ)1−θ

]
∇uδ

)
= fδ + gδ,

where fδ = up−1
δ converges strongly in W−1,p′

(Ω), and (2.31) says that gδ =
b(x)uδ(δ + uδ)

θ−1|∇uδ|2 is a sequence bounded in L1(Ω). Condition (1.3), and
Proposition 2.5 yield

a(x) + b(x)(δ + uδ)
θ +

δθ

(1− θ)(δ + uδ)1−θ
≤ β

[
1 + (δ +M)θ +

θδθ

1− θ

]
,

then, we can apply Theorem 2.1 in [8] to achieve the conclusion. �
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Proposition 2.9. The weak limit u is a critical point of J .

Proof. Applying Fatou’s lemma in (2.31), it follows

(2.32)
θ

2

∫
Ω

b(x)

u1−θ
|∇u|2 ≤ Mp−1|Ω|,

as requested in Definition 2.1. Now, let us take v ∈ W 1,2
0 (Ω)∩L∞(Ω), with v ≥ 0

as test function in (2.10), and obtain

1

2

∫
Ω

∂saδ(x, uδ)|∇uδ|2v = −
∫
Ω

a(x, uδ)∇uδ∇v +

∫
Ω

up−1
δ v.

Note that the sequence in the integral in the left-hand side is positive and, thanks
to (2.23) and Lemma 2.8, it converges almost everywhere; in addition, in view
of (2.2), (2.6), (2.22) and (2.14), both the integral terms in the right-hand side
converge. As a consequence, applying Fatou’s lemma, it results

(2.33)

∫
Ω

[
a(x) + b(x)uθ

]∇u∇v +
θ

2

∫
Ω

b(x)

u1−θ
|∇u|2v ≤

∫
Ω

up−1v,

for every v ∈ W 1,2
0 (Ω) ∩ L∞(Ω), v ≥ 0.

In order to prove the reverse inequality in (2.33), let us consider the function
v = e−bHδ(uδ) ebH0(u) φ, where Hδ is defined in (2.24), b = θβ/2α and φ ≥ 0,
φ ∈ C∞

c (Ω). Proposition 2.5 yields the existence of a constant CM such that

|∇v|2 ≤ CM

{
|∇φ|2 + b2φ2 |∇u|2

u2(1−θ)
+ ‖φ‖2∞b2|∇uδ|2

[ uδ

(δ + uδ)2−θ

]2}
.

Thanks to Proposition 2.6 and to Remark 2.7, we have that u ≥ Cφ > 0 in the

support of φ, so that v ∈ W 1,2
0 (Ω) ∩ L∞(Ω), and it can be chosen as test function

in (2.10). It results

b

∫
Ω

aδ(x, uδ)∇uδ∇ue−bHδ(uδ) ebH0(u) φH ′
0(u)(2.34)

+

∫
Ω

aδ(x, uδ)∇uδ∇φe−bHδ(uδ) ebH0(u)

=

∫
Ω

|∇uδ|2 e−bHδ(uδ) ebH0(u) φ
[
b aδ(x, uδ)H

′
δ(uδ)− 1

2
∂saδ(x, uδ)

]

+

∫
Ω

up−1
δ e−bHδ(uδ) ebH0(u) φ.

Inequality (2.26) and Lemma 2.8 imply that we can use Fatou’s lemma to pass
to the limit in the right-hand side, while the left-hand side converges thanks to
conditions (2.22), (2.23) and to Proposition 2.5. It follows∫

Ω

[
a(x) + b(x)uθ

]∇u [b∇uφH ′
0(u) +∇φ]

≥
∫
Ω

|∇u|2 φ
[ [

a(x) + b(x)uθ
]
bH ′

0(u)−
θ

2

b(x)

u1−θ

]
+

∫
Ω

up−1 φ.(2.35)
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Proposition 2.5 and (2.32) imply that the function

[
a(x) + b(x)uθ

] |∇u|2H ′
0(u) =

[
a(x) + b(x)uθ

] |∇u|2 1

u1−θ

belongs to L1(Ω). Thus we can simplify (2.35) to obtain∫
Ω

[
a(x) + b(x)uθ

]∇u∇φ+
θ

2

∫
Ω

b(x)
|∇u|2
u1−θ

φ ≥
∫
Ω

up−1 φ.

