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Characters of p′-degree
and Thompson’s character degree theorem

Nguyen Ngoc Hung

Abstract. A classical theorem of John Thompson on character degrees
asserts that if the degree of every ordinary irreducible character of a finite
group G is 1 or divisible by a prime p, then G has a normal p-complement.
We obtain a significant improvement of this result by considering the av-
erage of p′-degrees of irreducible characters. We also consider fields of
character values and prove several improvements of earlier related results.

1. Introduction

One of the classical results on character degrees is the celebrated theorem of
J.G. Thompson, which asserts that if the degree of every ordinary irreducible
character of a finite group G is 1 or divisible by a prime p, then G has a normal
p-complement, see [25] or Corollary 12.2 of [8]. Let acdp′(G) denote the average
of p′-degrees of irreducible characters of G. Then this result can be reformulated
as follows.

Thompson’s theorem. Let G be a finite group. If acdp′(G) = 1, then G has a
normal p-complement.

In this paper, we significantly improve Thompson’s theorem in the point of
view of acdp′ and investigate further the relation between characters of p′-degree
and p-nilpotency.

Theorem 1.1. Let p be an odd prime and G a finite group. We have

(i) if acd2′(G) < 3/2, then G has a normal 2-complement, and

(ii) if acdp′(G) < 4/3, then G has a normal p-complement.

We emphasize that, in contrast to Thompson’s theorem, where it is required
that G has no nontrivial character degrees coprime to p at all, in Theorem 1.1 we
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allow G to have nontrivial character degrees coprime to p, and we still can conclude
the p-nilpotency ofG as long as the number of linear characters ofG is large enough.

A deep part in the proof of Theorem 1.1 is to prove the solvability of the groups
in consideration. In fact, we obtain the following.

Theorem 1.2. Let p > 5 be a prime and G a finite group. If one of the following
happens

(i) acd2′(G) < 3,

(ii) acd3′(G) < 3,

(iii) acd5′(G) < 11/4,

(iv) acdp′(G) < 16/5,

then G is solvable.

Given a finite group G, one can always find a prime 5 < p � |G| so that
acdp′(G) is simply the average degree of all irreducible characters of G. There-
fore Theorem 1.2 (iv) refines and improves the main result of [16]. We remark
that, as illustrated by the nonsolvable groups A5 and SL(2, 5), all the bounds in
Theorem 1.2 are best possible. Though the bounds in Theorem 1.1 also cannot be
improved when p = 2 or 3, as shown by A4 and S3, we think that the correct bound
when p > 2 is (2p+2)/(p+3), attained at the dihedral group of order 2p. We also
remark that, by using the classification of finite simple groups with a nontrivial
irreducible character degree less than 6, it is clear that the assumptions in the
parts of Theorem 1.2 imply that G is not nonabelian simple; but it requires a lot
more work to show that G is solvable.

It has been shown in several earlier works that there is a close connection be-
tween important characteristics of finite groups such as nilpotency, supersolvability,
solvability, or p-solvability and invariants concerning character degrees such as the
average character degree, the character degree sum, the largest character degree,
or the character degree ratio, see [3]–[6], [9], [11], [13], [14], [16], [23]. Theorems 1.1
and 1.2 reinforce this phenomenon for characters of p′-degree.

Several refinements of Thompson’s theorem have been proposed in the litera-
ture. One of the remarkable refinements is due to G. Navarro and P.H. Tiep [21].
They weakened the condition that all nonlinear irreducible characters of G have
degree divisible by p, and assumed only that those characters with values in Qp
have this property. (Here Qp is the cyclotomic field obtained by adjoining a prim-
itive p-root of unity to Q.) To state their result, we write acdF,p′ to denote the
average of p′-degrees of irreducible characters of G with values in a field F.

Theorem (Navarro and Tiep, [21]). Let G be a finite group and let p be a prime.
If acdQp,p′(G) = 1, then G has a normal p-complement.

We are able to prove the following.

Theorem 1.3. Let p be an odd prime and G a finite group. We have:

(i) if acdQ,2′(G) < 3/2, then G has a normal 2-complement, and

(ii) if acdQp,p′(G) < 4/3, then G has a normal p-complement.
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Theorem 1.3 implies several earlier results related to Thompson’s theorem and
fields of character values, including Theorem A in [18], Theorem A in [19], and
Theorems A and C in [21]. Moreover, it has the following consequence.

Corollary 1.4. Let p be an odd prime and G a finite group. Then we have:

(i) If acdQ(G) < 3/2, then G has a normal 2-complement.

(ii) If acdQp(G) < 4/3, then G has a normal p-complement.

(iii) If acdR,2′(G) < 3/2, then G has a normal 2-complement.

(iv) If acdR(G) < 3/2, then G has a normal 2-complement.

Proof. The statements (i) and (ii) are clear from Theorem 1.3. Since every real-
valued character of degree 1 is also rational-valued, statement (iii) follows from
Theorem 1.3 (i); and finally, (iv) follows from (i) or (iii). �

To prove the solvability, we utilize a character-orbit result on nonabelian simple
groups of Navarro and Tiep, Theorem 3.3 in [21], to show that, if G has a non-
abelian minimal normal subgroup N , then there exists ψ ∈ Irr(N) of large degree
with many good properties such as ψ(1) is coprime to p, ψ is extendible to the sta-
bilizer StabG(ψ) of ψ in G, and |G : StabG(ψ)| is coprime to p, see Theorem 2.1.
This, together with other results on bounding the number of irreducible characters
of small degree in Section 3, allow us to control the average of p′-degrees. To go
from solvability to p-nilpotency, we reduce the problem to the situation where G
is a split extension of an abelian p-group, and then analyze the acdp′ of such a
group. We hope that some new techniques in this paper will be further developed
to study other problems on the connection between the average character degree,
fields of character values, and the local structure of groups, see [7] for instance.

The paper is organized as follows. After some preparation results in Sec-
tions 2, 3, and 4, we prove Theorem 1.2 in Sections 5, 6, 7, and 8. Theorem 1.1
is then proved in Section 9. In Section 10 we establish some solvability results on
the average of p′-degrees of rational-valued characters and Qp-valued characters in
general. Finally, Theorem 1.3 is proved in Section 11.

2. Extending characters of p′-degree

We begin by setting up some notation. As usual, Irr(G) denotes the set of irre-
ducible characters of a finite group G, and Irrp′(G) the set of those characters of
degree not divisible by p. If d is a positive integer, then nd(G) is the number of
irreducible characters of G of degree d. If N � G, then

Irr(G|N) := {χ ∈ Irr(G) | N �⊆ Ker(χ)},
Irrp′(G|N) := {χ ∈ Irr(G) | N �⊆ Ker(χ), p � χ(1)},
nd(G|N) := |{χ ∈ Irr(G|N)) | χ(1) = d}|.

