
Rev. Mat. Iberoam. 32 (2016), no. 3, 1039–1126
doi 10.4171/rmi/908

c© European Mathematical Society

Fitting a Sobolev function to data III

Charles Fefferman, Arie Israel, and Garving K. Luli

Abstract. In this paper and two companion papers, we produce efficient
algorithms to solve the following interpolation problem: Let m ≥ 1 and
p > n ≥ 1. Given a finite set E ⊂ Rn and a function f : E → R, compute
an extension F of f belonging to the Sobolev space Wm,p(Rn) with norm
having the smallest possible order of magnitude; secondly, compute the
order of magnitude of the norm of F. The combined running time of our
algorithms is at most CN logN, where N denotes the cardinality of E,
and C depends only on m, n, and p.

1. Introduction

In our previous papers [3] and [4], we provided efficient algorithms to interpolate
data by a function F : Rn → R whose Sobolev norm has the least possible order of
magnitude. More precisely, let m ≥ 1 and p > n ≥ 1. Given a function f : E → R

with E ⊂ Rn finite, we compute a function F ∈ Wm,p(Rn) such that F = f on E,

and ‖F‖Wm,p ≤ C‖F̃‖Wm,p for any competing function F̃ ∈ Wm,p(Rn) such that

F̃ = f on E. Here, C depends only on m, n, and p.
Our computations consist of efficient algorithms, to be implemented on an

(idealized) von Neumann computer. In the model of computation assumed in [3]
and [4], our computer deals with exact real numbers, without roundoff error. In
this paper, we explain how the algorithms, theorems and proofs in [3] and [4] may
be modified to allow our algorithms to run successfully on a computer that handles
only S-bit machine numbers, for some large, fixed S.

2. Modifications for finite-precision

2.1. The finite-precision model of computation

Our model of computation in finite-precision is a slight variant of that described
in Section 38 of [2]. We spell out the details.

Mathematics Subject Classification (2010): Primary 65D17; Secondary 65D05.
Keywords: Algorithm, interpolation, Sobolev spaces.

1040 C. Fefferman, A. Israel, and G.K. Luli

For an integer S ≥ 1, we work with “machine numbers” of the form k · 2−S,
with k an integer and |k| ≤ 2+2S. Our model of computation consists of an
idealized von Neumann computer [5], able to handle machine numbers. We make
the following assumptions:

• Given two distinct non-negative machine numbers x and y, we can compute
the most significant digit in which the binary expansions of x and y differ.
(That is, for x =

∑
j≥−S xj2

j and y =
∑

j≥−S yj2
j with each xj and yj equal

to 0 or 1, we compute the largest j for which xj does not equal yj.) We assume
this takes one unit of “work”. See also the paragraph following (2.76).

This assumption is reasonable, since presumably a machine number is en-
coded in the computer as the sequence of its binary digits.

• Two machine numbers x and y satisfying |x| ≤ 2� and |y| ≤ 2�
′
with �, � ′ ≥ 0

and � + � ′ ≤ S can be “multiplied” to produce a machine number x ⊗ y

satisfying |x⊗ y− xy| ≤ 2−S.

We suppose it takes one unit of “work” to compute x⊗ y.

We assume that 0⊗ x = x⊗ 0 = 0 and that x⊗ 1 = 1⊗ x = x.

We assume that if |x| ≤ 2� and |y| ≤ 2�
′
, for �, � ′ integers, then |x⊗y| ≤ 2�+� ′

.

• If x is any machine number other than zero, then we suppose we can produce
a machine number “1/x” in one unit of “work”, such that |“1/x”−1/x| ≤ 2−S.

We assume that “1/x” = 1 when x = 1.

We assume that if |x| ≥ 2�, for an integer �, then |“1/x”| ≤ 2−�.

• Two machine numbers x and y satisfying |x| ≤ � and |y| ≤ � ′ for integers �
and � ′ such that �+ � ′ ≤ 2S may be added to produce their exact sum x+y,
which is again a machine number.

We assume it takes one unit of “work” to compute x+ y.

• If x is any machine number, then −x is again a machine number.

We assume it takes one unit of “work” to compute −x.

• If x and y are machine numbers, then we can decide whether x < y, y < x,
or x = y.

We assume this takes one unit of “work”.

• If x is a machine number other than zero, then we can compute the greatest
integer � such that 2� ≤ |x|.
We assume this takes one unit of “work”

• If x is a machine number and � is an integer with |�| ≤ S, then we can compute
the greatest integer ≤ 2� x. (If this integer lies outside [−2S,+2S], then we
produce an error message, and abort our computation.)

We assume this takes one unit of “work”.

Fitting a Sobolev function to data III 1041

• We assume we can add, subtract, multiply and divide integers of absolute
value ≤ 2S, in one unit of “work”.

If we compute x/y in integer arithmetic, for integers x, y (y �= 0) of absolute
value at most 2S, then we obtain the greatest integer ≤ the real number x/y.
If our desired answer lies outside [−2S,+2S], then we produce an error mes-
sage and abort our computation.

• Given integers x, y of absolute value ≤ 2S, we can decide whether x < y,
y < x, or x = y.

We assume this takes one unit of “work”.

• If � is an integer, with |�| ≤ S, then we can compute exactly the machine
number 2�.

We assume this takes one unit of “work”.

• If x and y are machine numbers satisfying 2−� ≤ x ≤ 2� and |y| ≤ � ′

for integers � and � ′ such that � · � ′ ≤ S, then we can compute a machine
number “xy” in one unit of “work”, such that |“xy”− xy| ≤ 2−S.

• If x is any positive machine number, then we can compute a machine number
“log x” in one unit of “work”, such that |“ log x” − log x| ≤ 2−S. Here, log x
is the base two logarithm.

• We assume we can read or write a machine number from (to) the RAM with
one unit of “work”.

• We assume we can read a machine number from input or write a machine
number to output in one unit of “work”.

• We assume we can store a single S-bit word in memory using one unit of
“storage”.

• We assume we can store the address of any memory cell in a single S-bit
word.

Under these assumptions, we say that our computer can process “S-bit machine
numbers” (though the actual implementation of those machine numbers seems to
require at least 2S + 2 bits.) We call Δmin = 2−S the “machine precision” of our
computer.

We fix an integer S ≥ 1. We assume that our computer can process S-bit
machine numbers for S = Kmax · S, where Kmax ∈ N satisfies

(2.1) Kmax ≥ C, for a large enough universal constant C.

We will show that when our algorithms receive their input as S-bit machine
numbers, then the output produced by our algorithm is accurate to at least S

bits. We will verify that the work and storage required are as promised: at most
CN logN operations for the one-time work, and at most C logN operations for the
query work, with CN storage, where the constant C depends only on m, n, and p.

Throughout the remaining sections, Δmin = 2−S will denote the precision of
our computer, as just described.

1042 C. Fefferman, A. Israel, and G.K. Luli

2.2. Algorithms in finite-precision

We recall that a universal constant is one that depends only on the parameters
m, n, and p. We impose the following assumptions in this section.

Main assumptions:

• We set Δ0 := 2−S for an integer S ≥ 1.

• We assume our computer can process S-bit machine numbers, with S :=
Kmax·S, where Kmax satisfies (2.1). Then Δmin = 2−S represents the “machine
precision” of our computer. A “machine number” will always denote an S-bit
machine number.

• We set Δg = 2−K1S and Δε = 2−K2S for integers K1, K2 ≥ 1.

• We assume that Δmin ≤ ΔC
ε and Δε ≤ ΔC

g for a large enough universal
constant C.

Assume that w ∈ R satisfies |w| ≤ 2S. We may not be able to represent w

perfectly on a computer, but we can always store an approximation to w. We
introduce the relevant notation below.

• We say that w is specified to precision Δε if a machine number wfin is given
with |w−wfin| ≤ Δε.

• We say that w is computed to precision Δε if there is a finite-precision algo-
rithm that computes a machine number wfin with |w−wfin| ≤ Δε.

• We say that w is specified (computed) with parameters (Δg, Δε) if |w| ≤ Δ−1
g ,

and if w is specified (computed) to precision Δε.

We illustrate this terminology in the next result, which establishes the numer-
ical stability of arithmetic operations.

Lemma 1. Suppose that Δ0, Δmin, Δg, and Δε are as in the Main assumptions.
Let x, y ∈ R be specified with parameters (Δg, Δε). Then the following hold.

• We can compute x+ y with parameters (cΔg, CΔε).

• We can compute x · y with parameters (Δ2
g, CΔε Δ

−1
g).

• If |y| ≥ Δg, we can compute x/y with parameters (Δ2
g, CΔε Δ

−3
g).

• If x ∈ [Δg, Δ
−1
g], we can compute log x with parameters (cΔg, CΔε Δ

−1
g).

• Suppose that x ∈ [Δg, Δ
−1
g] and |y| ≤ A with A ≥ 1, and suppose that Kmax ≥

5A ·max{K1, K2}. Then we can compute xy with parameters (ΔA
g , Δε Δ

−C·A
g).

The above computations require work at most C.
Here, the constants c and C are independent of all the parameters.

Proof. By hypothesis, we suppose we are given machine numbers x, y with |x− x| ≤
Δε and |y− y| ≤ Δε. Moreover, we have |x| ≤ Δ−1

g and |y| ≤ Δ−1
g .

Since Δε ≤ Δ−1
g , we learn that |x| ≤ 2Δ−1

g and |y| ≤ 2Δ−1
g .

Fitting a Sobolev function to data III 1043

(1) Since |x+ y| ≤ 4Δ−1
g ≤ Δ−1

min and since Δ−1
min = 2S, we can compute the

(S-bit) machine number A = x + y. This computation requires one unit of work,
by assumption on our model of computation. Then

|A− (x + y)| ≤ |x− x|+ |y− y| ≤ 2Δε.

Moreover, |x+ y| ≤ |x|+ |y| ≤ 2Δ−1
g .

Thus, we can compute the sum x+ y with parameters (1
2
Δg, 2Δε).

(2) Since |x · y| ≤ 4Δ−2
g ≤ Δ−1

min, we can compute a machine number P with
|P − x · y| ≤ Δmin ≤ Δε. (Recall that Δmin is the “machine precision”.) We have

|x · y− x · y| ≤ |x− x| · |y| + |y− y| · |x| ≤ Δε · Δ−1
g + Δε · (2Δ−1

g) = 3Δε · Δ−1
g .

Hence, |P − x · y| ≤ Δε+3ΔεΔ
−1
g ≤ 4Δε Δ

−1
g . Moreover, |x · y| ≤ Δ−1

g ·Δ−1
g = Δ−2

g .

Therefore, we can compute the product x · y with parameters (Δ2
g, 4Δε Δ

−1
g).

Here, we have only used the assumptions Δmin ≤ 1
4
Δ2

g and Δmin ≤ Δε

(3) Suppose that |y| ≥ Δg. Since we may assume Δε ≤ Δ10
g , we have

|y| ≥ |y|− |y− y| ≥ Δg − Δε ≥ Δg − Δ10
g .

Since Δg ≤ 1/2, we conclude that |y| ≥ 1
2
Δg.

Thus, we can compute a machine number A with
∣∣A − (y)−1

∣∣ ≤ Δmin ≤ Δε.
We have ∣∣y−1 − (y)−1

∣∣ = |y− y|
|y| · |y| ≤

Δε

Δg · 1
2
Δg

= 2Δε Δ
−2
g .

Hence,
∣∣A− y−1

∣∣ ≤ Δε + 2Δε Δ
−2
g ≤ 3Δε Δ

−2
g . Moreover,

∣∣y−1
∣∣ ≤ Δ−1

g .

Therefore, we can compute y−1 with parameters (Δg, 4Δε Δ
−2
g).

(4) Suppose that |y| ≥ Δg. According to (3), we can compute y−1 with pa-
rameters (Δg, Δ

new
ε), where Δnew

ε = 4Δε Δ
−2
g . We have Δnew

ε ≤ 4Δ8
g ≤ 1 (since

Δε ≤ Δ10
g) and Δnew

ε ≥ Δε ≥ Δmin. Hence, applying (2), we can compute x · y−1

with parameters (Δ2
g, 4Δ

new
ε Δ−1

g) = (Δ2
g, 16Δε Δ

−3
g).

(5) Suppose that Δg ≤ x ≤ Δ−1
g . Since |x− x| ≤ Δε ≤ Δ10

g , we have 1
2
Δg ≤

x ≤ 2Δ−1
g .

We can compute a machine number L satisfying |L− log x| ≤ Δmin ≤ Δε. Then
we have

|log x− log x| ≤ 1

ln 2
· |x− x| ·max

{
x−1, (x)−1

}
≤ CΔε Δ

−1
g .

(Recall that log x denotes the base two logarithm.) Hence, |L− log x| ≤ Δε +
CΔε Δ

−1
g ≤ C ′Δε Δ

−1
g . Moreover, |log x| ≤ logΔ−1

g ≤ CΔ−1
g .

Therefore, we can compute log x with parameters (cΔg, C
′ΔεΔ

−1
g).

(6) Suppose that Δg ≤ x ≤ Δ−1
g and |y| ≤ A for some A ≥ 1.

Since |x− x| ≤ Δε ≤ Δ10
g and |y− y| ≤ Δε ≤ 1, we conclude that 1

2
Δg ≤ x ≤

2Δ−1
g and |y| ≤ |y| + |y− y| ≤ 2A.

1044 C. Fefferman, A. Israel, and G.K. Luli

We have
∣∣xy∣∣ ≤ (2Δ−1

g)2A = 22A·(K2S+1) ≤ Δ−1
min, due to the assumption that

Δmin = 2−KmaxS and Kmax ≥ 4AK2. Thus, we can compute a machine num-
ber B with ∣∣B− xy

∣∣ ≤ Δmin ≤ Δε.

This requires work at most C.

We have∣∣xy − xy
∣∣ ≤ |xy − xy| +

∣∣xy − xy
∣∣ = ∣∣ey lnx − ey lnx

∣∣+ ∣∣ey lnx − ey lnx
∣∣

≤ |y| · |x− x| ·max
{
x−1, (x)−1

}
·max

{
ey lnx, ey lnx

}
+ |y− y| · |ln x| ·max

{
ey lnx, ey lnx

}
≤ A · Δε · 2Δ−1

g · Δ−CA
g + Δε · ln

(
2Δ−1

g

)
· Δ−CA

g ≤ Δε Δ
−C ′A
g .

In the above, we use the estimates |ew − ez| ≤ |w− z|·max{ew, ez} and |ln x− ln x| ≤
|x− x| ·max

{
x−1, (x)−1

}
; both C and C ′ are numerical constants.

Hence, |B− xy| ≤ Δε + Δε Δ
−C ′A
g ≤ Δε Δ

−C ′′A
g . Moreover, |xy| ≤ Δ−A

g .

Therefore, we can compute xy with parameters (ΔA
g , Δε Δ

−C ′′A
g) for a numerical

constant C ′′.

Thanks to (1)–(6), the conclusions of the lemma are verified. This completes
the proof. �

We finish the section with a technical lemma concerning the evaluation of the �p

norm by a finite-precision algorithm.

Lemma 2. Let Δ ∈ [Δg, 1] be a given machine number. Fix an S-bit machine
number p > 1. Given real numbers xj (1 ≤ j ≤ J) with parameters (Δg, Δε), where
J ≤ Δ−1

g , we define

A :=
(∑

1≤j≤J

|xj|p + Δp
)1/p

.

Then there is a finite-precision algorithm, requiring work and storage at most C · J,
which computes a machine number Â that satisfies 1

2
·A ≤ Â ≤ 2 ·A.

Proof. All constants in the proof denoted by C,C ′, etc., will depend only on p.
We write Δ1 	 Δ2 to indicate that Δ1 ≤ ΔC

2 for a sufficiently large universal
constant C. We set Δ1 = ΔC0

g for a sufficiently large universal constant C0 ∈ N

that will be determined later. Thus, in the recently introduced notation, we have
Δ1 	 Δg. By hypothesis, we are given a machine number x∗j with

∣∣x∗j − xj
∣∣ ≤ Δε,

and we guarantee that |xj| ≤ Δ−1
g for each j. We define

(2.2) B :=

(∑
1≤j≤J
|x∗

j |≥Δ1

|x∗j |p + Δp

)1/p

.

Fitting a Sobolev function to data III 1045

Note that

|Ap − Bp| ≤
∑

1≤j≤J

∣∣ |xj|p −
∣∣x∗j ∣∣p ∣∣+ ∑

1≤j≤J
|x∗

j |<Δ1

|xj|p .

Since
∣∣xj − x∗j

∣∣ ≤ Δε and |xj| ,
∣∣x∗j ∣∣ ≤ Δ−C

g , the first sum is bounded by CJΔε ·Δ−C ′
g .

Since |xj| ≤ Δ1 + Δε ≤ 2Δ1 whenever
∣∣x∗j ∣∣ < Δ1, the second sum is bounded by

CJΔ
p
1 . Thus, we have |Ap − Bp| ≤ CJΔε · Δ−C

g + CJΔ
p
1 . We obtain the bound

|Ap − Bp| ≤ Δ−C ′′
g Δ

p
1 for a universal constant C ′′, because J ≤ Δ−1

g and because

we may assume that Δε ≤ Δ
C0p
g = Δ

p
1 . Note that Ap and Bp are at least Δp.

Thus, by the mean value theorem, we have

|A − B| ≤ |Ap − Bp| · max
t∈[Δp,∞)

∣∣∣ d
dt

(t1/p)
∣∣∣ ≤ Δ−C ′′

g Δ
p
1 · 1

p
Δ1−p ≤ Δ

p
1Δ

−C ′′′
g .

Here, in the last estimate we use that Δ ≥ Δg. Note that C ′, C ′′, C ′′′ above are
independent of C0.

All the summands inside the parentheses in (2.2) are at least Δ
p
1 (recall that

Δ ≥ Δg ≥ Δ1). Also, the number of summands is at most J+ 1 ≤ CΔ−1
g ≤ CΔ−1

1 .
Therefore, by the numerical stability of arithmetic (see Lemma 1) we can compute
a machine number Bfin such that

|B− Bfin| ≤ ΔεΔ
−C
1 .

We conclude that |A− Bfin| ≤ Δ
p
1Δ

−C ′′′
g + Δε Δ

−C
1 . We recall that Δ1 = ΔC0

g

and Δε 	 Δg. So, if we pick a sufficiently large universal constant C0 ∈ N then we
can guarantee that |A − Bfin| ≤ 1

2
Δg. Note that A ≥ Δ ≥ Δg. Thus, we conclude

that A and Bfin differ by at most a factor of 2. We can therefore define Â = Bfin

and the conclusion of the lemma follows. �

2.3. Short form

Let E = {z1, . . . , zN} ⊂ 1
32
Q◦, where Q◦ = [0, 1)n.

We write X(E) for the space of all real-valued functions f on E, equipped with
the trace norm induced by X = Lm,p(Rn).

Recall that P denotes the set of all polynomials on Rn of degree at most m−1,
and M denotes the set of all multiindices α = (α1, . . . , αn) with |α| ≤ m− 1.

We let Δmin ≤ Δε ≤ Δg ≤ Δ0 be defined as in the Main assumptions in
Section 2.2. In particular, recall that Δmin = 2−S denotes the machine precision
of our computer. When we refer to a “machine number” we will always mean an
S-bit machine number.

Any linear functional ω : X(E) → R can be expressed in the form

(2.3) ω(f) =

L∑
�=1

λ� · f(zj�).

1046 C. Fefferman, A. Israel, and G.K. Luli

We call (2.3) a short form ofω. We do not promise that the coefficients λ� are non-
zero. Thus, in contrast to the notation in infinite-precision, a functional can have
more than one short form. The depth of ω, denoted depth(ω), is the number L.
Note that depth(ω) depends on the short form (2.3) of ω, and not on ω alone.
This abuse of notation should cause no confusion.

The short form (2.3) is given with parameters (Δg, Δε) if the numbers λ� are
given with parameters (Δg, Δε), and if the list j1, . . . , jL is given. Recall that this
means we specify machine numbers λ� with

∣∣λ� − λ�
∣∣ ≤ Δε, and we promise that

|λ�| ≤ Δ−1
g for each �. The indices j1, . . . , jL may be represented as pointers to the

memory locations in which the corresponding points of E are stored. We assume
that each of these pointers is stored using a single unit of memory.

