
Rev. Mat. Iberoam. 32 (2016), no. 4, 1353–1392
doi 10.4171/rmi/921

c© European Mathematical Society

Global Hölder regularity

for the fractional p-Laplacian

Antonio Iannizzotto, Sunra Mosconi and Marco Squassina

Abstract. By virtue of barrier arguments we prove Cα-regularity up to
the boundary for the weak solutions of a non-local, non-linear problem
driven by the fractional p-Laplacian operator. The equation is boundedly
inhomogeneous and the boundary conditions are of Dirichlet type. We
employ different methods according to the singular (p < 2) of degenerate
(p > 2) case.

1. Introduction and main result

We study Hölder regularity up to the boundary for the weak solutions of the
Dirichlet problem

(1.1)

{
(−Δ)spu = f in Ω,

u = 0 in Ωc.

Here Ω ⊂ R
N (N > 1) is a bounded domain with a C1,1 boundary ∂Ω, Ωc = R

N \Ω,
s ∈ (0, 1) and p ∈ (1,∞) are real numbers and f ∈ L∞(Ω). The s-fractional
p-Laplacian operator is the gradient of the functional

J(u) :=
1

p

∫
RN×RN

|u(x)− u(y)|p
|x− y|N+ps

dx dy,

defined on

W s,p
0 (Ω) := {u ∈ Lp(RN ) : J(u) <∞, u = 0 in Ωc},

which is a Banach space with respect to the norm J(u)1/p. Under suitable smooth-
ness conditions on u, the operator can be written as

(−Δ)sp u(x) = 2 lim
ε↘0

∫
Bc

ε(x)

|u(x)− u(y)|p−2 (u(x)− u(y))

|x− y|N+sp
dy, x ∈ R

N .
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A weak solution u ∈ W s,p
0 (Ω) of problem (1.1) satisfies, for every ϕ ∈W s,p

0 (Ω),∫
RN×RN

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy =

∫
Ω

f(x)ϕ(x) dx.

Problem (1.1) is thus well posed and, in the case p = 2, it corresponds to an
inhomogeneous fractional Laplacian equation with Dirichlet boundary condition.
For the sake of completeness we recall that in the literature the fractional Laplacian
is often defined by

〈(−Δ)su, ϕ〉 = c(N, s)

2

∫
RN×RN

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x− y|N+2s
dx dy, ϕ ∈ W s,2

0 (Ω),

where c(N, s) = s22s Γ((N + 2s)/2)/(πN/2Γ(1 − s)), in order to be coherent with
the Fourier definition of (−Δ)s (see Remark 3.11 of [4]). We point out that, in the
current literature, there are several notions of fractional Laplacian, all of which
agree when the problems are set on the whole R

N , but some of them disagree in
a bounded domain. We refer the reader to [22] for a discussion on the comparison
between the integral fractional Laplacian and the regional (or spectral) notion
obtained by taking the s-powers of the Laplacian operator −Δ with zero Dirichlet
boundary conditions.

In the case p �= 2, problem (1.1) is a non-local and non-linear one. Its leading
term (−Δ)sp is furthermore degenerate when p > 2 and singular when 1 < p < 2.
Determining sufficiently good regularity estimates up to the boundary is not only
relevant by itself, but it also has useful applications in obtaining multiplicity results
for more general non-linear and non-local equations, such as those investigated
in [10] in the framework of topological methods and Morse theory. To this regard,
this contribution provides a first step in order to obtain the results of [11] in the
general case p �= 2.

The regularity up to the boundary of fractional problems in the case p = 2
is now rather well understood, even when more general kernels and nonlinearities
are considered. Using a viscosity solution approach, the model linear case gives
regularity for fully non-linear equations which are “uniformly elliptic” in a suit-
able sense. Regarding the viscosity approach to fully non-linear, elliptic non-local
equation, see [5] and [6] for interior regularity theory with smooth kernels, and [21]
for rough kernels; regarding boundary regularity, see [19] for nearly optimal results
and a detailed discussion on the delicate role that the kernel’s regularity class plays
in such problems.

Equation (1.1), however, does not fall in the category of non-local non-linear
equations treated in the aforementioned works. This is not surprising, due to the
degenerate/singular nature of the nonlinearity, and the s-fractional p-Laplacian is
the non-local analogue of a degenerate/singular non-linear divergence form equa-
tion, rather than of a uniformly elliptic fully non-linear one. Local Hölder con-
tinuity has been addressed in [7], [8] using methods á la De Giorgi, and in [15]
with a Krylov–Safanov approach for p > 1/(1 − s). In [3] the fully non-linear
approach is used to study the non-local analogue of the p-Laplacian equation in
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non-divergence form

Δu+ (p− 2)
∇u
|∇u|D

2u
∇u
|∇u| = 0,

arising from non-local ‘tug of war’ games. Interior C1,α estimates and Hölder
continuity up to the boundary is proved under rather general assumptions.

Our main result is the following:

Theorem 1.1. There exist α ∈ (0, s] and CΩ > 0, depending only on N , p, and s,
with CΩ also depending on Ω, such that, for all weak solution u ∈ W s,p

0 (Ω) of
problem (1.1), u ∈ Cα(Ω) and

(1.2) ‖u‖Cα(Ω) ≤ CΩ ‖f‖1/(p−1)
L∞(Ω) .

Notice that, regarding regularity up to the boundary, one cannot expect more
than s-Hölder continuity due to explicit examples (see Section 3 below). On the
other hand, the optimal Hölder exponent up to the boundary seems to be s for
any p > 1, while we prove Cα regularity for an unspecified small α, the issue being
a lack of higher (at least Cs) regularity results in the interior of the domain.

Let us describe the strategy to prove Theorem 1.1. We choose to use the
notion of weak rather than viscosity solution, since we feel that the equation is
more naturally seen as a variational one. However, we will frequently use barrier
arguments, rather than De Giorgi–Nash–Moser techniques. Indeed, the proof of
Theorem 1.1 is performed in the spirit of Krylov’s approach to boundary regularity,
see [13], and uses two main ingredients:

(a) a uniform Hölder control (see Theorem 4.4) on how u reaches its boundary
values, which amounts to

(1.3) |u(x)| ≤ C ‖f‖1/(p−1)
∞ dists(x,Ωc);

(b) a local regularity estimate (see Theorem 5.4) in terms of quantities which
may blow up in general when reaching the boundary, but remain bounded
for functions satisfying (1.3).

Point (a) is obtained through a barrier argument, and stems from the fact
that (−Δ)sp(x+)

s = 0 in the half line R+. Notice that for p �= 2 we do not have
at our disposal the fractional Kelvin transform, and the concrete calculus of the
s-fractional p-Laplacian even on smooth functions is a prohibitive task, in general.
Thus constructing upper barriers can be quite technical, and it is done as follows:

• Consider uN(x) = (xN )s+: explicit calculus shows that (−Δ)spuN = 0 in the

half-space RN
+ . We locally deform the half-space to Ω by a diffeomorphism Φ

close to the identity, and obtain a function uN ◦ Φ with small s-fractional
p-Laplacian in a small ball B̂ centered at a point of ∂Ω.

• The resulting function uN ◦ Φ can be controlled in B̂ ∩ Ω by distance-like
functions from the boundary, and we can modify it to globalize the controls,
while keeping the smallness of (−Δ)sp(uN ◦ Φ) in B̂ ∩ Ω.
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• We exploit the non-local nature of the equation to add a fixed positive
quantity to (−Δ)sp(uN ◦ Φ) in B̂ ∩ Ω, by truncation away from B̂. Since
(−Δ)sp(uN ◦ Φ) is arbitrarily small, its truncation has therefore s-fractional

p-Laplacian bounded from below by a positive constant in B̂∩Ω, and provides
the local upper barrier.

Point (b) is a generalization, in the whole range p > 1, to non-homogeneous
equations of Theorem 1.2 from [7], and it could be deduced in the case p > 2−s/N
using the results of [14], and in the case p > 1/(1 − s) using [15]. However we
choose to prove it with a different approach. Much in the spirit of [20], rather than
considering the non-locality of the equation as an additional technical difficulty
to the implementation of the De Giorgi–Moser regularity theory, we use it at
our advantage to construct a more elementary proof. It should be noted that
we do not employ Caccioppoli-like inequalities, or estimates on log u (which are
the elementary counterpart of John–Nirenberg’s lemma). Actually we don’t even
need a Poincaré or Sobolev inequality, which are usually looked at as basic tools
for (variational) regularity theory. This feature seems typical of the non-local
framework and it should be noted that the proof doesn’t seem to immediately
“pass to the limit to local equations” as the obtained estimates blow up for s→ 1.

Regarding possible developments and generalizations, a first remark regards
the choice of the kernel in the non-local operator

L(u) = p.v.

∫
RN

|u(x)− u(y)|p−2 (u(x)− u(y))K(x, y) dy.

Regarding interior regularity, a bound from above and below in terms of the model
kernel |x− y|−N−ps seems to suffice to obtain Hölder regularity, due to the results
of [7], [14]. For non-local, fully non-linear, uniformly elliptic equation, higher
interior regularity (up to C2,α) is proved in [5], [6], [21] when the kernel satisfies
additional structural and regularity assumption, but no such result is known for
the s-fractional p-Laplacian. Regarding regularity up to the boundary things are
more subtle. In the uniformly elliptic case (p = 2), the optimal regularity is Cs(Ω)
due to the results of [19], but only for a subclass of rough symmetric kernels arising
from stable Lévy processes, of the form

K(x, y) = H(x− y), H(z) =
a
(
z/|z|)

|z|N+2s
, 0 < λ ≤ a ≤ Λ.

Counterexamples show that this is the largest kernel’s class where to expect such
regularity up to the boundary. However, for any p > 1, one still expects Cα(Ω)
regularity for arbitrarily rough symmetric kernels, for a small α < s.

An additional point of interest is the Hölder regularity, up to the boundary, of
u/dists(x,Ωc), when (−Δ)spu is bounded in Ω. This is proven in [18] for the frac-
tional Laplacian, and in [19] for the Lévy stable fully non-linear, uniformly elliptic
non-local equations. While undoubtedly being relevant in light of the applications
depicted in [10], we do not treat this problem here.

The structure of the paper is as follows. In Section 2 we mainly discuss the
relationship between weak and strong (i.e., in a suitable principal value sense)
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solutions of (1.1). In doing so we clarify how barrier arguments (which are more
suited to viscosity solutions) can be applied in the framework of weak solutions of
non-linear non-local problems.

In Section 3 we study the s-fractional p-Laplacian of distance-related functions,
and consider their stability with respect to local diffeomorphisms of the domain.

In Section 4 we construct some upper barriers, derive L∞-bounds for solutions
of (1.1) and prove estimate (1.3).

In Section 5 we tackle the local regularity through a weak Harnack inequality.
Then we couple it with (1.3) to prove Theorem 1.1.

A short description of the result obtained in the present paper can be found
in [12].

2. Preliminaries

2.1. Notations and function spaces

Given a subset A ⊆ R
N we will set Ac = R

N \A and for A,B ⊆ R
N ,

dist(A,B) = inf
x∈A, y∈B

|x− y|, δA(x) = dist(x,Ac),

distH(A,B) = max
{
sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)
}
.

For all x ∈ R
N , r > 0 we denote by Br(x), Br(x), and ∂Br(x), respectively, the

open ball, the closed ball and the sphere centered at x with radius r. When the
center is not specified, we will understand that it’s the origin, e.g. B1 = B1(0).
For all measurable A ⊂ R

N we denote by |A| the N -dimensional Lebesgue measure
of A. If u is a measurable function and A is a measurable subset of RN , we will
set for brevity

inf
A
u = ess inf

A
u, sup

A
u = ess inf

A
u.