From this and from (2.33) we get that the equality∫
Ω

[
a(x) + b(x)uθ

]∇u∇φ+
θ

2

∫
Ω

b(x)
|∇u|2
u1−θ

φ =

∫
Ω

up−1 φ(2.36)

holds for every φ ∈ C∞
c (Ω), with φ ≥ 0. Then, we can obtain that (2.36) holds

for every φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω) with φ ≥ 0 by density. Finally, for every ϕ ∈

W 1,2
0 (Ω) ∩L∞(Ω), writing ϕ = ϕ+ − ϕ− and using (2.36) with φ = ϕ+ and with

φ = ϕ−, one obtains that u satisfies all the requirements in Definition 2.1, i.e., u
is a critical point of J �

Remark 2.10. Notice that, as a byproduct of the previous results, we obtain the
strong convergence in W 1,2

0 (Ω) of uδ to u.

Proof of Theorem 1.1 for γ ≤ 1. When γ < 1 we apply Theorem A.3 to the func-
tional Jδ obtaining uδ satisfying (2.9) and (2.10). Propositions 2.4, 2.5 and 2.6
imply that there exists u ∈ W 1,2

0 (Ω) ∩ L∞(Ω), u > 0 in Ω, such that (2.22)
and (2.23) hold. Finally, from Proposition 2.9 it follows that u is a critical point
in terms of the Definition 2.1.

The case γ = 1 can be handled with the same argument, by using the approx-
imating functionals

Iδ(v) =
1

2

∫
Ω

[
a(x) + b(x)

√
δ + (v+)2

] |∇v|2 − 1

p

∫
Ω

(v+)p.

Indeed, all the hypotheses of Theorem A.3 are satisfied choosing

β(s) = β
[
1 +

√
δ + (s+)2

]
, η(s) = s+δ−1/2.

Propositions 2.4, 2.5 and Lemma 2.8 follow in the same way as before and Proposi-
tions 2.6 and 2.9 can be proved by means of the functionKδ(t) : [0,+∞) �→ [0,+∞)
defined as Kδ(t) :=

√
δ + t2. �

A. Appendix

In this section we will handle the case in which a(x, s) is a C1 function with respect
to s, not supposed to be uniformly bounded for every s ∈ R.

Functionals with this kind of coefficients has been studied in [4], [5], [6], [9], [22],
by means of different techniques, here we will report for the reader’s convenience
an alternative, new, proof. In doing this we will be able to underline the analogies
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and differences with the case of singular coefficients. As done in the introduction,
let us consider the functional J : W 1,2

0 (Ω) → R∪{+∞} defined in (1.7). In order to
prove Theorem 1.1, with γ > 1, it would be enough to consider a(x, s) defined by

(A.1) a(x, s) = a(x) + b(x)(s+)γ

so that ∂sa(x, s) ≡ 0 for every s < 0, and it is clear that a positive critical
point of J will be a positive critical point of I. However, in this section, we will
consider more general coefficients, in order to obtain a critical point uδ of the
approximating functional Jδ. Since we look for positive solutions, we consider the
coefficient a(x, s) defined only for s ≥ 0, i.e., a : Ω × R

+ �→ R such that it is
measurable with respect to x ∈ Ω, and continuously derivable with respect to s,
and satisfying the following conditions for almost every x in Ω and for every s in
R

+, for β, η,∈ C0(R+) monotone increasing, and α, δ ∈ R
+:

0 < α ≤ a(x, s) ≤ β(s),(A.2)

lim
s→+∞ β(s)− sp−2 < 0, 2 < p <

2N

N − 2
,(A.3)

as(x, s) s ≥ 0, |∂sa(x, s)| ≤ η(s),(A.4)

(p− 2)a(x, s)− as(x, s)s ≥ δ > 0,(A.5)

lims→0+ ∂sa(x, s) = 0.(A.6)

We define, for s < 0,

(A.7) a(x, s) ≡ a(x, 0) ⇒ a′s(x, s) ≡ 0, ∀ s ≤ 0.

