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The double of the doubles of Klein surfaces

Antonio F. Costa, Paola Cristofori and Ana M. Porto

Abstract. A Klein surface is a surface with a dianalytic structure. A dou-
ble of a Klein surface X is a Klein surface Y such that there is a degree two
morphism (of Klein surfaces) Y → X. There are many doubles of a given
Klein surface and among them the so-called natural doubles which are: the
complex double, the Schottky double and the orienting double. We prove
that if X is a non-orientable Klein surface with non-empty boundary, the
three natural doubles, although distinct Klein surfaces, share a common
double: “the double of doubles” denoted by DX. We describe how to
use the double of doubles in the study of both moduli spaces and auto-
morphisms of Klein surfaces. Furthermore, we show that the morphism
from DX to X is not given by the action of an isometry group on classical
surfaces.

1. Introduction

A (compact) Klein surface is a surface with a dianalytic structure, i.e., a surface
where the charts are defined on open sets of the upper-half complex plane U and the
transition functions are analytic or anti-analytic (see [1], [6] or [16]). Topologically
compact Klein surfaces may be non-orientable and with boundary. The folding
map φ : C → U , is defined by φ(x+ iy) = x+ i|y|, and a smooth morphism of Klein
surfaces is a map which is either locally complex smooth or locally the folding map,
the latter occurring over the boundary of the image (for a more precise definition
see [1]).

A double of a Klein surface X is a Klein surface Y such that there is a degree
two morphism Y → X . Three types of doubles, the so-called natural doubles, turn
out to be historically interesting: the complex double, the Schottky double and the
orienting double; they are defined in [1] in terms of equivalence classes of dianalytic
atlases. In [9] the doubles of Klein surfaces are studied by using subgroups of
uniformizing Euclidean and non-Euclidean crystallographic groups.

If X is a non-orientable Klein surface with non-empty boundary, we prove
that the three natural doubles, although distinct Klein surfaces, share a common
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double: “the double of doubles”. The main purpose of this paper is the study of
this Riemann surface. We first establish the relations between each natural double
with the double of doubles (section 5) and we apply this concept to the study of
automorphisms of Klein surfaces (section 7) and to the theory of real algebraic
curves (section 8). In section 6 it is shown that the morphism from the double of
doubles to the given Klein surface cannot be visualized as the natural projection on
the space of orbits produced by action of an isometry group on classical surfaces.

This article has been motivated by a question of Gareth Jones after a talk
by David Singerman on [9] in the Conference in honour of Emilio Bujalance in
Linköping (2013).

2. Klein surfaces and NEC groups

The algebraic genus of a Klein surface X of genus g with k boundary components
is, by definition, 2g+k−1 if X is orientable and g+k−1 if X is non-orientable. The
algebraic genus is the topological genus of the complex double of X (see section 4).

Every Klein surface has uniformization S/Γ where S is a simply-connected Rie-
mann surface and Γ is a crystallographic group without elliptic elements (it might
have reflections though). If the algebraic genus of the surface is greater than 1, then
S = U , the upper complex half-plane, and Γ is a (planar) non-Euclidean crystallo-
graphic (NEC) group. If the algebraic genus is equal to 1 (for example the Möbius
band) then S = C and Γ is a (planar) Euclidean crystallographic group. These
groups are called surface Euclidean or non-Euclidean crystallographic groups and
have assigned a signature of the form (see [6] and [19])

(2.1) (g;±; [−]; {(−)k}).
Here, (−)k means k empty period cycles. If this occurs, S/Γ is a compact surface
of genus g with k boundary components; it is orientable when the + sign occurs
and non-orientable otherwise. The group Γ has a fundamental region that is a
Euclidean or hyperbolic polygon P . If the + sign occurs then the fundamental
region for the group is a hyperbolic polygon with surface symbol

(2.2) α1 β1 α
′
1 β

′
1 . . . , αg βg α

′
g β

′
g ε1 γ1 ε

′
1 . . . , εk γk ε

′
k.