We also write acdp′(G|N) to denote the average degree of the characters in
Irrp′(G|N). Furthermore, if θ ∈ Irr(N) then Irrp′(G|θ) denotes the set of irreducible
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characters of degree coprime to p of G that lie over θ, and acdp′(G|θ) denotes the
average degree of the characters in Irrp′(G|θ). Finally, whenever a field F is put into
the subscript of any of these notation, we mean that the characters in consideration
have values in F.

The following result plays an important role in the proof of Theorem 1.2.
It helps us to bound the number of irreducible characters of small degree in fi-
nite groups with a nonabelian minimal normal subgroup.

Theorem 2.1. Let p be a prime. Let G be a finite group with a nonabelian minimal
normal subgroup N � A5. Then there exists ψ ∈ Irr(N) such that

(i) ψ(1) ≥ 7 and ψ(1) is coprime to p,

(ii) ψ is extendible to a Qp-valued character of StabG(ψ), and

(iii) |G : StabG(ψ)| is coprime to p.

To prove this theorem, we need the following character-orbit result for finite
simple groups, which is essentially due to Navarro and Tiep.

Lemma 2.2. Let p be a prime and S be a nonabelian finite simple group. Then
there exists an orbit O of the action of Aut(S) on Irr(S) satisfying the following
conditions:

(i) every θ ∈ O is nontrivial of degree at least 4 and coprime to p,

(ii) |O| is coprime to p, and

(iii) every θ ∈ O extends to a Qp-valued character of StabAut(S)(θ).

Furthermore, if S � A5 then O can be chosen so that θ(1) ≥ 7 for every θ ∈ O.

Proof. The orbit O has been constructed in [21], Theorem 3.3, but without the
condition that θ(1) ≥ 7 when S � A5. The case S ∼= A5 is clear from [2], p. 2.

Though by following the proof in [21] one can show that θ(1) ≥ 7 when S � A5,
we propose here another way to verify it. First, by [24] the smallest nontrivial
degree of the alternating group An is n − 1 when n ≥ 6. Together with results
on the low-degree characters of simple groups of Lie type in [12], [22], [26], and
the character tables of the sporadic simple groups in [2], we can check that if a
nonabelian simple group S is not one of A5, A6, A7, PSL(2, 7), PSL(2, 11), and
PSU(3, 3), then the smallest degree of a nontrivial irreducible character of S is
at least 7, and thus the condition θ(1) ≥ 7 is automatically satisfied. For the
exceptional groups, the desired orbit can be found easily from [2]. �

Now we use the orbit O to prove Theorem 2.1.

Proof of Theorem 2.1. Since N is a nonabelian minimal normal subgroup of G, it
is direct product of r copies of a nonabelian simple group, say S. Replacing G by
G/CG(N) if necessary, we may assume that CG(N) = 1. Then we have

N �G ≤ Aut(N) = Aut(S) � Sr.
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Let θ be an irreducible character of S in the orbit O found in Lemma 2.2. Consider
the character ϕ := θ × · · · × θ ∈ Irr(N). The stabilizer of ϕ in Aut(N) is

StabAut(N)(ϕ) = StabAut(S)(θ) � Sr.
By the choice of O, θ extends to an irreducible Qp-valued character, say α, of
StabAut(S)(θ). Thus ϕ extends to the character α×· · ·×α of StabAut(S)(θ)×· · ·×
StabAut(S)(θ), which is the base group of the wreath product StabAut(S)(θ) � Sr.
Since α×· · ·×α is invariant under StabAut(N)(ϕ), it follows from Lemma 1.3 in [15]
that α× · · ·×α is extendible to StabAut(N)(ϕ). We deduce that ϕ is extendible to
StabAut(N)(ϕ). Let φ ∈ Irr(StabAut(N)(ϕ)) be an extension of ϕ. By the formula
for character values given in [15], Lemma 1.3, we can choose φ so that its values
are contained in the field of values of α. That is, φ is Qp-valued.

Now we consider the action of G on the set

C := {θ1 × · · · × θr | θi ∈ O}
of irreducible characters of N . Since the cardinality of this set is |O|r, which is not
divisible by p by the choice of O, there must be a G-orbit of length coprime to p.
Let ψ ∈ C be a character in such an orbit. We then have that |G : StabG(ψ)| is
coprime to p.

Note that Aut(N) acts transitively on C. Therefore there is some x∈Aut(N) such
that ψ=ϕx, and hence StabAut(N)(ψ)=StabAut(N)(ϕ)

x. As φ∈Irr(StabAut(N)(ϕ))
is an extension of ϕ, we deduce that φx ∈ Irr(StabAut(N)(ψ)) is an extension of ψ
to StabAut(N)(ψ). In particular, φx ↓StabG(ψ) is an extension of ψ to StabG(ψ) =
G ∩ StabAut(N)(ψ). We observe that, as φ is Qp-valued, φx is Qp-valued as well.
Finally, we note that ψ(1) = θ(1)r is not divisible by p and that ψ(1) ≥ 7 if
(S, r) �= (A5, 1). �

3. Bounding the number of characters of small degree

We begin the section with the following observation.

Lemma 3.1. Let G be a finite group and T ≤ G. Then

(i) n1(G) ≤ n1(T )|G : T |,
(ii) n2(G) ≤ n2(T )|G : T |+ 1

2n1(T )|G : T |, and
(iii) n3(G) ≤ n3(T )|G : T |+ 1

3n1(T )|G : T |.
Proof. (i) This is clear since n1(G) = |G : G′| and n1(T ) = |T : T ′|.

(ii) Let χ ∈ Irr(G) with χ(1) = 2. Take φ to be an irreducible constituent
of χ ↓T . Frobenius reciprocity then implies that χ in turn is an irreducible con-
stituent of φG. If φ(1) = 2 then, as φG(1) = 2|G : T |, there are at most |G : T |
irreducible constituents of degree 2 of φG. We deduce that there are at most
n2(T )|G : T | irreducible characters of degree 2 of G that arise as constituents
of φG with φ(1) = 2.
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On the other hand, if φ(1) = 1 then, as φG(1) = |G : T |, there are at most
|G : T |/2 irreducible constituents of degree 2 of φG. As above, we deduce that
there are at most n1(T )|G : T |/2 irreducible characters of degree 2 of G that arise
as constituents of φG with φ(1) = 1. Now (ii) is proved.