Let Ω = {ω1, . . . ,ωM} be a list of linear functionals on X(E).
A functional ξ : X(E) → R has Ω-assisted depth d provided that it can be

written in the form

(2.4) ξ(f) = η(f) +

νmax∑
ν=1

μν ·ωkν
(f),

where η is a linear functional and depth(η)+νmax ≤ d. We call (2.4) a short form
of ξ. Note that perhaps we can write a given ξ in many different ways in short
form.

The short form (2.4) is given with parameters (Δg, Δε) in terms of assists Ω if
the functional η is given in short form with parameters (Δg, Δε), the numbers μν

are given with parameters (Δg, Δε), and a list of the indices kν1
, . . . , kνmax is given.

A functional ξ : X(E)⊕P → R has Ω-assisted depth d provided that it can be
written in the form

(2.5) ξ(f, P) = η(f) +

νmax∑
ν=1

μν ·ωkν
(f) +

∑
α∈M

θα · 1

α!
∂αP(0),

where η is a linear functional and depth(η) + νmax +#(M) ≤ d. We call (2.5) a
short form of ξ.

The short form (2.5) is given with parameters (Δg, Δε) in terms of assists Ω if
the functional η is given in short form with parameters (Δg, Δε), the numbers μν

and θα are given with parameters (Δg, Δε), and a list of the indices kν1
, . . . , kνmax

is given.

A linear map T : X(E)⊕P → P is given in short form with parameters (Δg, Δε)
in terms of assists Ω, if for each β ∈ M we exhibit a formula

∂β(T(f, P))(0) = ηβ(f) +

νmax∑
ν=1

μβν ·ωkν
(f) +

∑
α∈M

θβα · 1

α!
∂αP(0),

where the functional ηβ is given in short form with parameters (Δg, Δε), the
numbers μβν and θβα are given with parameters (Δg, Δε), and a list of the indices
k1, . . . , kνmax is given.

Fitting a Sobolev function to data III 1047

Similarly, a linear map T : X(E) → P is given in short form with parameters
(Δg, Δε) in terms of assists Ω, if for each β ∈ M we exhibit a formula

∂β(T(f))(0) = ηβ(f) +

νmax∑
ν=1

μβν ·ωkν
(f),

where the functional ηβ is given in short form with parameters (Δg, Δε), the num-
bers μβν are given with parameters (Δg, Δε), and a list of the indices k1, . . . , kνmax

is given.
We say we have computed a linear map T : X(E) → X in short form with

parameters (Δg, Δε) in terms of assists Ω if for each S-bit machine point x ∈ Q◦

and each multiindex α ∈ M, we can compute a short form of the linear functional

f �→ ∂αTf(x)

with parameters (Δg, Δε) in terms of the assistsΩ. If the functional f �→ ∂α(Tf)(x)
has Ω-assisted depth d, for all x ∈ Rn and α ∈ M, then we say that the map T

has Ω-assisted depth d. We extend this notation to linear maps T : X(E)⊕P → X

in the obvious way. We only answer queries if x ∈ Q◦ because enormous x’s might
lead to overflow errors.

2.4. Main algorithms in finite-precision

Our main theorem concerns extension operators for homogeneous Sobolev spaces
and is stated below. Later, in Section 2.18.2, we will present a corresponding result
for inhomogeneous Sobolev spaces (see Theorem 2).

We write c, C, C ′, etc., to denote universal constants, which depend only on
m, n, and p.

Let x = (x1, . . . , xn) ∈ Rn. We call x an S0-bit “machine point” if each
coordinate xk is an S0-bit machine number.

Theorem 1. There exists a universal constant C ≥ 1 such that the following holds.
Let S ≥ 1 be an integer. We fix an S-bit machine number p > n.
We also fix a subset E ⊂ 1

32
Q◦ consisting of S-bit machine points, with #(E) =

N ≥ 2, where Q◦ = [0, 1)n.

We assume we are given constants Δmin = 2−KmaxS, Δ◦
ε := 2−K1S, Δ◦

g := 2−K2S,

and Δ◦
junk := 2−K3S, for integers K1, K2, K3, Kmax ≥ 1 such that Kmax ≥ C · K1 ≥

C2 · K2 ≥ C3 · K3 ≥ C4.
We assume that our computer can perform arithmetic operations on S-bit ma-

chine numbers with precision Δmin = 2−S, where S = KmaxS.
We compute (see below) lists Ω and Ξ, consisting of linear functionals on

X(E) = {f : E → R}, with the following properties.

• The sum of depth(ω) over all ω ∈ Ω is bounded by CN, and # [Ξ] ≤ CN.

• Each ξ in Ξ has Ω-assisted depth at most C.

• We compute each ω ∈ Ω in short form with parameters (Δ◦
g, Δ

◦
ε), and we

compute each ξ ∈ Ξ in short form with parameters (Δ◦
g, Δ

◦
ε) in terms of the

assists Ω.

1048 C. Fefferman, A. Israel, and G.K. Luli

• For every f ∈ X(E), we have

C−1‖f‖X(E) ≤
[∑
ξ∈Ξ

|ξ(f)|p
]1/p

≤ C inf
{
‖F‖X + Δ◦

junk‖F‖Lp(Q◦) : F ∈ X, F = f on E
}

Moreover, there exists a linear map T : X(E) → X with the following properties.

• T has Ω-assisted depth at most C.

• Tf = f on E, and

‖Tf‖X ≤ C inf
{
‖F‖X + Δ◦

junk‖F‖Lp(Q◦) : F ∈ X, F = f on E
}

for every f ∈ X(E).

• We produce a query algorithm with the following properties.

Given an S-bit machine point x ∈ Q◦, and given α ∈ M, we compute a short
form of the linear functional f �→ ∂α (Tf) (x) in terms of the assists Ω. This
linear functional is computed with parameters (Δ◦

g, Δ
◦
ε). This computation

requires work at most C logN.

The above computations require one-time work at most CN logN in space CN.

2.5. Bases for the space of polynomials

We discuss the first algorithm in the infinite-precision text, namely the algorithm
Fit basis to convex body from Section 2.7.3 of [3]. This is a preparatory
algorithm that will be used later in the text. Our finite-precision version of Fit

basis to convex body will require several additional assumptions, stated below.
We impose the assumptions in Theorem 1. In particular, Δmin ≤ Δε ≤ Δg ≤ Δ0

are as in the Main assumptions in Section 2.2. Our computer can perform
arithmetic operations on S-bit machine numbers with precision Δmin = 2−S, where
S = Kmax · S.

We introduce a few conventions that are used in the rest of the paper. A
machine number will mean an S-bit machine number, and a machine point will
mean an S-bit machine point. A bounded interval I ⊂ R is called a machine
interval if its endpoints are machine numbers.

We assume

(2.6) p > n is an S-bit machine number,

while

(2.7) x ∈ Rn is an (S-bit) machine point.

Recall that P is the vector space of polynomials on Rn of degree at most m − 1,
and we denote D = dimP . We identify P with RD, by identifying P ∈ P with

Fitting a Sobolev function to data III 1049

(
1
α!
∂αP(x)

)
α∈M, whereM denotes the set of all multiindices of order at mostm−1.

We define

|P|x =
(∑

α∈M
|∂αP(x)|p

)1/p

.

We assume we are given Λ ≥ 1. We write c(Λ), C(Λ), etc. to denote constants
depending on m, n, p, and Λ. We write c, c̃, C, etc. to denote constants depending
only on m, n, and p.

We are given a quadratic form q on P . We assume that q is specified as a
D×D matrix (qβγ)β,γ∈M acting on the above coordinates:

(2.8) q(P) =
∑

β,γ∈M
qβγ · ∂βP(x) · ∂γP(x).

We assume that the matrix (qαβ)α,β∈M satisfies the following conditions:

|qαβ| ≤ Δ−1
g , and qαβ is specified to precision Δε, for all α,β ∈ M.(2.9)

(qαβ)α,β∈M ≥ Δg · (δαβ)α,β∈M.(2.10)

From (2.10) we learn that

(2.11) |q(P)| ≥ cΔg · |P|2x for all P ∈ P ,

for a universal constant c > 0.
We fix a multiindex set A ⊂ M. The main result of the section is as follows.

Algorithm: Fit basis to convex body (finite-precision version)

Given q, x, A as above: We compute a partition of [Δg, Δ
−1
g] into machine

intervals I�, and for each � we compute machine numbers λ�, c� with c� ≥ 0, such
that the function η∗ :

[
Δg, Δ

−1
g

] → R, defined by

η∗(δ) := c� · δλ� for δ ∈ I�,

has the following properties.

• Let σ satisfy {q ≤ Λ−1} ⊂ σ ⊂ {q ≤ Λ}. Then, for any δ ∈ [Δg, Δ
−1
g],

– σ has an (A, x, η1/2, δ)-basis for any η > C(Λ) · η∗(δ),
– σ does not have an (A, x, η1/2, δ)-basis for any η < c(Λ) · η∗(δ).

(See Section 2.7.1 of [3] for the definition of a basis for a convex set of
polynomials.)

• Moreover, c · η∗(δ1) ≤ η∗(δ2) ≤ C · η∗(δ1) whenever 1
10
δ1 ≤ δ2 ≤ 10δ1.

• Also, η∗(δ) ≥ ΔC
g for any δ ∈ [Δg, Δ

−1
g].

• The numbers c� belong to the interval
[
ΔC

g , Δ
−C
g

]
, and the exponents λ� are

of the form μ+ ν/p for integers μ, ν with |μ| , |ν| ≤ C.

• The computation of I�, λ�, and c�, requires work and storage at most C.

Here, c > 0 and C ≥ 1 are constants determined by m, n, and p, while c(Λ) and
C(Λ) are constants determined by m,n,p, and Λ.

1050 C. Fefferman, A. Israel, and G.K. Luli

Explanation. We recall the basic structure of the argument given in Section 2.7.3
of [3]. We first define a rational function ηmin(δ) with nice properties, and then
we explain how to compute an approximation η∗(δ) for ηmin(δ). The structure of
our argument here is quite similar. The main difference being that we need to take
additional care to ensure the numerical stability of our computations with respect
to rounding error.

We consider the quadratic form

Mδ(�P) :=
∑
α∈A

q
(
δm−n/p−|α|Pα

)
+

∑
α∈A,β∈M

β>α

(
δ|β|−|α|∂βPα(x)

)2

(2.12)

=
∑
α∈A

∑
β,γ∈M

δ2(m−n/p−|α|)qβγ · ∂βPα(x) · ∂γPα(x)

+
∑

α∈A,β∈M
β>α

(
δ|β|−|α|∂βPα(x)

)2
(for �P = (Pα)α∈A),

restricted to the affine subspace

H :=
{
�P = (Pα)α∈A : ∂βPα(x) = δβα for α,β ∈ A

}
.

Let

ηmin(δ) := min
�P∈H

Mδ(�P),

which is regarded as a function of δ ∈
[
Δg, Δ

−1
g

]
.

Recall from Section 2.7.3 of [3], we showed that

(2.13) ηmin(δ1) ≤ ηmin(δ2) ≤
(δ2
δ1

)2m

ηmin(δ1) for δ1 ≤ δ2,

and

(2.14)
σ has a (A, x, η1/2, δ)-basis if η > C(Λ) · ηmin(δ),

but not if η < c(Λ) · ηmin(δ).

Using (2.11), we see that

(2.15) |Mδ(�P)| ≥ cΔ2m+1
g ·

∑
α∈A

|Pα|2x for any �P ∈ H, δ ∈
[
Δg, Δ

−1
g

]
.

Furthermore, if �P ∈ H and α ∈ A then ∂αPα(x) = 1, hence |Pα|x ≥ 1. Thus, by
definition of ηmin(δ) as the minimum of Mδ(·) on H, we have

(2.16) ηmin(δ) ≥ c̃ Δ2m+1
g ,

for a universal constant c̃ > 0.

Fitting a Sobolev function to data III 1051

Next, we compute a piecewise-rational function η̃min(δ) that approximates
ηmin(δ). For w = (wαβ)α∈A,β∈M\A ∈ RJ we set

(2.17) Pw
α (z) :=

1

α!
· (z − x)α +

∑
β∈M\A

1

β!
·wαβ · (z − x)β (α ∈ A).

This gives a coordinate mapping w �→ �Pw = (Pw
α)α∈A ∈ H, and we set

M̃δ(w) := Mδ(�Pw)(2.18)

= 〈Aδw,w〉− 2〈bδ, w〉+mδ (w ∈ RJ).

Here, Aδ is a matrix, bδ is a vector, mδ is a scalar - all functions of δ - and 〈·, ·〉
denotes the standard Euclidean inner product on RJ. The entries of Aδ, bδ, and
mδ are all sums of monomials of the form a · δμ+ν/p with μ, ν ∈ Z and a ∈ R.

We have ‖w‖2 =
∑

α,β|wαβ|2 ≤ c
∑

α|Pw
α |2x, since wαβ = ∂βPw

α (x) for α ∈ A,

β ∈ M \A. Thus, from (2.15) we have
∣∣M̃δ(w)

∣∣ ≥ cΔ2m+1
g · ‖w‖2, hence

(2.19) Aδ ≥ cΔ2m+1
g · (δij),

for a universal constant c > 0. In particular, the matrix Aδ is invertible.
Recall that Aδ = (Aδ

ij), b
δ = (bδ

i), and mδ are given in the form

(2.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Aδ
ij =

∑
μ,ν

cijμνδ
μ+ν/p (1 ≤ i, j ≤ J),

bδ
j =

∑
μ,ν

cjμνδ
μ+ν/p (1 ≤ j ≤ J),

mδ =
∑
μ,ν

cμνδ
μ+ν/p.

There are at most C pairs (μ, ν) ∈ Z×Z relevant to the above sums, and we have
|μ|, |ν| ≤ C for each pair. (See (2.53)–(2.55) in [3].)

We insert the formula (2.17) for the polynomials Pα = Pw
α (α ∈ A) in the

second line of the definition (2.12) of Mδ to produce the expression M̃δ(w) =

〈Aδw,w〉 − 2〈bδ, w〉 +mδ. We compute each of the numbers c
ij
μν, c

j
μν, and cμν

as a linear combination of the entries of (qαβ) (and the constant 1). Hence, since

the qαβ are given with parameters (Δg, Δε), the numbers c
ij
μν, c

j
μν, cμν can be

computed with parameters (ΔC
g , Δ

−C
g Δε).

We can compare exponents of the form λ = μ + ν/p and λ = μ + ν/p by
expressing λ, λ as a ratio of integers and cross-multiplying (recall that p is an
S-bit machine number). This comparison requires at most C units of work. By
summing the coefficients of the monomials with the same exponent, we may assume
that the exponents μ+ ν/p in (2.20) are pairwise distinct.

We compute a formula for the inverse matrix (Aδ)−1 by applying Cramer’s
rule. Hence,

(2.21) (Aδ)−1
ij =

[Aδ]ij
det(Aδ)

=

∑
k a

ij
k · δλk∑

� b� · δγ�
(1 ≤ i, j ≤ J),

1052 C. Fefferman, A. Israel, and G.K. Luli

where [Aδ]ij denotes the (i, j)-cofactor of the matrix Aδ. The number of terms in
the sums in the numerator and denominator of (2.21) is bounded by C.

We compute the numbers a
ij
k and b� in (2.21) by evaluating a polynomial

function of the coefficients cijμν arising in the entries of the matrix (Aδ
ij) in (2.20).

The numbers cijμν are given with parameters (ΔC
g , Δ

−C
g Δε), so we can compute aij

k

and b� with parameters (ΔC
g , Δ

−C
g Δε).

The exponents λk and γ� in (2.21) have the form μ+ ν/p, where μ, ν ∈ Z are
bounded in magnitude by a universal constant C.

We compute an expression for ηmin(δ) = minw M̃δ(w) as follows. Note that

the quadratic function M̃δ(w) in (2.18) achieves its minimum at wδ := (Aδ)−1bδ.
Thus,

ηmin(δ) = M̃δ(wδ) = −〈bδ, (Aδ)−1bδ〉+mδ =

J∑
i,j=1

bδ
i · (Aδ)−1

ij · bδ
j +mδ.

Inserting the expressions for the entries of (Aδ)−1, bδ, and the expression for mδ,
we compute (see below) a rational expression

(2.22) ηmin(δ) =

∑
k ak · δλk∑
� b� · δγ�

=
N(δ)

D(δ)
.

The number of terms in the sums in the numerator and denominator of (2.22) is
bounded by C.

The denominator D(δ) =
∑

� b� · δγ� in (2.22) is the same as the common
denominator in the expression for (Aδ)−1

ij in (2.21), namely det(Aδ). From (2.19)

we have det(Aδ) ≥ ΔC
g , hence

(2.23)
∑
�

b� · δγ� ≥ ΔC
g .

The exponents γ� and λk in (2.22) have the form μ + ν/p, where μ, ν ∈ Z

are bounded in magnitude by a universal constant. We can assume that the γ�

are distinct, as are the λk. (We combine all the monomials in the numerator or
denominator that have the same exponent.)

The numbers ak in the numerator in (2.22) are defined by evaluating a poly-

nomial function on the coefficients a
ij
k , b� in (Aδ)−1

ij (see (2.21)), and the coef-

ficients c
j
μν and cμν in bδ

j and mδ (see (2.20)). Thus, we can compute ak with

parameters (ΔC1
g , Δ−C1

g Δε) for a large enough universal constant C1.

As explained before, the numbers b� are given with parameters (ΔC1
g , Δ−C1

g Δε).
The exponents λk in (2.22) are pairwise distinct and have the form μ+ν/p for

integers μ, ν ∈ Z with |μ| , |ν| ≤ C. The same is true of the exponents γ�. Hence,

(2.24) |λk − λk ′ | ≥ c0 and |γ� − γ� ′ | ≥ c0

for all k �= k ′ and � �= � ′.1

1The constant c0 here depends only on m,n,p, but it may depend sensitively on the approxi-
mation of 1/p by rationals with low denominators.

Fitting a Sobolev function to data III 1053

We now perform a crucial rounding step.

We introduce a parameter Δ = 2−S1 of the form Δ = ΔC2
g , for C2 ∈ N that is

assumed to be greater than a large enough universal constant. We will later fix C2

to be a universal constant, but not yet. We assume Δε ≤ ΔC1+C2
g , hence

(2.25) Δ−C1
g Δε ≤ Δ.

The numbers ak and b� are given with parameters (ΔC1
g , Δ−C1

g Δε), so we can

compute S1-bit machine numbers ãk and b̃� with

(2.26)

{
|ak − ãk| ≤ Δ, |b� − b̃�| ≤ Δ,

|ãk| ≤ Δ−C
g , |b̃�| ≤ Δ−C

g .

We set

(2.27) η̃min(δ) =

∑
k ãk δ

λk∑
� b̃� δγ�

=
Ñ(δ)

D̃(δ)
.

We use (2.26) and the fact that λk and γ� are bounded by C to estimate the
difference between ηmin(δ) and η̃min(δ). For δ ∈

[
Δg, Δ

−1
g

]
, we have

∣∣ak δ
λk − ãk δ

λk
∣∣ ≤ ΔΔ−C

g .

Hence,

∣∣N(δ) − Ñ(δ)
∣∣ = ∣∣∣∑

k

ak δ
λk −

∑
k

ãk δ
λk

∣∣∣ ≤ CΔΔ−C
g ≤ ΔΔ−C ′

g .

Moreover,

|N(δ)| =
∣∣∣∑

k

ak δ
λk

∣∣∣ ≤ ∑
k

|ak|
∣∣δλk

∣∣ ≤ CΔ−C
g · Δ−C

g ≤ Δ−C ′
g .

Similarly, ∣∣D(δ) − D̃(δ)
∣∣ = ∣∣∣∑

�

b� δ
γ� −

∑
�

b̃� δ
γ�

∣∣∣ ≤ ΔΔ−C ′
g .

Moreover,

D(δ) =
∑
�

b� δ
γ�

(2.23)

≥ ΔC
g , and

∣∣D̃(δ)
∣∣ ≥ |D(δ)|−

∣∣D(δ) − D̃(δ)
∣∣ ≥ ΔC

g − ΔΔ−C ′
g ≥ 1

2
ΔC

g ,

since ΔΔ−C ′
g = ΔC2−C ′

g ≤ 1
2
ΔC

g , for large enough C2.