For all measurable u : RN → R we define

[u]s,p =
(∫

RN×RN

|u(x)− u(y)|p
|x− y|N+ps

dx dy
)1/p

,

‖u‖W s,p(Ω) = ‖u‖Lp(Ω) +
( ∫

Ω×Ω

|u(x)− u(y)|p
|x− y|N+ps

dx dy
)1/p

,

and we will consider the following spaces (see [9] for details):

W s,p(Ω) =
{
u ∈ Lp(Ω) : ‖u‖W s,p(Ω) <∞}

,

W s,p
0 (Ω) =

{
u ∈ W s,p(RN ) : u = 0 in Ωc

}
,

W−s,p′
(Ω) = (W s,p

0 (Ω))∗,

where the last one is the Banach dual, whose pairing with W s,p
0 (Ω) will be denoted

by 〈·, ·〉s,p,Ω. We will extensively make use of the following space:
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Definition 2.1. Let Ω ⊆ R
N be bounded. We set

W̃ s,p(Ω) :=
{
u ∈ Lp

loc(R
N ) : ∃U � Ω s.t. ‖u‖W s,p(U)+

∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞

}
.

If Ω is unbounded, we set

W̃ s,p
loc (Ω) :=

{
u ∈ Lp

loc(R
N ) : u ∈ W̃ s,p(Ω′) for any bounded Ω′ ⊆ Ω

}
.

We notice that the condition∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞

holds if u ∈ L∞(RN ) or [u]Cs(RN ) < ∞. The spaces W̃ s,p(Ω), W̃ s,p
loc (Ω) can be

endowed with a topological vector space structure as inductive limit, but we will
not use it. For all α ∈ (0, 1] and all measurable u : Ω → R we set

[u]Cα(Ω) = sup
x,y∈Ω, x �=y

|u(x)− u(y)|
|x− y|α ,

Cα(Ω) =
{
u ∈ C(Ω) : [u]Cα(Ω) <∞}

,

the latter being a Banach space under the norm ‖u‖Cα(Ω) = ‖u‖L∞(Ω) + [u]Cα(Ω).

A similar definition is given for C1,α(Ω). When no misunderstanding is possible,
we set for all measurable D ⊂ R

N , x ∈ D, and all measurable ψ : D ×D → R,

p.v.

∫
D

ψ(x, y) dy = lim
ε→0+

∫
D\Bε(x)

ψ(x, y) dy.

For all measurable u : RN → R, we recall that the non-local tail centered at x ∈ R
N

with radius R > 0, introduced in [7], is defined as

(2.1) Tail(u;x,R) =
(
Rps

∫
Bc

R(x)

|u(y)|p−1

|x− y|N+ps
dy

)1/(p−1)

.

We will also set Tail(u; 0, R) = Tail(u;R). Unless otherwise stated, the numbers
p > 1 and s ∈ (0, 1) will be fixed as the order of summability and the order of
differentiability. By a universal constant we mean a constant C = C(N, p, s). This
dependence will always be omitted, even when other dependencies are present, in
which case they are the only ones explicitly stated: for example CΩ will denote
a constant depending on N, p, s, and Ω. During chains of inequalities, universal
constants will be denoted by the same letter C even if their numerical value may
change from line to line. The same treatment will be used for constants which
retain their dependencies from line to line. When needed, we will denote a specific
universal constant with a number, e.g. C1, C2 et cetera.
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2.2. Some elementary inequalities

For all a ∈ R, q > 0, we set
aq = |a|q−1a.

This notation has great advantages in readability and, for future reference, we
recall here some more or less known elementary inequalities about the function
a �→ aq. We will provide a sketch of proof for the less frequent ones.

We begin with the well-known inequalities

(a+ b)q ≤ 2q−1(aq + bq) a, b ≥ 0, q ≥ 1;(2.2)

(a+ b)q ≤ aq + bq a, b ≥ 0, q ∈ (0, 1];(2.3)

|aq − bq| ≤ q (|a|q−1 + |b|q−1)|a− b| a, b ∈ R, q ≥ 1,(2.4)

the last one being a trivial consequence of Taylor’s formula. We will also use

(2.5) aq − (a− b)q ≤ CM max{b, bq} |a| ≤M, b ≥ 0, q > 0,

which follows immediately from (2.3) if q ∈ (0, 1]. If q > 1 we can prove it distin-
guishing the cases b ≤ M , where we use (2.4), and the case b ≥ M , where we use
aq − (a− b)q ≤M q + 2M q ≤ 3bq. We now prove

(2.6) (a+ b)q − aq ≤ θaq + Cθb
q a, b ≥ 0, q ≥ 1, Cθ → ∞ as θ → 0+.

Letting Cq = 1 if q ≤ 1 and Cq = 2q−1 if q ≥ 1, (2.2) and (2.3) can be written as

(a+ b)q ≤ Cq(a
q + bq) a, b ≥ 0, q > 0.

Now (2.6) can be proved using Taylor’s formula and Young’s inequality:

(a+ b)q − aq ≤ Cq (a
q−1 + bq−1)b = (θq′a)q−1 Cq b

(θq′)q−1
+ Cq b

q

≤ θaq +
1

q

( Cq

(θq′)q−1

)q

bq + Cq b
q.

We prove the following inequality:

(2.7) aq − (a− b)q ≥ 21−q bq a ∈ R, b ≥ 0, q ≥ 1.

We can suppose b > 0 and consider the function

f(t) = tq − (t− b)q, f ′(t) = q (|t|q−1 − |t− b|q−1).

Therefore f is positive, increasing for t > b and decreasing for t < −b and thus it’s
coercive. Since f ′(t) = 0 if and only if t = b/2, its global minimum is f(b/2) =
21−q bq.

Finally, we will use the following inequality, holding for all A,B ⊂ R
N with A

bounded and dist(A,Bc) = d > 0:

(2.8) |x− y| ≥ C(A,B)(1 + |y|), x ∈ A, y ∈ Bc.
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2.3. Weak and strong solutions

We compare now different notions of solutions for equations driven by (−Δ)sp.

Definition 2.2. Let Ω be bounded, u ∈ W̃ s,p(Ω) and f ∈ W−s,p′
(Ω). We say

that u is a weak solution of (−Δ)spu = f in Ω if, for all ϕ ∈ W s,p
0 (Ω),∫

RN×RN

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy = 〈f, ϕ〉s,p,Ω.

If Ω is unbounded, we say that u ∈ W̃ s,p
loc (Ω) solves (−Δ)spu = f (with f ∈

W−s,p′
(Ω)) weakly in Ω if it does so in any bounded open set Ω′ ⊆ Ω.

The inequality (−Δ)spu ≤ f weakly in Ω will mean that∫
RN×RN

(u(x)− u(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy ≤ 〈f, ϕ〉s,p,Ω

for all ϕ ∈ W s,p
0 (Ω), ϕ ≥ 0, and similarly for (−Δ)spu ≥ f . Noticing that ±K ∈

W−s,p′
(Ω) for any K > 0 and any bounded Ω, by |(−Δ)spu| ≤ K weakly in Ω we

mean that both −K ≤ (−Δ)spu ≤ K weakly in Ω.

In the following proposition we will prove that (−Δ)spu ∈ W−s,p′
(Ω) if u ∈

W̃ s,p(Ω), which implies that the previous definition makes sense.

Lemma 2.3. Let Ω be bounded and u ∈ W̃ s,p(Ω). Then the functional

W s,p
0 (Ω) � ϕ �→ (u, ϕ) :=

∫
RN×RN

(u(x)− u(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy

is finite and belongs to W−s,p′
(Ω).

Proof. Let U � Ω be such that

(2.9) ‖u‖W s,p(U) +

∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞,

and write

(u, ϕ) =

∫
U×U

(u(x)− u(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy

+

∫
U×Uc

(u(x)− u(y))p−1ϕ(x)

|x− y|N+ps
dx dy

−
∫
Uc×U

(u(x)− u(y))p−1ϕ(y)

|x− y|N+ps
dx dy

=

∫
U×U

(u(x)− u(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy

+ 2

∫
Ω×Uc

(u(x) − u(y))p−1ϕ(x)

|x− y|N+ps
dx dy,

(2.10)
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since supp(ϕ) ⊂ Ω. The integral in U × U is finite and continuous with respect
to strong convergence of ϕ ∈ W s,p

0 (Ω) since u ∈ W s,p(U). For the second term,
observe that for a.e. x ∈ Ω it holds∫

Uc

|u(x)− u(y)|p−1

|x− y|N+ps
dy

≤ C
(
|u(x)|p−1

∫
Uc

1

|x− y|N+ps
dy +

∫
Uc

|u(y)|p−1

(|x− y|)N+ps
dy

)
≤ C

(
|u(x)|p−1 +

∫
RN

|u(y)|p−1

(1 + |y|)N+ps
dy

)
,

(2.11)

where we used (2.8) with A = Ω and B = U . The right hand side of (2.11) belongs
to Lp′

(Ω) since Ω is bounded and u ∈ Lp(Ω). Thus the second term in (2.10) is
continuous with respect to Lp(Ω)-convergence of ϕ. Therefore it is also continuous
in W s,p

0 (Ω). �

Definition 2.4 (Point-wise and strong solutions). Let u ∈ W̃ s,p
loc (Ω) and f : Ω → R

be measurable. We say that u is an a.e. point-wise solution of (−Δ)spu = f in Ω if
for a.e. Lebesgue point x ∈ Ω of u it holds

(2.12) 2 · p.v.
∫
RN

(u(x)− u(y))p−1

|x− y|N+ps
dy = f(x).

Moreover, for f ∈ L1
loc(Ω) we say that u is a strong solution of (−Δ)spu = f if

(2.13) 2

∫
Bc

ε(x)

(u(x)− u(y))p−1

|x− y|N+ps
dy → f strongly in L1

loc(Ω), as ε→ 0+.

Similar definitions are given for sub- and supersolutions.

Now we prove that a strong solution is also a weak solution. First, we introduce
a more general result, which will be used in the following: we denote by D the
diagonal of RN × R

N .

Lemma 2.5. Let u ∈ W̃ s,p
loc (Ω). For all ε > 0 let Aε ⊂ R

N ×R
N be a neighborhood

of D which satisfies

(i) (x, y) ∈ Aε for all (y, x) ∈ Aε;

(ii) distH(Aε,D) → 0 as ε→ 0+.

For all x ∈ R
N we set Aε(x) = {y ∈ R

N : (x, y) ∈ Aε} and

gε(x) =

∫
Ac

ε(x)

(u(x)− u(y))p−1

|x− y|N+ps
dy.

If 2gε → f in L1
loc(Ω), then u is a weak solution of (−Δ)spu = f in Ω.
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Proof. We can suppose that Ω is bounded and let U � Ω be such that (2.9) holds
for u, fix ϕ ∈ C∞

c (Ω) and let K = supp(ϕ). First we prove that gε ∈ L1(K). For
all x ∈ K there exists ρ > 0 such that Bρ(x) ⊂ Aε(x), and by a covering argument
we may choose ρ independent of x (while ρ depends on ε). Moreover, for all x ∈ K
and y ∈ Ac

ε(x) we have |x− y| ≥ C(1 + |y|) (see (2.8)). So we can compute∫
K

|gε(x)| dx ≤ C

∫
K

∫
Ac

ε(x)

|u(x)|p−1

|x− y|N+ps
dy dx+ C

∫
K

∫
Ac

ε(x)

|u(y)|p−1

|x− y|N+ps
dy dx

≤ C

∫
K

|u(x)|p−1 dx

∫
Bc

ρ

1

|z|N+ps
dz + C

∫
K

∫
Ac

ε(x)

|u(y)|p−1

(1 + |y|)N+ps
dy

≤ Cε

∫
U

|u(x)|p−1 dx + C|K|
∫
RN

|u(y)|p−1

(1 + |y|)N+ps
dy <∞.

Lemma 2.3 shows that

(u(x)− u(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
∈ L1(RN × R

N )

and thus, through (i), (ii), and Fubini’s theorem we have∫
RN×RN

(u(x)− u(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy

(ii)
= lim

ε→0+

∫
Ac

ε

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dy dx

(i)
= lim

ε→0+
2

∫
K

∫
Ac

ε(x)

(u(x) − u(y))p−1

|x− y|N+ps
ϕ(x) dx dy = lim

ε→0+
2

∫
K

gε(x)ϕ(x) dx.

Since 2gε → f in L1(K), the density of C∞
c (Ω) in W s,p

0 (Ω) and Lemma 2.3 give
the assertion. �

Remark 2.6. As the proof shows, it suffices to assume that the convergence
in (2.13) be in L1

loc(Ω) weakly. We deliberately choose to assume strong L1
loc-con-

vergence since in all subsequent applications this is enough.

