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Measures with locally finite support and spectrum

Yves Meyer

Abstract. This note answers an issue raised by Nir Lev and Alexander
Olevskii in [7]. In the conclusion of [7] Lev and Olevskii mentioned a
new and fascinating Poisson summation formula suggested by André Paul
Guinand in [4]. Lev and Olevskii wanted to know to what class of functions
this formula applies. This will be answered below (Theorem 4.1).

Another intriguing Poisson summation formula was elaborated in [10].
We show that it is coupled to the Epstein ζ function by a coupling discov-
ered by Jean-Pierre Kahane and Szolem Mandelbrojt in [5].

1. Introduction

Let us begin with some definitions. The Fourier transform F(f) = f̂ of a function f

is defined by f̂(y) =
∫
Rn exp(−2π ix · y)f(x) dx.

Definition 1.1. A set Λ ⊂ Rn is locally finite if Λ∩B is finite for every compact
set B.

A Dirac comb is a sum μ =
∑

γ∈Γ δγ of Dirac masses on a lattice Γ. The
Fourier transform of a Dirac comb on a lattice Γ is a Dirac comb on the dual
lattice Γ∗. The simplest example is μ =

∑∞
−∞ δk whose Fourier transform is μ.

This is the usual Poisson summation formula. Some companions to the standard
Poisson summation formula are described now.

Definition 1.2. Let σj be a Dirac comb supported by a coset xj + Γj of a
lattice Γj ⊂ R

n, 1 ≤ j ≤ N. Let Fj ⊂ R
n be a finite set, and let gj(x) =∑

y∈Fj
c(y) exp(2πiy · x) be a trigonometric sum. Let μj = gj σj . Then μ =

μ1 + · · ·+ μN will be called a generalized Dirac comb.

The Fourier transform of a generalized Dirac comb is a generalized Dirac comb.

Are there other atomic measures μ which together with their Fourier trans-
form μ̂ are supported by a locally finite set? This problem was investigated and
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recently solved by Lev and Olevskii in a remarkable series of contributions [7], [8],
and [9]. Two new solutions are proposed in this note. The first one is based on a
theorem by Kahane and Mandelbrojt which is discussed in Section 2. This theorem
will be applied to the Epstein ζ function in Section 3. This yields a new proof of
the Poisson summation formula which was presented in [10]. In Section 4 we back
Guinand’s hint.

2. A theorem by Kahane and Mandelbrojt

Definition 2.1. A purely atomic measure μ on Rn is a crystalline measure if
(a) the support Λ of μ is a locally finite set, (b) μ is a tempered distribution, and
(c) the distributional Fourier transform μ̂ of μ is also a purely atomic measure
which is supported by a locally finite set.

Let μ be a crystalline measure. We then have

μ =
∑
λ∈Λ

a(λ) δλ and μ̂ =
∑
y∈S

b(y) δy,

where (a(λ))λ∈Λ and (b(y))y∈S satisfy

(1) a(λ) �= 0, λ ∈ Λ, b(y) �= 0, y ∈ S .

The support Λ of μ is locally finite and the spectrum S of μ is also locally fi-
nite. Then for every test function f ∈ S(Rn) the following generalized Poisson
summation formula holds:

(2)
∑
λ∈Λ

a(λ)f̂ (λ) =
∑
y∈S

b(y)f(y) .

It is proved in [5] that such a Poisson summation formula exists if and only if
the corresponding Dirichlet series satisfies a functional equation. Let us be more
precise.

Let λk, k ∈ Z, be a strictly increasing sequence of real numbers with

λ−k = −λk (∀ k ∈ Z) .(3)

λk → ±∞ (k → ±∞) .(4)

Let ak, k ∈ Z, be an even sequence of complex numbers. Four other conditions are
assumed:

(i) the set Λ = {λk, k ∈ Z} is uniformly discrete,

(ii) μΛ =
∑∞

−∞ akδλk
is a tempered distribution,

(iii) the Dirichlet series φΛ(s) =
∑∞

1 akλ
−s
k converges if 
s > 1,

(iv) (1− s)φΛ(s) has an analytic extension to the complex plane.
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Let us observe that (i) and (ii) imply |ak| ≤ C(1 + |k|)m, k ∈ Z, for some expo-
nent m.