Remark A.1. Notice that our model case, namely, the function defined in (A.1),
satisfies all the above assumptions when (1.3) holds and the following condition is
satisfied

γ ∈ (1,+∞), γ + 2 < p <
2N

N − 2

which implies N < 6. In order to treat the case N ≥ 6, one should allow p to
overcome the critical Sobolev exponent. This case for our functional I is still open.

Conditions (A.2), (A.4) imply that J is derivable along directions v ∈ W 1,2
0 (Ω)∩

L∞(Ω), so that a natural definition of a critical point is the following.

Definition A.2. A function u is a critical point of J if u ∈ W 1,2
0 (Ω)∩L∞(Ω) and

it satisfies ∫
Ω

a(x, u)∇u∇ϕ+
1

2

∫
Ω

as(x, u)|∇u|2ϕ =

∫
Ω

(u+)p−1ϕ,

for all ϕ ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Theorem A.3. Under the assumptions (A.2), (A.3), (A.4), (A.5), there exists a
positive, bounded, critical point of J .
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Proof. Assumption (A.2) implies that J(v) ≥ α
2 ‖v‖2 − 1

p‖v‖pp, so that there exist

ρ,R ∈ R
+ such J(v) ≥ ρ > 0, for every v with ‖v‖ = R > 0. Moreover, denoting

by ϕ1 the first eigenfunction of the Laplace operator with homogeneous Dirichlet
boundary conditions in Ω, and using assumption (A.3), we can find T > 0 such
that ‖T ϕ1‖∞ ≥ 2R. and J(T ϕ1) < 0. Then, having defined

(A.8) c = inf
Γ

max
[0,1]

J(γ(t)),

where Γ = {γ ∈ C0([0, 1], Y ) : γ(0) = 0, γ(1) = T ϕ1}, it results
(A.9) c ≥ ρ.

Therefore, all the geometrical assumptions of Theorem 2.1 in [3] are satisfied.
Moreover, setting X = W 1,2

0 (Ω) and Y = W 1,2
0 (Ω) ∩ L∞(Ω), endowed with the

norm ‖ · ‖Y = ‖ · ‖+‖ · ‖∞, conditions (A.2) and (A.4) imply that for every u, v ∈ Y
there exists the directional derivative 〈J ′(u), v〉; moreover for every fixed u ∈ Y
〈J ′(u), v〉 is linear and continuous for v ∈ Y , and for every fixed v ∈ Y the
map u → 〈J ′(u), v〉 is continuous for every u ∈ Y . This regularity properties of
the functional J are sufficient to apply Theorem 2.1 in [3]. Then (see also the
beginning of the proof of Theorem 3.3 in [3]) we obtain the existence of sequences
un ∈ W 1,2

0 (Ω) ∩ L∞(Ω) and Mn ∈ R
+ satisfying

(A.10) un ∈ W 1,2
0 (Ω) ∩ L∞(Ω), ‖un‖∞ ≤ 2Mn, Mn ≥ T ‖ϕ1‖∞,

(A.11) J(un) → c,

and

(A.12)

⎧⎨
⎩
|〈J ′(un), v〉| ≤ εn

[‖v‖L∞(Ω)/Mn + ‖v‖W 1,2
0 (Ω)

]
,

∀ v ∈ W 1,2
0 (Ω) ∩ L∞(Ω), {εn} ⊂ R

+ : εn → 0.

From now on we will show that un converges weakly to a positive critical point
of J . We will do this in several steps.

Step 1. In this step we show that the sequence {un} is bounded in W 1,2
0 (Ω).

In order to do this, it is enough to write J(un) − 1
p 〈J ′(un), un〉 and use (A.12),

(A.10), (A.11) and (A.5), to get the existence of a positive constant L such that

(A.13) ‖un‖ ≤ L.

Notice that (A.13) also implies that

(A.14)

∫
Ω

a(x, un)|∇un|2 + 1

2

∫
Ω

∂sa(x, un)un|∇un|2 ≤ ‖u‖pp + εn(2 + L) ≤ Q.

As a consequence of (A.13), we get that there exist a function u ∈ W 1,2
0 (Ω) and

a subsequence of {un}, still denoted by {un}, such that un converges to u weakly
in W 1,2

0 (Ω), strongly in Lq(Ω) for every q ∈ [1, 2N/(N−2)) and almost everywhere.
Now, even if we do not know that u solves an equation, we shall prove that the
function u is bounded.
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Step 2. In this step we will denote with C possibly different positive constants
and with ε′n possibly different positive sequences converging to zero as n tends to
infinity. We will prove that there exists a positive constant M = M(L, p,Ω, α,N)
such that

(A.15) ‖u‖∞ ≤ M.