Corollary 2.7. Let u ∈ W̃ s,p
loc (Ω) be a strong solution of (−Δ)spu = f in Ω, with

f ∈ L1
loc(Ω). Then u is a weak solution of (−Δ)spu = f in Ω.

Proof. It follows from Lemma 2.5 with Aε = {(x, y) ∈ R
N ×R

N : |x− y| < ε}. �

2.4. Some basic properties of (−Δ)sp

The following result describes a fundamental non-local feature of (−Δ)sp.

Lemma 2.8 (Non-local behavior of (−Δ)sp). Suppose u ∈ W̃ s,p
loc (Ω) solves (−Δ)spu

= f weakly, strongly or point-wisely in Ω for some f ∈ L1
loc(Ω). Let v ∈ L1

loc(R
N )

be such that

(2.14) dist(supp(v),Ω) > 0,

∫
Ωc

|v(x)|p−1

(1 + |x|)N+ps
dx <∞,



Global Hölder regularity for the fractional p-Laplacian 1363

and define for a.e. Lebesgue point x ∈ Ω of u

h(x) = 2

∫
supp(v)

(u(x)− u(y)− v(y))p−1 − (u(x)− u(y))p−1

|x− y|N+ps
dy.

Then u + v ∈ W̃ s,p
loc (Ω) and it solves (−Δ)sp(u + v) = f + h weakly, strongly or

pointwisely respectively in Ω.

Proof. As usual, it suffices to consider the case Ω bounded, and we first prove that
u + v ∈ W̃ s,p(Ω). Let K = supp(v) and U be such that (2.9) holds for u, and
suppose without loss of generality that Ω � U � Kc. Clearly u+ v = u in U , and
thus it belongs to W s,p(U). Moreover,∫

RN

|u(x) + v(x)|p−1

(1 + |x|)N+ps
dx ≤ C

( ∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx +

∫
K

|v(x)|p−1

(1 + |x|)N+ps
dx

)
,

and the last term is finite due to (2.14). With a similar estimate, we see that the
integral defining h is finite (due also to (2.14) and (2.8)). Consider now the case
where (−Δ)spu = f weakly. Choose ϕ ∈ C∞

c (Ω) and compute∫
RN×RN

(u(x) + v(x) − u(y)− v(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy

=

∫
Ω×Ω

(u(x)− u(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy

+

∫
Ω×Ωc

(u(x)− u(y)− v(y))p−1ϕ(x)

|x− y|N+ps
dx dy

−
∫
Ωc×Ω

(u(x) + v(x) − u(y))p−1ϕ(y)

|x− y|N+ps
dx dy

=

∫
RN×RN

(u(x)− u(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy

−
∫
Ω×Ωc

(u(x)− u(y))p−1ϕ(x)

|x− y|N+ps
dx dy

+

∫
Ωc×Ω

(u(x)−u(y))p−1ϕ(y)

|x− y|N+ps
dx dy + 2

∫
Ω×Ωc

(u(x)−u(y)−v(y))p−1ϕ(x)

|x− y|N+ps
dx dy

=

∫
Ω

f(x)ϕ(x) dx + 2

∫
Ω×Ωc

(u(x)−u(y)−v(y))p−1−(u(x)−u(y)))p−1

|x− y|N+ps
ϕ(x) dx dy

=

∫
Ω

(f(x) + h(x))ϕdx,

where in the end we have used Fubini’s theorem. The density of C∞
c (Ω) inW s,p

0 (Ω)
allows to conclude.

Suppose now that (−Δ)spu = f strongly or pointwisely in Ω. Let, for x ∈ V � Ω
and ε < dist(V,Ωc),

gε(x) =

∫
Bc

ε(x)

(u(x) + v(x) − u(y)− v(y))p−1

|x− y|N+ps
dy.
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Using (2.14) we get

gε(x) =

∫
Ω\Bε(x)

(u(x) − u(y))p−1

|x− y|N+ps
dy +

∫
Ωc

(u(x)− u(y)− v(y))p−1

|x− y|N+ps
dy

=

∫
Bc

ε(x)

(u(x) − u(y))p−1

|x− y|N+ps
dy +

∫
K

(u(x) − u(y)− v(y))p−1−(u(x)− u(y))p−1

|x− y|N+ps
dy.

Taking the limit for ε → 0+ gives the claim in the pointwise case. To show that
(−Δ)sp(u+ v) = f + h strongly it suffices to show that

x �→
∫
K

(u(x)− u(y)− v(y))p−1 − (u(x)− u(y))p−1

|x− y|N+ps
dy

belongs to L1(K), which can be done proceeding as in (2.11) and using (2.14) for
the term involving v. �

We also recall the well-known homogeneity, scaling, and rotational invariance
properties of (−Δ)sp. For all ρ > 0,M ∈ ON (the orthogonal group), v measurable,

Ω ⊆ R
N , set

vρ(x) = v(ρx), ρ−1Ω = {x/ρ : x ∈ Ω},
vM (x) = v(Mx), M−1Ω = {M−1x : x ∈ Ω}.

Lemma 2.9. Let u ∈ W̃ s,p
loc (Ω) satisfy (−Δ)spu = f weakly in Ω for some f ∈

L1
loc(Ω). Then we have:

(i) for all h > 0, (−Δ)sp(hu) = hp−1f weakly in Ω;

(ii) for all ρ > 0, uρ ∈ W̃ s,p(ρ−1Ω) and (−Δ)spuρ = ρpsfρ weakly in ρ−1Ω;

(iii) for all M ∈ ON , uM ∈ W̃ s,p(M−1Ω) and (−Δ)spuM = fM weakly in M−1Ω.

Finally, from Lemma 9 of [16], we have the following comparison principle
for (−Δ)sp.

Proposition 2.10 (Comparison principle). Let Ω be bounded, u, v ∈ W̃ s,p(Ω)
satisfy u ≤ v in Ωc and, for all ϕ ∈W s,p

0 (Ω), ϕ ≥ 0 in Ω,∫
RN×RN

(u(x) − u(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy

≤
∫
RN×RN

(v(x) − v(y))p−1(ϕ(x) − ϕ(y))

|x− y|N+ps
dx dy.

Then u ≤ v in Ω.

Proof. The proof follows by the arguments of [16]. It is sufficient to know that
both sides of the inequality are finite and (u− v)+ ∈W s,p

0 (Ω), which is used there
as a test function. By Lemma 2.3, both sides are finite. We claim that w :=
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(u− v)+ ∈W s,p
0 (Ω). Let U � Ω be as in Definition 2.1 for both u and v. We split

the Gagliardo norm in R
N as∫

RN×RN

|w(x) − w(y)|p
|x− y|N+ps

dx dy

=

∫
U×U

|w(x) − w(y)|p
|x− y|N+ps

dx dy + 2

∫
Ω×Uc

|w(x)|p
|x− y|N+ps

dx dy,

where we used that w = 0 in Ωc by assumption. The first term is bounded
since u, v ∈ W s,p(U), which is a lattice. The second term is non-singular since
dist(Ω, U c) > 0 and using (2.8) we get∫

Ω×Uc

|w(x)|p
|x− y|N+ps

dx dy ≤ CΩ,U

∫
Ω

(|u(x)|p + |v(x)|p) dx
∫
RN

1

(1 + |y|)N+ps
dy

≤ CΩ,U

∫
Ω

(|u(x)|p + |v(x)|p) dx,

which proves the claim. �

2.5. (−Δ)sp on smooth functions

Next we show that in the class of sufficiently smooth functions, the s-fractional
p-Laplacian exists strongly (and thus weakly) and is locally bounded. First we
recall the following definition of (−Δ)sp, equivalent to (2.12) (by a simple change
of variable):

(2.15) (−Δ)spu(x) = p.v.

∫
RN

(u(x)− u(x+ z))p−1 + (u(x) − u(x− z))p−1

|z|N+ps
dz.

Our first lemma displays an estimate which allows us to remove the singularity
at 0, when u is smooth enough:

Lemma 2.11. If u ∈ C1,γ
loc (Ω), γ ∈ [0, 1], and K ⊂ Ω is compact, then there exist

CK,u, RK > 0 such that for all x ∈ K, z ∈ BRK∣∣(u(x)− u(x+ z))p−1 + (u(x) − u(x− z))p−1
∣∣ ≤ {

CK,u |z|γ+p−1 if p ≥ 2,

CK,u |z|(γ+1)(p−1) if p < 2.

Proof. Since K is compact, we can find RK > 0 such that

ΩK := {x ∈ R
N : dist(x,K) ≤ RK} ⊂ Ω.

Consider first the case p ≥ 2. Since u ∈ C1,γ(ΩK), for all x ∈ K, z ∈ BRK there
exist τ1, τ2 ∈ [0, 1] with∣∣(u(x) − u(x+ z))p−1 + (u(x)− u(x− z))p−1

∣∣
=

∣∣(Du(x+ τ1z) · z)p−1 − (Du(x− τ2z) · z)p−1
∣∣

≤ (p− 1) sup
BRK

(x)

|Du|p−2|z|p−2
∣∣(Du(x+ τ1z)−Du(x− τ2z)

) · z∣∣
≤ C ‖Du‖p−1

C0,γ(ΩK) |z|γ+p−1.
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If 1 < p < 2 then t �→ tp−1 is globally (p − 1)-Hölder continuous and in this case
we directly have, with the same notation as before,∣∣(u(x)− u(x+ z))p−1 + (u(x) − u(x− z))p−1

∣∣
≤ C

∣∣Du(x+ τ1z) · z −Du(x− τ2z) · z
∣∣p−1 ≤ C ‖Du‖p−1

C0,γ(ΩK) |z|γ(p−1)|z|p−1,

which concludes the proof. �

The following result shows sufficient conditions to write (−Δ)spu as a locally
bounded function:

Proposition 2.12 ((−Δ)sp on C
1,γ functions). Suppose Ω is bounded, u ∈ W̃ s,p(Ω)∩

C1,γ
loc (Ω), with γ ∈ [0, 1] such that

(2.16) γ >

⎧⎨⎩1− p(1− s) if p ≥ 2,
1− p(1− s)

p− 1
if p < 2.

Then (−Δ)spu = f strongly in Ω for some f ∈ L∞
loc(Ω)

Proof. Let U be as in Definition 2.1 for u, fix a compact set K ⊂ Ω and let
RK , CK > 0 be as in Lemma 2.11. Define, for x ∈ K, ε > 0,

gε(x) :=

∫
Bc

ε

(u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1

|z|N+ps
dz

= 2

∫
Bc

ε

(u(x) − u(x− z))p−1

|z|N+ps
dz.

We claim that gε converges as ε → 0+ in a dominated way to some f ∈ L∞(K).
We split the integral in one for z ∈ BRK and one over Bc

RK
. For the first one, the

previous lemma gives∣∣∣ (u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1

|z|N+ps

∣∣∣ ≤ CK,u

|z|N+ps−σ
,

where σ = γ + p − 1 if p ≥ 2 and σ = (γ + 1)(p − 1) if 1 < p < 2. Notice that,
in both cases, we have ps− σ < 0. Due to assumptions (2.16), the integral is thus
non-singular, and it holds

lim
ε→0

∫
BRK

\Bε

(u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1

|z|N+ps
dz =: f1(x),

∣∣∣ ∫
BRK

\Bε

(u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1

|z|N+ps
dz

∣∣∣ ≤ ∫
BRK

CK,u

|z|N+ps−σ
dz,
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which is a bound independent of x ∈ K and ε > 0. For the integral over z ∈ Bc
RK

we have, as in (2.11),

|f2(x)| :=
∣∣∣2 ∫

Bc
RK

(u(x)− u(x+ z))p−1

|z|N+ps
dz

∣∣∣
≤ CK,U

(
‖u‖p−1

L∞(K) +

∫
RN

|u(y)|p−1

(1 + |y|)N+ps
dy

)
.