1054 C. Fefferman, A. Israel, and G.K. Luli

Using the previous estimates, we have

|ηmin(δ) − η̃min(δ)| =
∣∣∣N(δ)

D(δ)
−

Ñ(δ)

D̃(δ)

∣∣∣ ≤ ∣∣∣N(δ) · (D(δ) − D̃(δ))

D(δ) · D̃(δ)

∣∣∣+ ∣∣∣N(δ) − Ñ(δ)

D̃(δ)

∣∣∣
≤

Δ−C ′
g · ΔΔ−C ′

g

ΔC
g · 1

2
ΔC

g

+
ΔΔ−C ′

g

1
2
ΔC

g

≤ ΔΔ−C ′′
g .

Thus,

|ηmin(δ) − η̃min(δ)| ≤ ΔΔ−C ′′
g ≤ c̃ Δ2m+2

g

(2.16)

≤ 1

2
· ηmin(δ),

where we may choose C2 large enough so that ΔΔ−C ′′
g = ΔC2−C ′′

g ≤ c̃ Δ2m+2
g ,

with c̃ as in (2.16). We fix C2 ∈ N to be a universal constant satisfying the
previous bounds.

Therefore, thanks to (2.16) we have

(2.28) ΔC
g ≤ 1

2
· ηmin(δ) ≤ η̃min(δ) ≤ 2 · ηmin(δ) (Δg ≤ δ ≤ Δ−1

g).

We assume that none of the coefficients in the expression (2.27) are equal to

zero, for otherwise we could discard the vanishing terms. Since ãk and b̃� are
S1-bit machine numbers and Δ = 2−S1 , this means that

(2.29) |ãk| ≥ Δ = ΔC2
g , |b̃�| ≥ Δ = ΔC2

g for all k, �.

We will now explain how to compute a piecewise monomial function η∗(δ) that
differs from ηmin(δ) by at most a universal constant factor. The first, second,
and third bullet points in Fit basis to convex body (finite-precision) will then
be consequences of (2.14), (2.13), and (2.16), respectively. The guarantees in the
fourth bullet point will follow by examining the construction below.

Procedure: Approximate rational function

We are given machine numbers ãk, b̃� satisfying

|ãk|, |b̃�| ∈
[
ΔC

g , Δ
−C
g

]
.

We are given numbers λk and γ� of the form μ + ν/p, for integers μ, ν with
|μ| , |ν| ≤ C, such that

|λk − λk ′ | ≥ c0, |γ� − γ� ′ | ≥ c0 for all k �= k ′, � �= � ′.

Let

η̃min(δ) =

∑
k ãk δ

λk∑
� b̃�δγ�

.

Assume that the number of summands in the numerator and denominator is
bounded by a universal constant C. Suppose that there exists a function ηmin(δ)
satisfying (2.13) and (2.28).

Fitting a Sobolev function to data III 1055

We compute machine intervals I�, machine numbers d�, and numbers ω�,
such that

[
Δg, Δ

−1
g

]
is the disjoint union of the I�, and such that the function

η∗ :
[
Δg, Δ

−1
g

] → R, defined by

η∗(δ) := d� · δω� for δ ∈ I�,

satisfies
c · η∗(δ) ≤ ηmin(δ) ≤ C · η∗(δ) for all δ ∈

[
Δg, Δ

−1
g

]
.

Here, c and C are universal constants.
The numbers ω� are of the form μ+ ν/p for integers μ, ν with |μ| , |ν| ≤ C.
The machine numbers d� are contained in the interval [ΔC

g , Δ
−C
g].

This computation requires work and storage at most C.

Explanation. We define

B :=
⋃

k�=k ′
Ikk ′ , where

Ikk ′ :=
{
δ ∈

[
Δg, Δ

−1
g

]
: 5−1 · |ãk δ

λk | ≤ |ãk ′ δλk ′ | ≤ 5 · |ãk δ
λk |

}
,

and similarly

C :=
⋃
��=� ′

J�� ′ , where

J�� ′ :=
{
δ ∈

[
Δg, Δ

−1
g

]
: 5−1 · |b̃� δ

γ� | ≤ |b̃� ′ δγ� ′ | ≤ 5 · |b̃� δ
γ� |

}
.

For any interval I ⊂
[
Δg, Δ

−1
g

]
\ (B ∪ C), we have

(2.30)

⎧⎪⎨
⎪⎩

there exist unique k = k(I)∈ {1, . . . , K} and � = �(I)∈ {1, . . . , L} such that

|ãk δ
λk | > 2

∑
k ′ �=k

|ãk ′δλk ′ | and |b̃�δ
γ� | > 2

∑
� ′ �=�

|b̃� ′δγ� ′ | for all δ ∈ I.

Moreover,
∫
B∪C dt/t ≤ 2A for a universal constant A. (The proof is by the same

reasoning used in [3].)
To compute the endpoints of a nonempty interval Ikk ′ = [h−

kk ′ , h
+
kk ′] (k �= k ′)

we solve the equations

δλk−λk ′ = 5±1 |ãk ′ |
|ãk|

.

The solutions δ = δ± are given by

δ± =
(
5±1 |ãk ′ |

|ãk|

)(λk−λk ′)−1

(for each choice of ±).

From the lower/upper bound on |ãk| by Δ±C
g , we see that we can compute |ãk ′/ãk|

to precision Δ−C
g Δε, and |ãk ′/ãk| ∈ [Δ−C

g , ΔC
g]. Since

∣∣(λk − λk ′)−1
∣∣ ≤ c−1

0 ≤ C,

we can compute δ+ and δ− to precision Δ−C
g Δε, due to the numerical stability of

exponentiation.

1056 C. Fefferman, A. Israel, and G.K. Luli

Now, note that

h−
kk ′ = min{δ−, δ+, Δg}, h+

kk ′ = max{δ−, δ+, Δ
−1
g }.

Both h−
kk ′ and h+

kk ′ can be computed with parameters (Δg, Δ
−C
g Δε). Thus, we

can compute a machine interval Ĩkk ′ ⊂ [Δg, Δ
−1
g] with Ikk ′ ⊂ Ĩkk ′ and

(2.31) dist(Ikk ′ , Ĩkk ′) ≤ Δ−C
g Δε,

where dist(·, ·) is the Hausdorff distance. Due to the previous inclusion, we know

that the union of the intervals Ĩkk ′ contains the set B = ∪k�=k ′Ikk ′ .

Similarly, we compute a machine interval J̃�� ′ ⊂ [Δg, Δ
−1
g] with J�� ′ ⊂ J̃�� ′ and

(2.32) dist(J�� ′ , J̃�� ′) ≤ Δ−C
g Δε.

Again, note that the union of the intervals J̃�� ′ contains the set C.
We next compute pairwise disjoint machine intervals Ibadν ⊂

[
Δg, Δ

−1
g

]
such

that
νmax⋃
ν=1

Ibadν =
⋃

k�=k ′
Ĩkk ′ ∪

⋃
��=� ′

J̃�� ′ .

We form the intervals Ibadν by concatenating the intersecting intervals among Ĩkk ′

and J̃�� ′ . Note that the union of the Ibadν contains the set B ∪ C.
Because the intervals below are contained in

[
Δg, Δ

−1
g

]
, for each ν we have∫

Ibadν

dt

t
≤

∑
k,k ′

∫
˜Ikk ′

dt

t
+
∑
�,� ′

∫
˜J�� ′

dt

t

(2.31),(2.32)

≤
∑
k,k ′

[∫
Ikk ′

dt

t
+ Δ−1

g · Δ−C
g Δε

]
+
∑
�,� ′

[∫
J�� ′

dt

t
+ Δ−1

g Δ−C
g Δε

]

≤
∫
B∪C

dt

t
+ Δ−C ′

g Δε ≤ 3A.(2.33)

Recall that A ≥ 1 is a universal constant.
We compute pairwise disjoint machine intervals Iμ ⊂

[
Δg, Δ

−1
g

]
such that

μmax⋃
μ=1

Iμ =
[
Δg, Δ

−1
g

]
\

νmax⋃
ν=1

Ibadν .

Thus, since the union of the Ibadν contains B ∪ C, we have Iμ ⊂
[
Δg, Δ

−1
g

]
\ (B ∪ C)

for each μ. By (2.30), there exist k = k(μ) ∈ {1, . . . , K} and � = �(μ) ∈ {1, . . . , L}

such that

|ãk δ
λk | > 2

∑
k ′ �=k

|ãk ′δλk ′ | and |b̃�δ
γ� | > 2

∑
� ′ �=�

|b̃� ′δγ� ′ | for all δ ∈ Iμ.

We compute k = k(μ) and � = �(μ), for each μ, by searching over all k, � to deter-

mine the maximal value of
∣∣ãk δ

λ�∗
∣∣ and ∣∣b̃� δ

γ�∗
∣∣ for any fixed δ∗ ∈ Iμ. Then, by

Fitting a Sobolev function to data III 1057

the definition of η̃min(δ) we see that

(2.34) c · η̃min(δ) ≤
ãk δ

λk

b̃� δγ�

≤ C · η̃min(δ) for all δ ∈ Iμ.

According to (2.28), we also have c · η̃min(δ) ≥ c · ΔC
g .

We compute machine numbers dμ such that
∣∣dμ − ãk/b̃�

∣∣ ≤ Δ−C
g Δε, and

numbers ωμ = λk − γ�, where k = k(μ) and � = �(μ). We claim that

c · ηmin(δ) ≤ dμ · δωμ ≤ C · ηmin(δ) for all δ ∈ Iμ.

Indeed, dμ ·δωμ differs from ãkδ
λk/(b̃�δ

γ�) by at most an additive error of Δ−C
g Δε,

since Δg ≤ δ ≤ Δ−1
g and |ωμ| ≤ C. This additive error is bounded by 1

2
c · ΔC

g ≤
c · η̃min(δ) since, by assumption, Δε ≤ 1

2
cΔ2C

g . Hence, (2.34) implies the above
claim.

We compute a machine number δν in each interval Ibadν . We know that e−3A ≤
δ/δν ≤ e3A for all δ ∈ Ibadν , due to (2.33). Hence, (2.13) implies that

(2.35) c · ηmin(δ) ≤ ηmin(δν) ≤ C · ηmin(δ) for all δ ∈ Ibadν .

We then compute a machine number Γν such that |Γν− η̃min(δν)| ≤ Δ−C
g Δε. Thus,

from (2.28) and (2.35) we conclude that

c ′ · ηmin(δ) ≤ Γν ≤ C ′ · ηmin(δ) for all δ ∈ Ibadν .

We define η∗ :
[
Δg, Δ

−1
g

] → R by

(2.36) η∗(δ) =
{

dμ · δωμ if δ ∈ Iμ,

Γν if δ ∈ Ibadν .

As shown above, we have c · η∗(δ) ≤ ηmin(δ) ≤ C · η∗(δ) for δ ∈
[
Δg, Δ

−1
g

]
, hence

we obtain the main estimate in the conclusion of the procedure Approximate

rational function (finite-precision). This completes the explanation. �

As mentioned before, by applying the procedure Approximate rational

function we compute a function η∗(δ) satisfying the conditions of the algo-
rithm Fit basis to convex body (finite-precision). This completes the ex-
planation. �

2.6. Compressing norms in finite-precision

We assume that Δmin ≤ Δε ≤ Δg ≤ Δ0 ≤ 1 are as in the Main assumptions in
Section 2.2. In particular, Δmin = 2−S (S = KmaxS) denotes the machine precision

of our computer, and Δ0 = 2−S. We assume that Δε ≤ ΔC
g for a large enough

universal constant C.
Let μ be a linear functional on RD given in the form μ(v) = v·w, wherew ∈ RD

is given as w = (w1, . . . , wD). We define

‖μ‖ := max
1≤i≤D

|wi| .

1058 C. Fefferman, A. Israel, and G.K. Luli

We say that μ is specified with parameters (Δg, Δε) if ‖μ‖ ≤ Δ−1
g and if wj is spec-

ified to precision Δε for each i = 1, . . . , D. This means that machine numbers wfin
i

are given with
∣∣wi −wfin

i

∣∣ ≤ Δε for each 1 ≤ i ≤ D.

We assume that the following data are given.

• We fix a machine number Δ ∈
[
Δg, 1

]
of the form Δ = 2−KS for an integer

K ≥ 1.

• We specify linear functionals μ1, . . . , μL on RD with parameters (Δg, Δε).

We assume that L ≤ Δ−1
g , and that D ≤ C̃ for a universal constant C̃.

• We fix an S-bit machine number p > 1.

We denote |v| =
(∑D

i=1|vi|p
)1/p

for v = (v1, . . . , vD) ∈ RD.

Algorithm: Compress norms (finite-precision version)

Fix 1 < p < ∞, and fix an integer D ≥ 1 as above. Let μ1, · · · , μL be linear
functionals on RD, and let Δ ∈

[
Δg, 1

]
be as above.

We compute linear functionals μ∗
1, . . . , μ

∗
D on RD such that

(2.37) c ·
D∑
i=1

|μ∗
i (v)|p ≤

L∑
�=1

|μ�(v)|p + Δp|v|p ≤ C ·
D∑
i=1

|μ∗
i (v)|p for all v ∈ RD.

The μ∗
i are represented as v �→ v ·w∗

i , where w∗
i = (w∗

i,1, . . . , w
∗
i,D) and the w∗

i,k

are computed with parameters (ΔC
g , Δ

−C
g Δε).

This computation requires work and storage at most CL.
Here, c > 0 and C ≥ 1 are universal constants.

Explanation. We proceed by induction on D.
First consider the base case D = 1. The given functionals on R1 have the form

μ�(v) = w� · v (1 ≤ � ≤ L), where the numbers w� are specified with parameters

(Δg, Δε). We define γ :=
(
|w1|p + · · · +

∣∣wL

∣∣p + Δp
)1/p

. Using Lemma 2, we
compute a machine number γ̂ such that γ/2 ≤ γ̂ ≤ 2γ. Define the functional
μ∗
1(v) = γ̂ · v on R1. Then the estimate (2.37) holds with c = 1/2 and C = 2.
We now treat the induction step. Fix an integer D ≥ 2. We assume by

induction that the algorithm Compress norms has been established when D is
replaced by D− 1.

We write c, c ′, C, C ′, etc., to denote constants depending only on p and D.
We define the functionals

(2.38) ωi(v) := Δ · vi for v = (v1, . . . , vD) ∈ RD, for each i = 1, . . . , D.

Let {μ1, . . . , μL} denote the collection {μ1, · · ·μL,ω1, . . . ,ωD} of linear func-
tionals on RD. Except for minor modifications, we mimic the computation in the
infinite-precision version of Compress norms (see Section 2.8 of [3]), using the
collection {μ1, . . . , μL} as input. We include the extra functionals ωi in order to
ensure that we never encounter division by a small number. This leads to the
required numerical stability. We provide details of the computation below.

Fitting a Sobolev function to data III 1059

For each 1 ≤ i ≤ L, we write

μi(v1, . . . , vD) := β∗
i · vD + μi(v1, . . . , vD−1, 0)(2.39)

= εi ·
[
βivD − μ̃i(v1, . . . , vD−1)

]
,

where βi = |β∗
i |, εi = sgn(β∗

i), and μ̃i(v1, . . . , vD−1) = −εi · μi(v1, . . . , vD−1, 0).
Here, sgn(·) denotes the “signum” function: sgn(α) = 1 if α ≥ 0, and sgn(α) = −1

if α < 0.
The numbers β∗

i in (2.39) are given with parameters (Δg, Δε), since the func-
tionals μ� are given with parameters (Δg, Δε) and the ωi are given exactly. Hence,
we can compute βi with parameters (Δg, 10Δε) for each i. We cannot compute εi
or μ̃i with any accuracy unless |β∗

i | > Δε, but this remark will not cause much
difficulty.

We set Δ1 = ΔC0
g , for a universal constant C0 ∈ N that will be determined

later. Recall that βi is specified to precision Δε, and that Δε ≤ 1
4
ΔC0

g = 1
4
Δ1.

Hence, we can compute a subset Ifin ⊂ {1, . . . , L} such that

(2.40) βi ≤ 2Δ1 for i /∈ Ifin, and βi ≥ Δ1 for i ∈ Ifin.

(Just compare the machine approximation of each βi to
3
2
Δ1.)

We compute εi = sgn(β∗
i) exactly if i ∈ Ifin, since then we have |β∗

i | = βi ≥
Δ1 ≥ 2Δε. (We do not attempt to compute εi for i /∈ Ifin.) Hence, we can compute
the functional μ̃i with parameters (Δg, Δε) for each i ∈ Ifin.

Alternatively, for each i /∈ Ifin, we define the functional ˜̃μi(v1, . . . , vD−1) =

μi(v1, . . . , vD−1, 0), which is given with parameters (Δg, Δε). We have either ˜̃μi =

−μ̃i or ˜̃μi = μ̃i, though we do not guarantee which case occurs.
We have μi0 = ωD for some i0 ∈ {1, . . . , L}. From (2.38), we see that βi0 =

Δ ≥ Δg > 2Δ1, since βi0 is the magnitude of the coefficient of vD in μi0 = ωD.
Hence, i0 ∈ Ifin, thanks to (2.40). Therefore,

(2.41) B :=
∑
i∈Ifin

|βi|p ≥ |βi0 |
p
= Δp.

Each βi in (2.41) is given with parameters (Δg, Δε). Hence, we can compute B

to precision L · Δ−C
g Δε ≤ Δ−C ′

g Δε, since #(Ifin) ≤ L ≤ Δ−C
g (note: the error

invoked in computing each exponentiation |βi|p is bounded by Δ−C
g Δε). Clearly,

also B ∈
[
ΔC

g , Δ
−C
g

]
. Hence, for each i ∈ Ifin, we can compute Prob(i) := |βi|p /B

with parameters (1, Δ−C
g Δε).

Recall that the coefficients of μ̃i : R
D−1 → R are bounded by Δ−1

g , and D ≤ C.
Therefore,

(2.42) |μ̃i(v1, . . . , vD−1)|p ≤ Δ−C
g |v|p .

The list {μ1, . . . , μL} consists of the functionals μ� and ωi (defined in (2.38)).
Hence,

(2.43)

L∑
�=1

|μ�(v1, . . . , vD)|p + Δp |v|p =

L∑
i=1

|μi(v1, . . . , vD)|p

1060 C. Fefferman, A. Israel, and G.K. Luli

which differs by at most a factor of C from

B · |vD − μ(v1, . . . , vD−1)|p(2.44)

+

{
B ·

∑
i∈Ifin

Prob(i) ·
∣∣μ(v1, . . . , vD−1) − β−1

i μ̃i(v1, . . . , vD−1)
∣∣p

+
[∑
i/∈Ifin

|βivD − μ̃i(v1, . . . , vD−1)|p
]}

,

where

μ(v1, . . . , vD−1) :=
∑
i∈Ifin

Prob(i) ·
{
β−1
i μ̃i(v1, . . . , vD−1)

}
(2.45)

= B−1 ·
∑
i∈Ifin

β
p−1
i · μ̃i(v1, . . . , vD−1).

We prove these estimates by the same argument used in the estimations following
equation (2.67) in [3]. (In contrast to the prior setting, we no longer guarantee
here that βi = 0 for i /∈ Ifin, which is why the third line in (2.44) contains an extra
term of the form βivD.)

Note that Ifin �= ∅, as we saw just before (2.41). Recall that |Prob(i)| ≤ 1 for
each i, and that βi ≥ Δ1 = ΔC0

g for each i ∈ Ifin. Therefore, from (2.45) we see
that

‖μ‖ ≤ #(Ifin) · Δ−C
g ·max

i
{‖μ̃i‖} ≤ Δ−C ′

g .

Moreover, we can compute μ in (2.45) to precision Δ−C
g Δε. Hence, we can com-

pute μ with parameters (ΔC
g , Δ

−C
g Δε).

We next estimate the term inside the brackets in (2.44). Applying the estimate∣∣|x+ y|p − |x|p
∣∣ ≤ p · |y| · (|x|+ |y|)p−1, we have∣∣∣ ∑

i/∈Ifin

|βivD − μ̃i(v1, . . . , vD−1)|p −
∑
i/∈Ifin

|μ̃i(v1, . . . , vD−1)|p
∣∣∣

≤ p ·
∑
i/∈Ifin

|βivD| ·
{
|βivD| + |μ̃i(v1, . . . , vD−1)|

}p−1

≤ CLΔ−C
g Δ1 |v|p ≤ ΔC0−C ′

g |v|p .