Indeed, taking v = Gk(un) as test function in (A.12), and using (2.13) and (A.4)
we deduce that

C

∫
Ω

|∇Gk(un)|2 ≤ εn +
[ ∫

An
k

|un|2∗
]p/2∗

|An
k |1−p/2∗ ,(A.16)

where An
k := {x ∈ Ω : |un| > k} . Definition (2.13) and Hölder’s inequality yield∫

An
k

|un|2∗ =

∫
An

k

|un − k + k|2∗ ≤ C
[ ∫

An
k

|Gk(un)|2∗ + k2
∗ |An

k |
]

≤ C

{[∫
An

k

|∇Gk(un)|2
]2∗/2

+ k2
∗ |An

k |
}
.

So that[ ∫
An

k

|un|2∗
]p/2∗

|An
k |1−p/2∗ ≤ C

[ ‖∇Gk(un)‖2∗2 + k2
∗ |An

k |
]p/2∗ |An

k |1−p/2∗ .

Using this inequality in (A.16) one deduces the following inequality:∫
Ω

|∇Gk(un)|2 ≤ ε′n + C
[ ∫

An
k

|∇Gk(un)|2
]p/2

|An
k |1−p/2∗ + C kp |An

k | .

Using the fact that 2 < p, we get∫
Ω

|∇Gk(un)|2 ≤ C
[ ∫

An
k

|∇Gk(un)|2
]p/2−1[ ∫

An
k

|∇Gk(un)|2
]
|An

k |1−p/2∗

+ ε′n + C kp|An
k | .

From (A.13) it follows∫
Ω

|∇Gk(un)|2 ≤ C
[ ∫

Ω

|∇Gk(un)|2
]
|An

k |1−p/2∗ + ε′n + C kp|An
k | .(A.17)

Moreover, thanks to (A.13) and using the Sobolev embedding, we deduce that
there exists CL > 0 such that

|An
k |1−p/2∗ ≤

(1
k

)1−p/2∗[ ∫
An

k

|un|
]1−p/2∗

≤ CL

(1
k

)1−p/2∗

,

implying that there exists k0 ∈ R such that

(A.18) C |An
k |1−p/2∗ ≤ 1/2, ∀ k ≥ k0 uniformly with respect to n.

Using this information in (A.17), we obtain that∫
Ω

|∇Gk(un)|2 ≤ ε′n + C kp|An
k | for every k ≥ k0.
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Let K = {k ≥ k0 : |{u = k}| = 0} and observe that letting n tend to infinity,
for every k ∈ K, |An

k | converges to |Ak| with Ak = {|u| ≥ k}. Hence, since the
norm is weakly lower semicontinuous, it results

(A.19)

∫
Ω

|∇Gk(u)|2 ≤ C kp|Ak|, ∀ k ∈ K, k ≥ k0.

Since u ∈ L2∗(Ω), it holds |Ak| ≤ CL/k
2∗ ; so that kp−2 ≤ CL|Ak|(2−p)/2∗ and (A.19)

becomes, thanks to the Sobolev inequality,

[ ∫
Ω

|Gk(u)|2∗
]1/2∗

≤ C k |Ak| 12−
p

22∗ + 1
2∗

and Hölder’s inequality yields∫
Ω

|Gk(u)| ≤ C k|Ak| 12−
p

22∗ +1 = C k|Ak|1+ 1
2 (1− p

2∗ ).

As done in (2.18) we consider y(k) the L1(Ω) norm of Gk(u) and we observe that
y(k) satisfies

y ≤ C k(−y′)1+ν , ν =
1

2

(
1− p

2∗
)
.

Notice that (1.2) implies that ν > 0. Integrating, we obtain

k
ν

1+ν ≤ C [y(0)
ν

1+ν − y(k)
ν

1+ν ],

that is
k

ν
1+ν ≤ C ‖u‖

ν
1+ν

1 − C ‖Gk(u)‖
ν

1+ν

1 .