Let γ(s) = π−s/2 Γ(s/2). Then Kahane and Mandelbrojt proved the following
theorem:

Theorem 2.1. If (i), (ii), (iii) and (iv) are satisfied, the following properties are
equivalent:

(a) γ(s)φΛ(s) = γ(1− s)φΛ(1− s) (∀s ∈ C).

(b) The function θΛ(u) =
∑∞

−∞ ak exp(−πuλ2k), u > 0, satisfies the functional

equation θΛ(u) = u−1/2θΛ(1/u).

(c) We have μ̂Λ = μΛ.

The authors proved a similar theorem where 1 − s is replaced by 3 − s in
the functional equation and the even measure

∑∞
−∞ ak δλk

is replaced by the odd
measure

∑
{k∈Z, k �=0} (ak/λk) δλk

. This will be the case in the Poisson summation
formula of Theorem 3.1. Some pieces of the proof of Theorem 2.1 will be used in
this essay.

We have (c)⇒ (b). Indeed the Fourier transform of gt(x) = exp(−πtx2) is
ĝt(y) = t−1/2 exp(−πy2/t). Then 〈ĝt, μ〉 = 〈gt, μ̂〉 yields (b). Conversely (b)⇒ (c).
Indeed the collection of gt, t > 0, is total in the set of even functions f in the
Schwartz class S(R). Since μ is an even measure it suffices to check 〈f̂ , μ〉 = 〈f, μ̂〉
for even functions f , and since μ is a tempered distribution it suffices to do it for
a dense collection of even test functions.

The coefficient a0 does not appear in (a). Therefore the meaning of the impli-
cation (a)⇒ (b) shall be clarified.

The proof of (b)⇒ (a) is using Riemann’s original approach to the functional
equation satisfied by the ζ function. We define

(5) ξ(s) = π−s/2 Γ(s/2)φΛ(s) ,

and we consider as above

(6) θΛ(u) =

∞∑
−∞

ak exp(−πuλ2k) .

We then have:

Lemma 2.1. If a0 = 0, there exists a positive α such that

(7) θΛ(u) = O(exp(−αu)), u→ ∞ .

If a0 = 0 and (b) holds, then

(8) θΛ(u) = O(u−1/2 exp(−α/u)), u→ 0 .
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The proof of (7) is immediate since a0 = 0, 0 < λ1 < λ2 < . . . , Λ is uniformly
discrete, and μ is a tempered distribution. Then (b) implies (8).

Lemma 2.2. If a0 = 0, the function ξ(2s) is the Mellin transform of θΛ. More
precisely we have

(9) 2 ξ(s) =

∫ ∞

0

θΛ(t) t
s/2 dt

t
.

To prove Lemma 2.2 it suffices to exchange the summation and the integration
in (9). If 
s > 1 this is implied by Lemma 2.1. But (7) and (8) imply that
the right hand side of (9) is an entire function of s. Then (9) is extended to
the complex plane by analytic continuation. Once (9) is proved, the functional
equation satisfied by θΛ implies (a). This simple calculation will be detailed in
Section 3. The implication (a)⇒ (b) amounts to inverting the Mellin transform
in (9). This part of the proof of Theorem 2.1 will not be used below.

Does Theorem 2.1 apply to the Riemann zeta function ζ(s) =
∑∞

1 k−s in (a),
the Jacobi θ function θ(z) =

∑∞
−∞ exp(iπzk2) in (b), and the Dirac comb μ =∑

k∈Z
δk in (c)? Unfortunately it is not the case since we do not have a0 = 0

here which implies that the right hand side of (9) is always divergent. To fix this
issue some renormalization is needed. The standard Dirac comb is replaced by
the measure μ = 1

2

∑∞
−∞ δk/2 − 3

2

∑∞
−∞ δk +

∑∞
−∞ δ2k, which satisfies μ̂ = μ. The

corresponding ζ function is

ζ̃(s) =
1

2
(1− 2−s)(1 − 2−s+1) ζ(s),

where ζ(s) is the Riemann ζ function. This example will be seminal below.