The constant C ′ is independent of C0. Here, we use estimate (2.42), that |βi| ≤
2Δ1 for i /∈ Ifin (see (2.40)), and that the number of relevant i is bounded by
L ≤ Δ−C

g . Hence,

S− ΔC0−C ′
g |v|p ≤

[
bracketed expression in (2.44)

]
≤ S+ ΔC0−C ′

g |v|p ,

where S :=
∑
i/∈Ifin

|μ̃i(v1, . . . , vD−1)|p .

We now fix the constant C0 used to define Δ1 = ΔC0
g . We take C0 much larger

than C ′ above, so that the junk term ΔC0−C ′
g |v|p is bounded by 1

10
(C)−1Δ

p
g |v|p ≤

Fitting a Sobolev function to data III 1061

1
10
(C)−1Δp |v|p. Hence, we can replace the expression inside square brackets

in (2.44) with S, and we can absorb the junk term ΔC0−C ′
g |v|p into the junk

term Δp |v|p in (2.43). Consequently,
∑L

�=1 |μ�(v1, . . . , vD)|p + Δp |v|p differs by
at most a factor of C ′′ from

B · |vD − μ(v1, . . . , vD−1)|p

+

{
B ·

∑
i∈Ifin

Prob(i) ·
∣∣μ(v1, . . . , vD−1) − β−1

i μ̃i(v1, . . . , vD−1)
∣∣p

+
[∑
i/∈Ifin

|μ̃i(v1, . . . , vD−1)|p
]}

We add Δp |(v1, . . . , vD−1)|p to both expressions in the previous sentence. Note
that Δp |(v1, . . . , vD−1)|p + Δp |v|p differs by at most a factor of 2 from Δp |v|p.
Therefore,

∑L
�=1 |μ�(v1, . . . , vD)|p+Δp |v|p differs by at most a factor of C ′′′ from

B · |vD − μ(v1, . . . , vD−1)|p(2.46)

+

{ ∑
i∈Ifin

|βiμ(v1, . . . , vD−1) − μ̃i(v1, . . . , vD−1)|p

+
∑
i/∈Ifin

∣∣˜̃μi(v1, . . . , vD−1)
∣∣p + Δp |(v1, . . . , vD−1)|p

}

(Recall that Prob(i) = |βi|p /B and that μ̃i = ±˜̃μi.) We consider the functionals
arising inside the curly brackets above, namely

μ̂i(v1, . . . , vD−1) :=

{
βiμ(v1, . . . , vD−1) − μ̃i(v1, . . . , vD−1) if i ∈ Ifin,˜̃μi(v1, . . . , vD−1) if i /∈ Ifin.

Note that ‖μ̂i‖ ≤ Δ−C
g , since the same upper bound holds for μ, ˜̃μi = ±μ̃i,

and βi. Moreover, each μ̂i can be computed to precision Δ−C
g Δε. Hence, we can

compute μ̂i (1 ≤ i ≤ L) with parameters (ΔC
g , Δ

−C
g Δε).

The functionals μ̂i are given with parameters (ΔC
g , Δ

−C
g Δε) and ΔC

g ≤ Δg ≤
Δ ≤ 1. By the induction hypothesis, we can compute functionals μ∗

1, . . . , μ
∗
D−1 :

RD−1 → R such that
D−1∑
i=1

|μ∗
i (v1, . . . , vD−1)|p

differs by at most a factor of C from the expression in curly brackets in (2.46).
The μ∗

1, . . . , μ
∗
D−1 are specified with parameters (ΔC ′

g , Δ−C ′
g Δε).

We define

μ∗
D(v1, . . . , vD) := B1/p · [vD − μ(v1, . . . , vD−1)] .

We can compute μ∗
D with parameters (ΔC

g , Δ
−C
g Δε), since the same is true of B

and μ, and since B ≥ Δp ≥ Δ
p
g (see (2.41)).

1062 C. Fefferman, A. Israel, and G.K. Luli

Thus, from (2.46), we see that

c·
[L∑
�=1

|μ�(v1, . . . , vD)|p + Δp |v|p
]
≤ |μ∗

D(v1, . . . , vD)|p +

D−1∑
i=1

|μ∗
i (v1, . . . , vD−1)|p

≤ C ·
[L∑
�=1

|μ�(v1, . . . , vD)|p + Δp |v|p
]
.

This completes the explanation of the finite-precision version of Compress

norms. �

2.7. Algorithm: Optimize via matrix

We define Δmin ≤ Δε ≤ Δg ≤ Δ0 ≤ 1 as in the Main assumptions in Section 2.2.
In particular, Δmin = 2−S (S = KmaxS) denotes the machine precision of our

computer, and Δ0 = 2−S. We assume that Δε ≤ ΔC
g for a large enough universal

constant C.
We are given the following data:

• We fix a machine number Δ ∈
[
Δg, 1

]
of the form Δ = 2−KS for an integer

K ≥ 1.

• We are given a matrix A = (a�j)1≤�≤L , 1≤j≤J. The numbers a�j are specified
with parameters (Δg, Δε). We have 1 ≤ L ≤ Δ−1

g and 1 ≤ J ≤ C for a
universal constant C.

• We fix an S-bit machine number p > 1.

Algorithm: Optimize via matrix (finite-precision)

Given 1 < p < ∞, given Δ, and given a matrix A = (a�j)1≤�≤L , 1≤j≤J as above,
we compute a matrix B = (bj�)1≤j≤J , 1≤�≤L. We guarantee that the following
conditions hold.

Let y1, . . . , yL be real numbers, and set x∗j =
∑L

�=1 bj�y� for each j = 1, . . . , J.
Then

L∑
�=1

|y� +
J∑

j=1

a�j x
∗
j |p ≤ C1 ·

[L∑
�=1

|y� +
J∑

j=1

a�j xj|p + Δp
J∑

j=1

|xj|p
]

for any real numbers x1, . . . , xJ.
The numbers bj� are computed with parameters (ΔC1

g , Δ−C1
g Δε).

The algorithm requires work and storage at most C1 · L.
Here, C1 is a universal constant.

Explanation. We write c, C,C ′, etc., to denote universal constants.
We proceed by induction on J. We first handle the case J = 1.
Assume that an L×1 matrix (a�)1≤�≤L is given, with each number a� specified

with parameters (Δg, Δε).
Let y1, . . . , yL be given real numbers.
We define y0 = 0 and a0 = Δ.

Fitting a Sobolev function to data III 1063

We compute an index set L ⊂ {0, . . . , L} such that |a�| ≥ Δ10
g for � ∈ L, and

|a�| ≤ 2Δ10
g for � ∈ {0, . . . , L}\L. To do so, we compare the machine approximation

of each |a�| to the machine number 3
2
Δ10

g .

Note that a0 = Δ ≥ Δg > 2Δ10
g , which implies that 0 ∈ L. In particular,

L �= ∅.
If |a�| ≤ 2Δ10

g then the quantities |y�| + 2Δ10
g · |x| and |y� + a� x| + 2Δ10

g · |x|
differ by at most a factor of 2, thanks to the triangle inequality. Thus,

|y� + a� x|p + Δ10p
g · |x|p ∼ |y�|p + Δ10p

g · |x|p for � ∈ {0, . . . , L} \ L,
where A ∼ B indicates that c · A ≤ B ≤ C · A for some universal constants c > 0

and C ≥ 1. Therefore, we have

L∑
�=0

|y� + a� x|p + E(x) ∼
∑
�∈L

|y� + a� x|p +
∑

�∈{0,...,L}\L
|y�|p + E(x),(2.47)

where E(x) = #({0, . . . , L} \ L) · Δ10p
g · |x|p .

Since L ≤ Δ−1
g , it follows that E(x) ≤ Δ

p
g ·|x|p ≤ Δp ·|x|p = |y0 + a0x|p. Therefore,

because |y0 + a0x|p is a summand on both sides of (2.47), we can discard the error
term E(x) and obtain

L∑
�=0

|y� + a� x|p ∼
∑
�∈L

|y� + a� x|p +
∑

�∈{0,...,L}\L
|y�|p .

We write this estimate in the form
L∑

�=0

|y� + a� x|p ∼
∑
�∈L

|y� + x|p · |a�|p +
∑

�∈{0,...,L}\L
|y�|p ,(2.48)

where we define y� :=
y�

a�
.

Now, we want to minimize the expression T (x) =
∑

�∈L |y� + x|p · |a�|p up to
a universal constant factor. We define

x∗ := −
∑
�∈L

y� · Prob(�), where Prob(�) :=
(∑

� ′∈L
|a� ′ |p

)−1

· |a�|p for � ∈ L.

Recall that L �= ∅. Hence, Prob(�) is a well-defined probability measure on L.
From equation (2.65) in [3], we conclude that T (x∗) ≤ C · T (x) for all x ∈ R.
Therefore, we have

L∑
�=0

|y� + a� x
∗|p ≤ C ′ ·

L∑
�=0

|y� + a� x|p for any x ∈ R.

Because y0 = 0 and a0 = Δ, this implies that

L∑
�=1

|y� + a� x
∗|p ≤ C ′ ·

[L∑
�=1

|y� + a� x|p + Δp |x|p
]
,

1064 C. Fefferman, A. Israel, and G.K. Luli

as desired in the case J = 1 of our algorithm. Note that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x∗ = −
∑
�∈L

y� · Prob(�) =
∑

�∈L\{0}

y� · b�, where

b� = −
(∑

� ′∈L
|a� ′ |p

)−1

· |a�|p · a−1
� for � ∈ L \ {0}.

It is safe to discard the � = 0 term in the sum, because by definition y0 = y0 = 0.
Note that |a�| and |a� ′ |, for �, � ′ ∈ L, belong to the interval [Δ10

g , Δ−1
g]. Therefore,

we can compute |a� ′ |p and |a�|p to precision Δ−C
g Δε; moreover, we can compute

the expression (· · ·)−1
– in the formula for b� – with precision Δ−C

g Δε. Thus,

we can compute the coefficients b�, for each � ∈ L \ {0}, with precision Δ−C
g Δε.

Furthermore, note that each |b�| is bounded by Δ−C
g for a universal constant C ≥ 1.

All the remaining coefficients b�, for � ∈ {1, . . . , L} \ L, are defined to be 0.

Thus, x∗ =
∑L

�=1 y� · b�, and b� can be computed with the desired parameters.
Thus, we have established the case J = 1 of our algorithm.

For the general case, we use induction on J.
Let J ≥ 2, and let 1 < p < ∞ and assume that we are given an L×J matrix A =

(a�j)1≤�≤L , 1≤j≤J. We assume that the numbers a�j are specified with parameters
(Δg, Δε).

Let real numbers y1, . . . , yL be given. We have

(2.49)

L∑
�=1

∣∣∣y� +

J∑
j=1

a�jxj

∣∣∣p =

L∑
�=1

∣∣∣ŷ� +

J−1∑
j=1

a�jxj

∣∣∣p ((x1, . . . , xJ) ∈ RJ),

using new variables

(2.50) ŷ� = y� + a�J · xJ for 1 ≤ � ≤ L.

By applying the algorithm Optimize via matrix recursively to 1 < p < ∞
and the submatrix (a�j)1≤�≤L , 1≤j≤J−1, we compute a matrix (b̂j�)1≤j≤J−1 , 1≤�≤L

such that the following holds.

• We compute the numbers b̂j� with parameters (ΔC
g , Δ

−C
g Δε) for a universal

constant C.

• Let ŷ1, . . . , ŷL be given, and set

(2.51) x̂j =

L∑
�=1

b̂j� ŷ� for 1 ≤ j ≤ J− 1.

Then, for any real numbers x1, . . . , xJ−1, we have

(2.52)

L∑
�=1

|ŷ� +

J−1∑
j=1

a�j x̂j|p ≤ C ·
[L∑
�=1

|ŷ� +

J−1∑
j=1

a�j xj|p + Δp
J−1∑
j=1

|xj|p
]
.

Fitting a Sobolev function to data III 1065

Using (2.49)–(2.52), we draw the following conclusion.
Let real numbers y1, . . . , yL be given, and let x1, . . . , xJ be arbitrary. We define

ŷ1, . . . , ŷL by (2.50), next define x̂1, . . . , x̂J−1 by (2.51), and finally set

(2.53) x̂J = xJ.

Then
L∑

�=1

|y� +

J∑
j=1

a�j x̂j|p ≤ C ·
[L∑
�=1

|y� +

J∑
j=1

a�jxj|p + Δp

J−1∑
j=1

|xj|p
]
,

hence

(2.54)

L∑
�=1

|y�+

J∑
j=1

a�j x̂j|p+Δp · |x̂J|p ≤ C ·
[L∑
�=1

|y�+

J∑
j=1

a�jxj|p+Δp

J∑
j=1

|xj|p
]
,

and moreover

(2.55) x̂j =

L∑
�=1

b̂j� · (y� + a�J x̂J) for j = 1, . . . , J− 1.

Thus,

x̂j =

L∑
�=1

b̂j� y� + gj x̂J, where(2.56)

gj :=

L∑
�=1

b̂j� a�J for j = 1, . . . , J− 1.(2.57)

We compute the numbers gj with parameters (ΔC ′
g , Δ−C ′

g Δε) using work at mostCL.

This is possible because L ≤ Δ−1
g and because of parameters with which b̂j� and a�j

are specified. In the above discussion, the numbers x1, . . . , xJ are arbitrary, the
numbers x̂1, . . . , x̂J−1 are defined from x̂J by (2.55), and x̂J = xJ.

Next, note that

y� +

J∑
j=1

a�j x̂j = y� +

J−1∑
j=1

a�j

[L∑
� ′=1

b̂j� ′y� ′ + gjx̂J

]
+ a�Jx̂J

=
{
y� +

J−1∑
j=1

a�j

L∑
� ′=1

b̂j� ′y� ′
}
+
{
a�J +

J−1∑
j=1

a�jgj

}
x̂J =: youch

� + h� · x̂J.

Here,

(2.58) youch

� = y� +

J−1∑
j=1

a�j

L∑
� ′=1

b̂j� ′ y� ′ ,

and

(2.59) h� = a�J +

J−1∑
j=1

a�j gj for � = 1, . . . , L.

1066 C. Fefferman, A. Israel, and G.K. Luli

Thus,

(2.60)

L∑
�=1

|y� +

J∑
j=1

a�j x̂j|p =

L∑
�=1

|youch

� + h� x̂J|p.

Here, (2.60) holds whenever x̂1, . . . , x̂J−1 are determined from x̂J via (2.56).
We compute the numbers h� with parameters (ΔC

g , Δ
−C
g Δε), using work at

most CL.
Note that it is too expensive to compute youch

� for all � (1 ≤ � ≤ L); that
computation would require ∼ L2J work. However, the youch

� defined above are
independent of our choice of x̂J.

Applying the known case J = 1 of our algorithm Optimize via matrix, we
compute from the h� a vector of coefficients γ� (1 ≤ � ≤ L), for which the following
holds.

• We compute the numbers γ� with parameters (ΔC
g , Δ

−C
g Δε) for a universal

constant C.

• Let

(2.61) x̌J =

L∑
�=1

γ� y
ouch

� .

Then

L∑
�=1

|youch

� + h� x̌J|p ≤ C ·
[L∑
�=1

|youch

� + h� x̂J|p + Δp · |x̂J|p
]

for any real number x̂J.

We thus learn the following.
Let x̌1, . . . , x̌J−1 be defined from x̌J as in (2.56), i.e.,

(2.62) x̌j :=

L∑
�=1

b̂j� y� + gj x̌J for j = 1, . . . , J− 1.

Let x̂J be any real number, and let x̂1, . . . , x̂J−1 be determined from x̂J by (2.56).
Then

(2.63)

L∑
�=1

|y� +

J∑
j=1

a�j x̌j|p ≤ C ·
[L∑
�=1

|y� +

J∑
j=1

a�j x̂j|p + Δp · |x̂J|p
]

(See (2.60).)
From (2.54) and (2.63), we see that

(2.64)

L∑
�=1

|y� +

J∑
j=1

a�j x̌j|p ≤ C ·
[L∑
�=1

|y� +

J∑
j=1

a�j xj|p + Δp

J∑
j=1

|xj|p
]
.

Here, x̌1, . . . , x̌J are computed from (2.61),(2.62); and x1, . . . , xJ are arbitrary.

Fitting a Sobolev function to data III 1067

We produce efficient formulas for the x̌j. Putting (2.58) into (2.61), we find
that

x̌J =

L∑
�=1

γ� ·
{
y� +

J−1∑
j=1

a�j

L∑
� ′=1

b̂j� ′y� ′
}
=

L∑
�=1

γ� · y� +

L∑
� ′=1

J−1∑
j=1

[L∑
�=1

γ�a�j

]
b̂j� ′y� ′

=
L∑

�=1

{
γ� +

J−1∑
j=1

[L∑
� ′=1

γ� ′ a� ′j

]
b̂j�

}
· y�.

Therefore, setting

(2.65) Δj =

L∑
�=1

γ� a�j for j = 1, . . . , J− 1

and

(2.66) b
##
J� = γ� +

J−1∑
j=1

Δj b̂j� for � = 1, . . . , L

we find that

(2.67) x̌J =

L∑
�=1

b
##
J� y�.

Substituting (2.67) into (2.62), we find that

x̌j =

L∑
�=1

{
b̂j� + gj b

##
J�

}
y� for j = 1, . . . , J− 1.

Thus, setting

(2.68) b
##
j� = b̂j� + gj b

##
J� for j = 1, . . . , J− 1, � = 1, . . . , L

we have

(2.69) x̌j =

L∑
�=1

b
##
j� y� for j = 1, . . . , J− 1.

Recalling (2.67), we see that (2.69) holds for j = 1, . . . , J. Thus, with x̌1, . . . , x̌J
defined by (2.69), we have

L∑
�=1

|y� +

J∑
j=1

a�j x̌j|p ≤ C ·
[L∑
�=1

|y� +

J∑
j=1

a�jxj|p + Δp

J∑
j=1

|xj|p
]

for any real numbers x1, . . . , xJ. (See (2.64).)

So the matrix B = (b##
j�)1≤j≤J , 1≤�≤L is as promised in our algorithm.

We make a few additional remarks on the computation of (b##
j�)1≤j≤J , 1≤�≤L.

• Recall the numbers γ�, a�j, and b̂j� are given with parameters (ΔC
g , Δ

−C
g Δε).

Also recall that L ≤ Δ−1
g .

1068 C. Fefferman, A. Israel, and G.K. Luli

• Thus, the numbers Δj (1 ≤ j ≤ J − 1) in (2.65) can be computed with
parameters (ΔC

g , Δ
−C
g Δε).

• Consequently, the numbers b##
J� (1 ≤ � ≤ L) in (2.66) can be computed with

parameters (ΔC
g , Δ

−C
g Δε).

• Recall that the numbers gj (1 ≤ j ≤ J − 1) in (2.57) can be computed with
parameters (ΔC

g , Δ
−C
g Δε).

• Therefore, the numbers b
##
j� (1 ≤ j ≤ J − 1, 1 ≤ � ≤ L) in (2.68) can be

computed with parameters (ΔC
g , Δ

−C
g Δε).

• Thus, the matrix B = (b##
j�) can be computed to the accuracy promised in

the algorithm. �

2.8. Statement of main technical results

We next state a modified version of the main technical results for A (see Section 3
in [3]) that accounts for the rounding errors that may arise in our computation.

We define a norm |P| :=
(∑

α∈M|∂αP(0)|p
)1/p

for P ∈ P . Thus, |P| denotes
the �p-norm of the vector (∂αP(0))α∈M.

We fix an integer S ≥ 1.
We are given a finite set E ⊂ 1

32
Q◦, with Q◦ = [0, 1)n. We assume that

N = #(E) ≥ 2. We additionally assume that E consists of S-bit machine points.
Thus,

(2.70) |x − x ′| ≥ Δ0 for distinct x, x ′ ∈ E,

where Δ0 := 2−S. Hence,

(2.71) #(E) = N ≤ Δ−n
0 .

For Δ1, Δ2 ∈ (0, 1], we write Δ1 	 Δ2 to indicate that Δ1 ≤ ΔC
2 for a sufficiently

large universal constant C.

We introduce constants Δ◦
ε := 2−K1S, Δ◦

g := 2−K2S, and Δ◦
junk := 2−K3S as

in Theorem 1. Here, K1, K2, K3 are positive integers, which are assumed to be
sufficiently well-separated in the sense that K1 ≥ C · K2 ≥ C2 · K3 for a large
enough universal constant C.