(iii) This can be argued similarly as in (ii). Let χ ∈ Irr(G) with χ(1) = 3.
Then χ ↓T is either irreducible, or a sum of three linear characters of T , or a
sum of one linear character and one irreducible character of degree 2 of T . In
particular, if χ ↓T is reducible then there is always a linear constituent in χ ↓T .
Now we see that there are at most n3(T )|G : T | irreducible characters of degree 3
of G that arise as constituents of φG with φ(1) = 3 and there are at most n1(T )|G :
T |/3 irreducible characters of degree 3 of G that arise as constituents of φG with
φ(1) = 1. The proof is complete. �

Lemma 3.1 can help us to bound n1(G), n2(G), and n3(G) in terms of the
number of irreducible characters of larger degree, especially in the case G has a
nonabelian minimal normal subgroup.

Proposition 3.2. Let G be a finite group with a nonabelian minimal normal sub-
group N . Assume that there is some ψ ∈ Irr(N) such that ψ is extendible to
StabG(ψ) and let T := StabG(ψ) and a := ψ(1)|G : T |. We have:

(i) n1(G) ≤ na(G)|G : T |, and
(ii) n2(G) ≤ n2a(G)|G : T |+ 1

2na(G)|G : T |,
Moreover, if G = T then n2(G) ≤ n2a(G).

Proof. First, by Lemma 3.1 (i) we have n1(G) ≤ n1(T )|G : T |. On the other hand,
as N = N ′ ⊆ T ′, N is contained in the kernel of every linear character of T so
that n1(T ) = n1(T/N). It follows that

n1(G) ≤ n1(T/N)|G : T |.
Recall that ψ ∈ Irr(N) is extendible to T and so we let χ ∈ Irr(T ) be an exten-

sion of ψ. Using Gallagher’s theorem and Clifford’s theorem (see Corollary 6.17
and Theorem 6.11 in [8]), we see that each linear character λ of T/N produces the
irreducible character λχ of T of degree ψ(1), and this character in turn produces
the irreducible character (λχ)G of G of degree (λχ)G(1) = ψ(1)|G : T | = a. It
follows that

n1(T/N) ≤ na(G),

and we therefore have
n1(G) ≤ na(G) |G : T |,

as claimed in (i).
We now prove (ii). By Lemma 3.1 (ii), we have that n2(G) ≤ n2(T )|G : T |+

1
2n1(T )|G : T |. Since we have already proved that n1(T ) = n1(T/N) ≤ na(G), it
remains to prove that n2(T ) ≤ n2a(G).

We claim that n2(T ) = n2(T/N) or in other words N is contained in the kernel
of every irreducible character of degree 2 of T . Let φ ∈ Irr(T ) with φ(1) = 2.
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Since N has no irreducible character of degree 2 (see Problem 3.3 of [8]) and has
only one linear character, which is the trivial one, it follows that φN = 2 · 1N . We
then have N ⊆ Ker(φ), as claimed.

Recall that χ ∈ Irr(T ) is an extension of ψ. Using Gallagher’s theorem and Clif-
ford’s theorem again, we obtain that each irreducible character μ∈Irr(T/N) of de-
gree 2 produces the character (μχ)G∈Irr(G) of degree (μχ)G(1)=2ψ(1)|G : T |=2a.
It follows that

n2(T/N) ≤ n2a(G),

and thus n2(T ) ≤ n2a(G), as wanted. �

Proposition 3.3. Let G be a finite group with a nonabelian minimal normal sub-
group N , which has no direct factor isomorphic to A5 or PSL(2, 7). Assume
that there is some ψ ∈ Irr(G) such that ψ is extendible to StabG(ψ) and let
T := StabG(ψ) and a := ψ(1)|G : T |. Then

n3(G) ≤ n3a(G)|G : T |+ 1

3
na(G)|G : T |.

Moreover, if G = T then n3(G) ≤ n3a(G).

Proof. By Lemma 3.1 (iii), we have n3(G) ≤ n3(T )|G : T |+ 1
3n1(T )|G : T |. As in

the proof of Proposition 3.2, we have n1(T ) ≤ na(G). So it suffices to show that
n3(T ) ≤ n3a(G).

It is well known that A5 and PSL(2, 7) are the only finite simple groups having
an irreducible character of degree 3. Therefore, every nontrivial irreducible char-
acter of N has degree at least 4 and, by using the same arguments as in the proof
of Proposition 3.2, we see that N is contained in the kernel of every irreducible
character of degree 3 of T . In other words we have n3(T ) = n3(T/N).

Recall that ψ is extendible to T and let χ∈Irr(T ) be an extension of ψ. We then
obtain an injection ν �→(νχ)G from the set of irreducible characters of T/N of de-
gree 3 to the set of irreducible characters ofG of degree (νχ)G(1)=3ψ(1)|G :T |=3a.
It follows that n3(T/N) ≤ n3a(G), and therefore n3(T ) ≤ n3a(G), which completes
the proof. �

4. Characters of a central product

The proof of Theorem 1.2 requires us to analyze the characters of a particular
central product. This central product indeed has already appeared in the study of
the average of all irreducible character degrees of a finite group, see [9], [16].

Proposition 4.1. Let L ∼= SL(2, 5) and G = LC be a central product with the
central amalgamated subgroup Z := Z(L) = L ∩ C such that L ⊆ G′. Assume
that G has an irreducible character of degree 2 such that Z � Ker(χ). Then

(i) n2(G) = 2n1(G) + n2(C/Z),

(ii) n3(G) ≥ 2n1(G),
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(iii) n4(G) ≥ 2n1(G),

(iv) n5(G) ≥ n1(G),

(v) n6(G) ≥ n1(G), and

(vi) n8(G) ≥ n2(C/N).

Proof. Since G = LC is a central product with the central amalgamated sub-
group Z, there is a bijection (α, β) �→ τ from Irr(L|Z)× Irr(C|Z) to Irr(G|Z) such
that τ(1) = α(1)β(1).

By hypothesis, there is χ ∈ Irr(G|Z) such that χ(1) = 2. If (α, β) �→ χ under
the above bijection, we must have β(1) = 1 since L ∼= SL(2, 5) and there are only
three possibilities for α(1), namely 2, 4, and 6. So β ∈ Irr(C|Z) is an extension of
the unique nonprincipal linear character of Z. Using Gallagher’s theorem, we then
have a degree-preserving bijection from Irr(C/Z) to Irr(C|Z). In particular,

n1(C|Z) = n1(C/Z)

Since G/L ∼= C/Z and L ⊆ G′, we have

n1(C|Z) = n1(C/Z) = n1(G).

Now we evaluate n2(G). As n1(L|Z) = 0 and n2(L|Z) = 2, we have

n2(G|Z) = n1(L|Z)n2(C|Z) + n2(L|Z)n1(C|Z) = 2n1(C|Z) = 2n1(G).