If the − sign occurs then the fundamental polygon has surface symbol

(2.3) α1 α
∗
1 . . . αg α

∗
g ε1 γ1 ε

′
1 . . . εk γk ε

′
k

The group has two possible presentations; if the + sign occurs the presentation is

〈a1, b1, . . . , ag, bg, e1, . . . , ek, c1, . . . , ck |
Πg

i=1[a1, bi]e1 · · · ek = 1, c2i = 1, ei ci e
−1
i = ci (i = 1, . . . , k)〉

Here ai, bi are translations or hyperbolic, ci are reflections and ei are orientation-
preserving though usually hyperbolic. Moreover ai(α

′
i)=αi, bi(β

′
i)= βi, ei(ε

′
i)= εi

and ci fixes the edge γi.
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If the − sign occurs the presentation is

〈d1 . . . , dg, e1, . . . , ek, c1, . . . , ck |
d21 · · · d2g e1 · · · ek = 1, c2i = 1, ei ci e

−1
i = ci (i = 1, . . . , k)〉

Here di are glide-reflections and di(α
∗
i ) = αi

This type of presentations of Euclidean or NEC groups will be called canonical
presentation and a generator will be a canonical generator and in both presenta-
tions the first relation is called the long relation.

3. Standard epimorphisms of NEC groups and doubles of
Klein surfaces

A double of a Klein surface X = S/Γ has the form S/Λ = Y where Λ is a surface
subgroup of index 2 in Γ, then there is an epimorphism θ : Γ → C2 = 〈t | t2 = 1〉,
with ker θ = Λ, called the monodromy epimorphism.

A Klein surface may have a large number of doubles (see Theorem 1 of [9]
and [12]). For this reason we focus our study on the most important ones mentioned
in [1] and [9].

Let us gather the canonical generators of Γ in sets and define: E = {e1, . . . , ek},
C = {c1, . . . , ck}, A = {a1, b1, . . . , ag, bg} or A = {d1, . . . , dg}. We will consider
only the doubles whose monodromies θ : Γ → C2 are constant on each set of gen-
erators. An epimorphism with this property is called a standard epimorphism.

Theorem 1. If k is even then there are 7 standard epimorphisms θ : Γ → C2,
while if k is odd there are only 3 standard epimorphisms.

Proof in [9].

In Table 1 we have listed the standard epimorphisms and the corresponding
topological type of the double U/ ker θ, see [9]. We distinguish between the cases
where Γ has orientable or non-orientable quotient space. Here, k is the number
of boundary components of U/Γ, B is the number of boundary components of the
double U/ ker θ and the orientability of U/ ker θ is denoted by + or −.

The three first rows describe the monodromies of the so-called natural doubles,
which are the most important from the historical point of view (see section 4
and [9]).

(Table 1)

Standard epimorphism Boundary Orientability of the double U/ ker θ
θ B U/Γ non-orientable U/Γ orientable

1. E → {1} C → {t} A → {t} 0 + −
2. E → {1} C → {1} A → {t} 2k + +
3. E → {1} C → {t} A → {1} 0 − +
4. E → {t} C → {1} A → {1} k − +
5. E → {t} C → {1} A → {t} k − +
6. E → {t} C → {t} A → {1} 0 − −
7. E → {t} C → {t} A → {t} 0 − −
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4. The natural doubles

Let X = U/Γ, where Γ is a crystallographic surface group.

(1) The complex double.

If X is a Klein surface then its complex doubleX+ is the unique double which is
a Riemann surface without boundary. The complex double of X = U/Γ is U/Γ+,
where Γ+ is the subgroup of Γ consisting of those transformations preserving ori-
entation. If X is non-orientable then the generators of A are glide reflections and
so the complex double is given by epimorphism 1; it corresponds to epimorphism 3
when X is orientable. The genus of the complex double X+ is the algebraic genus
of the Klein surface X . If X is orientable and without boundary X+ has two
connected components.

(2) The orienting double.

Let X be a Klein surface and suppose that ∂X has k components. For each
i = 1, . . . , k, fill in each boundary component with a disc Di. We get a surface X̃
without boundary with the same orientability as X . Now consider the complex
double X̃+ of X̃. Let D1

i and D2
i be the lifts of Di to X̃+. If we remove these

discs from X̃+ we end up with an orientable surface OX which has 2k boundary
components and clearly OX is an unbranched two-sheeted covering of X . We
call OX the orienting double of X . Note that if X is orientable then OX has two
connected components.