Gathering together the two estimates, we get

|gε(x)| ≤ CK,u,U ∀x ∈ K, ε > 0, and lim
ε→0+

gε(x) = f1(x) + f2(x) ∀x ∈ K,

and thus by the dominated convergence theorem gε → f1 + f2 in L1(K). �

Remark 2.13. It is useful to outline the dependence of ‖(−Δ)spu‖∞ on s in the

previous proposition. Suppose, to fix ideas, that p ≥ 2 and u ∈ C∞
c (RN ), so that

the domain Ω has no role. Then, following the proof, we can find a constant cN
depending only on N such that

‖(−Δ)spu‖∞ ≤ cN
‖u‖p−1

C2(RN )

1− s
.

This is in accordance with the well known fact that (1−s)(−Δ)sp → −Δp as s→ 1−

(see e.g. [17]).

Remark 2.14. Consider the class of functions

L(Ω) = {u ∈ W̃ s,p(Ω) : (−Δ)spu = f strongly for some f ∈ L∞
loc(Ω)}.

The previous theorem asserts that if p ≥ 2, then C2(Ω) ⊆ L(Ω). However, if
1 < p < 2, it may be difficult to find smooth functions (e.g., smooth cut-offs)
belonging to L(Ω), since the second condition in (2.16) coupled with γ ≤ 1 forces
s < 2(p− 1)/p. One may think that this is just a technical limit of the proof, or
that requiring higher regularity than C2 could solve the issue. Unfortunately, due
to the singular nature of the operator for 1 < p < 2, this is not the case: there are
smooth functions u such that (−Δ)spu (in the strong sense) cannot be pointwise
bounded. Consider for example u(x) = x2η(x), where η ∈ C∞

c (R) and η = 1 on
[−1, 1]. Calculating (−Δ)spu(0) as a principal value gives

|(−Δ)spu(0)| <∞ ⇐⇒ s < 2
p− 1

p
.

3. Distance functions

In this section we produce some explicit solutions for (−Δ)sp in special domains.
Then we prove that (−Δ)spδ

s is bounded in a neighborhood of ∂Ω (here we define
δ = δΩ as in Section 2). We begin by getting a solution of (−Δ)spu = 0 on the
half-line R+.
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Lemma 3.1. Set u1(x) = xs+ for all x ∈ R. Then u1 ∈ W̃ s,p
loc (R) and it solves

(−Δ)spu1 = 0 strongly and weakly in R+.

Proof. Let K ⊆ (ρ, ρ−1) for some ρ ∈ (0, 1). For x ∈ K, ε > 0 consider the
function

(3.1) g(1)ε (x) =

∫
Bc

ε(x)

(xs − ys+)
p−1

|x− y|1+ps
dy.

We claim that g
(1)
ε → 0 uniformly on K, as ε → 0+. Note that for any ε < x it

holds

0 < x− ε < x+ ε <
x2

x− ε
.

We split the integral accordingly, namely

g(1)ε (x) =

∫ 0

−∞

(xs − ys+)
p−1

|x− y|1+ps
dy +

∫ x2

x−ε

x+ε

(xs − ys+)
p−1

|x− y|1+ps
dy

+
( ∫ x−ε

0

(xs − ys+)
p−1

|x− y|1+ps
dy +

∫ ∞

x2

x−ε

(xs − ys+)
p−1

|x− y|1+ps
dy

)
= I1(x) + I2(x, ε) + I3(x, ε).

Let us estimate the three terms separately. It holds

I1(x) =

∫ 0

−∞

(xs − ys+)
p−1

|x− y|1+ps
dy =

x−s

ps
.

Regarding the integral between x + ε and x2

x−ε , since ξ �→ ξs is globally s-Hölder,
we have

|I2(x, ε)| ≤ C

∫ x2

x−ε

x+ε

|x− y|s(p−1)

|x− y|1+ps
dy =

Cx−s

s

xs − (x− ε)s

εs
.

Finally,

I3(x, ε) =
xs(p−1)

x1+ps

( ∫ x−ε

0

(1 − (y/x)s)p−1

(1− y/x)1+ps
dy −

∫ ∞

x2/(x−ε)

((y/x)s − 1)p−1

(y/x− 1)1+ps
dy

)
t=y/x=ξ

= x−s
(∫ 1−ε/x

0

(1− ts)p−1

(1− t)1+ps
dt−

∫ ∞

(1−ε/x)−1

(ξs − 1)p−1

(ξ − 1)1+ps
dξ
)

ξ=t−1

= x−s
(∫ 1−ε/x

0

(1− ts)p−1

(1− t)1+ps
dt−

∫ 1−ε/x

0

(t−s − 1)p−1

(t−1 − 1)1+ps

dt

t2

)
= x−s

∫ 1−ε/x

0

(1− ts)p−1

(1− t)1+ps
(1− ts−1) dt

= x−s
[ 1

ps

(1− ts)p

(1− t)ps

]1−ε/x

0
=
x−s

ps

((xs − (x − ε)s

εs

)p

− 1
)
.
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Let for ε < x

(3.2) ψ(x, ε) =
xs − (x− ε)s

εs
,

and notice that from the subadditivity of x �→ xs we get ψ(x, ε) ≤ 1. Gathering
together the three previous estimates we get

(3.3) |g(1)ε (x)| ≤ Cx−s(ψ(x, ε) + ψp(x, ε)) ≤ Cx−sψ(x, ε) ∀x > ε > 0,

where C is a universal constant. Since ψ(x, ε) → 0 uniformly on [ρ, ρ−1] ⊇ K, as

ε→ 0+, the claim follows. Finally we prove that u1 ∈ W̃ s,p(a, b) for any a < 0 < b.
We have∫

[a,b]×[a,b]

|u1(x) − u1(y)|p
|x− y|1+ps

dx dy

= 2

∫ b

0

∫ x

0

|xs − ys|p
|x− y|1+ps

dy dx+ 2

∫ b

0

xsp
∫ 0

a

1

|x− y|1+ps
dy dx

t=y/x
= 2

∫ b

0

∫ 1

0

|1− ts|p
|1− t|1+ps

dt dx+
2

ps

∫ b

0

xsp
( 1

xps
− 1

|x− a|ps
)
dx,

which is readily checked to be finite. The assertion follows through Lemma 2.3
and Corollary 2.7. �

Now we study the solution u(x) = u1(xN ) in the half-space

R
N
+ = {x ∈ R

N : xN > 0}.
Lemma 3.2. Set for any A ∈ GLN and x ∈ R

N
+ ,

gε(x,A) =

∫
Bc

ε

(u1(xN )− u1(xN + zN ))p−1

|Az|N+ps
dz

and u(x) = u1(xN ). Then gε → 0 uniformly in any compact K ⊆ R
N
+ ×GLN and

u ∈ W̃ s,p
loc (R

N ) solves (−Δ)spu = 0 strongly and weakly in R
N
+ .

Proof. It suffices to prove the statement for K = H × H ′, where H ⊆ R
N
+ and

H ′ ⊆ GLN are compact (recall that GLN is open in R
N2

). To estimate gε we
use elliptic coordinates. A consequence of the singular value decomposition is that
ASN−1 is an ellipsoid whose semiaxes are the singular values of A, and thus its
diameter is 2‖A‖2, where the latter is the spectral norm of A. The corresponding
elliptic coordinates are uniquely defined by

y = ρω, ω ∈ ASN−1, ρ > 0,

for y ∈ R
N \ {0}. It holds dy = ρN−1dω dρ where dω is the surface element of

ASN−1. Setting

eA := A−1eN , EA := {x ∈ R
N : x · eA ≥ 0},
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we compute, through the change of variable z = A−1y,

gε(x,A)

=

∫
Bc

ε

(u(x)− u(x+ z))p−1

|Az|N+ps
dz = |detA|−1

∫
ABc

ε

(u(x)− u(x+A−1y))p−1

|y|N+ps
dy

=

∫
ASN−1

1

|detA||ω|N+ps

∫ ∞

ε

(u1(xN )− u1(xN + ω · eAρ))p−1

ρ1+ps
dρ dω

=

∫
ASN−1∩EA

|ω · eA|1+ps

|detA||ω|N+ps

∫
(−ε,ε)c

(u1(xN )−u1(xN + ω · eAρ))p−1

|ω · eAρ|1+ps
d(ω · eAρ) dω

=

∫
ASN−1∩EA

|ω · eA|1+ps

|detA||ω|N+ps
g
(1)
ω·eAε(xN ) dω,

where g
(1)
ω·eAε is defined as in (3.1). Since |ω · eA| ≤ ‖A‖2‖A−1‖2, the condition

ω · eAε < xN

holds for ε ≤ ε̄ where ε̄ depends only on H and H ′. For any such ε we can
apply (3.3) to obtain

|gε(x,A)| ≤ C x−s
N

∫
ASN−1∩EA

|ω · eA|1+ps

|detA||ω|N+ps
ψ(xN , ω · eAε) dω,

where ψ is defined in (3.2). Since ξ �→ ξs is concave for 0 < s < 1, we have

s(xN − t)s−1t ≥ xsN − (xN − t)s,

and being 1 > s > 0 it follows

∂ψ(xN , t)

∂t
= s

(xN − t)s−1t− xsN + (xN − t)s

t1+s
≥ 0, for 0 < t ≤ xN .

Therefore ψ(xN , t) is non-decreasing in t, thus we get

|gε(x,A)| ≤ C x−s
N ψ(xN , ‖A‖2‖A−1‖2ε)

∫
ASN−1

|ω · eA|1+ps

|detA||ω|N+ps
dω

≤ C x−s
N ψ(xN , ‖A‖2‖A−1‖2ε)

∫
SN−1

|ω · eN |1+ps

|Aω|N+ps
dω

≤ C x−s
N ψ(xN , ‖A‖2‖A−1‖2 ε) ‖A−1‖N+ps

2 .

Now ‖A‖2 and ‖A−1‖2 are bounded on H ′ from below and above, as well as xN
on H , and the uniform convergence follows. As in the previous proof, it is readily
checked that u ∈ W̃ s,p(V ) for any bounded V , and the second statement follows
as before. �

Remark 3.3. Due to rotational invariance, Lemma 3.2 easily extends to any half-
space

He = {x ∈ R
N : x · e ≥ 0} (e ∈ SN−1),

simply considering the solution u(x) = (x · e)s+.
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The following lemma gives a control on the behaviour of (−Δ)sp(xN )s+ under a
smooth change of variables.

Lemma 3.4 (Change of variables). Let Φ be a C1,1 diffeomorphism of RN such
that Φ = I in Bc

r, r > 0. Then the function v(x) = (Φ−1(x) · eN)s+ belongs to

W̃ s,p
loc (R

N ) and is a weak solution of (−Δ)spv = f in Φ(RN
+ ), with

(3.4) ‖f‖∞ ≤ C (‖DΦ‖∞, ‖DΦ−1‖∞, r) ‖D2Φ‖∞.

Proof. First we recall that, since DΦ is globally Lipschitz in R
N with constant

L > 0, then D2Φ(x) exists in the classical sense for a.e. x ∈ R
N , and ‖D2Φ‖L∞(RN )

≤ L. Let JΦ(·) = |detDΦ(·)|, u1(t) = ts+. Due to Lemma 2.5, applied with
Aε = {|Φ−1(x) − Φ−1(y)| < ε} it suffices to show that

gε(x) =

∫
{|Φ−1(x)−Φ−1(y)|≥ε}

(v(x) − v(y))p−1

|x− y|N+ps
dy

converges in L1(K) for any compact K ⊆ Φ(RN
+ ). Changing variables x = Φ(X),

this is equivalent to claiming that

(3.5) X �→
∫
Bc

ε(X)

(u1(XN )− u1(YN ))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY

converges as ε→ 0 in L1
loc(R

N
+ ). To prove this claim, we write

gε(x) =

∫
Bc

ε(X)

(u1(XN )− u1(YN ))p−1

|DΦ(X)(X − Y )|N+ps
h(X,Y ) dY

+

∫
Bc

ε(X)

JΦ(X)
(u1(XN )− u1(YN ))p−1

|DΦ(X)(X − Y )|N+ps
dY,

(3.6)

where

h(X,Y ) =
|DΦ(X)(X − Y )|N+ps

|Φ(X)− Φ(Y )|N+ps
JΦ(Y )− JΦ(X), X �= Y.