In Theorem 2.1 the sequence λk, k ∈ Z, is uniformly discrete (in fact a slightly
weaker condition suffices). But this condition is not satisfied in Theorem 3.1.
Theorem 3.1 belongs to the program launched by Kahane and Mandelbrojt but
cannot be deduced from their work. Theorem 2.1 will only be used as a guideline.

3. The Epstein ζ function

The Epstein ζ function will play the role of φΛ(s) in Theorem 2.1. Then the
Poisson summation formula which was studied in [10] can be coupled with the
Epstein ζ function by the Kahane–Mandelbrojt scheme.

The Epstein ζ function is a holomorphic function of the complex variable s
defined by the series

(10) ζE(s) =
∑

{k∈Z3, k �=0}
|k|−s ,

which converges if 
s > 3. It satisfies the functional equation

(11) π−s/2 Γ(s/2) ζE(s) = π−(3−s)/2 Γ((3− s)/2) ζE(3− s) .
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This does not yet make any sense since it simultaneously requires 
s > 3 in the left
hand side of (11) and 
s < 0 in the right hand side which is not compatible. This
functional equation is well known. A proof is given since some of its ingredients
are needed in Theorem 3.1.

A simple modification of the Epstein function is

(12) ζ̃E(s) =
1

2
(1− 2−s) (23−s − 1) ζE(s) .

One defines χ : Z3 �→ {−1/2, 0, 4} by χ(k) = 0 if k ∈ 4Z3, χ(k) = 4 if k ∈ 2Z3 \4Z3

and χ(k) = −1/2 if k ∈ Z3 \ 2Z3.
Then

(13) ζ̃E(s) =
∑
k∈Z3

χ(k) |k|−s .

The sum runs over k ∈ Z3 since χ(0) = 0. The series defined by (13) converges
when 
s > 2 which is not sufficient to give a meaning to the functional equation.
But ζ̃E(s) extends to the complex plane as an entire function of s ∈ C. This will be
proved now and implies that ζE(s) is a meromorphic function with a simple pole
at s = 3.

The Fourier transform of the three-dimensional measure μ =
∑

k∈Z3 χ(k)δk/2
is identical to μ. The corresponding theta function is defined by

(14) θE(t) =
∑
k∈Z3

χ(k) exp(−πt|k|2), t > 0 .

Since χ(0) = 0 we obviously have θE(t) = O(exp(−πt)) as t → ∞.

The Fourier transform of gt(x) = exp(−πt|x|2) is ĝt(y) = t−3/2 exp(−π|y|2/t).
Then 〈ĝt, μ〉 = 〈gt, μ̂〉 implies the functional equation

(15) θE(t) =
1

8
t−3/2 θE

( 1

16t

)
.

Therefore

(16) θE(t) = O
(
t−3/2 exp

(
− π

16t

))
, t→ 0 .

Following Riemann’s proof of the functional equation we define

(17) ξ̃(s) = π−s/2 Γ(s/2) ζ̃E(s) .

Lemma 3.1. If 
s > 3 we have

(18) ξ̃(s) =

∫ ∞

0

θE(t) t
s/2 dt

t
.
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To prove Lemma 3.1 it suffices to exchange the summation and the integration,
which is licit when 
s > 3. Then the exponential decay of θE(t) at 0 and ∞ implies
that the right hand side of (18) is an entire function of the complex variable s.
This entire function is the analytic continuation of the modified Epstein function
π−s/2Γ(s/2)ζ̃E(s). Therefore ζE(s) is a meromorphic function of s with a single
pole at s = 3.

The functional equation ξ̃(s) = 2(3−2s)ξ̃(3 − s) is easily deduced from (15)
and (18). Indeed

ξ̃(s) =

∫ ∞

0

θE(t) t
s/2 dt

t
=

∫ 1/4

0

+

∫ ∞

1/4

= J(s) +K(s).

We perform the change of variable t = 1/(16u) in J(s) and use (15). Returning to
the variable t we obtain

J(s) = 8 · 4−s

∫ ∞

1/4

θE(t) t
(3−s)/2 dt

t
.