If we consider the epimorphisms of Table 1 we see that we only have a covering
with twice as many boundary components as the original surface for epimorphism 2;
so this epimorphism corresponds to the orienting double of a non-orientable Klein
surface. In the case of orientable Klein surfaces the orienting double consists of
two copies of the original surface. If the surface X is non-orientable with empty
boundary, the orienting double coincides with the complex double.

(3) The Schottky double.

Let Y be a double of the Klein surface X . Then Y admits an involution h such
that Y/〈h〉 = X. As we are considering unbranched but possibly folded coverings,
the fixed-point set of h will include a collection of simple closed curves (see for
instance [4]). We define the Schottky double of X to be a Klein surface SX without
boundary with the same orientability as X admitting a dianalytic involution h
whose fixed curves separate SX and such that SX/〈h〉 = X .

Theorem 2 ([9]). Let X = U/Γ be a Klein surface with boundary and SX = U/Λ
its Schottky double, where Γ and Λ are crystallographic surface groups. Let θ : Γ →
Γ/Λ ∼= C2 be the natural epimorphism. Then θ is the epimorphism 3 of Table 1.

Note that if X = U/Γ is orientable, the Schottky double coincides with the
complex double. If X is non-orientable without boundary, the Schottky double
has two connected components both isomorphic to X .
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5. The double of the natural doubles

Let X be a non-orientable Klein surface with non-empty boundary. As shown in
the above section, X has three different natural doubles: X+, OX and SX . The
surfaces OX and SX are, in general, proper Klein surfaces (i.e., non-orientable or
bordered Klein surfaces). Note that (OX)+ = S(OX) since OX is orientable and
(SX)+ = O(SX) because SX has no boundary. The following results establish
that (OX)+ = S(OX) = (SX)+ = O(SX) as well; this is the Riemann surface
that we shall call the double of (the natural) doubles, and denote by DX .

In next theorem the group of conformal and anticonformal automorphisms of
the Riemann surface DX will be denoted by Aut(DX), i.e., we consider the Rie-
mann surface DX as a closed orientable Klein surface.

Theorem 3. Let X = U/Γ be a non-orientable Klein surface with non-empty
boundary. Let SX be the Schottky double, OX be the orienting double and X+ be
the complex double of X. There exists a Riemann surface DX such that Aut(DX)
contains a group 〈s, t〉 isomorphic to C2×C2 and such that: DX/ 〈s〉 = OX is the
orienting double, DX/ 〈t〉 = SX is the Schottky double of X, and DX/ 〈st〉 = X+

is the complex double.

Proof. We define ω : Γ → C2 × C2 = 〈s, t〉 by
A→ {t};E → {1};C → {s}.

Let DX be U/ kerω. Then we have the following diagram:

DX = U/ kerω
↙ ↓ ↘

X+ = U/ω−1(〈st〉) OX = U/ω−1(〈s〉) SX = U/ω−1(〈t〉),
↘ ↓ ↙

X

that proves the theorem. �

IfX is non-orientable, has genus g and k boundary components then (see Table 1
and [9]) the complex double is an (orientable) Riemann surface (without bound-
ary) of genus g+ k− 1, the orienting double is an orientable Klein surface of genus
g−1 with 2k boundary components, the Schottky double is a non-orientable Klein
surface without boundary of genus 2g + 2k − 2 and, finally, the double of doubles
of X is an (orientable) Riemann surface (without boundary) of genus 2g+ 2k− 3.

Note that st is an orientation preserving element while s and t are orientation
reversing.