Note that there is also a bijection (α, β) �→ τ from Irr(L/Z)×Irr(C/Z) to Irr(G/Z)
such that τ(1) = α(1)β(1). Therefore, as n1(L/Z) = 1 and n2(L/Z) = 0, we have

n2(G/Z) = n1(L/Z)n2(C/Z) + n2(L/Z)n1(C/Z) = n2(C/Z),

and it follows that

n2(G) = n2(G/Z) + n2(G|Z) = n2(C/Z) + 2n1(G).

Next we estimate n4(G), n5(G), and n6(G). We have

n4(G|Z) ≥ n4(L|Z)n1(C|Z) ≥ n1(C|Z) = n1(G)

since n4(L|Z) = 1, and

n4(G/Z) ≥ n4(L/Z)n1(C/Z) = n1(C/Z) = n1(G)

since n4(L/Z) = 1. We deduce that

n4(G) = n4(G|Z) + n4(G/Z) ≥ 2n1(G).

Similarly,

n5(G) ≥ n5(G/Z) ≥ n5(L/Z)n1(C/Z) = n1(C/Z) = n1(G)
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since n5(L/Z) = 1, and

n6(G) ≥ n6(G|Z) ≥ n6(L|Z)n1(C|Z) = n1(G)

since n6(L|Z) = 1.
Finally, we estimate n8(G) by

n8(G) ≥ n8(G/N) ≥ n4(L/N)n2(C/N) ≥ n2(C/N),

and we have completed the proof. �

5. Characters of odd degree and solvability

In this section we prove Theorem 1.2 (i), which we restate below for the reader’s
convenience.

Theorem 5.1. Let G be a finite group. If acd2′(G) < 3, then G is solvable.

Proof. Assume that the theorem is false, and let G be a minimal counterexample.
In particular, G is nonsolvable and acd2′(G) < 3. Then we have

∑
d odd dnd(G)∑
d odd nd(G)

< 3,

and hence ∑
d≥5 odd

(d− 3)nd(G) < 2n1(G).

Since G is nonsolvable, G′ is nontrivial and therefore we can choose a minimal
normal subgroup N of G such that N ⊆ G′. So N is contained in the kernel of
every linear character of G so that n1(G) = n1(G/N). Therefore

∑
d≥5 odd

(d− 3)nd(G/N) ≤
∑

d≥5 odd

(d− 3)nd(G) < 2n1(G) = 2n1(G/N)

and it follows that
acd2′(G/N) < 3.

By the minimality of G, we deduce that G/N is solvable. But G is nonsolvable,
so N is a nonabelian minimal normal subgroup of G. Theorem 2.1 then implies
that N has an irreducible character ψ with three properties:

(i) ψ(1) ≥ 5 is odd,

(ii) ψ is extendible to StabG(ψ), and

(iii) |G : StabG(ψ)| is odd.
(In Theorem 2.1 we in fact assume that N � A5. But one easily sees that if
N ∼= A5 then the character ψ can be chosen to be the unique irreducible character
of degree 5 of N .)
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Now applying Proposition 3.2 (i), we have

n1(G) ≤ na(G)|G : T |,

where T := StabG(ψ) and a := ψ(1)|G : T |. As ψ(1) ≥ 5, we have a ≥ 5|G : T |,
and it follows that

n1(G) ≤ 1

2
na(G) (a − 3).

Using the fact that a = ψ(1)|G : T | is odd by the choice of ψ, we arrive at

n1(G) ≤ 1

2

∑
d≥5 odd

(d− 3)nd(G)

and, equivalently, acd2′(G) ≥ 3. This contradiction completes the proof. �

6. Characters of 3′-degree and solvability

In this section we prove Theorem 1.2 (ii).

Theorem 6.1. Let G be a finite group. If acd3′(G) < 3, then G is solvable.

First we handle the groups with a nonabelian minimal normal subgroup.

Proposition 6.2. Let G be a finite group with a nonabelian minimal normal sub-
group N . Then acd3′(G) ≥ 3.

Proof. Suppose that N is direct product of r copies of S, a nonabelian simple
group. First we consider the case N ∼= A5. Then N has an irreducible character
of degree 5 that is extendible to G. Applying Proposition 3.2, we have

n1(G) ≤ n5(G) and n2(G) ≤ n10(G).

It follows that

2n1(G) + n2(G) ≤ 2n5(G) + n10(G)

and hence

2n1(G) + n2(G) ≤
∑

3�d, d≥4

(d− 3)nd(G),

which is equivalent to acd3′(G) ≥ 3, and we are done.

So we may assume that N � A5. By Theorem 2.1, there is some ψ ∈ Irr(N)
with the conditions:

(i) ψ(1) ≥ 7 and 3 � ψ(1),

(ii) ψ is extendible to StabG(ψ), and

(iii) 3 � |G : StabG(ψ)|.
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We then apply Proposition 3.2 to have

n1(G) ≤ na(G)|G : T | and n2(G) ≤ n2a(G)|G : T |+ 1

2
na(G)|G : T |,

where T := StabG(ψ) and a := ψ(1)|G : T |. It then follows that

2n1(G) + n2(G) ≤ 5

2
na(G)|G : T |+ n2a(G)|G : T |.

Note that ψ(1) ≥ 7, and thus a ≥ 7|G : T |. So we have (5/2)|G : T | < a − 3 and
|G : T | < 2a− 3. Therefore

2n1(G) + n2(G) < (a− 3)na(G) + (2a− 3)n2a(G).

As a is coprime to 3, we deduce that

2n1(G) + n2(G) <
∑

3�d, d≥4

(d− 3)nd(G),

which is equivalent to acd3′(G) > 3, and we are done again. �

Now we are ready to prove Theorem 6.1. We write O∞(G) to denote the largest
solvable normal subgroup of G.

Proof of Theorem 6.1. Assume that the theorem is false and let G be a minimal
counterexample. Then G is nonsolvable and acd3′(G) < 3.

Let L � G be minimal such that L is non-solvable. Then clearly L is perfect
and contained in the last term of the derived series of G. Let N ⊆ L be a minimal
normal subgroup of G. We choose N so that N ≤ [L,O∞(L)] if [L,O∞(L)] is
nontrivial. We then have N ⊆ L = L′ ⊆ G′.

If N is nonabelian then acd3′(G) ≥ 3 by Proposition 6.2, and this is a contra-
diction. So we may assume that N is abelian so that G/N is nonsolvable. By the
minimality of G, it follows that acd3′(G/N) ≥ 3 and hence

acd3′(G) < 3 ≤ acd3′(G/N).

Note that nd(G) ≥ nd(G/N) for every positive integer d and n1(G) = n1(G/N)
since N ⊆ G′. We then deduce that

n2(G) > n2(G/N).