For each A ⊂ M, we will use parameters Δε(A) = Δ
K1(A)
0 , Δg(A) = Δ

K2(A)
0 ,

and Δjunk(A) = Δ
K3(A)
0 for integer exponents K1(A) ≥ K2(A) ≥ K3(A) ≥ 1. We

assume the exponents are chosen so that

Δε(M) 	 · · · 	 Δε(∅) 	 Δ◦
ε(2.72)

	 Δ◦
g 	 Δg(∅) 	 · · · 	 Δg(M)

	 Δjunk(M) 	 · · · 	 Δjunk(∅) 	 Δ◦
junk

	 Δ0.

Fitting a Sobolev function to data III 1069

In particular,

(2.73)

⎧⎪⎨
⎪⎩

Δε(∅) ≤ (Δ◦
ε)

C

Δ◦
g ≤ (Δg(∅))C

Δjunk(∅) ≤ (Δ◦
junk)

C

and

(2.74)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δε(A−) ≤ Δε(A+)C

Δg(A+) ≤ Δg(A−)C

Δjunk(A−) ≤ Δjunk(A+)C

Δε(∅) ≤ Δg(∅)C

Δg(M) ≤ Δjunk(M)C

Δjunk(∅) ≤ ΔC
0

for any A+ > A− and for a large enough universal constant C. We refer the reader
to Section 2.6 in [3] for the definition of our order relation on sets of multiindices.
The conditions in (2.72), (2.73), and (2.74) are clearly consistent with one another.
We will use these conditions throughout the course of the proof.

We assume throughout the course of the proof that we can perform arithmetic
operations on S-bit machine numbers to precision Δmin = 2−S, where S = KmaxS.
Here, the parameter Kmax ∈ N is larger than all the exponents Kj(A) (for all
A ⊂ M and j = 1, 2, 3).

The main technical results for A are as in Section 3 of [3], with the following
modifications.

• We define a dyadic decomposition CZ(A) of Q◦. We continue to guarantee
the properties (CZ1)–(CZ5). We additionally guarantee that

(2.75) δQ ≥ 1

32
· Δ0 for all Q ∈ CZ(A).

Hence, each cube in CZ(A) has S̃-bit machine points as corners, where S̃ ≤
S + 100. Thus, we can store each cube in CZ(A) on our computer using at
most C units of storage (for a universal constant C). However, we will not
compute all the cubes in CZ(A) for this would require too much work.

• We let CZmain(A) consist of all the cubes Q ∈ CZ(A) such that 65
64
Q∩E �= ∅.

For each Q ∈ CZmain(A), we will compute Ω(Q,A), Ξ(Q,A), and T(Q,A) as
in the three bullet points below.

• The assists ω ∈ Ω(Q,A) are to be given in short form with parameters
(Δg(A), Δε(A)).

• The functionals ξ ∈ Ξ(Q,A)) are to be given in short form with parameters
(Δg(A), Δε(A)) in terms of the assists Ω(Q,A).

1070 C. Fefferman, A. Israel, and G.K. Luli

We define

M(Q,A)(f, P) :=
(∑

ξ∈Ξ(Q,A)

|ξ(f, P)|p
)1/p

.

For each (f, P) ∈ X(65
64
Q ∩ E)⊕ P , we guarantee that

c · ‖(f, P)‖(1+a(A))Q ≤ M(Q,A)(f, P) ≤ C ·
[
‖(f, P)‖ 65

64
Q + Δjunk(A) · |P|

]
.

• The operators T(Q,A) map X(65
64
Q ∩ E)⊕ P into X.

(E1) T(Q,A)(f, P) = f on (1+ a(A))Q ∩ E for each (f, P).

(E2) ‖T(Q,A)(f, P)‖pX((1+a(A))Q)
+ δ

−mp
Q ‖T(Q,A)(f, P) − P‖p

Lp((1+a(A))Q)
≤

C
[
M(Q,A)(f, P)

]p
for each (f, P).

(E3) T(Q,A) has Ω(Q,A)-assisted depth at most C.

• The only modification to the algorithm CZ-oracle is as follows:
We assume that the query x ∈ Q◦ is an S-bit machine point. We compute a
list of all the cubes Q ∈ CZ(A−) such that x ∈ 65

64
Q.

(Recall that S = KmaxS is the maximum bit length of a machine number
representable on our computer.)

• The algorithm Compute main-cubes is unchanged. We compute and store
all the cubes in CZmain(A).

• The only modifications to the algorithm Compute functionals are as
follows.
The functionals ω ∈ Ω(Q,A) are computed in short form with parameters
(Δg(A), Δε(A)). The functionals ξ ∈ Ξ(Q,A) are computed in short form
with parameters (Δg(A), Δε(A)) in terms of the assists Ω(Q,A).

• The only modifications to the algorithm Compute extension operators

are as follows.
Let x ∈ Q◦ be an S-bit machine point, and let α ∈ M. We compute the
linear functional (f, P) �→ ∂α(T(Q,A)(f, P))(x) in short form with parameters
(Δg(A), Δε(A)) in terms of the assists Ω(Q,A). This requires work at most
C logN, as before.

• All the constants c∗(A), S(A), ε1(A), ε2(A), a(A), c, C depend on m,n, p,
and A. The constant S(A) ≥ 1 is an integer. We further assume that a(A)
is an integer power of 2. (This is a new assumption in the finite-precision
case.)

• We perform the above computations using one-time work at most CN logN
and storage at most CN.

Fitting a Sobolev function to data III 1071

2.9. Algorithms for dyadic cubes

We make the following assumptions.

• We are given machine numbers Δε = 2−K1S and Δg = 2−K2S, for integers
K1, K2 ≥ 1.

• We assume that our computer can perform arithmetic operations on S-bit
machine numbers with precision Δmin = 2−S, where S = Kmax · S.

• We assume that Δmin ≤ ΔC
ε , Δε ≤ ΔC

g , and Δg ≤ 2−CS for a large enough
universal constant C.

Whenever we refer to a machine number in this section, we mean an S-bit
machine number, with S as above.

We call a dyadic cuboid Q =
∏n

j=1 Ij ⊂ Rn a “machine cuboid” if each Ij is
an interval of the form [aj, bj), where aj and bj are machine numbers. Recall that
each Ij is contained in [0,∞), by definition of cuboids (see Section 4.1.1 in [3]).

Let Q and Q ′ be given machine cuboids. The following task can be performed
using one unit of “work”:

(2.76) Compute the smallest machine cuboid Q containing both Q ′ and Q ′′.

Let us explain why we charge only one unit of work to perform the task (2.76).
We suppose that a non-negative machine number x is represented in the com-

puter by its binary digits (xi)−S≤i≤S, where

x =

+S∑
i=−S

xi 2
i and each xi ∈ {0, 1}.

We suppose that the bit pattern (xi)−S≤i≤S fits in a single machine word. Given
two distinct non-negative machine numbers x, y with binary digits (xi)−S≤i≤S,
(yi)−S≤i≤S respectively, we return the largest i∗ for which xi∗ �= yi∗ . Recall
that in our model of computation for finite-precision arithmetic, we assume that
the computation of i∗ from (xi) and (yi) takes one unit of “work”. (See Sec-
tion 2.1.) Moreover, there are computers in use today for which the computation
of i∗ from (xi) and (yi)may be accomplished by executing O(1) assembly language
instructions.

Note that the smallest smallest dyadic interval containing x and y has length 2i∗ .
It follows easily that the task (2.76) may be accomplished using at most C opera-
tions. That is why we consider it reasonable to charge one unit of “work” to carry
out (2.76).

Therefore, we can determine whether Q < Q ′, Q ′ < Q, or Q = Q ′, using O(1)
computer operations. We refer here to the order relation on dyadic cuboids defined
in Section 4.1.1 of [3].

We should point out that the task (2.76) appears to require more than O(1)
operations in several standard models of computation (not used here). See the
discussion of “quad trees” and “segment trees” in [1].

We will obtain versions of the algorithms in Section 4.1.2 of [3] which are
adapted to our finite-precision model of computation.

1072 C. Fefferman, A. Israel, and G.K. Luli

A modification we will make throughout is that all the cuboids that are input
data to an algorithm will be assumed to be machine cuboids, while all the cuboids
that are produced as output data are guaranteed to be machine cuboids. We can
clearly store a machine cuboid on our computer using O(1) units of storage.

• Modification 1. We introduce a bit of notation relevant to the notion of
DTrees and ADTrees. See the discussion in Section 4.1.2 of [3].

Recall that each node x of a DTree T is marked with a dyadic cuboid Qx. When
we speak of a DTree T in this section, it is assumed that Qx is a machine cuboid
for each x ∈ T .

Recall that each node x of an ADTree T is marked with linear functionals
μx
1, . . . , μ

x
D on RD. We write μx

i : (v1, . . . , vD) �→ ∑D
j=1 θ

x
ijvj.

We will assume that D ≤ C for a universal constant C, in what follows.
We say that μx

1, . . . , μ
x
D are specified with parameters (Δg, Δε) if |θxij| ≤ Δ−1

g

and if each θxij is specified to precision Δε. If that’s the case for each node x and if

the number of nodes of the ADTree is at most Δ−1
g , then we say that the ADTree T

is specified with parameters (Δg, Δε).

• All of the algorithms that involve BTrees are combinatorial in nature, hence
they remain the same in our finite-precision model of computation. In particular,
BTree1 and Make control tree (deluxe edition and paperback edition) are
unchanged.

• Modification 2. We make the following changes to the algorithm Make

control tree (hybrid version) (see Section 4.1.3 of [3]).
Assume that an ADTree T is given with parameters (Δg, Δε), with each node x

in T marked by linear functionals μx
1, . . . , μ

x
D on RD. Also, we are given a machine

number Δ ∈ [Δg, 1] of the form Δ = 2−KS for an integer K ≥ 1.
Then we compute the control tree CT(T), with all its markings except for the

trees BT(ξ) (ξ ∈ CT(T)). For each node ξ ∈ CT(T), we compute functionals
μξ
1 , . . . , μ

ξ
D : RD → R of the form

μξ
i : (v1, . . . , vD) �→ D∑

j=1

θξijvj.

The numbers θξij are computed with parameters (ΔC
g , Δ

−C
g Δε). That is, we guaran-

tee that |θξij| ≤ Δ−C
g and each θξij is computed to precision Δ−C

g Δε. We guarantee
that for each ξ ∈ CT(T) we have

(2.77) c

D∑
i=1

|μξ
i (v)|p ≤

∑
x∈BT(ξ)

D∑
i=1

|μx
i (v)|p + Δp|v|p ≤ C

D∑
i=1

|μξ
i (v)|p.

Recall that we denote |v|p =
∑

j|vj|p for v = (v1, . . . , vD).
The work and storage requirements are the same as before.
That completes the list of modifications to the hybrid version of Make con-

trol tree.

Fitting a Sobolev function to data III 1073

To obtain this result, we apply the finite-precision version of Compress norms

(see Section 2.6) where before we used its infinite-precision counterpart. The proof
of (2.77) is exactly as before.

• Modification 3. In the algorithm Encapsulate: Assume that T is a DTree
with N nodes such that each node x in T is marked with a machine cuboid Qx.
We perform CN(1+ logN) one-time work in space CN after which we can answer
queries. A query consists of a machine cuboid Q. The response to a query is an
encapsulation S of Q, consisting of at most C+C logN nodes of CT(T). The work
and storage used to answer a query are at most C + C logN, where C denotes a
constant depending only on the dimension n.

For the explanation of the algorithm, just note that one can compare two
machine cuboids to determine whether one contains the other, using at most C

units of work. Thus, we can proceed as in the infinite-precision version of the
algorithm Encapsulate using our finite-precision computer.

• Modification 4. In the algorithm ADProcess (see Section 4.1.4 of [3]):

We assume our ADTree T is given with parameters (Δg, Δε). We are given a

machine number Δ ∈ [Δg, 1] of the form Δ = 2−KS for an integer K ≥ 1.

A query consists of a machine cuboid Q. The response to a query is a list of
linear functionals μQ

1 , . . . , μ
Q
D on RD such that

c

D∑
i=1

|μQ
i (v)|p ≤

∑
x∈T

Qx⊂Q

D∑
i=1

|μx
i (v)|p + Δp log(Δ−1

g)|v|p(2.78)

≤ C
[D∑
i=1

|μQ
i (v)|p + Δp log(Δ−1

g)|v|p
]

for all v ∈ RD.

Each μ
Q
i has the form μ

Q
i : (v1, . . . , vD) → ∑D

j=1 θ
Q
ijvj. We compute each θ

Q
ij

with parameters (ΔC
g , Δ

−C
g Δε).

The work and storage requirements remain the same as before. That completes
the list of modifications to the statement of ADProcess.

We present the modifications needed in the explanation of the algorithm. We
use the finite-precision versions of the algorithms Make control tree (hybrid

version) and Compress norms in place of the infinite-precision counterparts.
In the one-time work, we compute the control tree CT(T). Each node ξ ∈ CT(T)
is marked with linear functionals μξ

1 , . . . , μ
ξ
D satisfying (2.77). We compute the

functionals μξ
k with parameters (ΔC

g , Δ
−C
g Δε).

Using the algorithm Encapsulate, we respond to a query as follows.

Given a machine cuboid Q, we produce a set S of at most C+C logN nodes in
CT(T) such that {x ∈ T : Qx ⊂ Q} is the disjoint union over ξ ∈ S of BT(ξ). There-
fore, by the finite-precision version of Make control tree (hybrid version)

1074 C. Fefferman, A. Israel, and G.K. Luli

(see Modification 2 above), the expression

E1 =
∑
x∈T

Qx⊂Q

D∑
i=1

|μx
i (v)|p +#(S) · Δp · |v|p =

∑
ξ∈S

[∑
x∈BT(ξ)

D∑
i=1

|μx
i (v)|p + Δp · |v|p

]

differs by at most a factor of C from

E2 =
∑
ξ∈S

D∑
i=1

|μξ
i (v)|p.

Applying Compress norms (finite-precision) (see Section 2.6) to the expres-

sion E2, we compute linear functionals μQ
1 , . . . , μ

Q
D such that E2 +Δp · |v|p differs

by at most a factor of C from
∑D

i=1|μ
Q
i (v)|p. Each functional μQ

i is computed
with parameters (ΔC

g , Δ
−C
g Δε).

Therefore,
∑D

i=1|μ
Q
i (v)|p differs by at most a factor of C from

E1 + Δp|v|p =
∑
x∈T

Qx⊂Q

D∑
i=1

|μx
i (v)|p + (#(S) + 1) · Δp · |v|p

Note that

#(S) ≤ C+ C log(#(T)) ≤ C log(Δ−1
g),

so the junk term

(#(S) + 1) · Δp · |v|p

is bounded by CΔp log(Δ−1
g)|v|p. That concludes the proof of (2.78).

The work and storage requirements are as promised.

•Modification 5. In the algorithmsMake forest, Fill in gaps, andMake

DTree: All dyadic cuboids are assumed to be machine cuboids. The explanations
of these algorithms require no modification.

• Modification 6. In Compute norms from marked cuboids:

We suppose our cuboids Q1, . . . , QN have corners whose coordinates are S̃-bit

machine numbers, with S̃ ≤ CS for a universal constant C. Hence, N ≤ 2CnS ≤
Δ−C

0 , where we set Δ0 = 2−S.

We are given a machine number Δ ∈ [Δg, 1] of the form Δ = 2−KS for an integer
K ≥ 1.

Each linear functional μQi

� is given as μ
Qi

� : (v1, . . . , vD) �→ ∑D
j=1 θ

i
�jvj. The

numbers θi�j are specified with parameters (Δg, Δε). We assume that N̂ :=
∑N

i=1(Li
+1) ≤ Δ−1

g .

A query consists of a dyadic cuboid Q whose corners are machine points.

Fitting a Sobolev function to data III 1075

The response to a query Q is a list of linear functionals μ̂Q
1 , . . . , μ̂

Q
D : RD → R

for which we guarantee the estimate

c

D∑
j=1

|μ̂Q
j (v)|p ≤

∑
Qi⊂Q

Li∑
j=1

|μQi

j (v)|p + ΔpΔ−C
0 log(Δ−1

g) · |v|p

≤ C
[D∑
j=1

|μ̂Q
j (v)|p + ΔpΔ−C

0 log(Δ−1
g) · |v|p

]
for all v ∈ RD.

Each μ̂
Q
i has the form μ

Q
i : (v1, . . . , vD) �→ ∑D

j=1 θ
Q
ijvj. The numbers θ

Q
ij are

computed with parameters (ΔC
g , Δ

−C
g Δε).

That completes the list of modifications to the algorithm Compute norms

from marked cuboids.

The explanation of the algorithm is as follows.
For each i = 1, . . . , N we apply the finite-precision version of Compress norms

(see Section 2.6) to produce linear functionals μQi

j on RD for 1 ≤ j ≤ D such that

(2.79) c ·
D∑
j=1

∣∣μQi

j (v)
∣∣p ≤

Li∑
j=1

∣∣μQi

j (v)
∣∣p + Δp · |v|p ≤ C ·

D∑
j=1

∣∣μQi

j (v)
∣∣p.

Note that each Li ≤ Δ−1
g by assumption, so the algorithm may be applied as

stated. The functionals μQi

j are given with parameters (ΔC
g , Δ

−C
g Δε).

Using the algorithm Make Dtree, we construct a DTree T with at most CN
nodes, such that each Qi is a node of T . We mark each Qi in T with the list
of functionals μ

Qi

1 , . . . , μ
Qi

D , and we mark all the other nodes in T with a list of
linear functionals that are all zero. When equipped with these markings, T forms
an ADTree. Note that #(T) ≤ CN ≤ CΔ−C

0 ≤ Δ−1
g . Hence, the ADTree T is

specified with parameters (ΔC
g , Δ

−C
g Δε) (recall that μ

Qi

j are specified with such
parameters).

We apply the algorithm ADProcess to the ADTree T . Thus, given a machine
cube Q, we can compute a list of linear functionals μ̂Q

1 , . . . , μ̂
Q
D on RD such that

c ·
D∑
j=1

∣∣μ̂Q
j (v)

∣∣p ≤
∑

1≤i≤N
Qi⊂Q

D∑
j=1

∣∣μQi

j (v)
∣∣p + Δp log(Δ−C

g) · |v|p

≤ C ·
[D∑
j=1

∣∣μ̂Q
j (v)

∣∣p + Δp log(Δ−C
g) · |v|p

]
.

Note that Δ ∈ [ΔC
g , 1], so the algorithm may be applied as stated. Using (2.79),

we determine that

c ·
D∑
j=1

∣∣μ̂Q
j (v)

∣∣p ≤
∑

1≤i≤N
Qi⊂Q

Li∑
j=1

∣∣μQi

j (v)
∣∣p + E(v) ≤ C ·

[D∑
j=1

∣∣μ̂Q
j (v)

∣∣p + E(v)
]
,

1076 C. Fefferman, A. Israel, and G.K. Luli

where
E(v) =

∑
1≤i≤N
Qi⊂Q

Δp · |v|p + Δp log(Δ−C
g) · |v|p .

Since N ≤ Δ−C
0 , we conclude that

E(v) ≤ ΔpΔ−C
0 log(Δ−C

g) · |v|p ≤ ΔpΔ−C ′
0 log(Δ−1

g) · |v|p .

The previous estimate implies the desired condition on the functionals μ̂Q
1 , . . . , μ̂

Q
D.

This completes the explanation of the finite-precision version of the algorithm
Compute norms from marked cuboids.

• The algorithm Placing a point inside target cuboids requires minor
changes in finite-precision. We assume that Q1, . . . , QN are machine cuboids, and
that the query x is a machine point. The response to a query x is either one of
the Qi containing x, or else a promise that no such Qi exists. The work to answer
a query is at most C · (1 + logN). The explanation of the algorithm requires no
modification.

This concludes the description of the changes required in Section 4.1 of [3].
Aside from the following modifications, all the algorithms in Sections 4.2–4.5

of [3] are unchanged in our finite-precision model of computation.

• Each point x ∈ E is an S-bit machine point (i.e., the coordinates of x are
S-bit machine numbers).

• All numbers are S-bit machine numbers and all given points are S-bit machine
points, where S = KmaxS.

• Each dyadic cuboid has S̃-bit machine points as corners, where S̃ ≤ CS.