This implies

ξ̃(s) =

∫ ∞

1/4

(
ts/2 +

8

4s
t(3−s)/2

)
θE(t)

dt

t
.

We then have

(19) ξ̃(3− s) =
4s

8
ξ̃(s) ,

since the integrand satisfies this functional equation. Finally (19) implies (11) and
the Epstein ζ function satisfies the well-known functional equation.

If condition (i) could be suppressed in the Kahane–Mandelbrojt theorem, the
functional equation (11) would imply the following Poisson summation formula:

Theorem 3.1. The Fourier transform of the one dimensional odd measure

(20) τ =
∑
k∈Z3

χ(k)|k|−1(δ|k|/2 − δ−|k|/2)

is −iτ.

Observe that the summation runs over Z3 : k �= 0 is not imposed since χ(0) = 0.
Since τ is odd, proving Theorem 3.1 is equivalent to checking

(21) 〈τ, f̂〉 = −i〈τ, f〉

for every odd function f in the Schwartz class S(R). But the family of odd functions
ψt(·), t > 0, defined by

(22) ψt(x) = x exp(−πtx2), x ∈ R, t > 0,
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is total in the subspace of odd functions in the Schwartz class S(R). The Fourier
transform of ψt(x) is

(23) ψ̂t(y) = −it−3/2 y exp(−πy2/t) .
We plug ψt into (21). Then (21) is identical to (15), which ends the proof.

We now give another description of the measure τ. By Legendre’s theorem, an
integer n ≥ 0 can be written as a sum of three squares (02 being admitted) if and
only if n is not of the form 4j(8k + 7). For instance 0, 1, 2, 3, 4, 5, 6 are sums
of three squares but 7 is not. Let r3(n) be the number of decompositions of the
integer n ≥ 1 into a sum of three squares (with r3(n) = 0 if n is not a sum of
three squares). More precisely r3(n) is the number of points k ∈ Z3 such that
|k|2 = n. We have r3(4n) = r3(n), ∀n ∈ N, r3(0) = 1, r3(1) = 6, r3(2) = 12, . . . .
Then r3(2

j) = 6 if j is even and 12 if j is odd. The behavior of r3(n) as n→ ∞ is
erratic. The mean behavior is more regular since ([2])

(24)
∑

0≤n≤x

r3(n) =
4

3
π x3/2 +O(x3/4+ε)

holds for every positive ε.

Let χ(n) = −1 if n ∈ N\4N, χ(n) = 4 if n ∈ 4N\16N, and χ(n) = 0 if n ∈ 16N.
We then have

(25) τ =

∞∑
1

χ(n) r3(n)n
−1/2 (δ√n/2 − δ−√

n/2) .

4. Guinand’s construction

The preceding construction yields an atomic measure μ enjoying the following
properties (a) μ is supported by a locally finite set Λ and (b) μ̂ = −iμ. A measure μ
which satisfies μ̂ = ±iμ is necessarily odd as it was the case in our construction.
If μ̂ = μ the mesure μ is even.

Do there exist crystalline measures such μ̂ = μ besides the standard Poisson
summation formula? The answer is yes as it was suggested by Guinand in [4].

Theorem 4.1. There exists an even atomic measure μ supported by the set Λ =
{±√

k + 1/9, k ∈ N} such that μ̂ = μ.

Lev and Olevskii stressed that Guinand did not prove that the atomic measure μ
defined in [4] is a tempered distribution. This point will be clarified and Guinand’s
proof will be completed.

The new ingredient of the proof of Theorem 4.1 is our Lemma 4.1. Let χ : Z �→
{−1, 0, 1} be the Dirichlet character defined by χ(k+3) = χ(k), χ(0) = 0, χ(1) = 1,
and χ(2) = −1. Let

(26) F (q) =

∞∑
1

k χ(k) qk
2

,
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with |q| < 1. As Philippe Michel kindly taught us F (q) can be written as a product
of Dedekind η functions [6], [11]. More precisely, let q = exp(2πiz) and

(27) η(z) = q1/24
∞∏
1

(1− qn) .

Then we have

(28) F (q) =
η(3z)2 η(12z)2

η(6z)
.