That is, there is some χ ∈ Irr(G) of degree 2 whose kernel does not contain N .
Now let C/Ker(χ) := Z(G/Ker(χ)). Arguing similarly as in the proof of

Theorem 2.2 in [9], we obtain that G/C ∼= A5, L ∼= SL(2, 5), and G = LC is a
central product with the central amalgamated subgroup Z := L ∩ C = Z(L).

We are now in the situation of Proposition 4.1. Therefore,

2n1(G) + n2(G) = 4n1(G) + n2(C/Z) ≤ n4(G) + 2n5(G) + n8(G)

≤
∑

3�d, d≥4

(d− 3)nd(G).

It then follows that acd3′(G) ≥ 3 and this is a contradiction. �
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7. Characters of 5′-degree and solvability

In this section we prove Theorem 1.2 (iii).

Theorem 7.1. Let G be a finite group. If acd5′(G) < 11/4, then G is solvable.

As in Section 6, we first handle finite groups with a nonabelian minimal normal
subgroup.

Proposition 7.2. Let G be a finite group with a nonabelian minimal normal sub-
group N . Then acd5′(G) ≥ 11/4.

Proof. As before, we suppose that N is direct product of r copies of a nonabelian
simple group S. First we consider N ∼= A5. Then N has an irreducible character of
degree 4 that is extendible to G. Applying Proposition 3.2, we have n1(G) ≤ n4(G)
and n2(G) ≤ n8(G).

Now we need to estimate n3(G) and n6(G). Observe that N has two irreducible
characters of degree 3 and let us denote them by ψ1 and ψ2. Then it is easy to see
that both ψ1 and ψ2 are extendible to

T := StabG(ψ1) = StabG(ψ2) = N ×CG(N).

Since N has index 2 in Aut(N) = S5, we have

|G : T | = 1 or 2.

If |G : T | = 1 then each linear character of G, which can be considered as a
linear character of G/N , produces two irreducible characters of G of degree 3, one
lying above ψ1 and the other lying above ψ2. We then obtain that 2n1(G) ≤ n3(G).
Now taking n1(G) ≤ n4(G) and n2(G) ≤ n8(G) into account, we have

7n1(G) + 3n2(G) ≤ n3(G) + 5n4(G) + 3n8(G).

Therefore
7n1(G) + 3n2(G) ≤

∑
5�d, d≥3

(4d− 11)nd(G),

and thus acd5′(G) ≥ 11/4, as desired.
If |G : T | = 2 then by Proposition 3.2(1) we have n1(G) ≤ 2n6(G). Similarly

we have
7n1(G) + 3n2(G) ≤ 5n4(G) + 3n8(G) + 4n6(G).

Therefore
7n1(G) + 3n2(G) ≤

∑
5�d, d≥3

(4d− 11)nd(G),

and we are done again.
From now on to the end of the proof we can assume that N � A5 and we will

argue as in the proof of Proposition 6.2. By Theorem 2.1, there is some ψ ∈ Irr(N)
such that ψ(1) ≥ 7, 5 � ψ(1), ψ is extendible to StabG(ψ), and 5 � |G : StabG(ψ)|.
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We then apply Proposition 3.2 to have

n1(G) ≤ na(G)|G : T | and n2(G) ≤ n2a(G)|G : T |+ 1

2
na(G)|G : T |,

where T := StabG(ψ) and a := ψ(1)|G : T |. It then follows that

7n1(G) + 3n2(G) ≤ 17

2
na(G)|G : T |+ 3n2a(G)|G : T |.

Since ψ(1) ≥ 7, we have a ≥ 7|G : T |, and therefore (17/2)|G : T | < 4a− 11 and
3|G : T | < 8a− 11. We deduce that

7n1(G) + 3n2(G) < (4a− 11)na(G) + (8a− 11)n2a(G),

and it follows that acd5′(G) > 11/4. The proof is complete. �

Proof of Theorem 7.1. Assume that the theorem is false and let G be a minimal
counterexample. Then G is nonsolvable and acd5′(G) < 11/4.

By using Proposition 7.2 and choosing the subgroups L,N , and C as in the
proof of Theorem 6.1, we have that G/C ∼= A5, L ∼= SL(2, 5), and G = LC is a
central product with the central amalgamated subgroup Z := L ∩ C = Z(L).

Applying Proposition 4.1, we deduce that

7n1(G) + 3n2(G) = 13n1(G) + 3n2(C/Z) ≤ n3(G) + 5n4(G) + n6(G) + 3n8(G)

≤
∑

5�d, d≥3

(4d− 11)nd(G).

From this it follows that acd5′(G) ≥ 11/4, violating the assumption. �

8. Characters of p′-degree for p > 5 and solvability

We now prove Theorem 1.2(iv) and therefore complete the proof of Theorem 1.2.

Theorem 8.1. Let p > 5 be a prime and G and finite group. If acdp′(G) < 16/5
then G is solvable.

Unlike the proofs for the smaller primes, the proof of Theorem 8.1 requires
upper bounds for not only n1(G) and n2(G) but also n3(G) and this makes things
harder. Since the simple groups A5 and PSL(2, 7) have some irreducible characters
of degree 3, they need special attention.

Lemma 8.2. Let G be a finite group with a minimal normal subgroup N , which
is direct product of r copies of a nonabelian simple group S. We have

(i) if S ∼= A5 then N has two irreducible characters of degrees 4r and 5r which
are both extendible to G; and

(ii) if S ∼= PSL(2, 7) then N has three irreducible characters of degrees 6r, 7r, 8r

which are all extendible to G.
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Proof. This is almost obvious as A5 has two irreducible characters of degrees 4
and 5 which are both extendible to Aut(A5) = S5, and PSL(2, 7) has three irre-
ducible characters of degrees 6, 7, 8, which are all extendible to Aut(PSL(2, 7)) =
PGL(2, 7). �

Using the previous lemma and the techniques in the proofs of Propositions 3.2
and 3.3, we have the following.

Proposition 8.3. Let G be a finite group with a nonabelian minimal normal sub-
group N , which is direct product of r copies of a simple group S. We have:

(i) if S ∼= A5 then n1(G) ≤ min{n4r(G), n5r (G)}, n2(G) ≤ n2·5r(G), and
n3(G) ≤ n3·5r(G) + 2rn1(G); and

(ii) if S ∼= PSL(2, 7) then n1(G) ≤ n8r(G), n2(G) ≤ n2·8r(G), and n3(G) ≤
n3·8r(G) + 2rn1(G).

Proof. The proofs of (i) and (ii) are fairly similar, so let us prove (i) only. So
assume that S ∼= A5. Indeed, the inequalities n1(G) ≤ min{n4r(G), n5r (G)} and
n2(G) ≤ n2·5r(G) already follows from Proposition 3.2 and hence it remains to
prove n3(G) ≤ n3·5r(G) + 2rn1(G).