2.10. CZ decompositions

We describe the modifications required in Section 4.6 of [3]. We let Δmin = 2−S

denote the machine precision of our computer, where S = KmaxS.
We call a dyadic cube Q =

∏n
k=1 Ik ⊂ Rn a “machine cube” if each Ik is an

interval of the form [ak, bk), where ak and bk are machine numbers.

• In Sections 4.6.2 and 4.6.3 of [3], we assume we given a subset E ⊂ Q◦ =
[0, 1)n. We assume that each point in E is an S-bit machine point. Hence,

|x− y| ≥ Δ0 = 2−S for distinct x, y ∈ E.

• In Section 4.6.3 of [3], we assume we are given a list �Δ = (Δ(x))x∈E consisting

of positive real numbers. We assume that the numbers Δ(x) are S̃-bit machine

numbers, where S̃ ≤ CS for a universal constant C ≥ 1. Hence, Δ(x) ≥ 2−
˜S ≥

ΔC
0 for all x ∈ E.

We recall the definition of the Calderón–Zygmund decomposition CZ(�Δ):

• CZ(�Δ) consists of the maximal dyadic cubes Q ⊂ Q◦ such that either #(E∩
3Q) ≤ 1 or Δ(x) ≥ δQ for all x ∈ E ∩ 3Q.

Fitting a Sobolev function to data III 1077

For all Q ∈ CZ(�Δ), either Q = Q◦ or #(9Q ∩ E) ≥ #(3Q+ ∩ E) ≥ 2. Fur-
thermore, |x− y| ≥ Δ0 for any distinct x, y ∈ E. Hence, δQ ≥ c · Δ0 for any

Q ∈ CZ(�Δ). It follows that the cubes in CZ(�Δ) have S̃-bit machine points as

corners, where S̃ ≤ CS.

The Plain vanilla CZ-oracle in finite-precision operates as follows. Given
an S-bit machine point x ∈ Q◦, return the cube Q ∈ CZ(�Δ) that contains x. The
work to answer a query is at most C logN. The explanation is identical as before.

Now, suppose we are given a dyadic decomposition CZold of the unit cube Q◦,
satisfying the properties laid out in Section 4.6.3 of [3]. Suppose in addition that
each Q ∈ CZold is a machine cube. Suppose we have available a CZold-oracle
that operates as follows: given an S-bit machine point x ∈ Q◦, return the cube
Q ∈ CZold that contains x.

We recall the definition of the Calderón–Zygmund decomposition CZnew:

• CZnew consists of the maximal dyadic cubes Q ⊂ Q◦ such that either Q ∈
CZold or Δ(x) ≥ δQ for all x ∈ E ∩ 3Q.

Note that CZold is a refinement of CZnew. Since the cubes in CZold are machine
cubes, it follows that the cubes in CZnew are also machine cubes.

The Glorified CZ-oracle in finite-precision operates as follows: A query
consists of an S-bit machine point x ∈ Q◦. The response to a query is a list of
the cubes Q ∈ CZnew such that x ∈ 65

64
Q. The work to answer a query is at most

C logN computer operations, as well as at most C calls to the CZold-oracle. The
explanation of the finite-precision version of the algorithm is unchanged.

This concludes the description of the finite-precision versions of the algorithms
in Sections 4.6.2 and 4.6.3 of [3].

We now turn to Sections 4.6.4 and 4.6.5 of [3].
We are given a set E ⊂ 1

32
Q◦, with #(E) = N ≥ 2. We assume that E consists

of S-bit machine points.
We are given a locally finite collection CZ, consisting of dyadic cubes, that

partitions Q◦ (or Rn). We do not list all the cubes in CZ. Instead, we have
available a CZ-oracle that operates as follows: given an S-bit machine point
x ∈ Q◦ (or x ∈ Rn), the oracle responds with a list of all Q ∈ CZ such that

x ∈ 65
64
Q. We guarantee that every such Q is an S̃-bit machine cube with S̃ ≤ CS.

We charge at most C logN units of work to answer a query.
Under these assumptions, we have versions of the algorithms Find neighbors

and Find main-cubes (see Section 4.6.4 of [3]) for our finite-precision model of
computation. The explanations are unchanged. Since it will be used in the next
section, we record here the statement of the latter algorithm:

Algorithm: Find main-cubes (finite-precision)

After one-time work at most CN logN in space CN, we produce the collection
of cubes CZmain := {Q ∈ CZ : 65

64
Q∩ E �= ∅}. We mark each cube Q ∈ CZmain with

a point x(Q) ∈ 65
64
Q ∩ E.

We also have a version of Compute cutoff function for our finite-precision
model of computation.

1078 C. Fefferman, A. Israel, and G.K. Luli

Algorithm: Compute cutoff function (finite-precision)

Given machine numbers Δε and Δg, which are large integer powers of Δ0 = 2−S,
given a machine number r ∈ (Δ0, 1/64], given an S-bit machine point x ∈ Q◦,
and given a machine cube Q ∈ CZ, we compute the numbers 1

α!∂
α
(
Jxθ̃Q

)
(0)

(all α ∈ M) with parameters (Δg, Δε). (See Section 4.6.5 of [3] for statement of

the properties of the cutoff functions θ̃Q.)

2.11. Starting the induction

We begin the proof of the finite-precision version of the Main Technical Results
for A. (See Section 2.8.) We follow the line of reasoning in [4], used to prove the
infinite-precision version of the Main Technical Results for A.

We proceed by induction on the collection of multiindex sets A ⊂ M with
respect to the total order relation <.

For the base case of the induction, we must prove the Main Technical Results
for A = M.

Recall that Δg(M) and Δε(M) are assumed to be integer powers of Δ0 = 2−S

that satisfy Δε(M) 	 Δg(M) (see (2.72)). We denote Δg = Δg(M) and Δε =
Δε(M) in the course of this section. Thus, we may assume that Δε ≤ ΔC

g for a
sufficiently large universal constant C.

We define CZ(M) to be the collection of the maximal dyadic cubes Q ⊂ Q◦

such that #(E ∩ 3Q) ≤ 1.
From (2.70), we know that

(2.80) δmin = min {|x− y| : x, y ∈ E, x �= y} ≥ Δ0.

With at most CN logN computer operations, we can compute a machine number δ
with c ·δmin < δ < 1

100
δmin using the BBD Tree (see Theorem 35 in [3]). This data

structure requires no modifications in the finite-precision model of computation.
We shall use the Plain Vanilla CZ-Oracle (see the description in Section 2.10)

with �Δ defined by Δ(x) := δ for all x ∈ E. This yields the CZ(M)-oracle, as
described in the Main Technical Results for M; see Remark 47 in [3] for further
explanation.

Note that #(E∩3Q+) ≥ 2 for each Q ∈ CZ(M), where Q+ is the dyadic parent
of Q. We can thus choose distinct points x, x ′ ∈ E ∩ 3Q+. From (2.70) we know
that |x− x ′| ≥ Δ0. Hence, 6δQ = δ3Q+ ≥ Δ0. In particular,

δQ ≥ 1

32
Δ0 for each Q ∈ CZ(M).

Thus the decomposition CZ(M) satisfies the additional property (2.75) required
in finite-precision.

Using the algorithm Find main-cubes (see Section 2.10), we list all the cubes
Q ∈ CZmain(M), and we compute a point x(Q) ∈ E ∩ 65

64
Q associated to each

Q ∈ CZmain(M).
We define linear maps T(Q,M) and functionals ξQ as before, in (1.3) and (1.4)

of [4]. We take the assist set Ω(Q,M) to be empty for each Q ∈ CZmain(M).

Fitting a Sobolev function to data III 1079

For each Q ∈ CZmain(M), the linear functional ξQ is computed in short form
with parameters (Δg, Δε). Furthermore, given an S-bit machine point x ∈ Q◦ and a
multiindex α ∈ M, we compute the linear functional (f, P) �→ ∂α(T(Q,M)(f, P))(x)
with parameters (Δg, Δε). This completes the description of the changes to the
algorithm Compute main-cubes and compute extension operators (base

case). The explanation of the algorithm is obvious once we examine the formulas
for T(Q,M) and ξQ.

That concludes the proof of the finite-precision version of the Main Technical
Results for A = M. This completes the base case of our induction. Next, we turn
to the induction step.

2.12. The induction step

Let A � M be a given multiindex set. Let A− < A be maximal with respect
to the order on multiindex sets. Our goal is to prove the Main Technical Results
for A. By induction we assume that the Main Technical Results for A− hold. We
list below a few consequences of these results. (See Section 2.8.)

We denote Δg := Δg(A−), Δε := Δε(A−), and Δjunk := Δjunk(A−), which are
the parameters arising in the Main Technical Results for A−. These parameters

are all large integer powers of Δ0 = 2−S. These parameters are not fixed just
yet. Hence, in the course of the proof of the Main Technical Results for A we
may impose additional assumptions on the relationships between these parameters.
From (2.74), we may assume estimates of the form

(2.81) Δε ≤ ΔC
g , Δg ≤ ΔC

junk, and Δjunk ≤ ΔC
0 , for a universal constant C.

For example, the first estimate in (2.81) is derived from (2.74) as follows:

Δε(A−) ≤ Δε(∅) ≤ Δg(∅)C ≤ Δg(A−)C.

The other conditions can be derived in a similar fashion.
By the induction hypothesis, we have defined a dyadic decomposition CZ(A−)

of the unit cubeQ◦, which satisfies conditions (CZ1)–(CZ5) in the Main Technical
Results for A−. Furthermore, from the finite-precision version of these results, we
have

δQ ≥ 1

32
· Δ0 for each Q ∈ CZ(A−).

Recall that CZmain(A−) is the collection of all the cubes Q ∈ CZ(A−) such that
65
64
Q ∩ E �= ∅.
According to the Main Technical Results for A−, we have computed a list of

all the cubes in CZmain(A−). Furthermore, we have access to a CZ(A−)-oracle
that operates as follows: given an S-bit machine point x ∈ Q◦, we list all the cubes
Q ∈ CZ(A−) such that x ∈ 65

64
Q, using work at most C logN.

We have computed a list of assists Ω(Q,A−), and a list of assisted func-
tionals Ξ(Q,A−) for each Q ∈ CZmain(A−). Each ω ∈ Ω(Q,A−) is a linear
functional on X(65

64
Q ∩ E), and is given in short form with parameters (Δg, Δε);

each ξ ∈ Ξ(Q,A−) is a linear functional on X(65
64
Q∩ E)⊕P , and is given in short

1080 C. Fefferman, A. Israel, and G.K. Luli

form with parameters (Δg, Δε) in terms of the assists Ω(Q,A−). We guarantee
that

c · ‖(f, P)‖(1+a(A−))Q ≤ M(Q,A−)(f, P) ≤ C ·
[
‖(f, P)‖ 65

64
Q + Δjunk|P|

]
where

M(Q,A−)(f, P) :=
(∑

ξ∈Ξ(Q,A−)

|ξ(f, P)|p
)1/p

.

We recall that |P| =
(∑

α∈M |∂αP(0)|p
)1/p

.

We have computed a linear map T(Q,A−) : X(65
64
Q ∩ E) ⊕ P → X for each

Q ∈ CZmain(A−) in the following sense: given an S-bit machine point x ∈ Q◦ and
a multiindex α ∈ M, we compute the linear functional

(f, P) �→ ∂α(T(Q,A−)(f, P))(x)

in short form with parameters (Δg, Δε) in terms of the assists Ω(Q,A−). This
computation requires work at most C logN.

The above computations are carried out using one-time work at most CN logN
in space at most CN, thanks to the induction hypothesis.

The finite-precision version of the algorithm Approximate old trace norm

is as follows.

Algorithm: Approximate old trace norm (finite-precision)

For each Q ∈ CZmain(A−) we compute linear functionals ξ
Q
1 , . . . , ξ

Q
D on P ,

such that

c ·
D∑
i=1

|ξQi (P)|p ≤
∑

ξ∈Ξ(Q,A−)

|ξ(0, P)|p + Δp
g · |P|p ≤ C ·

D∑
i=1

|ξQi (P)|p.

The functionals ξQi have the form ξ
Q
i : (P) �→ ∑

α∈M θ
Q
iα · 1

α!
∂αP(0). The numbers

θ
Q
iα are computed with parameters (ΔC

g , Δ
−C
g Δε).

Explanation. The explanation proceeds just as in infinite-precision. We simply
apply the finite-precision version of the algorithm Compress norms (with Δ =
Δg) instead of the infinite-precision version of this algorithm. See Section 2.6. �

That completes the description of the main technical results for A−.
We now begin the proof of the main technical results for A.

2.12.1. The non-monotonic case. Section 1.3.1 of [4] requires no change in
finite-precision. For a non-monotonic set A � M, we can simply define CZ(A) =
CZ(A−), and

Ω(Q,A) = Ω(Q,A−), Ξ(Q,A) = Ξ(Q,A−), and

T(Q,A) = T(Q,A−) for each Q ∈ CZmain(A) = CZmain(A−).

As before, the Main Technical Results for A (finite-precision) follow from the
Main Technical Results for A− (finite-precision).

Fitting a Sobolev function to data III 1081

We can compute everything to the desired precision provided that Δε(A) ≥
Δε(A−), Δg(A) ≤ Δg(A−), and Δjunk(A) ≥ Δjunk(A−). These conditions are
allowed in view of the assumptions in (2.74),

This proves the Main Technical Results for a nonmonotonic set A.

2.12.2. The monotonic case. Henceforth, we assume that A is a monotonic
set.

The statement and proof of Proposition 1 of [4] is the same in finite-precision,
except for the following changes.

• Given a query consisting of an S-bit machine point x ∈ Rn such that |x| ≤ 2S,
the CZ(A−)-oracle returns a list of the cubes Q ∈ CZ(A−) such that
x ∈ 65

64
Q. The work required to answer a query is at most C logN.

One can check that the explanation for the CZ(A−)-oracle given in Proposi-
tion 1 of [4] applies equally well in the finite-precision setting (under the additional

hypotheses on x stated above). Indeed, since |x| ≤ 2S, we see that each of the
dyadic cubes that is relevant to the explanation of the algorithm is contained in

the rectangular box [−2CS, 2CS]n and has sidelength in the interval [2−CS, 2CS] for
a universal constant C. Therefore, the relevant dyadic cubes have CS-bit machine
points as corners. We may assume that CS ≤ S, and therefore all the relevant
dyadic cubes are S-bit machine cubes and can be processed on our finite-precision
computer, which allows the previous explanation to apply in the current setting.

This concludes the description of changes needed in Section 1.3.2 of [4].

2.12.3. Keystone cubes. Section 1.3.3 of [4] is unchanged in finite-precision.
We define integer constants S0, S1, S2 as in (1.17) of [4]. The Keystone-oracle

is unchanged. The explanation follows just as before from the Main keystone

cube algorithm and the algorithm List all keystone cubes.

2.13. An approximation to the sigma

Given a polynomial P ∈ P , we define

|P| :=
(∑

α∈M
|∂αP(0)|p

)1/p

.

Recall that the parameters Δε(A−), Δg(A−), and Δjunk(A−), are denoted by
Δε, Δg, and Δjunk, respectively.

We denote Δnew = Δjunk(A), which is the constant arising in the Main Technical
Results for A. We assume that Δnew satisfies

(2.82)

{
Δε ≤ Δg ≤ Δjunk ≤ Δ5

new
≤ Δnew ≤ ΔC

0 ,

C · Δnew ≤ 1 for a large enough universal constant C.

The conditions in (2.82) are easily derived from (2.74).

1082 C. Fefferman, A. Israel, and G.K. Luli

We have the following estimates from the finite-precision version of the Main
Technical Results for A−. Let a = a(A−) denote the geometric constant arising
therein. Then for each Q ∈ CZmain(A−), the functional

(2.83) M(Q,A−)(f, R) =
(∑

ξ∈Ξ(Q,A−)

|ξ(f, R)|p
)1/p

satisfies

(2.84) c · ‖(f, R)‖(1+a)Q ≤ M(Q,A−)(f, R) ≤ C ·
[
‖(f, R)‖ 65

64
Q + Δjunk|R|

]
.

Estimate (2.84) holds additionally for all Q ∈ CZ(A−) \ CZmain(A−), because
then by definition Ξ(Q,A−) = ∅ and so M(Q,A−)(f, R) = 0; also, ‖(f, R)‖(1+a)Q =

‖(f, R)‖ 65
64

Q = 0, since 65
64
Q ∩ E = ∅. Thus, (2.84) holds for all Q ∈ CZ(A−).

We set
I(Q#) :=

{
Q ∈ CZ(A−) : Q ∩ S0Q

�= ∅
}
.

(Recall that S0 = S(A−).)
Lemma 9 of [4] is unchanged in finite-precision. Similarly, the conditions (1.24)

and (1.25) in [4] continue to hold.
The finite-precision version of the algorithm Make new assists and assign

keystone jets is as follows.

Algorithm: Make new assists and assign keystone jets (fin-prec)

For each keystone cube Q#, we compute a list of new assists Ωnew(Q#) and we

compute an Ωnew(Q#)-assisted bounded depth linear map R
#
Q# : X(S1Q

∩ E) ⊕
P → P .

Each of the new assists ω ∈ Ωnew(Q#) is given in the form

ω : f �→ ∑
x∈S

λx · f(x).

Here, the set S ⊂ E may depend on ω. The coefficients λx are computed with
parameters (ΔC

g , Δ
−C
g Δε). The sum of depth(ω) = #(S) over all the new assists

ω ∈ Ωnew(Q#) and over all keystone cubes Q#, is bounded by CN.

Similarly, the maps (f, P) �→ R# = R
#
Q#(f, P) are such that

(f, P) �→ ∂αR#(0) (for any α ∈ A) has the form∑
x∈S

λx · f(x) +
∑

ω∈Ω ′
μω ·ω(f) +

∑
β∈M

θβ
1

β!
∂βP(0).

Here, the subsets S ⊂ E and Ω ′ ⊂ Ω may depend on Q#, and the coefficients
λx, μω, θβ are computed with parameters (ΔC

g , Δ
−C
g Δε). The number #(S) +

#(Ω ′) +#(M) is bounded by a universal constant C.
The polynomial R# satisfies the following properties.

Fitting a Sobolev function to data III 1083

• ∂α(R# − P) ≡ 0 for all α ∈ A. (This condition is natural because A is
monotonic; see (1.1) in [4].)

• Let R ∈ P with ∂α(R − P) ≡ 0 for all α ∈ A. Then

(2.85)
∑

Q∈I(Q#)

∑
ξ∈Ξ(Q,A−)

|ξ(f, R#)|p ≤ C
∑

Q∈I(Q#)

∑
ξ∈Ξ(Q,A−)

[
|ξ(f, R)|p + Δp

g|R|p
]
.

Explanation. As before, we define coordinates on VP, which is the space of all
polynomials R ∈ P such that ∂α [R− P] ≡ 0 for all α ∈ A. The coordinate map
w �→ Rw is given by

Rw(x) =
∑
α∈A

1

α!
∂αP(0) · xα +

k∑
j=1

1

αj!
wj · xαj for w = (w1, . . . , wk) ∈ Rk,

where M \A = {α1, . . . , αk}. Note that

(2.86) |Rw|p =

k∑
j=1

|wj|p +
∑
β∈A

|∂βP(0)|p ≥
k∑

j=1

|wj|p.

We compute a list L of all the Q ∈ CZmain(A−) such that Q ∩ S0Q
�= ∅.

We produce this list by the same method used in infinite-precision (recall that
S0 = S(A−) ∈ N is a universal constant, as stated in the Main Technical Results
for A−.)

From the Main Technical Results for A− (finite-precision), we can compute
a list of the functionals ξ� : (f, Rw) �→ ξ(f, Rw), with 1 ≤ � ≤ L, where ξ is an
arbitrary element of the list Ξ(Q,A−) for some Q ∈ L. Each ξ� is expressed
in short form with parameters (Δg, Δε) in terms of the assists Ω(Q,A−). This
expression is given in (1.28) of [4], where

• The numbers μ̌�j are specified with parameters (Δg, Δε);

• The functionals λ�, λ̌�, and the coefficients μ�a are specified with parameters
(Δg, Δε).

• We have L ≤ CN ≤ Δ−C
g for a large enough universal constant C. (Recall

that N ≤ Δ−n
0 ≤ Δ−1

g ; see (2.71) and (2.81).)