Corollary 4. Given a non-orientable Klein surface with non-empty boundary, the
complex double (SX)+ = DX of the Schottky double SX = DX/ 〈t〉 of X coincides
with the complex double (OX)+ = DX of the orienting double OX = DX/ 〈s〉
of X. The anticonformal involution t is fixed point free and the fixed point set of s
is separating. The conformal involution st is fixed point free.
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Proof. Remember that if X is a Klein surface then its complex double X+ is
the unique double which is a Riemann surface without boundary. The double of
doubles DX is a Riemann surface and there are degree two morphisms from DX
to OX or SX thus (OX)+ = (SX)+ = DX . Since SX has no boundary then t
is fixed point free and since OX is orientable DX − Fix(s) has two connected
components. Finally, as DX → X+ is an order two morphism between Klein
surfaces which are in fact Riemann surfaces, it is an unbranched two fold covering
as well and st is fixed point free. �

The description of the unbranched covering DX → X+ is the following:

Theorem 5. Let σ be the anticonformal involution given by X+ → X and Fix(σ)
be the fixed point set of σ. Let 〈., .〉 be the intersection form in H1(X

+,Z2) and
[Fix(σ)] be the cycle in H1(X

+,Z2) represented by the union of the curves in
Fix(σ). The covering DX → DX/ 〈st〉 = X+ is an unbranched covering with
monodromy

〈[Fix(σ)], .〉 : π1(X+) → H1(X
+,Z2) → C2

γ 	→ [γ] 	→ 〈[Fix(σ)], [γ]〉
Proof. Let us restrict our proof to the case where X is a Klein surface with al-
gebraic genus > 1, then Γ is an NEC group. The group uniformizing X+ is Γ+

and the monodromy of the covering DX → X+ is just the restriction of ω to
Γ+ = ω−1(〈st〉), which is an epimorphism on 〈st〉 = C2. Let g ∈ Γ+ such that
ω(g) = st and let w be an expression of g as an irreducible word in some canonical
set of generators of Γ. Then an odd number of reflections appears in the word w.
If γ is the curve that is the projection on X+ of the axis of the hyperbolic ele-
ment g, then γ cuts Fix(σ) in an odd number of points. Hence 〈[Fix(σ)], [γ]〉 �= 0.
In similar way if ω(g) = 1 then 〈[Fix(σ)], [γ]〉 = 0. Thus 〈[Fix(σ)], .〉 is given by
the restriction of ω to Γ+, so it is the monodromy of DX → X+. �

Note that DX → X+ is something living completely in the theory of Riemann
surfaces and that is naturally given by the non-orientable bordered Klein surfaceX .

6. The automorphism group of DX → X cannot be visual-
ized in R3

Every smooth surface in the Euclidean space can be made into a Riemann surface
in a natural way by restriction of the Euclidean metric to it. These surfaces are
called classical Riemann surfaces and they are considered by Beltrami and Klein
(see the introduction of [11] and chapter II, section 5 of [2]). There are some
automorphisms of Riemann surfaces that can be represented by the restriction to
classical Riemann surfaces of isometries of the Euclidean space. This is a natural
way of visualizing automorphisms of Riemann surfaces.

Note that each one of the three automorphisms s, t, st of the preceding section
are representable as restriction of isometries to classical Riemann surfaces (see [8]),
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but the complete group action of C2 ×C2 is not the restriction of a finite group of
isometries, so it “cannot be visualized”.

Example 6.1. IfM is a Möbius band we know thatDM is an analytical torus con-
formally equivalent to a classical torus T1 embedded in R3, such that T1 is invariant
by an order two rotation r with axis non-cutting T1 and that the unbranched cov-
ering DM → M+ is analytically equivalent to T1 → T1/ 〈r〉. Analogously there
are embedded tori T2 and T3 such that T2 is invariant by a plane reflection p with
T2 → T2/ 〈p〉 equivalent to DM → OM and T3 is invariant by a central symmetry c
such that T3 → T3/ 〈c〉 is equivalent to DM → SM . But there is no embedded
torus T and no group of isometries G, isomorphic to C2 ×C2, such that T → T/G
is equivalent to DM →M . The obstruction is of topological nature. Assume that
we have such classical torus T and a group of isometries G such that T → T/G is
equivalent to DM →M : the group G must be generated by a plane reflection and
a central symmetry. Furthermore the order two rotation r of G must not cut the
torus T because T → T/ 〈r〉 is equivalent to DM →M+. The plane of symmetry
must be orthogonal to the axis of r, then T/G is homeomorphic to a cylinder and
not a Möbius band. Thus T → T/G is not equivalent to DM →M .