Since N has an irreducible character of degree 5r that is extendible to G, Gal-
lagher’s theorem implies that there is an injection from the irreducible characters
of degree 3 of G/N to the irreducible characters of degree 3 · 5r of G . That is

n3(G/N) ≤ n3·5r(G).

Now we need to bound the number of irreducible characters of G of degree 3
whose kernels do not contain N . So let χ ∈ Irr(G) such that χ(1) = 3 and
N � Ker(χ). Since N has no nonprincipal linear character and no irreducible
character of degree 2, the restriction χ ↓N must be irreducible. By Gallagher’s
theorem, the number of irreducible characters of G of degree 3 lying over χ ↓N
equals to n1(G/N), which is the same as n1(G). Note that χ ↓N has degree 3
and N has exactly 2r irreducible characters of degree 3. We conclude that the
number of irreducible characters of G of degree 3 whose kernels do not contain N
is at most 2kn1(G). Now we have n3(G|N) ≤ 2rn1(G) and thus

n3(G) = n3(G/N) + n3(G|N) ≤ n3·5r(G) + 2rn1(G),

as desired. �

The next result is a refinement of Proposition 3 in [16] for characters of p′-
degrees.

Proposition 8.4. Let p > 5 be a prime. Let G be a finite group with a nonabelian
minimal normal subgroup N . Then acdp′(G) ≥ 16/5.

Proof. Suppose that N is direct product of r copies of S, a nonabelian simple
group.

First we assume that S � A5 and S � PSL(2, 7). It then follows from Theo-
rem 2.1 that there is some ψ ∈ Irr(N) such that ψ(1) ≥ 7, ψ(1) is coprime to p, ψ is
extendible to StabG(ψ), and |G : StabG(ψ)| is coprime to p.
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Propositions 3.2 and 3.3 then imply that

n1(G) ≤ na(G)|G : T |,
n2(G) ≤ n2a(G)|G : T |+ 1

2
na(G)|G : T |, and

n3(G) ≤ n3a(G)|G : T |+ 1

3
na(G)|G : T |,

where T := StabG(ψ) and a := ψ(1)|G : T |. Now we can estimate

11n1(G)+6n2(G)+n3(G) ≤ 43

3
na(G)|G : T |+ 6n2a(G)|G : T |+ n3a(G)|G : T |

< (5a−16)na(G)+(10a−16)n2a(G)+(15a−16)n3a(G)

≤
∑

p�d, d≥4

(5d− 16)nd(G),

where the last two inequalities follow from the fact that a ≥ 7|G : T | and a is
coprime to p > 5. Now it follows that acdp′(G) > 16/5 and we are done.

Next we consider the case S ∼= A5. We use Proposition 8.3 (i) to deduce that

11n1(G) + 6n2(G) + n3(G) ≤ 9n5r(G) + 6n2·5r(G) + n3·5r (G) + (2 + 2r)n4r (G)

≤ (5 · 5r − 16)n5r(G) + (10 · 5r − 16)n2·5r(G)
+ (15 · 5r − 16)n3·5r(G) + (5 · 4r − 16)n4r(G)

≤
∑

p�d, d≥4

(5d− 16)nd(G),

and we are done again. The case S ∼= PSL(2, 7) is treated similarly with the help
of Proposition 8.3 (ii) and we skip the details. �

We are now able to prove Theorem 8.1.

Proof of Theorem 8.1. Assume, to the contrary, that the theorem is false and let G
be a minimal counterexample. Then G is nonsolvable and acdp′(G) < 16/5.

As in the proof of Theorem 6.1, we let L �G be minimal such that L is non-
solvable and let N ⊆ L be a minimal normal subgroup of G. We choose N such
that N ≤ [L,O∞(L)] if [L,O∞(L)] is nontrivial and when possible we choose N
to be of order 2. Note that L is perfect and L ⊆ G′.

If N is nonabelian then acdp′(G) ≥ 16/5 by Proposition 8.4 and so we are
done. Therefore we assume from now on that N is abelian. As G is nonsolvable, it
follows that so is G/N . By the minimality of G, we then have acdp′(G/N) ≥ 16/5
and hence

acdp′(G) < 16/5 ≤ acdp′(G/N).

Since n1(G) = n1(G/N) as N ⊆ L ⊆ G′, we then deduce that

either n2(G) > n2(G/N) or n3(G) > n3(G/N).

That is, there is some irreducible character χ ∈ Irr(G) of degree 2 or 3 such that
Ker(χ) does not contain N .
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Now we can use the classification of the primitive linear groups of degree 2 and 3
in [1], Chapter V, Section 81, and argue similarly as in the proof of Theorem A
in [16] to obtain that G = LC is a central product with the central amalgamated
subgroup L ∩ C = Z(L), where Z(L) ⊇ N > 1,

C/Ker(χ) = Z(G/Ker(χ))

and
L/Z(L) ∼= G/C ∼= A5,A6, or PSL(2, 7).

Moreover, from the proof of Theorem 6.1 we see that if χ(1) = 2 then L/Z(L)
must be isomorphic to A5.

Since G = LC is a central product with the central amalgamated subgroup
Z(L), for each λ ∈ Irr(Z(L)) there is a bijection

Irr(L|λ)× Irr(C|λ) → Irr(G|λ)
such that if (α, β) �→ χ then χ(1) = α(1)β(1). It is clear that χ(1) is coprime
to p if and only if both α(1) and β(1) are coprime to p. Therefore this bijection
produces another bijection

Irrp′(L|λ)× Irrp′(C|λ) → Irrp′(G|λ),
and in particular we have

acdp′(G|λ) = acdp′(L|λ)acdp′(C|λ).
Therefore

acdp′(G|λ) ≥ acdp′(L|λ).
If L/Z(L) ∼= A5 then we must have L ∼= SL(2, 5) since this is the only nontrivial

perfect central cover of A5. So Z(L) ∼= C2, the cyclic group of order 2. Now,
using [2], p. 2, we can check that acdp′(L|λ) ≥ 16/5 whether λ is trivial or the
only nontrivial character of Z(L). Thus acdp′(G) ≥ 16/5 and we are done.

If L/Z(L) ∼= PSL(2, 7) then similarly we have L ∼= SL(2, 7) so that Z(L) ∼= C2.
Since N ⊆ L and N � Ker(χ), it follows that L � Ker(χ). As χ(1) = 3 and the
smallest degree of a nontrivial irreducible character of L is 3, we deduce that the
restriction χ ↓L∈ Irr(L). But then the character table of SL(2, 7) (see [2], p. 3)
implies that Z(L) ⊆ Ker(χ ↓L), which in turns implies that N ⊆ Ker(χ) since
N ⊆ Z(L), and this violates the choice of χ.