We will now prove the following estimate, from which convergence of (3.5) will
follow:

(3.7) |h(X,Y )| ≤ CΦ ‖D2Φ‖∞ min{|X − Y |, 1},

where CΦ depends on N , p, s as well as on ‖DΦ‖∞, ‖DΦ−1‖∞ and r. Write

h(X,Y ) =
|DΦ(X)(X − Y )|N+ps

|Φ(X)− Φ(Y )|N+ps
(JΦ(Y )− JΦ(X))

+ JΦ(X)
( |DΦ(X)(X − Y )|N+ps

|Φ(X)− Φ(Y )|N+ps
− 1

)
=: J1 + J2.
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First observe that using Taylor’s formula yields

|DΦ(X)(X − Y )|
|Φ(X)− Φ(Y )| ≤ C ‖DΦ‖∞ ‖DΦ−1‖∞,

therefore,
|J1| ≤ C̃ ‖D2Φ‖L∞(RN ) |X − Y |.

To estimate J2, we note that the mapping t �→ t(N+ps)/2 is smooth in a neighbor-
hood of 1, and that

lim
Y→X

|DΦ(X)(X − Y )|2
|Φ(X)− Φ(Y )|2 = 1,

hence

(3.8) |J2| ≤ CΦ

( |DΦ(X)(X − Y )|2
|Φ(X)− Φ(Y )|2 − 1

)
.

Besides, for all Y ∈ R
N there exist τ1, . . . , τN ∈ [0, 1] such that

Φi(X)− Φi(Y ) = DΦi(τiX + (1− τi)Y ) · (X − Y ), i = 1, . . . , N,

where Φi denotes the i-th component of Φ. So we have (still allowing CΦ > 0 to
depend on ‖DΦ‖L∞(RN ))∣∣ |Φ(X) − Φ(Y )|2 − |DΦ(X)(X − Y )|2∣∣

=
∣∣(Φ(X)− Φ(Y ) +DΦ(X)(X − Y )) · (Φ(X)− Φ(Y )−DΦ(X)(X − Y ))

∣∣
≤ CΦ |X − Y |

N∑
i=1

|Φi(X)− Φi(Y )−DΦi(X)(X − Y )|

≤ CΦ |X − Y |2
N∑
i=1

|DΦi(τiX + (1− τi)Y )−DΦi(X)|

≤ CΦ ‖D2Φ‖∞ |X − Y |3.
Inserting into (3.8) we obtain

|J2| ≤ CΦ

∣∣|DΦ(X)(X − Y )|2 − |Φ(X)− Φ(Y )|2∣∣
|Φ(X)− Φ(Y )|2 ≤ CΦ ‖D2Φ‖∞ |X − Y |,

which yields

|h(X,Y )| ≤ CΦ ‖D2Φ‖L∞(RN ) |X − Y |, for all X,Y ∈ R
N ,

and thus (3.7) for |X − Y | ≤ 2r. Assume now |X − Y | > 2r, then at least one of
X , Y lies in B

c

r. Clearly, if X,Y ∈ B
c

r, then h(X,Y ) = 0. If X ∈ Br, Y ∈ B
c

r,
then for any 1 ≤ i ≤ N we define a mapping ηi ∈ C1,1([0, 1]) by setting

ηi(t) = Φi(X + t(Y −X)).
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It is readily checked that |η′′i | ≤ C‖D2Φ‖∞|X − Y |2 for a.e. t ∈ (0, 1). Moreover,
if t ≥ 2r/|X − Y | then X + t(Y −X) ∈ Bc

r , and since Φ = I outside Br it holds

ηi(t) = (X + t(Y −X)) · ei for t ≥ 2r

|X − Y | .

Therefore η′′i (t) ≡ 0 for t ≥ 2r/|X − Y | and applying the Taylor formula with
integral remainder we have

|Φi(Y )− Φi(X) +DΦi(X)(X − Y )| = |ηi(1)− ηi(0)− η′i(0)|

≤
∫ 1

0

|η′′i (t)|(1 − t) dt ≤
∫ 2r/|X−Y |

0

|η′′i (t)|(1 − t) dt ≤ CΦ ‖D2Φ‖∞ |X − Y |.

So we have

|h(X,Y )| ≤
∣∣∣ |DΦ(X)(X − Y )|N+ps

|Φ(X)− Φ(Y )|N+ps
− 1

∣∣∣+ |1− JΦ(X)|

≤ CΦ

∣∣∣ |DΦ(X)(X − Y )|2 − |Φ(X)− Φ(Y )|2
|Φ(X)− Φ(Y )|2

∣∣∣+ CΦ ‖D2Φ‖∞

≤ CΦ

∣∣DΦ(X)(X − Y ) + Φ(X)− Φ(Y )
∣∣

|Φ(X)− Φ(Y )|2
· ∣∣DΦ(X)(X − Y )− Φ(X) + Φ(Y )

∣∣+ CΦ ‖D2Φ‖∞

≤ CΦ

|X − Y |
N∑
i=1

∣∣DΦi(X)(X − Y )− Φi(X) + Φi(Y )
∣∣+ CΦ ‖D2Φ‖∞

≤ CΦ ‖D2Φ‖∞.

If X ∈ B
c

r and Y ∈ Br, we argue in a similar way. Thus (3.7) is achieved for all
X,Y ∈ R

N .
Let us go back to (3.6). The first integral can be estimated as follows:∫

Bc
ε(X)

∣∣∣(u1(XN )− u1(YN ))p−1

|DΦ(X)(X − Y )|N+ps
h(X,Y )

∣∣∣ dY
≤ CΦ ‖D2Φ‖∞

∫
Bc

ε(X)

min{|X − Y |, 1}
|X − Y |N+s

dY

≤ CΦ ‖D2Φ‖∞
(∫ 1

ε

1

ts
dt+

∫ ∞

1

1

t1+s
dt
)
≤ CΦ ‖D2Φ‖∞(ε1−s + 1).

(3.9)

The second integral in (3.6) vanishes for ε → 0, and is estimated through
Lemma 3.2: since DΦ(RN ) is a compact subset of GLN , the integral vanishes
uniformly in any compact Φ−1(K) ⊆ R

N
+ , and therefore uniformly in any compact

K ⊆ Φ(RN
+ ). Lemma 2.5 thus gives that (−Δ)spv = f weakly in any open bounded

U ⊆ Φ(RN
+ ), where

f(x) := 2 lim
ε→0

gε(x).

Taking the limit for ε→ 0 in estimate (3.9) gives (3.4). �
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Ω

x2

Bρ(x2)

Bρ(x1)

x1

x0

Figure 1. The interior and exterior balls at x0 ∈ ∂Ω. For all x ∈ [x0, x1] it holds
δ(x) = |x− x0|.

Finally, we consider a general bounded domain Ω with a C1,1 boundary. First
we recall some geometrical properties, which can be found e.g. in [1] (see figure 1):

Lemma 3.5. Let Ω ⊂ R
N be a bounded domain with a C1,1 boundary ∂Ω. Then,

there exists ρ > 0 such that for all x0 ∈ ∂Ω there exist x1, x2 ∈ R
N on the normal

line to ∂Ω at x0, with the following properties:

(i) Bρ(x1) ⊂ Ω, Bρ(x2) ⊂ Ωc;

(ii) Bρ(x1) ∩Bρ(x2) = {x0};
(iii) δ(x) = |x− x0| for all x ∈ [x0, x1].

As a byproduct, we prove that (−Δ)spδ
s is bounded in a neighborhood of the

boundary.

Theorem 3.6. Let Ω ⊂ R
N be a bounded domain with a C1,1 boundary. There

exists ρ = ρ(N, p, s,Ω) such that (−Δ)spδ
s = f weakly in

Ωρ := {x ∈ Ω : δ(x) < ρ},
for some f ∈ L∞(Ωρ).

Proof. Suppose that ρ is smaller than the one given in Lemma 3.5. We choose
a finite covering of Ωρ made of balls of radius 2ρ and center xi ∈ ∂Ω. Using a
partition of unity, it suffices to prove the statement in any set Ω ∩ B2ρ(xi). To
do so, we flatten the boundary near the point xi, which we can suppose without
loss of generality to be the origin. Choosing a smaller ρ (depending only on the
geometry of ∂Ω) if necessary, there exists a diffeomorphism Φ ∈ C1,1(RN ,RN ),
Φ(X) = x such that Φ = I in Bc

4ρ and

(3.10) Ω ∩B2ρ � Φ(B3ρ ∩R
N
+ ), δ(Φ(X)) = (XN )+, ∀X ∈ B3ρ.
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We claim that

gε(x) =

∫
{|Φ−1(x)−Φ−1(y)|≥ε}

(δs(x) − δs(y))p−1

|x− y|N+ps
dy → f(x) in L1

loc(Ω ∩B2ρ).

We change variables setting X = Φ−1(x), noting that X ∈ B3ρ ∩ R
N
+ for any

x ∈ Ω ∩B2ρ, and compute

gε(x) =

∫
{|X−Y |≥ε}

(δs(Φ(X))− δs(Φ(Y )))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY

=

∫
Bc

ε(X)∩B3ρ

(δs(Φ(X))− δs(Φ(Y )))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY

+

∫
Bc

3ρ

(δs(Φ(X))− δs(Φ(Y )))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY

=

∫
Bc

ε(X)

(u1(XN )− u1(YN ))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY

+

∫
Bc

3ρ

(δs(Φ(X))− δs(Φ(Y )))p−1 − (u1(XN )− u1(YN ))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY

= f1,ε(X) + f2(X),

for sufficiently small ε, where we used the fact that

δs(Φ(Z)) = u1(ZN ) for all Z ∈ B3ρ

thanks to (3.10). Clearly f2 ◦Φ−1 ∈ L1(Ω∩B2ρ), and to estimate its L∞-norm we
observe that, due to (3.10),

dist(Φ−1(Ω ∩B2ρ), B
c
3ρ) > θΦ,ρ > 0.

Then, using the s-Hölder regularity of δs ◦ Φ and u1, and recalling that Φ−1 ∈
Lip(RN ) and (2.8), we obtain, for all X ∈ Φ−1(Ω ∩B2ρ),

|f2(X)| ≤ CΦ,ρ

∫
Bc

3ρ

|X − Y |s(p−1)

|X − Y |N+ps
dY ≤ CΦ,ρ

∫
RN

1

(1 + |Y |)N+s
dY ≤ CΦ,ρ.

Regarding f1,ε, it coincides with the gε of (3.6). Therefore claim (3.5) of
Lemma 3.4 shows that the limit

f1(X) := lim
ε→0

∫
Bc

ε(X)

(u1(XN )− u1(YN ))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY

holds in L1
loc(R

N
+ ), and ‖f1‖∞ ≤ CΦ,ρ. Therefore gε → f1 ◦ Φ−1 + f2 ◦ Φ−1 in

L1
loc(Ω∩B2ρ), and both are bounded. Lemma 2.5 finally gives the conclusion. �



1376 A. Iannizzotto, S. Mosconi and M. Squassina

4. Barriers

In this section we provide some barrier-type functions and prove a priori bounds
for the bounded weak solutions of problem (1.1). We begin by considering the
simple problem

(4.1)

{
(−Δ)spv = 1 in B1,

v = 0 in Bc
1.

The following lemma displays some properties of the solution of (4.1):

Lemma 4.1. Let v ∈ W s,p
0 (B1) be a weak solution of (4.1). Then, v ∈ L∞(RN )

is unique, radially non-increasing, and for all r ∈ (0, 1) it holds infBr v > 0.

Proof. First we prove uniqueness. Let the functional J : W s,p
0 (B1) → R be de-

fined by

J(u) =
1

p

∫
RN×RN

|u(x)− u(y)|p
|x− y|N+ps

dx dy −
∫
B1

u(x) dx.

The functional J is strictly convex and coercive, hence it admits a unique global
minimizer v ∈ W s,p

0 (B1), which is the only weak solution of (4.1). By (iii) in
Lemma 2.9, we see that v is radially symmetric, that is, v(x) = ψ(|x|) for all
x ∈ R

N , where ψ : R+ → R+ is a mapping vanishing in [1,∞). Let v# be the
symmetric non-increasing rearrangement of v. By the fractional Pólya–Szegö in-
equality (see Theorem 3 of [2]) we have J(v#) ≤ J(v), so by uniqueness v = v#,
that is, ψ is non-increasing and continuous from the right in R+. Now let

r0 = inf{r ∈ (0, 1] : ψ(r) = 0}.