We process the functionals w �→ ξ�(f, Rw), with f and (∂αP(0))α∈A held fixed,
using the algorithm Optimize via matrix (finite-precision), where we set Δ = Δg

(see Section 2.7). Thus, we can compute (see below) numbers bj�, such that, for

(2.87)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ωnew

j (f) =

L∑
�=1

bj�

[
λ�(f) +

I�∑
a=1

μ�aω�a(f)
]

λnew

j ((∂αP(0))α∈A) =
L∑

�=1

bj� · λ̌�((∂αP(0))α∈A),

1084 C. Fefferman, A. Israel, and G.K. Luli

we have∑
Q∈I(Q#)

∑
ξ∈Ξ(Q,A−)

|ξ(f, Rw∗)|p

≤ C
∑

Q∈I(Q#)

∑
ξ∈Ξ(Q,A−)

[
|ξ(f, Rw)|p + Δp

g

k∑
j=1

|wj|p
]
,(2.88)

for all w = (w1, . . . , wk) ∈ Rk, where

w∗ = (w∗
1, . . . , w

∗
k), with(2.89)

w∗
j = ωnew

j (f) + λnew

j ((∂αP(0))α∈A) for all 1 ≤ j ≤ k.

This is a consequence of the finite-precision version of the algorithm Optimize via

matrix. We compute the numbers bj� with parameters (ΔC
g , Δ

−C
g Δε).

Recall that w �→ Rw parametrizes the space VP of all polynomials R ∈ P with
∂α [R− P] ≡ 0. Thus, using (2.86) and (2.88) we see that∑
Q∈I(Q#)

∑
ξ∈Ξ(Q,A−)

|ξ(f, Rw∗)|p ≤ C ·
[∑
Q∈I(Q#)

∑
ξ∈Ξ(Q,A−)

|ξ(f, R)|p + Δp
g · |R|p

]
,

for any polynomial R ∈ VP. We can thus set R
#
Q# = Rw∗ and we obtain the

estimate (2.85).
We now produce a numerically accurate formula for the new assists ωnew

j (j =
1, . . . , k) and for the functionals λnew

j ((∂αP(0))α∈A). We examine the relevant
definitions.

In the expression for λnew

j in (2.87), the numbers bj� are given with parameters

(ΔC
g , Δ

−C
g Δε), the functionals λ̌� are given with parameters (Δg, Δε), and L ≤ Δ−C

g .

Thus, we can compute the functionals λnew

j with parameters (ΔC
g , Δ

−C
g Δε).

We will review our computation of a short form representation of each ωnew

j (f)
in (2.87), following the infinite-precision text. We need to document roundoff errors
at each stage of the computation, and estimate the size of the relevant numbers.

We write ωnew

j = ωnew,1
j + ωnew,2

j , with ωnew,1
j and ωnew,2

j defined via (1.33)
and (1.34) of [4], respectively.

We first review the computation of ωnew,1
j :

• The numbers c�(x) (x ∈ S� ⊂ E) are given with parameters (Δg, Δε), since
each λ� is given with the same parameters by assumption. The weights dj(x)
are computed by evaluating the sum dj(x) =

∑
� bj� · c�(x). Each term bj� ·

c�(x) is computed to precision Δ−C
g Δε. Hence, each weight dj(x) is computed

to precision LΔ−C
g Δε ≤ CNΔ−C

g Δε ≤ Δ−C ′
g Δε; we compute each dj(x) by

sorting, just as before. Moreover, each dj(x) satisfies |dj(x)| ≤ LΔ−C
g ≤

Δ−C ′
g . Therefore, we can compute each dj(x) with parameters (ΔC

g , Δ
−C
g Δε).

The bounds on the work and storage required by this computation are the
same as before.

Fitting a Sobolev function to data III 1085

We can thus express the functionals ωnew,1
j in the form in (1.33) of [4], where

the coefficients dj(x) are given with parameters (ΔC
g , Δ

−C
g Δε). Thus, by definition,

we can compute the functional ωnew,1
j with parameters (ΔC

g , Δ
−C
g Δε).

We now review the computation of ωnew,2
j .

The coefficients qjω in (1.34) of [4] are computed using qjω =
∑

(�,a) bj� ·μ�a.

The numbers bj� are given with parameters (ΔC
g , Δ

−C
g Δε), the numbers μ�a are

given with parameters (Δg, Δε), and the number of terms in the sum is bounded
by CN ≤ Δ−C

g . Hence, the numbers q�ω can be computed with parameters

(ΔC
g , Δ

−C
g Δε).

We finally express ωnew,2
j in the form in (1.34) of [4]. As before, the coefficients

kj(x), which we compute by sorting, are given with parameters (ΔC
g , Δ

−C
g Δε).

We have shown how to compute the new assists ωnew

j = ωnew,1
j + ω

new,j
2 in

short form with parameters (ΔC
g , Δ

−C
g Δε). We have seen that computation follows

by the same method as in infinite-precision, and by making careful note of the
roundoff errors and the size of numbers involved in the computation, we verified
that the computation could be carried out on our finite-precision computer.

The functionals (f, P) �→ ∂α
[
R
#
Q#(f, P)

]
(0) can be computed in short form in

terms of the assists ωnew

j (j = 1, . . . , k) with parameters (ΔC
g , Δ

−C
g Δε), as desired.

(See (1.30) of [4].)
This completes the explanation of the algorithm Make new assists and

assign keystone jets (finite-precision). �

For each (f, R) ∈ X(S1Q
∩ E)⊕ P we set[

M
#
Q#(f, R)

]p
:=

∑
Q∈I(Q#)

∑
ξ∈Ξ(Q,A−)

|ξ(f, R)|p =
∑

Q∈I(Q#)

[
M(Q,A−)(f, R)

]p
.(2.90)

Let P ∈ P . From the previous algorithm, we see that the polynomial R# =
R
#
Q#(f, P) satisfies

(2.91)

{
∂α(R# − P) ≡ 0 for all α ∈ A,

M
#
Q#(f, R

#) ≤ C ·
[
M

#
Q#(f, R) + Δjunk |R|

]
,

for any polynomial R ∈ P such that ∂α [R− P] ≡ 0 for all α ∈ A. (Recall that
Δg ≤ Δjunk.)

Instead of Lemma 10 of [4], we have the following result.

Lemma 3. Let Q# be a keystone cube. Then

c · ‖(f, R)‖S0Q# ≤ M
#
Q#(f, R) ≤ C ·

[
‖(f, R)‖S1Q# + Δjunk|R|

]
.

for all (f, R) ∈ X(S1Q
∩ E)⊕ P. Here, c > 0 and C ≥ 1 are universal constants.

Proof. We prove the first inequality c‖(f, R)‖S0Q# ≤ M
#
Q#(f, R) by the same ar-

gument as before. We use the approximation (2.84) in place of (1.20) of [4].

1086 C. Fefferman, A. Israel, and G.K. Luli

To prove the second inequality, we start from (2.84), which implies

[
M

#
Q#(f, R)

]p
=

∑
Q∈I(Q#)

[
M(Q,A−)(f, R)

]p ≤ C
∑

Q∈I(Q#)

[
‖(f, R)‖p65

64
Q
+ Δ

p
junk|R|p

]
.

Since 65
64
Q ⊂ S1Q

and δQ# ≤ δQ ≤ CδQ# for each Q ∈ I(Q#), and since
#
[
I(Q#)

]
≤ C, by Lemma 14 of [3], we can estimate the above line by

C ·
[
‖(f, R)‖p

S1Q# + Δ
p
junk|R|p

]
≤ C ′ ·

[
‖(f, R)‖S1Q# + Δjunk|R|

]p
.

This completes the proof of Lemma 3. �

Proposition 2 of [4] requires a few changes in finite-precision. Here is the
modified statement:

Proposition 1. Let Q̂ be a dyadic subcube of Q◦, such that 3Q̂ is tagged with
(A, ε). Assume also that Q# ∈ CZ(A−) is a keystone cube, and that S1Q

⊆ 65
64
Q̂.

If H ∈ X, H = f on E∩S1Q
#, and ∂αH(xQ#) = ∂αP(xQ#) for all α ∈ A, then

(2.92) δ−m
Q# ‖H− R

#
Q#‖Lp(S1Q#) ≤ C ·

[
‖H‖X(S1Q#) + Δjunk|Jx

Q#
H|

]
.

Here, C ≥ 1 is a universal constant; and R
#
Q# = R

#
Q#(f, P). (See the algorithm

Make new assists and assign keystone jets.)

Proof. The argument that (1.47),(1.48) of [4] imply (1.49) of [4] is unchanged in
the finite-precision setting. We restate the result here: If ∂αR(xQ#) = 0 for all
α ∈ A, then

(2.93) R ∈ σ(S0Q
#) =⇒ |∂βR(xQ#)| ≤ Wδ

m−n/p−|β|

Q# for all β ∈ M,

where W = W(m,n, p).
We need only examine and fix the last paragraph in the proof of Proposition 2

of [4]. We modify the text that begins after the sentence “We now prove the main
assertion in Proposition 2”. The revised text is as follows.

Suppose that H ∈ X satisfies H = f on E ∩ S1Q
and ∂αH(xQ#) = ∂αP(xQ#)

for α ∈ A. Then ∂α(Jx
Q#

H − P) ≡ 0 for all α ∈ A. (Recall, A is monotonic.) We

apply the estimate in (2.91), and then we apply Lemma 3. Therefore,

M
#
Q#(f, R

#
Q#) ≤ C

[
M

#
Q#(f, Jx

Q#H) + Δjunk|Jx
Q#H|

]
≤ C ′[‖(f, Jx

Q#
H)‖S1Q# + Δjunk|Jx

Q#
H|

]
≤ C ′′[‖H‖X(S1Q#) + Δjunk|Jx

Q#
H|

]
.

Thus,
M

#
Q#(0, R

#
Q# − Jx

Q#
H) ≤ C

[
‖H‖X(S1Q#) + Δjunk|Jx

Q#
H|

]
.

Lemma 3 implies that

‖(0, R#
Q# − Jx

Q#
H)‖S0Q# ≤ C

[
‖H‖X(S1Q#) + Δjunk|Jx

Q#
H|

]
,

Fitting a Sobolev function to data III 1087

hence
RQ# − Jx

Q#H ∈ C
[
‖H‖X(S1Q#) + Δjunk|Jx

Q#H|
]
· σ(S0Q#).

Since ∂α(R#
Q# − Jx

Q#
H) ≡ 0 for α ∈ A, we can apply (2.93) to show that

(2.94)
∣∣∂β

[
Jx

Q#
H−R

#
Q#

]
(xQ#)

∣∣ ≤ C · δm−n/p−|β|

Q# ·
[
‖H‖X(S1Q#) +Δjunk|Jx

Q#
H|

]
for all β ∈ M.

Hence, by the Sobolev inequality we have

δ−m
Q# ‖H− R

#
Q#‖Lp(S1Q#) ≤ C

[
‖H‖X(S1Q#) + Δjunk|Jx

Q#
H|

]
This is the desired estimate. (See (2.92).) This completes the proof of Proposi-
tion 1. �

We derive a few consequences of Proposition 1. First note

|Jx
Q#

H − R
#
Q# | =

(∑
α∈M

∣∣∣∂α(Jx
Q#

H − R
#
Q#)(0)

∣∣∣p)1/p

≤ C ·
∑
β∈M

|∂β(Jx
Q#

H − R
#
Q#)(0)| ≤ C ′ ∑

β∈M
|∂β(Jx

Q#
H− R

#
Q#)(xQ#)|.

where the last inequality is due to the fact that |xQ# | ≤ C (see Lemma 7 of [3]).
Also, recall that δQ# ≤ 1. Thus, we can use (2.94) to obtain

|Jx
Q#

H − R
#
Q# | ≤ C ′′[‖H‖X(S1Q) + Δjunk|Jx

Q#
H|

]
.

Hence,

|Jx
Q#

H| ≤ |R#
Q# | + C ′′ ·

[
‖H‖X(S1Q#) + Δjunk|Jx

Q#
H|

]
=⇒ |Jx

Q#
H| ≤ 2 · |R#

Q# |+ 2C · ‖H‖X(S1Q#),

where we have used that C ·Δjunk ≤ 1/2. By using the previous estimate in (2.92),
we have

δ−m
Q# ‖H− R

#
Q#‖Lp(S1Q#) ≤ C ′[‖H‖X(S1Q#) + Δjunk|R#

Q# | + Δjunk‖H‖X(S1Q#)

]
≤ C ′′[‖H‖X(S1Q#) + Δjunk|R#

Q# |
]
.

In summary, we have proven the following result.

Lemma 4. Under the assumptions of Proposition 1, we have

(2.95) δ−m
Q# ‖H− R

#
Q#‖Lp(S1Q#) ≤ C ′′[‖H‖X(S1Q#) + Δjunk|R#

Q# |
]
.

We will prove one more lemma before returning to the main line of our argu-
ment.

Lemma 5. Under the assumptions of Proposition 1, we have

|R# − P| ≤ C ·
[
‖(f, P)‖S1Q# + Δjunk|P|

]
where R# = R

#
Q#(f, P) for a keystone cube Q#.

1088 C. Fefferman, A. Israel, and G.K. Luli

Proof. Let Q# be a keystone cube, and denote R# = R
#
Q#(f, P).

Since σ(S0Q
#) is the unit ball of the norm ‖(0, ·)‖S0Q# on P , we can use (2.93)

to show the following: If R̃ ∈ P satisfies ∂αR̃ ≡ 0 for all α ∈ A, then for any β ∈ M
we have

|∂βR̃(xQ#)| ≤ C · (δQ#)m−n/p−|β| · ‖(0, R̃)‖S0Q# ≤ C · ‖(0, R̃)‖S0Q# .

(Here, we have used that δQ# ≤ 1.) From the above estimate and Lemma 3, we
deduce that

|R̃| =
(∑

α∈M

∣∣∣∂αR̃(0)
∣∣∣p)1/p

≤ C ·
∑
β∈M

∣∣∂βR̃(xQ#)
∣∣ ≤ C ′ ·M#

Q#(0, R̃).

Taking R = P in (2.91), we see that the polynomial R# = R
#
Q#(f, P) satisfies{

∂α(R# − P) ≡ 0 for all α ∈ A
M

#
Q#(f, R

#) ≤ C ·
[
M

#
Q#(f, P) + Δjunk · |P|

]
.

Thus, the A-derivatives of R̃ = R# − P vanish, so we may apply the previous
estimate to give

|R# − P| ≤ C ′ ·M#
Q#(0, R

− P) ≤ C ′′ ·
[
M

#
Q#(f, R

#) +M
#
Q#(f, P)

]
≤ C ′′′ ·

[
M

#
Q#(f, P) + Δjunk|P|

]
≤ C ·

[
‖(f, P)‖S1Q# + Δjunk|P|

]
.

In the last estimate, we use Lemma 3. This completes the proof of Lemma 5. �

In Section 1.4.2 of [4], all of the marked cubes are assumed to be S̃-bit machine

cubes, with S̃ ≤ CS. All the functionals are to be given in short form with param-
eters (ΔC

g , Δ
−C
g Δε). This concludes the description of the changes to Section 1.4.2

of [4].
Recall the notion of a testing cube (see Section 1.4.3 in [4]): A dyadic cube

Q̂ ⊂ Q◦ is a testing cube if it can be written as a disjoint union of cubes in CZ(A−).

Remark 1. Recall that each cube Q in CZ(A−) satisfies δQ ≥ c·Δ0 with Δ0 = 2−S

for a universal constant c > 0, by the Main Technical Results for A−. Hence, every
testing cube Q̂ has S̃-bit machine points as corners, where S̃ ≤ CS for a universal
constant C.

Recall, in (1.62) of [4], we introduce a parameter tG, which is an integer power
of 2. Furthermore, we assume that

(2.96) tG = 2−
˜S for an integer S̃ with 1 ≤ S̃ ≤ CS.

In finite-precision, we must make a slight change to Lemma 11 of [4]. We will
need to assume that the constant anew is picked to satisfy

(2.97) anew = 2−
˜S for an integer S̃ with 1 ≤ S̃ ≤ CS.

Fitting a Sobolev function to data III 1089

To see that this is possible, we examine the proof of the lemma. Observe that it
suffices to choose anew = a · tG/512, where a = a(A−) is as in the Main Technical
Results for A−. Recall that a is a universal constant and an integer power of 2.
Because tG satisfies (2.96), the constant anew satisfies (2.97).

We are finished describing the changes required in Section 1.4.3 of [4].

2.13.1. Testing functionals. We continue on to Section 1.4.4 of [4].
Recall that Δnew is a machine number that satisfies (2.82). We will make use

of the condition

(2.98) Δnew ≤ c(ε, tG),

where c(ε, tG) ∈ (0, 1) is a small constant depending on m,n, p, tG, and ε. We
later choose ε and tG to depend only on m, n, and p - hence, (2.98) is consistent
with our previous assumptions (2.74), (2.81), and (2.82).

We assume we are given a testing cube Q̂ ⊂ Q◦.
For Q ∈ CZ(A−) with Q ⊂ (1+ 100tG)Q̂, we define the map

(2.99) (f, P) �→ R
̂Q
Q :=

{
P, δQ ≥ tGδ̂Q

,

R
#
K(Q)

(f, P), δQ < tGδ̂Q
,

for any (f, P) ∈ X(65
64
Q̂∩E)⊕P . Recall that the mapping R

#
Q# : X(S1Q

∩E)⊕P→ P is defined in the algorithm Make new assists and assign keystone jets

(finite-precision version); see Section 2.13. Recall that the mapping Q �→ K(Q)
satisfies S1K(Q) ⊂ CQ; hence, if δQ < tGδ̂Q

and tG is sufficiently small, then

S1K(Q) ⊂ 65
64
Q̂ (see the proof of (1.64) in [4] for more details), and hence the

mapping R
̂Q
Q is well-defined on X(65

64
Q̂ ∩ E)⊕ P .

• Recalling the precision with which we compute the maps R
#
Q# , we see that

(f, P) �→ ∂α
[
R

̂Q
Q(f, P)

]
(0) has the form

(2.100)
∑
x∈E

λxf(x) +
∑
ω

μωω(f) +
∑
β∈M

θβ · 1

β!
∂βP(0),

where the possibly nonzero coefficients λx, μω, θβ are computed with param-
eters (ΔC

g , Δ
−C
g Δε). The number of possibly nonzero coefficients is at most

a universal constant.

• Recalling the precision with which we compute each ξ in Ξ(Q,A−), we see

that (f, P) �→ ξ(f, R
̂Q
Q) has the form

(2.101)
∑
x∈E

λ̃xf(x) +
∑
ω

μ̃ωω(f) +
∑
β∈M

θ̃β · 1

β!
∂βP(0),

where the possibly nonzero coefficients λ̃x, μ̃ω, θ̃β are computed with param-
eters (ΔC

g , Δ
−C
g Δε). The number of possibly nonzero coefficients is at most

a universal constant.

1090 C. Fefferman, A. Israel, and G.K. Luli

We will need to modify the definition of M
̂Q
(f, P) in (1.65)–(1.68) of [4].

We define
[
M

̂Q
(f, P)

]p
to be the sum of the terms (I)–(IV) (see (1.65)–(1.68)

of [4]) plus the sum of the terms

(V) = Δ2p
new

∑
x∈65

64
̂Q∩E

|f(x) − P(x)|p, and(2.102)

(VI) = Δp
new

|P|p = Δp
new

∑
β∈M

|∂βP(0)|p.

Recall that Δnew is a machine number satisfying (2.82).
Each of the linear functionals arising in (I)–(IV) and in (V)–(VI), will be com-

puted with precision (ΔC
g , Δε Δ

−C
g). In Section 2.13.2, we give further explanation

of this remark, and we analyze the work required to compute all the functionals.
As in the infinite-precision text, we define

σ(Q̂) :=
{
P ∈ P : M

̂Q
(0, P) ≤ 1

}
.

We replace the algorithm Approximate new trace norm from the infinite-
precision text with the finite-precision version below.

Approximate new trace norm (finite-precision)

We are given a machine number tG > 0 as in (2.96).
We perform one-time work at most C(tG)N logN in space C(tG)N, after which

we can answer queries as follows.
A query consists of a testing cube Q̂. The response to the query Q̂ is a list

μ
̂Q
1 , . . . , μ

̂Q
D of linear functionals on P such that

(2.103) c(tG) ·
D∑
i=1

|μ̂Q
i (P)|p ≤

[
M

̂Q
(0, P)

]p ≤ C(tG) ·
[D∑
i=1

|μ̂Q
i (P)|p

]
.