7. The double of doubles and automorphisms

As in Section 5, we shall denote the groups of conformal and anticonformal au-
tomorphisms of X+ and DX respectively by Aut(X+) and Aut(DX), i.e., we
consider X+ and DX as closed orientable Klein surfaces.

Doubles of Klein surfaces are useful for the study of the automorphism groups
of Klein surfaces. Every automorphism of a given Klein surface X lifts to an
automorphism of the complex double X+, and in this way it is possible to study
the automorphisms of Klein surfaces by using automorphisms of Riemann surfaces.
The difficulty arises when some of the automorphisms in X+ are not liftings of
automorphisms of X and then Aut(X+) is not isomorphic to C2 × Aut(X). This
difficulty remains, even in case of maximal symmetry, when considering the double
of doubles for non-orientable Klein surfaces, as shown in the last example of this
section; nevertheless, the information the automorphisms of DX may provide is
better than the one given by Aut(X+). This claim is supported by the fact that
although not every automorphism of X+ lifts to DX (see first example of this
section), this is true for the automorphisms of X (next theorem).

Theorem 6. Let X be a bordered non-orientable Klein surface and let DX be the
double of the doubles of X. Then every automorphism of X lifts to an automor-
phism of Aut(DX) and Aut(DX) contains a group isomorphic to Aut(X)×C2×C2.

Proof. We shall prove the result for the case of surfaces X of genus > 1. Let Γ
be a surface NEC group such that X = U/Γ and Δ be such that Γ � Δ and Δ/Γ
is isomorphic to Aut(X). Let θ : Δ → Δ/Γ � Aut(X) be the natural map and
〈S : R〉 be a canonical presentation of Δ (see, for instance, [6] page 14).
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Let us define θ′ : Δ → Aut(X)× C2 × C2, by

θ′(s) = (θ(s), θ′2(s), θ
′
3(s)),

where s ∈ S is a generator of the canonical presentation of Δ, θ′2(s) �= 1 if and
only if s is orientation reversing and θ′3(s) �= 1 if and only if s is a reflection in Γ.

Let us see that θ′3 : Δ → C2 is a homomorphism: the relations in R which con-
tain reflections have either the form e−1

i ci0ei = cisi , c
2
ij = 1 or (ci,j−1ci,j)

nij = 1.
Since C2 is abelian and Γ � Δ, the relations of the two first types are automatically
respected by θ′3 . In the third type, if nij is even, the relations are respected by θ′3
because θ′3(Δ) = C2; if nij is odd the relation (ci,j−1ci,j)

nij = 1 tells us that ci,j−1

and ci,j are conjugate and thus either both ci,j−1 and ci,j belong to Γ or none of
them is in Γ; in any case, θ′3(ci,j−1ci,j) = 1 and the relation is also respected.

Note that ker θ = Γ uniformizes X , ker(θ, θ′2) uniformizes X+ and ker θ′ =
ker(θ, θ′2, θ′3) uniformizes a two fold covering ofX+. The monodromy ω : ker(θ, θ′2) =
π1(X

+) → C2 of U/ ker θ′ → X+ is given by the following rule: if γ ∈ ker(θ, θ′2),
ω(γ) �= 1 if and only if γ can be expressed as a word wS in the system of gen-
erators S of the canonical presentation of Δ, such that there is an odd number
of reflections conjugate to reflections of Γ. And this is exactly the monodromy of
DX → X+ by Theorem 5.

Since ker θ′ uniformizes DX , every automorphism of X admits a lifting to DX
and Aut(DX) contains a group isomorphic to Aut(X)× C2 × C2. �

As a consequence, an automorphism of X+ not lifting to an automorphism
of DX , cannot be itself a lift of an automorphism of X , meaning that the auto-
morphisms of DX provide better information on Aut(X) than Aut(X+) do. Next
example illustrates this situation:

Example 7.1. Let Δ be a maximal NEC group with signature

(1;+; [3]; {(3)})
and

〈
a, b, x, c0, c1, e : xeaba

−1b−1 = 1, x3 = 1, c20 = c21 = 1, (c0c1)
3 = 1, ec0e

−1 = c1
〉

be a canonical presentation of Δ. Let us consider the epimorphism:

θ : Δ → D3 =
〈
s, t : s2 = t2 = (st)3 = 1

〉

defined by:

θ(a) = θ(b) = 1; θ(x) = st; θ(e) = ts;

θ(c0) = s; θ(c1) = tst.