Clearly r0 ∈ (0, 1]. Arguing by contradiction, assume r0 ∈ (0, 1). Then v ∈
W s,p

0 (Br0) and it solves weakly{
(−Δ)spv = 1 in Br0

v = 0 in Bc
r0 .

Reasoning as above and using uniqueness and Lemma 2.9 (ii), we see that v(x) =
r−ps
0 v(rps0 x) in Br0 , so

ψ(r20) = rps0 ψ(r0) = 0,

with r20 < r0, against the definition of r0. So, for all r ∈ (0, 1) we have

inf
Br

v = ψ(r) > 0.

Finally, we prove that v ∈ L∞(RN ). Let w ∈ Cs(RN ) ∩ W̃ s,p(B1) be defined by

w(x) = min{(2− xN )s+, 5
s}.
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Notice that w(x) = (2 − xN )s+ = u1(2 − xN ) for all x ∈ B2. Thus we can apply
Lemma 2.8 in B3/2 to

w(x) = u1(2 − xN )− (u1(2− xN )− 5s)+

to get, by Lemma 3.2

(−Δ)spw(x) = 2

∫
{yN≤−3}

((2 − xN )s+ − 5s)p−1 − ((2− xN )s+ − (2− yN )s+)
p−1

|x− y|N+ps
dy

=: I(x)

weakly in B1. The function I : B̄1 → R is continuous and positive, so there exists
α > 0 such that

(−Δ)spw(x) ≥ α weakly in B1.

We set w̃ = α−1/(p−1)w, so we have{
(−Δ)spv = 1 ≤ (−Δ)spw̃ weakly in B1

v = 0 ≤ w̃ in Bc
1,

and Proposition 2.10 yields

0 ≤ v ≤ w̃ ≤ 5s

α1/(p−1)
, in R

N ,

so v ∈ L∞(RN ), concluding the proof. �

Next we introduce a priori bounds for functions with bounded fractional p-La-
placian.

Corollary 4.2 (L∞-bound). Let u ∈ W s,p
0 (Ω) satisfy |(−Δ)spu| ≤ K weakly in Ω

for some K > 0. Then
‖u‖∞ ≤ (CdK)1/(p−1),

for some Cd = C(N, p, s, d), d = diam(Ω).

Proof. Let v ∈ W s,p
0 (B1) be as in Lemma 4.1, x0 such that Ω � Bd(x0), and set

ṽ(x) = (Kdps)1/(p−1) v
(x− x0

d

)
.

By Lemma 2.9 (i), (ii) we have weakly{
(−Δ)spu ≤ K = (−Δ)spṽ in Ω,

u = 0 ≤ ṽ in Ωc,

which, by Proposition 2.10, implies u ≤ ṽ in R
N . A similar argument, applied

to −u, gives the lower bound. �
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ϕ

x̃R

R

2

B1(x̄R)
U+ x̄R

Figure 2. The balls BR(x̃R) and B1(x̄R). The thick line is the graph of ϕ, whose
epigraph is U+.

We can now produce (local) upper barriers on the complements of balls.

Lemma 4.3 (Local upper barrier). There exist w ∈ Cs(RN ), and universal r > 0,
a ∈ (0, 1), c > 1 with{

(−Δ)spw ≥ a weakly in Br(eN ) \B1,

c−1(|x| − 1)s+ ≤ w(x) ≤ c(|x| − 1)s+ in R
N .

Proof. By translation, rotation invariance and scaling (Lemma 2.9), it suffices to
prove the statement for any fixed ball of radius R > 2, at any fixed point x̄R of
its boundary. To fix ideas, we set x̃R = (0,−(R2 − 4)1/2) and x̄R = x̃R +ReN , so
that BR(x̃R) intersects the hyperplane R

N−1 × {0} in the (N − 1)-ball {|x′| < 2}
(we use the notation x = (x′, xN ) ∈ R

N−1 × R).
In the following we will choose R large enough, depending only on N, p, s. If

R > 2, we can find ϕ ∈ C1,1(RN−1) such that ‖ϕ‖C1,1(RN−1) ≤ C/R and

ϕ(x′) =
(
(R2 − |x′|2)1/2 − (R2 − 4)1/2

)
+

for all |x′| ∈ [0, 1] ∪ [3,∞).

We set

U+ = {x ∈ R
N : ϕ(x′) < xN}

(see figure 2). We claim that for any sufficiently large R there exists a diffeomor-
phism Φ ∈ C1,1(RN ,RN ) such that Φ(0) = x̄R, Φ = I in Bc

4, and

(4.2) ‖Φ− I‖C1,1(RN ,RN ) + ‖Φ−1 − I‖C1,1(RN ,RN ) ≤ C

R
, Φ(RN

+ ) = U+.

Indeed, let η ∈ C2(R) satisfy η ∈ [0, 1], η(0) = 1, supp η ⊆ (−1, 1). Set for all
X = (X ′, XN ) ∈ R

N−1 × R

Φ(X) = X + ϕ(X ′) η(XN ) eN .
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Then, for sufficiently large R, Φ ∈ C1,1(RN ,RN) is a bijection since Φ(X1) =
Φ(X2) implies X ′

1 = X ′
2, and the map t �→ t+ ϕ(X ′)η(t) is increasing whenever

sup
X∈RN

ϕ(X ′) |η′(XN )| = 4 sup
R
|η′|

R+
√
R2 − 4

< 1.

Its inverse mapping satisfies

(4.3) Φ−1(x) = x− ϕ(x′) η(Φ−1(x) · eN )eN for all x ∈ R
N ,

besides Φ(0) = x̄R. Moreover, for all X ∈ Bc
4 we have either |X ′| ≥ 3 or |XN | ≥ 1,

in both cases Φ(X) = X . The C1,1-bounds on ϕ, η and (4.3) yield the required
C1,1-bounds on Φ− I and Φ−1 − I. Finally, reasoning as above, the monotonicity
of t �→ t+ ϕ(X ′)η(t) implies that Φ(RN

+ ) = U+, and (4.2) is proved.

Let v1(x) = u1(Φ
−1(x) · eN). Lemma 3.4 ensures that v1 ∈ W̃ s,p

loc (R
N ) and

(4.4) (−Δ)spv1 = f weakly in U+, with ‖f‖∞ ≤ C/R.

Define
v(x) = min{v1(x), 5s},

which belongs to W̃ s,p(B4). From Φ = I in Bc
4 we infer Φ−1(B4) = B4 and thus

v1(x) = u1(xN ) in Bc
4, v1 ≤ 4s in B4.

Hence

v1(x) − v(x) = (xN )s+ − 5s in {xN ≥ 5}, v1 − v = 0 in {xN ≤ 5} � B4.

Thus the function v− v1 satisfies conditions (2.14) in B4, and Lemma 2.8 provides
weakly in B4

(−Δ)spv = (−Δ)sp(v1 + (v − v1)) = f + g,

where

g(x) = 2

∫
Bc

4

(v1(x) − v(y))p−1 − (v1(x) − v1(y))
p−1

|x− y|N+ps
dy

≥ 2

∫
{yN≥5}

((xN )s+ − 5s)p−1 − ((xN )s+ − (yN )s+)
p−1

|x− y|N+ps
dy

for any x ∈ B4. As in the proof of Lemma 4.1, there is a universal α > 0 such that
g(x) ≥ α for all x ∈ B4, and therefore using (4.4) we have

(−Δ)spv ≥ f + g ≥ α− C

R
weakly in U+ ∩B4.

Taking R big enough we thus find B2(x̄R) � B4 and

(4.5) (−Δ)spv ≥ α

2
> 0, weakly in U+ ∩B2(x̄R).
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Set, for all x ∈ R
N ,

dR(x) = (|x− x̃R| − R)+.

We can estimate v by multiples of dsR globally from above but only locally from
below. Indeed, since v = 0 in U c

+, BR(x̃R) ⊂ U c
+, and v ∈ Cs(RN ), there exists

c̃ > 1 such that

(4.6) v(x) ≤ c̃ dist(x, U c
+)

s ≤ c̃ dsR(x), for all x ∈ R
N .

On the other hand, for all x ∈ B1(x̄R) it holds either x ∈ B1(x̄R) \U+ ⊆ BR(x̃R),
in which case dsR(x) = 0 = c̃v(x), or x ∈ B1(x̄R)∩U+ ⊆ Bc

R(x̃R). In the latter case
let X = (X ′, XN ) be such that x = Φ(X), Z = (X ′, 0) and z = Φ(Z). It holds
|X ′| ≤ 1 and by the construction of Φ, it follows that z ∈ ∂BR(x̃R), therefore

dsR(x) ≤ |x− z|s ≤ c̃ |X − Z|s = c̃ Xs
N = c̃ v(x).

Thus we have (taking c̃ > 1 bigger if necessary)

(4.7) v ≥ 1

c̃
dsR in B1(x̄R).

We aim at extending (4.7) to the whole R
N , while retaining (4.5) and (4.6). For

any ε ∈ (0, 1/c̃), set
vε = max{v, εdsR}.

Clearly vε satisfies estimates like (4.6) and (4.7) in R
N with a constant c̃ε =

max{c̃ + ε, ε−1}. Besides v ≤ vε ≤ v + εdsR in R
N , being ε < 1/c̃, vε − v = 0 in

B1(x̄R). So, by (4.5), Lemma 2.8 and (2.5) (with M = 5s and q = p− 1)

(−Δ)spvε(x) = (−Δ)spv(x) − 2

∫
Bc

1/2
(x̄R)

(v(x)− v(y))p−1 − (v(x) − vε(y))
p−1

|x− y|N+ps
dy

≥ α

2
− C

∫
Bc

1(x̄R)

max{εdsR(y), (εdsR(y))p−1}
|x̄R − y|N+ps

dy ≥ α

2
− CJ(ε)

weakly in B1/2(x̄R)∩U+ (in the end we have used the inequality |x−y| ≥ 1/2|x̄R−y|
for all x ∈ B1/2(x̄R), y ∈ Bc

1(x̄R)). Notice that J(ε) → 0 as ε→ 0+ independently
of x, thus, for ε > 0 small enough we have

(−Δ)spvε(x) ≥
α

4
> 0 weakly in B1/2(x̄R) \BR(x̃R).

To obtain the barrier of the thesis, we set w(x) = vε(x̃R+Rx) and using Lemma 2.9
we reach the conclusion for r = 1/(2R), a = α/(4Rps), c = Rs max{c̃+ε, ε−1}. �

Finally, we prove that any bounded weak solution of (1.1) can be estimated by
means of a multiple of δs.

Theorem 4.4. Let u ∈ W s,p
0 (Ω) satisfy |(−Δ)spu| ≤ K weakly in Ω for some

K > 0. Then

(4.8) |u| ≤ (CΩK)1/(p−1) δs a.e. in Ω,

for some CΩ = C(N, p, s,Ω).
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Proof. Considering u/K1/(p−1) and using homogeneity, we can prove (4.8) in the
case K = 1. Thanks to Corollary 4.2 we may focus on a neighborhood of ∂Ω. Let
ρ > 0 be as in Lemma 3.5, and let r ∈ (0, 1) be defined in Lemma 4.3. Set

U =
{
x ∈ Ω : δ(x) < r

ρ

2

}
,

x̄ ∈ U and x0 = Π(x̄) ∈ ∂Ω its point of minimal distance from Ωc. There exists
two balls Bρ/2(x1) and Bρ(x2) exteriorly tangent to ∂Ω at x0, and (by scaling and
translating the supersolution of the previous Lemma 4.3) a function w ∈ Cs such
that

(4.9) (−Δ)spw ≥ a weakly in Brρ/2(x0) \Bρ/2(x1)

and

(4.10) c−1 ds(x) ≤ w(x) ≤ c ds(x) in R
N .

where we have set
d(x) = dist(x,Bc

ρ/2(x1)).