Taking into account (A.13), it results

‖Gk(u)‖
ν

1+ν

1 ≤ CL − k
ν

1+ν .

Choosing kL such that k
ν/(1+ν)
L = CL, we obtain that the norm of GkL(u) in L1(Ω)

is zero. Thus the above inequality says that (A.15) is satisfied with M = kL.

Step 3. Taking v = −u−
n as test function in (A.12), using (A.7) and (A.13)

immediately gives that a(x, un)|∇u−
n |2 converges strongly to zero in L1(Ω). Then

(A.2) implies that the sequence {u−
n } converges strongly to zero in W 1,2

0 (Ω), so
that

(A.20) u ≥ 0.

Step 4. Now we prove that the sequence ∇un converges to ∇u almost every-
where in Ω.

First of all, notice that thanks to (A.2), (A.10) and (2.13) we can argue as in
Lemma 2.8 to obtain

(A.21)

∫
Ω

|∂sa(x, un)| |∇un|2 ≤ A.
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Note that, in order to obtain the almost everywhere convergence of∇un, we cannot
apply Theorem 2.1 in [8] as un does not satisfy an equation; however, we can
prove it directly by fixing h ∈ (0, ‖u‖∞) and using v = Th(un − u) as test function
in (A.12). Since un strongly converges to u in Lp(Ω), and thanks to (A.13), one
deduces that there exists a positive constant C1 such that

(A.22)

∫
Ω

a(x, un)∇un∇Th(un−u)+
1

2

∫
Ω

∂sa(x, un)|∇un|2Th(un−u) ≤ ωn+C1εn,

with ωn → 0 as n → +∞. Taking into account (2.13) and (A.21), one observes
that

1

2

∫
Ω

∂sa(x, un)|∇un|2 Th(un − u) ≤ A

2
h.

From this, (A.2) and (A.22), it results

α

∫
Ω

|∇Th(un − u)|2 ≤
∫
Ω

a(x, un)∇u∇Th(un − u) +
A

2
h+ ωn + C1 εn,

which implies, in view of (A.13), and using the Hölder inequality,

‖∇(un − u)‖1 =

∫
Ω

|∇Th(un − u)|+
∫
{h<|un−u|}

|∇(un − u)|

≤
[ ∫

Ω

|∇Th(un − u)|2
]1/2

|Ω|1/2 + CL

∣∣{h < |un − u|}∣∣1/2
≤

[ ∫
Ω

a(x, un)∇u∇Th(un − u) +
A

2
h+ ωn + C1εn

]1/2 |Ω|1/2
α

+ CL |{h < |un − u|}|1/2 .
Taking into account that un weakly converges to u in W 1,2

0 (Ω), the limit as n tends
to plus infinity gives

lim sup
n→+∞

∫
Ω

|∇(un − u)| ≤ |Ω|
α

1/2[A
2
h
]1/2

.

By passing to the limit as h → 0 one gets that ∇un converges to ∇u strongly in
L1(Ω), so that, up to a subsequence, it converges almost everywhere.

Step 5. Now we prove that u is a critical point of J . Let us consider the
functions H : R �→ R and F ∈ C∞(R), with |F ′(t)| ≤ 2, defined by

H(t) =

⎧⎪⎨
⎪⎩
∫ t

0

η(s) ds for t ≥ 0,

0 for t < 0,

F (t) =

{
1 for |t| ≤ 1,

0 for |t| > 2,
(A.23)

where η is given in assumption (A.4). We take φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω), φ ≥ 0 and

define the function

(A.24) v = φ e−bH(un)ebH(u)F
(un

k

)
, b =

1

2α
, k > M,
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with M introduced in (A.15). Then, thanks to (A.13), (A.23) and A.15, one
deduces that v ∈ W 1,2

0 (Ω) ∩ L∞(Ω), so that it can be chosen as test function
in (A.12) to obtain∫

Ω

a(x, un)∇un∇φ e−bH(un)ebH(u)F
(un

k

)

+

∫
Ω

a(x, un)∇un∇u
[
φ e−bH(un)ebH(u)F

(un

k

)
bH ′(u)

]

≥ − 1

k

∫
Ω

a(x, un)|∇un|2e−bH(un)ebH(u)F ′
(un

k

)

+

∫
Ω

|∇un|2φ e−bH(un)ebH(u)F
(un

k

)[
bH ′(un)a(x, un)− 1

2
∂sa(x, un)

]

+

∫
Ω

(u+
n )

p−1φ e−bH(un)ebH(u)F
(un

k

)
− Cεn.