Finally we consider L/Z(L) ∼= A6. Then as mentioned above we must have
χ(1) = 3. Also, L is one of three perfect central covers of A6, namely 2 ·A6, 3 ·A6,
and 6 ·A6. First assume that L ∼= 2 ·A6 or 6 ·A6. Then N ∼= C2 since we chose N to
be of order 2 when possible. Arguing as in the case L/Z(L) ∼= PSL(2, 7), we obtain
that N is contained in the kernel of an irreducible character of degree 3 of 6·A6, and
this is a contradiction by [2], p. 5. So it remains to consider L ∼= 3 · A6. But then
one can check that acdp′(L|λ) > 16/5 whether λ is the trivial character or one of
the two nontrivial irreducible characters of Z(L). It follows that acdp′(G|λ) > 16/5
for every λ ∈ Irr(Z(L)), and hence acdp′(G) > 16/5 in this case. �
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9. Characters of p′-degree and p-nilpotency

We recall that, for a finite group G,

Irrp′(G) := {χ ∈ Irr(G) | p � χ(1)}.
We begin the section with the following easy observation, which can be viewed as
a p′-version of Lemma 3.1 in [9].

Lemma 9.1. Let p be a prime and A be a subgroup of a finite group G. Then

|Irrp′(G)| ≤ |G : A||Irrp′(A)|.
Proof. Let χ be an irreducible character of G such that χ(1) is not divisible by p.
Consider the restriction χA. There must be an irreducible constituent λ∈ Irr(A)
of χA such that λ(1) is not divisible by p, and moreover, χ in turn is an irreducible
constituent of λG by Frobenius reciprocity. On the other hand, given any λ∈Irr(A),
each irreducible constituent of λG has degree at least λ(1), and therefore the num-
ber of irreducible constituents of λG is at most |G : A| since λG(1) = |G : A|λ(1).
The lemma now easily follows. �

In the next result, we analyze the average of p′-degrees of irreducible characters
in a special situation.

Lemma 9.2. Let p be a prime, N be an abelian p-group, and G be a split extension
of N . Assume that no nonprincipal irreducible character of N is fixed under G.
Then

acdp′(G) ≥
{

3/2 if p = 2,
4/3 if p > 2.

Proof. The sum of orbit sizes of the action of G on nontrivial irreducible characters
of N is |N |−1. Since N is an abelian p-group, there must be at least one nontrivial
orbit of size coprime to p. Let {1N = α0, α1, . . . , αl} be a set of representatives
of p′-size orbits of the action of G on Irr(N). For each 0 ≤ i ≤ l, let Ii be the
inertia subgroup of αi in G. Then |G : Ii| is not divisible by p. Moreover, since no
nonprincipal irreducible character of N is invariant under G, we have that Ii is a
proper subgroup of G for every 1 ≤ i ≤ l.

Since G splits over N , every Ii also splits over N , and thus αi extends to a
linear character, say βi, of Ii. Gallagher’s theorem then implies that the mapping
λ �→ λβi is a bijection from Irr(Ii/N) to the set of irreducible characters of Ii lying
above αi. Using Clifford correspondence, we then obtain a bijection λ �→ (λβi)

G

from Irr(Ii/N) to the set of irreducible characters of G lying above αi. We observe
that, since (λβi)

G(1) = |G : Ii|λ(1) and p � |G : Ii|, (λβi)G(1) is coprime to p if
and only if λ(1) is coprime to p.

From the above analysis, we see that |Irrp′(G)| =
∑l
i=0 |Irrp′(Ii/N)|, and there-

fore ∑
χ∈Irrp′(G)

χ(1) = acdp′(G)
l∑

i=0

|Irrp′(Ii/N)|.



134 N.N. Hung

On the other hand, since each irreducible character of G lying above αi has
degree at least |G : Ii| and the number of those characters of p′-degree is precisely
equal to |Irrp′(Ii/N)|, we have

∑
χ∈Irrp′(G)

χ(1) ≥
l∑
i=0

|G : Ti| |Irrp′(Ii/N)|.

We therefore deduce that
l∑

i=0

|G : Ti| |Irrp′(Ii/N)| ≤ acdp′(G)
l∑
i=0

|Irrp′(Ii/N)|,

which implies that

l∑
i=1

(|G : Ii| − acdp′(G))|Irrp′(Ii/N)| ≤ (acdp′(G)− 1) |Irrp′(G/N)|

since I0 = G. In particular, as l ≥ 1, it follows that

(acdp′(G)− 1) |Irrp′(G/N)| ≥ (|G : I1| − acdp′(G)) |Irrp′(I1/N)|.
Since |Irrp′(G/N)| ≤ |G : I1||Irrp′(I1/N)| by Lemma 9.1, we then deduce that

(acdp′(G)− 1) |G : I1| ≥ |G : I1| − acdp′(G).

Equivalently, we obtain

acdp′(G) ≥ 2|G : I1|
|G : I1|+ 1

.

Recall that |G : I1| is not equal to 1 and not divisible by p. Now if p = 2
then |G : I1| ≥ 3 and we have acdp′(G) ≥ 3/2. On the other hand, if p > 2 then
|G : I1| ≥ 2 and we have acdp′(G) ≥ 4/3. The proof is now complete. �

We are now able to prove Theorem 1.1, which is restated below.

Theorem 9.3. Let p be an odd prime and G a finite group. We have:

(i) if acd2′(G) < 3/2, then G has a normal 2-complement, and

(ii) if acdp′(G) < 4/3, then G has a normal p-complement.

Proof. Let bp := 3/2 if p = 2 and bp := 4/3 if p > 2. Assume that acdp′(G) < bp,
and we wish to show that G has a normal p-complement. If G is abelian then the
statement is obvious. So we assume that G is nonabelian. We then can choose a
minimal normal subgroup N of G such that N ⊆ G′. Since acdp′(G) < bp ≤ 3/2,
Theorem 1.2 implies that G is solvable, and hence N is elementary abelian.

Since N ⊆ G′, we observe that if χ is a linear character of G, then N ⊆ Ker(χ)
so that χ can be viewed as a linear character of G/N . It follows that n1(G/N) =
n1(G), which implies that

acdp′(G/N) ≤ acdp′(G) < bp.

By induction on |G|, we have that G/N has a normal p-complement, say H/N .
If N is a p′-group, then H is a normal p-complement in G and we would be done.
So we assume that N is an elementary abelian p-group. It then follows from the
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Schur–Zassenhaus theorem that H splits over N . Let us assume that H = NH1,
where H1 is a Hall p′-subgroup of H (and indeed of G as well).