Notice that the constants in (4.9) (4.10) depend only on ρ, N , p and s, and we will
suppose henceforth that a, r, c−1 ∈ (0, 1). By Lemma 3.5 it holds

(4.11) d(x̄) = δ(x̄) = |x̄− x0|,
moreover

d(x) ≥ θ > 0, in Bc
ρ(x2) \Brρ/2(x0).

for a constant θ which depends only on ρ and r (and thus on Ω alone). Since
Ω ⊆ Bc

ρ(x2), the latter inequality together with (4.10) provides

(4.12) w ≥ c−1θs =: α > 0, in Ω \Brρ/2(x0).

We define the open set

V = Ω ∩Brρ/2(x0) ⊆ Brρ/2(x0) \Bρ/2(x1),

where we will apply the comparison principle. Suppose without loss of generality
that in (4.12) α ∈ (0, 1) and let Cd > 1 be as in Corollary 4.2. Set

M =
1

α

(Cd

a

)1/(p−1)

, w̄ =Mw.

By (4.9) and Cd/α
p−1 ≥ 1 we have

(−Δ)spw̄ =Mp−1(−Δ)spw ≥ Cd

αp−1
≥ 1 ≥ (−Δ)spu, weakly in V .

Moreover u = 0 ≤ w̄ in Ωc, while (4.12), a < 1 and Corollary 4.2 give

w̄ ≥Mα =
(Cd

a

)1/(p−1)

≥ sup
Ω
u, in Ω \Brρ/2(x0).
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Therefore w̄ ≥ u in the whole V c, and Proposition 2.10 together with (4.10) yields

u(x) ≤ w̄(x) ≤ cMds(x) for a.e. x ∈ R
N .

Recalling (4.11) we get

u(x̄) ≤ cM ds(x̄) = cM δs(x̄) for all x̄ = x0 − tnx0 , t ∈
[
0, r

ρ

2

]
,

where nx0 is the exterior normal to ∂Ω at x0, which gives the thesis since cM
depends only on N, p, s, ρ, r, and Ω. A similar argument applied to −u yields the
lower bound. �

5. Hölder regularity

In this section we will obtain the Hölder regularity of solutions.

5.1. Interior Hölder regularity

We now study the behavior of a weak supersolution in a ball, proving a weak
Harnack inequality. Then we will obtain an estimate of the oscillation of a bounded
weak solution in a ball (this can be interpreted as a first interior Hölder regularity
result). All balls are meant to be centered at 0, as translation invariance of (−Δ)sp
allows to extend the results to balls centered at any point.

We begin with a curious Jensen-type inequality:

Lemma 5.1. Let E ⊂ R
N be a set of finite measure and let u ∈ L1(E) satisfy

−
∫
E

u dx = 1.

Then, for all r ≥ 1 and λ ≥ 0, it holds

−
∫
E

(ur − λr)1/r dx ≥ 1− 2(r−1)/r λ.

Proof. Avoiding trivial cases, we assume r > 1 and λ > 0. Set, for all t ∈ R,

g(t) = (tr − λr)1/r.

Then, for all t ∈ R \ {0, λ}, we have

g′(t) = |tr − λr|(1−r)/r |t|r−1.

In particular, tλ = 2−1/rλ is the only solution of g′(t) = 1. Elementary calculus
shows that for all t ∈ R

g(t) ≥ g(tλ) + g′(tλ)(t− tλ) = t− 2tλ.

So we have

−
∫
E

(g ◦ u) dx ≥ −
∫
E

(u− 2tλ) dx = 1− 2(r−1)/r λ,

which concludes the proof. �
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χBR\BR/2
u χBR\BR/2

u

Figure 3. The lower barrier w.

Now we prove a weak Harnack-type inequality for non-negative supersolutions:

Theorem 5.2 (Weak Harnack inequality). There exist universal σ ∈ (0, 1), C̄ > 0

with the following property: if u ∈ W̃ s,p(BR/3) satisfies weakly{
(−Δ)spu ≥ −K in BR/3,

u ≥ 0 in R
N ,

for some K ≥ 0, then

inf
BR/4

u ≥ σ
(
−
∫
BR\BR/2

up−1 dx
)1/(p−1)

− C̄ (KRps)1/(p−1).

Proof. We first consider the case p ≥ 2. Let ϕ ∈ C∞(RN ) be such that 0 ≤ ϕ ≤ 1
in R

N , ϕ = 1 in B3/4, ϕ = 0 in Bc
1, and by Proposition 2.12 |(−Δ)spϕ| ≤ C1 weakly

in B1. We rescale by setting ϕR(x) = ϕ(3x/R), so ϕR ∈ C∞(RN ), 0 ≤ ϕR ≤ 1
in R

N , ϕR = 1 in BR/4, ϕR = 0 in Bc
R/3, and |(−Δ)spϕR| ≤ C1R

−ps weakly in

BR/3 (taking C1 bigger).
For all σ ∈ (0, 1) we set

L =
(
−
∫
BR\BR/2

up−1 dx
)1/(p−1)

, w = σLϕR + χBR\BR/2
u

(see figure 3). So w ∈ W̃ s,p(BR/3), and by Lemma 2.8 and (2.7) we have, weakly
in BR/3,

(−Δ)spw(x)

= (−Δ)sp(σLϕR)(x) + 2

∫
BR\BR/2

(σLϕR(x)− u(y))p−1 − (σLϕR(x))
p−1

|x− y|N+ps
dy

≤ C1(σL)
p−1

Rps
− 23−p

∫
BR\BR/2

up−1(y)

|x− y|N+ps
dy ≤ C1(σL)

p−1

Rps
− C2L

p−1

Rps
.
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If we assume

σ < min
{
1,
( C2

2C1

)1/(p−1)}
,

we get the upper estimate

(5.1) (−Δ)spw(x) ≤ −C2 L
p−1

2Rps
weakly in BR/3.

We set C̄ = (2/C2)
1/(p−1) and distinguish two cases:

• if L ≤ C̄(KRps)1/(p−1), then clearly

inf
BR/4

u ≥ 0 ≥ σL − C̄(KRps)1/(p−1);

• if L > C̄(KRps)1/(p−1), then we use (5.1) to have{
(−Δ)spw ≤ −K ≤ (−Δ)spu weakly in BR/3,

w = χBR\BR/2
u ≤ u in Bc

R/3,

which by Proposition 2.10 implies w ≤ u in R
N , in particular

inf
BR/4

u ≥ σL.

In any case we have
inf
BR/4

u ≥ σL − C̄ (K Rps)1/(p−1),

which is the conclusion.
Now we consider the case p ∈ (1, 2). Due to Remark 2.14, in this case we cannot

use the cut-off function ϕ as before to construct the barrier w. We use instead the
weak solution v of (4.1) introduced in Lemma 4.1, recalling that infB3/4

v > 0, and
we set

ϕR(x) =
(

inf
B3/4

v
)−1

v
(3x
R

)
,

so that 0 ≤ ϕR ≤ α (for some universal α > 0) in R
N , ϕR ≥ 1 in BR/4, ϕR = 0

in Bc
R/3, and (−Δ)spϕR = C1R

−ps weakly in BR/3. Accordingly, to obtain the

estimate (5.1) we apply Lemma 5.1 to the function (u/L)p−1 with E = BR \BR/2,
r = 1/(p− 1), and λ = (σϕR(x))

p−1, so that

−
∫
BR\BR/2

(u(y)
L

− σϕR(x)
)p−1

dy ≥ 1− 22−p(σϕR(x))
p−1,

for a.e. x ∈ BR/3. This, in turn, implies that for a.e. x ∈ BR/3

2

∫
BR\BR/2

(σLϕR(x) − u(y))p−1 − (σLϕR(x))
p−1

|x− y|N+ps
dy

≤ C2

Rps
−
∫
BR\BR/2

(σLϕR(x)− u(y))p−1 dy

≤ C2

Rps

(
22−p(σLϕR(x))

p−1 − Lp−1
) ≤ −C2 L

p−1

2Rps
,
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where we have chosen σ < 2
p−3
p−1α−1. Then, by taking σ even smaller if necessary,

we get (5.1) and the rest of the proof follows verbatim. �

We need to extend Theorem 5.2 to supersolutions which are only non-negative
in a ball. To do so, we introduce a tail term defined as in (2.1):

Lemma 5.3. There exist σ ∈ (0, 1), C̃ > 0, and for all ε > 0 a constant Cε > 0

with the following property: if u ∈ W̃ s,p(BR/3) satisfies weakly{
(−Δ)spu ≥ −K in BR/3,

u ≥ 0 in BR,

for some K ≥ 0, then

inf
BR/4

u

≥ σ
(
−
∫
BR\BR/2

up−1 dx
)1/(p−1)

− C̃(KRps)1/(p−1) − CεTail(u−;R)− ε sup
BR

u.(5.2)

Proof. First we consider the case p ≥ 2. We apply Lemma 2.8 to the functions u
and v = u−, so that u+ v = u+, and Ω = BR/3: we have in a weak sense in BR/3

(−Δ)sp u+(x)

= (−Δ)spu(x) + 2

∫
Bc

R/3

(u(x)− u(y)− u−(y))p−1 − (u(x) − u(y))p−1

|x− y|N+ps
dy

≥ −K + 2

∫
{u<0}

u(x)p−1 − (u(x) − u(y))p−1

|x− y|N+ps
dy

≥ −K + C

∫
{u<0}

u(x)p−1 − (u(x)− u(y))p−1

|y|N+ps
dy,

where in the end we have used that |x− y| ≥ 2/3|y|. By (2.6), for any θ > 0 there
exists Cθ > 0 such that weakly in BR/3

(−Δ)spu+(x) ≥ −K − θ
(
sup
BR

u
)p−1

∫
Bc

R

1

|y|N+ps
dy − Cθ

Rps
Tail(u−;R)p−1

≥ −K − Cθ

Rps

(
sup
BR

u
)p−1 − Cθ

Rps
Tail(u−;R)p−1 =: −K̃.

Now, by applying Theorem 5.2 to u+ we have for any ε > 0 and θ < (ε/C̄)p−1,

inf
BR/4

u ≥ σ
(
−
∫
BR\BR/2

up−1 dx
)1/(p−1)

− C̄(K̃Rps)1/(p−1)

≥ σ
(
−
∫
BR\BR/2

up−1 dx
)1/(p−1)

− C̃(KRps)1/(p−1) − CεTail(u−;R)− ε sup
BR

u

for some universal constant C̃ > 0 and a convenient Cε > 0 depending also on ε.
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Now we turn to the case p ∈ (1, 2). The argument in this case is in fact easier,
as by (2.3) we have∫

{u<0}

u(x)p−1 − (u(x)− u(y))p−1

|y|N+ps
dy ≤ 1

Rps
Tail(u−;R)p−1 for a.e. x ∈ BR/3,

then we argue as above using (2.2) instead of (2.7) when required. �

Clearly, symmetric versions of Theorem 5.2 and Lemma 5.3 also hold. Now
we use the above results to produce an estimate of the oscillation of a bounded
function u such that (−Δ)spu is locally bounded. We set for all R > 0, x0 ∈ R

N

Q(u;x0, R) = ‖u‖L∞(BR(x0)) +Tail(u;x0, R), Q(u;R) = Q(u; 0, R).

Our result is as follows:

Theorem 5.4. There exist universal α ∈ (0, 1), C > 0 with the following property:

if u ∈ W̃ s,p(BR0) ∩ L∞(BR0) satisfies |(−Δ)spu| ≤ K weakly in BR0 for some
R0 > 0, then for all r ∈ (0, R0),

osc
Br

u ≤ C
[
(KRps

0 )1/(p−1) +Q(u;R0)
] rα
Rα

0

.

Proof. First we consider the case p ≥ 2. For all integer j ≥ 0 we set Rj = R0/4
j,

Bj = BRj , and
1
2Bj = BRj/2. We put forward the following.

Claim. There exist a universal α ∈ (0, 1) and a real λ > 0 (depending on all
the data), a non-decreasing sequence (mj), and a non-increasing sequence (Mj),
such that, for all j ≥ 0,

mj ≤ inf
Bj

u ≤ sup
Bj

u ≤Mj, Mj −mj = λRα
j .