Note that (A.14), (A.7) and (A.13) imply

∣∣∣1
k

∫
Ω

a(x, un)|∇un|2 e−bH(un)ebH(u)F ′
(un

k

)∣∣∣ ≤ C(M,Q)
1

k
.

Moreover, the definition of the function H and (A.24) imply that

bH ′(un)a(x, un)− 1

2
∂sa(x, un) ≥ 0.

Taking the limit in the left-hand side, the inferior limit on the right, and applying
Fatou’s lemma (using Step 4), one gets∫

Ω

a(x, u)∇u∇φ +

∫
Ω

a(x, u)|∇u|2[φbH ′(u)]

≥ −C(M,Q)
1

k
+

∫
Ω

up−1φ+

∫
Ω

|∇u|2φ
[
bH ′(u)a(x, u)− 1

2
∂sa(x, u)

]
,(A.25)

where we have taken into account that F (u/k) = 1 as k ≥ M . Since u ∈ L∞(Ω),
it follows that a(x, u)|∇u|2H ′(u) ∈ L1(Ω), so that we can cancel the equal terms
in the left and right sides to obtain that∫

Ω

a(x, u)∇u∇φ+
1

2

∫
Ω

∂sa(x, u)|∇u|2φ ≥ −C(M,Q)
1

k
+

∫
Ω

up−1φ.

Taking the limit for k → +∞, we get

(A.26)

∫
Ω

a(x, u)∇u∇φ+
1

2

∫
Ω

∂sa(x, u)|∇u|2φ ≥
∫
Ω

up−1φ.

The proof of the reverse inequality is simpler. Indeed, take

v = φF
(un

k

)
, φ ∈ W 1,2

0 (Ω) ∩ L∞(Ω), φ ≥ 0, k ≥ M,
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with F defined in (A.23) and use (A.12) to get

1

2

∫
Ω

∂sa(x, un)|∇un|2φF
(un

k

)
≤−

∫
Ω

a(x, un)∇un∇φF
(un

k

)

− 1

k

∫
Ω

a(x, un)|∇un|2F ′
(un

k

)
φ

+

∫
Ω

(u+
n )

p−1φF
(un

k

)
+ Cεn.

The sequence in the integral in the left-hand side is positive, while, in view
of (A.14), there exists a positive constant CQ such that

1

k

∣∣∣ ∫
Ω

a(x, un)|∇un|2F ′
(un

k

)
φ
∣∣∣ ≤ CQ

k
.

Moreover, using Step 4, we can apply Fatou’s lemma, obtaining

1

2

∫
Ω

∂sa(x, u)|∇u|2φ ≤ −
∫
Ω

a(x, u)∇u∇φ+
CQ

k
+

∫
Ω

up−1φ.

Letting k → +∞ one obtains 〈J ′(u), φ〉 ≤ 0. This and (A.26) imply that

(A.27) 〈J ′(u), φ〉 = 0, ∀φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω), φ ≥ 0.

Since any w ∈ W 1,2
0 (Ω) ∩ L∞(Ω) can be decomposed in its positive and negative

part, both positive functions, we have shown that u is a critical point of J .

Step 6. Finally, we can show that J(u) = c. Choosing v = un in (A.12) and
using (A.4) and (A.2), we can apply the results proved in Steps 4 and 5 to obtain∫

Ω

a(x, u)|∇u|2 +
∫
Ω

∂sa(x, u)|∇u|2u

≤ lim inf
n→+∞

[ ∫
Ω

a(x, un)|∇un|2 +
∫
Ω

∂sa(x, un)|∇un|2un

]

= lim
n→+∞

∫
Ω

(u+
n )

p =

∫
Ω

up =

∫
Ω

a(x, u)|∇u|2 +
∫
Ω

∂sa(x, u)|∇u|2 u.