The NEC group θ−1(〈s〉) is a non-orientable surface crystallographic group with
signature (7;−; [−]; {(−)}); so X = U/θ−1(s) is a Klein surface. The complex
double X+ is uniformized by ker θ and its automorphism group is Δ/ ker θ = D3

(note that we have assumed Δ maximal).
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The group θ−1(s) is not normal in Δ, so the automorphism group of X is
trivial, but Aut(X+) = D3, thus Aut(X+) � Aut(X) × C2. The anticonformal
involution s of X+ producing X as quotient has a connected closed curve γ as
fixed point set. We will call st an order three conformal automorphism of X+.
The automorphism st does not lift to DX . A reason for that is as follows: the
curve ∂X lifts to a closed curve with two connected components in DX and to γ
in X+, but st(γ) cuts γ just in the only fixed point of st which projects on the
boundary of X . Therefore, st(γ) lifts to a connected curve of DX and this fact
prevents the existence of a lift of st to DX .

Finally, in the next example we show that, in some cases, the information
on Aut(X) provided by Aut(DX) is not essentially better than the one obtained
by Aut(X+). In fact, in [5] and [15], it is established that if a bordered Klein
surfaceX has maximal symmetry or “almost maximal symmetry” (more concretely
if #Aut(X) ≥ 8(p− 1), where p is the algebraic genus of X) then there is a finite
number of Klein surfaces where Aut(X+) contains properly C2×Aut(X). When X
is non-orientable with boundary the first occurrence of such situation is described
in the following example.

Example 7.2. We shall describe a Klein surface P2 which is topologically a
projective plane with two holes and such that Aut(P2+) �= C2 × Aut(P2) and
Aut(DP2) �= C2 × C2 × Aut(P2). The surface P2 can be uniformized by a NEC
group Γ whose fundamental region is a regular right angled hyperbolic octagon O
and the elements of Γ produce a pairwise identification of the sides of O given by
the following symbol:

α1 γ1 α2 γ2 α
∗
1 γ

′
1 α

∗
2 γ

′
2,

where αi is identified with α∗
i by a hyperbolic glide reflection di, i = 1, 2, and

γ1∪γ′1, γ2∪γ′2 give rise to the two components of ∂P2, i.e., for each i = 1, 2, γi,γ
′
i,

are in the fixed point set of reflections of Γ. The automorphisms group of P2 is D4

then Aut(P2) has of order 8.
Now P2+ is uniformized by the surface Fuchsian group Γ+ and the regular

octagon in P2 lifts to a regular map {8, 4} in P2+. Note that there is only a
regular map of type {8, 4} in surfaces of genus 2: (R2.3′ following the notation
in [7]). Then P2+ is the underlying Riemann surface in the regular map R2.3′.
Since such a map can be obtained as a stellation of the regular map R2.1 of type
{3, 8}, the Riemann surface P2+ is also the surface underlying such map. The
group of automorphisms of P2+ is the group of automorphisms of R2.1, hence the
group of automorphisms of P2+ is a C2−extension of GL(2, 3) and has 96 elements
(see Theorem B of [5]), so Aut(P2+) �= C2 ×Aut(P2).