We now use Frattini’s argument to show that G = NNG(H1). Let g be any
element of G. Since H � G and H1 < H , we have g−1H1g < H so that g−1H1g
is also a Hall p′-subgroup of H . By Hall’s theorems, g−1H1g is H-conjugate
to H1. In other words, there exists h ∈ H such that g−1H1g = h−1H1h. Thus
gh−1 ∈ NG(H1) so that g ∈ NG(H1)H = HNG(H1). Since g is arbitrary in G,
we deduce that G = HNG(H1), and therefore G = NNG(H1) as H = NH1.

Since G = NNG(H1), if N is contained in the Frattini subgroup of G, we would
have G = NG(H1) and we are done. So we assume that N is not contained in the
Frattini subgroup of G. Then there exists a maximal subgroup M of G such that
N � M . We then have G = NM and N ∩M < N . As N is abelian, it follows
that N ∩M is a normal subgroup of G, and hence N ∩M = 1 by the minimality
of N . We conclude that G = N �M . In other words, G is a split extension of N .

If N ⊆ Z(G) then we would have H = N ×H1 and thus H1 � G, as desired.
So we assume that N is noncentral in G. Thus, by the minimality of N , we have
[N,G] = N . It follows that no nonprincipal irreducible character of N is invariant
under G.

We now have all the hypotheses of Lemma 9.2, and therefore we deduce that
acdp′(G) ≥ 3/2 if p = 2 and acdp′(G) ≥ 4/3 if p > 2. This contradiction completes
the proof of the theorem. �

10. Qp-valued characters of p′-degree and solvability

We need the following.

Lemma 10.1. Let G be a finite group with a nonabelian minimal normal sub-
group N . Assume that there exists ψ ∈ Irr(N) that is extendible to a Qp-valued
character of StabG(ψ). Then nQp,1(G) ≤ nQp,a(G)|G : StabG(ψ)|, where a :=
ψ(1)|G : StabG(ψ)|. Moreover, if ψ extends to a rational-valued character of
StabG(ψ), then nQ,1(G) ≤ nQ,a(G)|G : StabG(ψ)|.
Proof. Assume that ψ extends to χ ∈ IrrQp(StabG(ψ)). Remark that, if λ is a linear
character of StabG(ψ)/N with values in Qp, then (λχ)G ∈ Irr(G) has values in Qp
as well. Now just repeat the arguments in the proof of Proposition 3.2 (i) to obtain
the first statement of the lemma. The second statement is argued similarly. �

To prove Theorem 1.3, we first prove a Qp-analogue of Theorem 1.2, that is an
extension of Theorem A (i) in [10], Theorem C (i) in [20], and Theorem 6.3 in [21].

Theorem 10.2. Let p > 2 be a prime and G a finite group. If one of the following
happens:

(i) acdQ,2′(G) < 3,

(ii) acdQp,p′(G) ≤ 2,

(iii) acdQ,p′(G) ≤ 2 for p > 3,

then G is solvable.
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Proof. We use Theorem 2.1 and Lemma 10.1, and argue as in the proof of Theo-
rem 5.1 to prove (i) and (ii).

Now we assume that p �= 3 and prove (iii). By Theorem 6.2 in [21], the orbit O
in Lemma 2.2 can be chosen so that every θ ∈ O is extendible to a rational-valued
character of StabAut(S)(θ). Therefore, the character ψ produced in Theorem 2.1 is
also extendible to a rational-valued character of StabS(ψ). The proof now follows
as before. �

11. Qp-valued characters of p′-degree and p-nilpotency

We begin with an easy observation, which is recalled to our attention by Mark
L. Lewis.

Lemma 11.1. Let p be a prime, N be an elementary abelian p-group, and G be a
split extension of N . Let θ ∈ Irr(N) be invariant under G. Then θ extends to a
Qp-valued character of G.

Proof. Let K := Ker(θ). Since θ is G-invariant, K is normal in G. Note that
N/K is cyclic since it is abelian and has a faithful irreducible character, so θ being
G-invariant will imply that N/K is central in G/K. Thus, G/K = N/K×HK/K,
where H is a complement for N in G. It follows that θ, viewed as a character of
N/K, extends to θ× 1HK/K ∈ Irr(G/K). Now we are done by viewing θ× 1HK/K
as a character of G and noting that θ has values in Qp. �

Next result is a Qp-analogue of Lemma 9.2, but the proof is somewhat different.

Lemma 11.2. Let p be a prime, N be an elementary abelian p-group, and G be
a split extension of N . Assume that no nonprincipal irreducible character of N is
fixed under G. Then

acdQp,p′(G) ≥
{

3/2 if p = 2,
4/3 if p > 2.

Proof. We use the same setup as in the proof of Lemma 9.2. In particular, {1N =
α0, α1, . . . , αl} is a set of representatives of the p′-size orbits of the action of G on
Irr(N), and Ii is the inertia subgroup of αi in G for every 0 ≤ i ≤ l.

By Lemma 11.1, each αi extends to a Qp-valued character, say βi, of Ii.
Therefore, each irreducible character of p′-degree of G has the form (λβi)

G where
λ ∈ Irrp′(Ii/N).

Since no nonprincipal irreducible character of N is fixed under G, (λβi)
G(1) =

|G : Ii|λ(1) > 1 for every 1 ≤ i ≤ l. Thus, every linear character of G must lie
above the trivial character of N . We deduce that

nQp,1(G) = nQp,1(G/N).

Since nQp,1(G/N) ≤ nQp,1(I1/N)|G : I1|, we then obtain

nQp,1(G) ≤ nQp,1(I1/N)|G : I1|.
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Recall that β1 has values in Qp. Therefore if λ is a Qp-valued linear character
of I1/N , then so is (λβ1)

G, whose degree is |G : I1|. We deduce that

nQp,1(I1/N) ≤ nQp,|G:I1|(G).

Together with the above inequality, we have

nQp,1(G) ≤ nQp,|G:I1|(G)|G : I1|.
When p = 2 we have |G : I1| ≥ 3 since |G : I1| is not 1 and coprime to p.

It follows that
nQp,1(G) ≤ nQp,|G:I1|(G)(2|G : I1| − 3),

and thus acdQp,2′(G)≥3/2, as claimed. On the other hand, if p>2 then |G :I1|≥2,
and hence

nQp,1(G) ≤ nQp,|G:I1|(G)(3|G : I1| − 4),

which implies that acdQp,2′(G) ≥ 4/3, and we are done. �

Finally we prove Theorem 1.3.

Theorem 11.3. Let p be an odd prime and G a finite group. Then

(i) if acdQ,2′(G) < 3/2, then G has a normal 2-complement, and

(ii) if acdQp,p′(G) < 4/3, then G has a normal p-complement.

Proof. Repeat the arguments in the proof of Theorem 9.3, with the help of Theo-
rem 10.2 and Lemma 11.2. �
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