The infinite product
∏∞

1 (1−qn) does not vanish in the open unit disc U. It implies
that F (q) �= 0 if |q| < 1, q �= 0. Then the holomorphic function G(q) = F (q)/q does
not vanish on U. Therefore H(q) = G(q)1/3 is uniquely defined as a holomorphic
function in U such that H(0) = 1. We have

(29) H(q) =

∞∏
1

(1− q3n) (1 + q6n)2/3 (1 + q3n)1/3 ,

which implies

(30) H(q) =

∞∑
0

γk q
3k ,

where γ0 = 1, γk are real numbers, and

(31)

∞∑
0

γk q
k =

∞∏
1

(1− qn) (1 + q2n)2/3 (1 + qn)1/3 .

Lemma 4.1. There exists a constant C such that

(32) |γk| ≤ C k1/3, k ≥ 1 .

We first observe that
∑∞

1 k rk
2 ≤ C

1−r for 0 < r < 1. This together with (26)

implies |G(q)| ≤ C
1−|q| and

(33) |H(q)| ≤ C

(1− |q|)1/3 .

Since H(q) is holomorphic in the open unit disc we have, for 0 < r < 1,

(34) 2π γk = r−k

∫ 2π

0

H(r exp(iθ)) exp(−ikθ) dθ .

To prove Lemma 4.1 it suffices to plug r = 1− 1/k into (34) and to use (33).

We now follow Guinand and complete the proof of Theorem 4.1. We set λk =√
k + 1/9, k ∈ N, and define a one dimensional atomic measure by

(35) μ =

∞∑
0

γk (δλk
+ δ−λk

) .
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Lemma 4.1 implies that μ is a tempered distribution. Edmund Landau already
knew the following identity:

Lemma 4.2. For every a > 0 we have

(36)

∞∑
1

k χ(k) exp(−πk2a2/3) = a−3
∞∑
1

k χ(k) exp(−πk2/3a2) .

If q = exp(−πa2/3) the left hand side of (36) is F (q) =
∑∞

1 k χ(k)qk
2

. Simi-
larly, if r = exp(−π/3a2) the right hand side of (36) is a−3F (r). Returning to the
argument z as in (27) we set z = ia2/6 and ζ = i(6a2)−1. Then Lemma 4.2 follows
from (28) and from the functional equation satisfied by the Dedeking η function.

But Lemma 4.2 also follows from the ordinary Poisson summation formula.
The Fourier transform of the measure σ =

∑∞
−∞ χ(k)δk/

√
3 is −iσ, and the Fourier

transform of ψa(x) = x exp(−πx2a2) is −ia−3x exp(−πx2a−2). Then (36) follows

from 〈σ̂, ψa〉 = 〈σ, ψ̂a〉.
Let q = exp(−πa2/3) and r = exp(−π/3a2) as above. We have F (q) =

a−3F (r), by (34). Extracting cubic roots on both sides and using the definition
of H yields q1/3H(q) = a−1r1/3H(r). Since H(q) =

∑∞
0 γk q

3k we obtain

(37)

∞∑
0

γk exp
(
− πa2

(
k +

1

9

))
= a−1

∞∑
0

γk exp
(
− π

(
k +

1

9

)
a−2

)
.

The Guinand θ function is defined by θG(u) =
∑∞

0 γk exp(−πu(k + 1
9 )) and (37)

can be written θG(u) = u−1/2θG(1/u). To end the proof of Theorem 4.1 it suffices
to copy the argument of (b)⇒ (c) in the Kahane–Mandelbrojt theorem.

The Kahane–Mandelbrojt scheme paves the way to the following definition :

Definition 4.1. The Guinand ζ function is defined by the series

ζG(s) =

∞∑
0

γk (k + 1/9)−s/2,

which converges if 
s > 8/3.

Then the same proof which was used for the Epstein ζ function yields the
following.

Theorem 4.2. The Guinand ζ function ζG(s) is an entire function of the complex
variable s ∈ C and satisfies the functional equation (a) of Theorem 2.1.