We argue by induction on j. Step zero: we setM0 = supB0
u and m0 =M0−λRα

0 ,
where λ > 0 satisfies

(5.3) λ ≥ 2 ‖u‖L∞(B0)

Rα
0

,

which clearly implies
inf
B0

u ≥ m0.

Inductive step: assume that sequences (mj), (Mj) are constructed up to the in-
dex j. Then

Mj −mj = −
∫
Bj\ 1

2Bj

(Mj − u) dx+−
∫
Bj\ 1

2Bj

(u−mj) dx

≤
(
−
∫
Bj\ 1

2Bj

(Mj − u)p−1 dx
)1/(p−1)

+
(
−
∫
Bj\ 1

2Bj

(u −mj)
p−1 dx

)1/(p−1)

.(5.4)
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Let σ ∈ (0, 1), C̃ > 0 be as in Lemma 5.3, and multiply the previous inequality
by σ to obtain, via (5.2),

σ(Mj −mj) ≤ inf
Bj+1

(Mj − u) + inf
Bj+1

(u−mj) + 2C̃ (K Rps
0 )1/(p−1)

+ Cε

[
Tail((Mj − u)−;Rj) + Tail((u−mj)−;Rj)

]
+ ε

[
sup
Bj

(Mj − u) + sup
Bj

(u −mj)
]
.

(5.5)

Setting universally ε = σ/4, C = max{2C̃, Cε} and rearranging, we have

osc
Bj+1

u ≤
(
1− σ

2

)
(Mj −mj)

+ C
[
(KRps

0 )1/(p−1) +Tail((Mj − u)−;Rj) + Tail((u −mj)−;Rj)
]
.(5.6)

Now we provide an estimate of both non-local tails, firstly noting that

Tail((u −mj)−;Rj)
p−1 = Rps

j

j−1∑
k=0

∫
Bk\Bk+1

(u(y)−mj)
p−1
−

|y|N+ps
dy

+Rps
j

∫
Bc

0

(u(y)−mj)
p−1
−

|y|N+ps
dy.

(5.7)

We consider the first term: by the inductive hypothesis, for all 0 ≤ k ≤ j − 1 we
have, in Bk \Bk+1,

(u−mj)− ≤ mj −mk ≤ (mj −Mj) + (Mk −mk) = λ(Rα
k −Rα

j ),

hence

j−1∑
k=0

∫
Bk\Bk+1

(u(y)−mj)
p−1
−

|y|N+ps
dy ≤ λp−1R

α(p−1)
j

j−1∑
k=0

∫
Bk\Bk+1

(4α(j−k) − 1)p−1

|y|N+ps
dy

≤ C λp−1 S(α)R
α(p−1)−ps
j ,

where we have set, for all α ∈ (0, 1),

S(α) =

∞∑
h=1

(4αh − 1)p−1

4psh
,

noting that S(α) → 0 as α → 0+. Regarding the second term, by the inductive
hypothesis we have

mj ≤ inf
Bj

u ≤ sup
Bj

u ≤ ‖u‖L∞(B0),

hence∫
Bc

0

(u(y)−mj)
p−1
−

|y|N+ps
dy ≤

∫
Bc

0

(‖u‖L∞(B0) + |u(y)|)p−1

|y|N+ps
dy ≤ C Q(u;R0)

p−1

Rps
0

.
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Choosing α < ps/(p− 1) and plugging the above inequalities in (5.7), we get

Tail((u −mj)−;Rj) ≤ C
[
λp−1 S(α)R

α(p−1)
j +

Q(u;R0)
p−1Rps

j

Rps
0

]1/(p−1)

≤ C
[
λS(α)1/(p−1) +

Q(u;R0)

Rα
0

]
Rα

j .

An analogous estimate holds for Tail((Mj − u)−;Rj), so from (5.6) we have

osc
Bj+1

u ≤
(
1− σ

2

)
λRα

j + C
[
(KRps

0 )1/(p−1) + λS(α)1/(p−1)Rα
j +

Q(u;R0)R
α
j

Rα
0

]
≤ 4α

[(
1− σ

2

)
+ CS(α)

1
p−1

]
λRα

j+1 + 4αC
[
K

1
p−1R

ps
p−1−α

0 +
Q(u;R0)

Rα
0

]
Rα

j+1.(5.8)

Now we choose α ∈ (0, ps/(p− 1)) universally such that

4α
[(

1− σ

2

)
+ CS(α)1/(p−1)

]
≤ 1− σ

4
,

and we set

(5.9) λ =
4α+1

σ
C
[
K1/(p−1)R

ps/(p−1)−α
0 +

Q(u;R0)

Rα
0

]
,

which implies (5.3) as 4α+1C/σ > 2. So, (5.8) forces

osc
Bj+1

u ≤ λRα
j+1.

We may pick mj+1, Mj+1 such that

mj ≤ mj+1 ≤ inf
Bj+1

u ≤ sup
Bj+1

u ≤Mj+1 ≤Mj , Mj+1 −mj+1 = λRα
j+1,

which completes the induction and proves the claim.
Now fix r ∈ (0, R0) and find an integer j ≥ 0 such that Rj+1 ≤ r < Rj , thus

Rj ≤ 4r. Hence, by the claim and (5.9), we have

osc
Br

u ≤ osc
Bj

u ≤ λRα
j ≤ C [(KRps

0 )1/(p−1) +Q(u;R0)
] rα
Rα

0

,

which concludes the argument.
Now we consider the case p ∈ (1, 2). The only major difference is in (5.6):

instead of (5.4) we use the inductive hypothesis to see that

Mj − u ≤ (Mj −mj)
2−p(Mj − u)p−1, in Bj ,

and similarly for u−mj . Hence

Mj −mj ≤ (Mj −mj)
2−p

[
−
∫
Bj\ 1

2Bj

(Mj − u)p−1 dx+−
∫
Bj\ 1

2Bj

(u−mj)
p−1 dx

]
,
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which in turn implies through (2.2)

Mj −mj ≤
[
−
∫
Bj\ 1

2Bj

(Mj − u)p−1 dx+−
∫
Bj\ 1

2Bj

(u−mj)
p−1 dx

]1/(p−1)

≤ 2
2−p
p−1

[(
−
∫
Bj\ 1

2Bj

(Mj − u)p−1 dx
)1/(p−1)

+
(
−
∫
Bj\ 1

2Bj

(u−mj)
p−1 dx

)1/(p−1)]
.

Multiplying by σ/2(2−p)/(p−1) and applying Lemma 5.3 we obtain (5.5) with σ̃ =
σ/2(2−p)/(p−1), and the proof follows verbatim. �

The next corollary of Theorem 5.4 follows from standard arguments.

Corollary 5.5. There exists universal C > 0 and α ∈ (0, 1) with the following

property: for all u ∈ W̃ s,p(B2R0(x0)) ∩ L∞(B2R0(x0)) such that |(−Δ)spu| ≤ K
weakly in B2R0(x0),

(5.10) [u]Cα(BR0(x0)) ≤ C
[
(K Rps

0 )1/(p−1) +Q(u;x0, 2R0)
]
R−α

0 .

Proof. Given x, y in BR0(x0), let r = |x − y|. It suffices to apply Theorem 5.4 to
the ball BR0(x) ⊆ B2R0(x0). Clearly ‖u‖L∞(BR0(x))

≤ ‖u‖L∞(B2R0 (x0)) and

Tail(u;x,R0)
p−1 = Rps

0

∫
Bc

R0
(x)

|u(y)|p−1

|x− y|N+ps
dy

≤ CRps
0

[ ∫
B2R0(x0)\BR0 (x)

‖u‖p−1
L∞(B2R0 (x0))

|x− y|N+ps
dy +

∫
Bc

2R0
(x0)

|u(y)|p−1

|x− y|N+ps
dy

]
≤ C‖u‖p−1

L∞(B2R0 (x0))
+ CRps

0

∫
Bc

2R0
(x0)

|u(y)|p−1

|x0 − y|N+ps
dy

for a universal C, where as usual we used |x − y| ≥ |x0 − y|/2 for y ∈ Bc
2R0

(x0),
x ∈ BR0(x0). This implies that

Q(u;x,R0) ≤ CQ(u;x0, 2R0),

and thus the desired estimate on the Hölder seminorm. �

5.2. Global Hölder regularity

We finally prove the stated Hölder regularity result up to the boundary.

Proof of Theorem 1.1. We set K = ‖f‖L∞(Ω). Corollary 4.2 already provides the
desired estimate for the sup-norm, namely

‖u‖L∞(Ω) ≤ C K1/(p−1),

so we can focus on the Hölder seminorm.
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Let α be the one given in Corollary 5.5. We can assume α ∈ (0, s]. Through a

covering argument, (5.10) implies that u ∈ Cα
loc(Ω

′
) for all Ω′ � Ω, with a bound

of the form

‖u‖Cα(Ω
′
) ≤ CΩ′ K1/(p−1), CΩ′ = C(N, p, s,Ω,Ω′).

Hence it suffices to prove (1.2) in the closure of a fixed ρ-neighbourhood of ∂Ω. We
will suppose that ρ > 0 is so small (depending only on Ω) that Lemma 3.5 holds,
and thus the metric projection

Π : V → ∂Ω, Π(x) = Argmin
y∈Ωc

|x− y|

is well defined on V := {x ∈ Ω : δ(x) ≤ ρ}. We claim that

(5.11) [u]Cα(Br/2(x)) ≤ CΩK
1/(p−1), for all x ∈ V and r = δ(x)

for some constant CΩ = C(N, p, s,Ω), independent on x ∈ V . We recall (5.10),
which in the present case rephrases (up to a universal constant) as

[u]Cα(Br/2(x)) ≤ C
[
(K rps)1/(p−1) + ‖u‖L∞(Br(x)) +Tail(u;x, r)

]
r−α.

To prove (5.11), it suffices to bound the three terms on the right hand side of the
above inequality. The first one it trivially dealt with since α ≤ s ≤ ps/(p− 1), and
thus

r−α (Krps)1/(p−1) ≤ K1/(p−1) ρps/(p−1)−α.

For the second one we use Theorem 4.4 and α ≤ s to get

‖u‖L∞(Br(x)) ≤ C K1/(p−1) (δ(x) + r)s ≤ C K1/(p−1) ρs−α rα,

and thus the claimed bound. Similarly for the last term we employ again (4.8),
together with

δ(y) ≤ |y −Π(x)| ≤ |y − x|+ |x−Π(x)| ≤ |y − x|+ r ≤ 2|x− y|, ∀y ∈ Bc
r(x),

to get

Tail(u;x, r)p−1 ≤ C K rps
∫
Bc

r(x)

δs(p−1)(y)

|x− y|N+ps
dy

≤ C K rps
∫
Bc

r(x)

|x− y|s(p−1)

|x− y|N+ps
dy ≤ C K rs(p−1).

Again due to α ≤ s we obtain the claimed bound, and the proof of (5.11) is
completed. To prove the theorem, pick x, y ∈ V and suppose without loss of
generality that |x−Π(x)| ≥ |y −Π(y)|. Two cases may occur:

• either 2|x− y| < |x −Π(x)|, in which case we set r = δ(x) and apply (5.11)
in Br/2(x), to obtain

|u(x)− u(y)| ≤ C K1/(p−1) |x− y|α;



Global Hölder regularity for the fractional p-Laplacian 1391

• or 2|x− y| ≥ |x−Π(x)| ≥ |y − Π(y)|, in which case (4.8) ensures

|u(x)− u(y)| ≤ |u(x)|+ |u(y)| ≤ C K1/(p−1) (δs(x) + δs(y))

= C K1/(p−1) (|x−Π(x)|s + |y −Π(y)|s)
≤ C K1/(p−1) |x− y|s ≤ C K1/(p−1) ρs−α |x− y|α.

Thus in both cases the α-Hölder seminorm is bounded in V and the proof is
completed. �

Remark 5.6. As the proofs above show, interior regularity (Theorem 5.4) forces
in particular α < ps/(p−1), while in order to control the behavior of weak solutions
near the boundary we need the more restrictive bound α ≤ s. Anyway, our Hölder
exponent remains not explicitly determined.
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