Then, the positivity of the sequences a(x, un)|∇un|2, ∂sa(x, un)un|∇un|2 imply
that a(x, un)|∇un|2 converges to a(x, u)|∇u|2, strongly in L1(Ω), so that (A.11)
and (A.9) imply

0 < ρ < c = lim
n→+∞ J(un) = J(u)

yielding that u is not trivial. �

Remark A.4. As a byproduct of Step 6, and using (A.2) we obtain that un

converges to u strongly in W 1,2
0 (Ω). Moreover, notice that the convergence of

J(un) to J(u) cannot be seen as a trivial consequence of the strong convergence
of un to u (as in the semi-linear case), as a(x, t) is not supposed to be uniformly
bounded by a positive constant.
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Remark A.5. Notice that, differently from Section 2, here we cannot show that
all the sequence un satisfies a uniform L∞(Ω) bound, but we can obtain this
information on the weak limit u. This is a consequence of the fact that uδ are
critical points, while un only satisfies (A.12).

Acknowledgement. The authors thank Liliane Maia who encouraged to develop
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Appl. 54, Birkhäuser, Basel, 2003.

[10] Canino, A. and Degiovanni, M.: Nonsmooth critical point theory and quasilinear
elliptic equations. In Topological methods in differential equations and inclusions
(Montreal, PQ, 1994), 1–50. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 472,
Kluwer Acad. Publ., Dordrecht, 1995.

[11] Colin, M. and Jeanjean, L.: Solutions for a quasilinear Schrödinger equations: a
dual approach. Nonlinear Anal. TMA. 56 (2004), no. 2, 213–226.

[12] Corvellec, J. N.. Degiovanni, M. and Marzocchi, M.: Deformation proper-
ties for continuous functionals and critical point theory. Topol. Methods Nonlinear
Anal. 1 (1993), no. 1, 151–171.

[13] Gilbarg, D. and Trudinger, N. S.: Elliptic partial differential equations of second
order. Springer, Berlin, 1998.



1020 L. Boccardo and B. Pellacci

[14] Goldman, M.V.: Strong turbulence of plasma waves. Rev. Modern Phys. 56 (1984),
no. 4, 709–735.

[15] Hartmann, H. and Zakrzewski, W. J.: Electrons on hexagonal lattices and ap-
plications to nanotubes. Phys. Rev. B. 68 (2003), no. 18, 184–302.

[16] Hartman, P. and Stampacchia, G.: On some non-linear elliptic differential-
functional equations. Acta Math. 115 (1966), 271–310.

[17] Jing, Y., Lin, Z. and Wang, Z-Q.: Multiple solutions of a parameter-dependent
quasilinear elliptic equation. Calc. Var. Partial Differential Equations 55 (2016),
no. 6, Art. 150, 26 pp.

[18] Liu, J. Q. and Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equa-
tions. I. Proc. Amer. Math. Soc. 131 (2003), no. 2, 441–448.

[19] Liu, J. Q. and Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equa-
tions. II. J. Differential Equations 187 (2003), no. 2 473–493.

[20] Miyagaki, O., Moreira, S. and Pucci, P.: Multiplicity of nonnegative so-
lutions for quasilinear Schrödinger equations. J. Math. Anal. Appl. 434 (2016),
no. 1, 939–955.

[21] Pellacci, B.: Critical points for non-differentiable functionals. Boll. Un. Mat.
Ital. B (7) 11 (1997), no.3, 733–749.

[22] Pellacci, B. and Squassina, M.: Unbounded critical points for a class of lower
semicontinuous functionals. J. Differential Equations 201 (2004), no. 1, 25–62.

[23] Poppenberg, M., Schmitt, K. and Wang, Z.Q.: On the existence of soliton
solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differential Equa-
tions 14 (2002), no. 3, 329–344.

[24] Squassina, M.: Weak solutions to general Euler’s equations via nonsmooth critical
point theory. Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), no. 1, 113–131.

Received March 14, 2016; revised March 31, 2016.

Lucio Boccardo: Dipartimento di Matematica, “Sapienza” Università di Roma,
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della Campania “Luigi Vanvitelli”, viale Lincoln 5, 81100, Caserta, Italy.

E-mail: benedetta.pellacci@unicampania.it

The first author has been partially supported by MIUR-PRIN project 2015 “Calcolo delle
Variazioni”, and by “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Ap-
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