Instead of (28), let us use the identity

(38)

∞∑
1

(−2

k

)
k qk

2

=
η(16z)9

η(8z)3 η(32z)3
= F1(z) ,
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where
(
p
q

)
denotes the Jacobi symbol. Then the identity satisfied by the Dedekind η

function implies

(39) F1(z) = 4−3(−iz)−3/2F1

(
− 1

256z

)
.

However (39) can also be proved using the standard Poisson summation formula.
Indeed we define ck, k ∈ Z, by the following properties (i) ck is periodic of period 8,
(ii) ck = 0 if k is even, (iii) ck = 1 if k ≡ 1 (mod 8) or k ≡ 3 (mod 8), and
(iv) ck = −1 if k ≡ 5 (mod 8) or k ≡ 7 (mod 8). We then have ck =

(−2
k

)
, k ≥ 1,

and the Fourier transform of the measure σ =
∑∞

−∞ ckδk/
√
8 is −iσ as in the

second proof of Lemma 4.2. We set G1(q) = F1(q)/q where F1(q) is defined
by (38). Then (38) implies that G1 does not vanish on the unit open disc. We can
define H1(q) = G1(q)

1/3. Using (38) again we have

(40) H1(q) =

∞∑
1

βk q
8k .

As above

(41) |βk| ≤ C k1/3, k ≥ 1 .

We set q = exp(−πa2/8), r = exp(−πa−2/8), and z = ia2/16. The argument used
in proving Theorem 4.1 yields

(42) q1/3H1(q) = a−1 r1/3H1(r) .

This implies

(43)

∞∑
1

βk exp(−πa2(k + 1/24)) = a−1
∞∑
1

βk exp(−πa−2(k + 1/24)) .

We set λk =
√
k + 1/24, k ∈ N, and define a one dimensional atomic measure by

(44) μ =
∞∑
0

βk (δλk
+ δ−λk

) .

Let us observe that μ is even and is a tempered distribution.

Theorem 4.3. There exists an atomic measure μ supported by the set Λ =
{±√

k + 1/24, k ∈ N} such that μ̂ = μ.

The corresponding ζ function is defined by the series

ζM (s) =

∞∑
0

βk (k + 1/24)−s/2,

which converges if 
s > 8/3. This ζ function is an entire function of the complex
variable s.
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The same game can be played with the following identity.

(45)

∞∑
1

(−6

k

)
k qk

2

=
η(48z)13

η(24z)5 η(96z)5
,

and we end with Λ = {±√
k + 1/72, k ∈ N}.

5. Illustration of a theorem by N. Lev and A. Olevskii

We apply the Kahane–Mandelbrojt scheme to the functional equation satisfied by
the Dedekind η function. We have

(46) η(−1/z) =
√−iz η(z) .

The Euler function is defined as

(47) φ(q) =
∞∏
1

(1− qn) =
∞∑
−∞

(−1)n q(3n
2−n)/2 .

Let q = exp(−2πa2). The functional equation (46) is applied to z = ia2 and yields

(48)

∞∑
−∞

(−1)n exp[−πa2(3n2 − n+ 1/12)] = θ(a) = a−1θ(1/a) .

We then denote by μ the even atomic measure which is the sum

(49)

∞∑
0

(−1)n(δ−λ±
n
+ δλ±

n
) ,

where λ±n =
√
3n2 ± n+ 1/12.We conclude as above to μ̂ = μ. Does this construc-

tion provide a counterexample to the main theorem proved by Lev and Olevskii
in [9]? This theorem asserts that a crystalline measure whose support and spec-
trum are uniformly discrete is a generalized Dirac comb. It is the case here since√
3n2 ± n+ 1/12 = n

√
3 ± 1

2
√
3
. The measure μ which we constructed is a gener-

alized Dirac comb.

6. Open problems

Let Λ = {λk, k ∈ Z} as in (3) and (4), and let MΛ be the collection of all atomic
measures supported by Λ and whose Fourier transform is also supported by Λ. We
are interested in comparing the property MΛ �= {0} to the geometrical structures
described in [1]. If it is the case, what is the dimension of MΛ ? Given a θ ∈ (0, 1)
what happens if Λ = {±√

k + θ, k ∈ N} ?
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