The double of doubles DP2 is a two fold covering of P2+ and the map R2.1
lifts to a regular map of type {3, 8}. Since there is only one regular map on
genus three surfaces of type {3, 8}:R3.2 (see [7]), DP2 is the genus three Riemann
surface underlying R3.2 (the dual of the Dyck map). The group Aut(DP2) is the
full symmetry group of the map R3.2 and #Aut(DP2) = 192 (the order of the
group of conformal automorphisms of DP2 is 96, see for instance [13]). Hence
Aut(DP2) �= C2 × C2 ×Aut(P2).
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8. An application to the study of the moduli space of non-
separating real algebraic curves

The complexification CC of a (smooth projective) real algebraic curve C is a com-
plex algebraic curve, thus a compact Riemann surface. The conjugation provides
an anticonformal involution σ on CC and the pair (CC, σ) determines completely
the real curve C. The pair (CC, σ) is given by the Klein surface KC = CC/ 〈σ〉,
so KC represents the real algebraic curve, too. The topological type t of KC is
(h;±; k), where h is the topological genus, the sign ± is given by the orientability
and k is the number of connected components of ∂KC . The complexification CC

is, in fact, the complex double of KC and the genus of CC is the algebraic genus
of KC .

Assume that KC is non-orientable, i.e., the topological type is (h;−; k); the
fixed point set Fix(σ) of the involution σ does not separate the Riemann surface CC,
which is why C is called a non-separating real algebraic curve.

The spaces of deformations or moduli spaces are important tools in the study
of algebraic curves. There is a different moduli space for each topological type
of Klein surfaces, i.e., once the genus of the complexification of the real algebraic
curve is fixed, the space of deformations for real non-separating algebraic curves
with algebraic genus g is the disjoint union

MR,−
g =

⋃
h+k−1=g

MK
(h;−;k) ,

where MK
(h;−;k) is the moduli space of Klein surfaces with topological type (h;−; k)

(see for instance [18], [6], [16]).
In some situations it is important to have a common space to relate the different

topological types of real curves with the same complexification. The set MR,−,C
g

corresponds to the set of points in Mg that are Riemann surfaces having a non-
separating anticonformal involution. Then

MR,−,C
g =

⋃
0≤k≤g

M(−,k)
g ,

where M(−,k)
g is the set of points in Mg corresponding to Riemann surfaces with

an anticonformal involution of topological type t = (−, k). This space has been
studied by many authors: [17], [16], [3], [10]. Now a real non-separating algebraic
curve is a pair (X, σ) whereX ∈ MR,−,C

g and σ is an anticonformal involution of the

Riemann surface X , and X/ 〈σ〉 is non-orientable. The map φ : MR,−
g → MR,−,C

g

given by φ(K) = K+ is continuous and φ restricted to MK
(h;−;k) is an (orbifold)

embedding, for h+ k − 1 = g (see Corollary 8.9 of [14] and [4]).
Now by using the results of the above sections we obtain that real non-separating

algebraic curves of algebraic genus g are in the intersection of just two connected
real analytic spaces in M2g−1.

Theorem 7. Let M(+,0) (respectively M(−,0)) be the set in M2g−1 consisting of
the surfaces admitting a fixed point free conformal (resp. anticonformal) involution.
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We define
N R,−

g = M(+,0) ∩M(−,0).

Then there exists a continuous map ψ : MR,−
g → N R,−

g , and ψ ◦ φ−1 restricted

to M(−,k)
g is an embedding, for each k = 0, . . . , g.

Proof. A point in MR,−
g may be represented by a non-orientable Klein surface K.

Let ψ(K) be the point in M2g−1 given by DK. In the case g > 1, K is uni-
formized by a surface NEC group Γ and then the surface ψ(K) is uniformized
by the subgroup kerω, where ω : Γ → C2 × C2 is the epimorphism defined in
the proof of Theorem 3. If T(g;−;k) and T2g−1 are respectively the Teichmüller
spaces of Klein surfaces with topological type (g;−; k) and of Riemann surfaces
of genus 2g − 1, then the inclusion kerω → Γ produces an isometric embedding
from ϕ : T(g;−;k) → T2g−1 (Corollary 8.9 of [14]). The map ϕ produces the con-

tinuous map ψ : MR,−
g → M2g−1 sending each Klein surface to its double of dou-

bles DK. Since the double of doubles admits the action of a fixed point free
orientation preserving involution (producing as orbit space K+) and a fixed point
free anticonformal involution (producing SK) we have that ψ(MR,−

g ) ⊂ N R,−
g . �

Next result follows from the above together with Theorems 3.1 and 3.3 of [10]

Corollary 8. ψ(MR,−
g ) is connected.
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