The functionals μ
̂Q
1 , . . . , μ

̂Q
D have the form

P �→ ∑
β∈M

coeffβ
1

β!
∂βP(0)

where the coefficients coeffβ are computed with parameters (ΔC
g , Δ

−C
g Δε).

We define a quadratic form on P by

(2.104) q
̂Q
(P) :=

D∑
i=1

|μ̂Q
i (P)|2.

This quadratic form satisfies

(2.105) c(tG) ·
[
M

̂Q
(0, P)

]2 ≤ q
̂Q
(P) ≤ C(tG) ·

[
M

̂Q
(0, P)

]2
.

In particular,

(2.106) {q
̂Q
≤ c(tG)} ⊂ σ(Q̂) ⊂ {q

̂Q
≤ C(tG)}.

Fitting a Sobolev function to data III 1091

The quadratic form q
̂Q
is given in the form

q
̂Q
(P) =

∑
α,β∈M

qαβ · 1

α!
∂αP(0) · 1

β!
∂βP(0).

The qαβ form a symmetric matrix. For each α,β ∈ M we compute the number
qαβ with parameters (ΔC

g , Δ
−C
g Δε).

The work required to answer a query is at most C(tG) logN.
Here, c(tg) > 0 and C(tg) ≥ 1 are constants depending on tG, m, n, and p.

Explanation. The explanation is more or less the same as that in [4]. We make sure
to use the finite-precision versions of the algorithms Approximate old trace

norm, Compute norms from marked cuboids, and Compress norms, where
before we used the infinite-precision versions. Below, we make a few additional
comments on discrepancies that arise.

Given a keystone cube Q#, the polynomial map P �→ R
#
Q#(0, P) in (1.74) of [4]

is given with parameters (ΔC
g , Δ

−C
g Δε); indeed, the functionals λ(Q#,β) are given

with such parameters, as in the statement of the algorithm Make new assists

and assign keystone jets (finite-precision).
We apply a marking procedure, just as in the explanation in [4]. We provide

details below.

• For each Q ∈ CZmain(A−) and i = 1, . . . , D, we mark Q with the functional

ξ(Q,i)(P) = ξ
Q
i (R#

K(Q)(0, P)).

Note that each functional R �→ ξ
Q
i (R) is given with parameters (ΔC

g , Δ
−C
g Δε);

see the statement of the algorithm Approximate old trace norm (finite-

precision). Also, the polynomial map P �→ R
#
K(Q)(0, P) is given with parame-

ters (ΔC
g , Δ

−C
g Δε). We can stably compute the composition of a linear func-

tional on RD with a linear map on RD, hence we can compute each ξ(Q,i)

with parameters (ΔC
g , Δ

−C
g Δε), for a possibly larger constant C.

• For each (Q ′, Q ′′) ∈ BD(A−) and β ∈ M, we mark Q ′ with the functional

ξ(Q ′,Q ′′,β)(P) = δ
n/p−m+|β|

Q ′ · ∂β
{
R
#
K(Q ′)(0, P) − R

#
K(Q ′′)(0, P)

}
(xQ ′).

This functional is given with parameters (ΔC
g , Δ

−C
g Δε) because the polyno-

mial maps P �→ R
#
K(Q ′)(0, P) and P �→ R

#
K(Q ′′)(0, P) are given with the same

parameters, because δQ ′ is a machine number with c · Δ0 ≤ δQ ′ ≤ 1 (this
is a consequence of the Main Technical Results for A−; see (2.75)), and

because xQ ′ is an S̃-bit machine point with S̃ ≤ CS.

Each of the functionals ξ that is associated to a marked cube has the form

P �→ ξ(P) =
∑
β∈M

coeffβ · ∂βP(0),

where the coefficients coeffβ are specified with parameters (ΔC
g , Δ

−C
g Δε). We per-

form one-time work for the algorithm Compute norms from marked cubes

1092 C. Fefferman, A. Israel, and G.K. Luli

(finite-precision) on the marked cubes described in the above bullet points. (See
Modification 6 in Section 2.9.) All of the marked cubes belong to CZ(A−). By
assumption, all cubes in CZ(A−) have sidelength in the interval [c · Δ0, 1], where

Δ0 = 2−S. Hence, the marked cubes have S̃-bit machine points as corners, where
S̃ ≤ CS. Thus, the finite-precision version of the algorithm applies.

This concludes the description of the one-time work. Next, we explain the
query work for the algorithm Approximate new trace norm.

We are given a testing cube Q̂. As in in the infinite-precision text, we partition
(1+ tG)Q̂ into dyadic cubes Q1, . . . , QL ⊂ Rn such that δQ�

= (tG/4)δ̂Q
. Hence,

δQ�
≥ 2−CS for a universal constant C, for each � = 1, . . . , L, thanks to (2.96) and

Remark 1. Consequently, each Q� is a S̃-bit machine cube with S̃ ≤ CS. Moreover,
note that L ≤ C(tG).

We apply the query algorithm in Compute norms from marked cuboids

(finite-precision) with Δ = Δg for each cube Q� (1 ≤ � ≤ L). We refer the reader
to Modification 6 in Section 2.9 for a statement of the algorithm. According to
this, with work at most C(tG) logN we compute linear functionals μ

Q�

1 , . . . , μ
Q�

D

such that

c

D∑
k=1

|μQ�

k (P)|p ≤
∑

Q∈CZ(A−)
lin. func. ξ

{
|ξ(P)|p : Q ⊂ Q�, Q marked with ξ

}
+ Δp/2

g |P|p

≤ C
[D∑
k=1

|μQ�

k (P)|p + Δp/2
g |P|p

]
,(2.107)

where each μ
Q�

k is given with parameters (ΔC
g , Δ

−C
g Δε). Here, we use the estimate

Δ
p
gΔ

−C
0 log(Δ−1

g) ≤ Δ
p/2
g , which follows because Δg 	 Δ0.

We sum (2.107) from � = 1, . . . , L. The sum of the junk terms is equal to

LΔ
p/2
g |P|p ≤ C(tG)Δ

p/2
g |P|p. Hence, as in infinite-precision, in analogy with (1.77)

of [4], we obtain the estimate

c(tG)

L∑
�=1

D∑
k=1

|μQ�

k (P)|p ≤ [S1 +S2] + Δp/2
g |P|p(2.108)

≤ C(tG)
[L∑
�=1

D∑
k=1

|μQ�

k (P)|p + Δp/2
g |P|p

]
.

For the definition of the terms S1 and S2, see (1.77) in [4].
To compute a list of the functionals in (F1)–(F6), we follow the explanation

in [4] that proceeds (1.77). In the above text, we have described how to com-
pute the functionals in (F1)–(F4); all these functional are given with parameters

(ΔC
g , Δ

−C
g Δε). Additionally, the maps P �→ R

̂Q
Q(0, P) are given with parameters

(ΔC
g , Δ

−C
g Δε); see (2.99). Hence, we can compute the functionals in (F5) and (F6)

with parameters (ΔC
g , Δ

−C
g Δε).

Fitting a Sobolev function to data III 1093

Therefore, the functionals listed in (F1)–(F6) are given in the form

P �→ ∑
β∈M

dβ · 1

β!
∂βP(0),

where the numbers dβ are given with parameters (ΔC
g , Δ

−C
g Δε).

In addition, we consider the functionals

(F7) λβ(P) := Δnew · ∂βP(0) for β ∈ M.

Recall that Δnew ≤ 1 is a machine number. Thus, the functionals in (F7) are given
with parameters (ΔC

g , Δ
−C
g Δε).

We define [X(P)]p to be the sum of p-th powers of all functionals in (F1)–(F7).

Note that
∑

β∈M |λβ(P)|p = Δp
new

|P|p = (VI) (see (2.102)). Hence, we have

[X(P)]p = [Xold(P)]
p + (VI),

where [Xold(P)]
p is the sum of p-th powers of all functionals in (F1)–(F6).

We have

c(tG) · [Xold(P)]
p ≤ [sum of terms (I)–(IV) with f ≡ 0] + Δp/2

g |P|p(2.109)

≤ C(tG) ·
[
[Xold(P)]

p
+ Δp/2

g |P|p
]
.

To obtain the above estimate, we reason as in the two paragraphs containing and
following (1.78) of [4], making sure to use estimate (2.108) in place of (1.77) of [4].
(Recall that Xold here corresponds to X in the notation of [4].)

Consider the term (V) (see (2.102)) that arises in the definition of M
̂Q
(0, P).

When f ≡ 0 in (V), we have

(V)|f=0 = Δ2p
new

∑
x∈ 65

64
̂Q∩E

|P(x)|p ≤ CΔ2p
newN

∑
β∈M

∣∣∂βP(0)
∣∣p ≤ Δp

new

∑
β∈M

∣∣∂βP(0)
∣∣p.

Here, we use the estimates N ≤ Δ−n
0 ≤ Δ−p/10

new
(see (2.71) and (2.82)) and

CΔ19p/10
new ≤ Δp

new (see (2.82)). Hence, we have (V)|f=0 ≤ (VI). Thus, up to
constant factors,

[
M

̂Q
(0, P)

]p
is equivalent to the sum of the terms (I)–(IV) and

(VI) (with f ≡ 0).

Therefore, by adding the term (VI)+Δ
p/2
g |P|p to the chain of inequalities (2.109),

we learn that

c(tG) ·
{[
Xold(P)

]p
+ (VI) + Δp/2

g |P|p
}
≤

[
M

̂Q
(0, P)

]p
+ Δp/2

g |P|p

≤ C(tG) ·
{
[Xold(P)]

p
+ (VI) + Δp/2

g |P|p
}
.

Note that the middle term above is comparable to
[
M

̂Q
(0, P)

]p
, since

[
M

̂Q
(0, P)

]p ≥ (VI) = Δp
new|P|p ≥ Δp/2

g · |P|p .

1094 C. Fefferman, A. Israel, and G.K. Luli

Here, we use that Δg ≤ Δ2
new (see (2.82)). Since

[X(P)]
p
= [Xold(P)]

p
+ (VI),

we conclude that

c(tG) ·
{[
X(P)

]p
+ Δp/2

g |P|p
}
≤

[
M

̂Q
(0, P)

]p ≤ C(tG) ·
{[
X(P)

]p
+ Δp/2

g |P|p
}
.

Recall that
[
X(P)

]p
is the sum of the pth powers of the functionals in (F1)–(F7).

Processing the functionals in (F1)–(F7) using Compress norms (finite-precision),

we compute functionals μ
̂Q
1 , . . . , μ

̂Q
D on P such that

c ·
D∑
i=1

|μ̂Q
i (P)|p ≤

[
X(P)

]p
+ Δp/2

g |P|p ≤ C ·
D∑
i=1

|μ̂Q
i (P)|p.

The functionals μ
̂Q
i are given with parameters (ΔC

g , Δ
−C
g Δε).

The previous two estimates establish (2.103).
Moreover, properties (2.105) and (2.106) are immediate from the definition

of q
̂Q
in (2.104) and the equivalence of the �p and �2 norms on a finite-dimensional

space. Each of the μ
̂Q
i is given with parameters (ΔC

g , Δ
−C
g Δε), hence the coefficients

qαβ of the quadratic form q
̂Q
can be computed with parameters (ΔC

g , Δ
−C
g Δε) (for

a possibly larger constant C).
This concludes the explanation of the query algorithm. It is easy to check that

the query work at most C(tG) logN. �

2.13.2. Supporting data. We assume we are given a testing cube Q̂ ⊂ Q◦.
We explain the main modifications to Section 1.4.5 of [4] needed here.

• Modification 1. As part of the supporting data for Q̂, we include a list of
all the points x ∈ 65

64
Q̂∩E, in addition to all the other data, namely (SD1)–(SD5).

We call this the modified supporting data for Q̂.

The list Ω(Q̂) of the new assist functionals is defined as in (1.79) of [4].

• Modification 2. The algorithm Compute new assists operates as follows.
Given a testing cube Q̂, and given the supporting data for Q̂, we compute a list
of all the functionals in Ω(Q̂). We compute a short form of each ω ∈ Ω(Q̂) with
parameters (ΔC

g , Δ
−C
g Δε).

• Modification 3. We make only minor changes to the algorithm Compute

supporting map. The linear maps R
̂Q
Q are to be computed in short form in terms

of the assists Ω(Q̂) with precision (ΔC
g , Δ

−C
g Δε). The explanation of the algorithm

is unchanged.

• Modification 4. The algorithm Compute new assisted functionals is
replaced with the finite-precision version below.

Fitting a Sobolev function to data III 1095

Algorithm: Compute new assisted functionals (finite-precision)

Given a testing cube Q̂ and its modified supporting data, we define

(2.110) Wfin
2 (Q̂) := W2(Q̂) + C(tG) ·#

(65
64

Q̂ ∩ E
)

and

(2.111) Sfin
2 (Q̂) := S2(Q̂) + C(tG) ·#

(65
64

Q̂ ∩ E
)
,

where W2(Q̂), S2(Q̂) are defined as in (1.83), (1.84) of [4], respectively.

We compute a list Ξ(Q̂) of functionals on X(E)⊕ P , such that[
M

̂Q
(f, P)

]p
=

∑
ξ∈Ξ(̂Q)

|ξ(f, P)|p.

Each functional ξ in Ξ(Q̂) is given in short form in terms of assists Ω(Q̂) with
parameters (ΔC

g , Δ
−C
g Δε).

This computation requires work at most Wfin
2 (Q̂) in space Sfin

2 (Q̂).

Explanation. We include in the list Ξ(Q̂) all the same functionals as before, namely,
the “assisted functionals” in (1.85)–(1.88) of [4], as well as additional functionals
described in the next paragraph. Each “assisted functional” is given in short form
with parameters (ΔC

g , Δ
−C
g Δε) in terms of the assists Ω(Q̂). That is because all

the functionals ξ and the maps R
̂Q
Q, R

̂Q
Q ′ , R

̂Q
Q ′′ , R

̂Q
Qsp

that are relevant to (1.85)–

(1.88) of [4], have been computed in short form with parameters (ΔC
g , Δ

−C
g Δε).

See (2.100) and (2.101).

We also include in the list Ξ(Q̂) the additional functionals

λx(f, P) := Δ2
new

· (f(x) − P(x)) for each x ∈ 65

64
Q̂ ∩ E

and
λβ(f, P) := Δnew · ∂βP(0) for each β ∈ M.

These are the new functionals needed in finite-precision. That completes the defi-
nition of Ξ̂(Q̂). Note that Δnew ≤ 1 ≤ Δ−1

g . Hence, each functional λx and λβ can
be expressed in short form (without assists) using coefficients that are bounded in
magnitude by Δ−C

g . Moreover, each coefficient can be computed to precision Δε,
which is within the precision available to our computer. (Recall: the computer
works with precision Δmin 	 Δε.) Hence, the functionals λx and λβ can be com-
puted in short form with parameters (ΔC

g , Δε) (without assists).

The sum of |ξ(f, P)|p over all ξ in Ξ(Q̂) is equal to
[
M

̂Q
(f, P)

]p
, by definition.

The additional term #(65
64
Q̂ ∩ E) in (2.110) and (2.111) accounts for the addi-

tional work and space, respectively, needed to compute the functionals λx, λβ.
This completes the explanation of the algorithm. �

1096 C. Fefferman, A. Israel, and G.K. Luli

As before, given a testing cube Q̂, the covering cubes are defined by

Icov(Q̂) :=
{
Q ∈ CZ(A−) : Q ⊂ (1+ tG)Q̂

}
.

As before, we define a family of cutoff functions θ
̂Q
Q (for Q ∈ Icov(Q̂)) that satisfy

(1.92)–(1.94) of [4].
The finite-precision version of the algorithm Compute POU is as follows.

Compute POU (finite-precision)

After one-time work at most CN logN in space CN, we can answer queries as
follows.

A query consists of a testing cube Q̂ and an S-bit machine point x ∈ Q◦.
Notice that Q̂ has S̃-bit machine points as corners, with S̃ ≤ CS for a universal

constant C, so we can safely process Q̂ on our finite-precision computer. (See
Remark 1.)

We respond to the query with a list of all the cubes Q1, . . . , QL ∈ Icov(Q̂) (with
Q1, . . . , QL all distinct) such that x ∈ 65

64
Q�. Futhermore, we compute the numbers

1
α!∂

αJxθ
̂Q
Q�

(0) (for all � = 1, . . . , L and α ∈ M) with parameters (ΔC
g , Δ

−C
g Δε).

To answer a query requires work and storage at most C logN.

Explanation. The explanation is the same as in the infinite-precision case. �

The definition of the local extension operator T
̂Q
(f, P) given in (1.95)–(1.98)

of [4] is unchanged. As before, Compute POU, Compute supporting map,
and the Main Technical Results for A− (finite-precision versions) yield the algo-
rithm Compute new extension operator (finite-precision), with the following
modification:

• Modification 5: In finite-precision, we assume x ∈ Q◦ is an S-bit machine
point and β ∈ M. We compute the functional (f, P) �→ ∂β(JxT̂Q

(f, P))(0) which
has the form

L∑
�=1

γ� ·ω�(f) +

J∑
j=1

λj · f(xj) +
∑
γ∈M

θγ · 1

γ!
∂γP(0),

where eachω� is in Ω(Q̂) and each xj is in E∩ 65
64
Q̂; the real numbers γ�, λj, and θγ

are computed with parameters (ΔC
g , Δ

−C
g Δε); and L+J+#(M) ≤ C, for a universal

constant C. Namely, we compute the functional (f, P) �→ ∂β(JxT̂Q
(f, P))(0) in short

form with parameters (ΔC
g , Δ

−C
g Δε) in terms of assists Ω(Q̂). The explanation of

the algorithm is the same as before.

2.14. Inequalities for testing functionals

Let anew = anew(tG) be the constant from Lemma 11 of [4]. We recall that anew =

2−
˜S for an integer S̃ with 1 ≤ S̃ ≤ CS. (See (2.97).)
First, in Proposition 3 of [4], we state and prove some properties of the extension

operator (f, P) �→ T
̂Q
(f, P) defined in (1.98) of [4]. The assertion and proof of the

proposition are unchanged in the current setting.

Fitting a Sobolev function to data III 1097

Next, we prove a few estimates that show that the testing functional M
̂Q
(f, P)

well-approximates the trace seminorm associated to a dilate of the testing cube Q̂.
Such estimates were stated before in Proposition 4 of [4] (the conditional and
unconditional inequalities). In the present setting, the statement and proof of the
corresponding estimates will need to be modified. The next result contains the
relevant estimates.

Proposition 2. Let Q̂ be a testing cube, and let (f, P) ∈ X(65
64
Q̂ ∩ E) ⊕ P. Then

the following estimates hold.

(Unconditional inequality) ‖(f, P)‖
(1+anew)̂Q

≤ C(tG) ·M̂Q
(f, P).

(Conditional inequality) If 3Q̂ is tagged with (A, ε), then

M
̂Q
(f, P) ≤ C(tG) · (1/ε) ·

[
‖(f, P)‖ 65

64
̂Q
+ Δnew · |P|

]
.

As in [4], the unconditional inequality is a direct consequence of Proposition 3
of [4] (which still holds in the present setting).

To prove the conditional inequality, we first state and prove a finite-precision
version of Lemma 12 of [4]:

Lemma 6. Suppose that the testing cube Q̂ is η-simple for some η ≥ tG. Then

M
̂Q
(f, P) ≤ C(tG) ·

[
‖(f, P)‖ 65

64
̂Q
+ Δnew · |P|

]
,

where C(tG) depends only on m, n, p, and tG.

Proof. The proof is more or less the same as the proof of Lemma 12 in [4]. If Q̂
is η-simple (η ≥ tG), then the terms (II), (III), (IV) vanish, as explained in the
outset of the proof of the lemma. This leaves us with the original term (I), and the
new terms (V), and (VI). Recall, the definition of (I) is given in equation (1.65)
of [4], and the definitions of (V) and (VI) are given in (2.102).

An arbitrary summand in the term (I) has the form
[
M(Q,A−)(f, P)

]p
, for

Q ∈ CZmain(A−) with Q ⊂ (1+ tG)Q̂. From (2.84), we have[
M(Q,A−)(f, P)

]p ≤ C ·
[
‖(f, P)‖p65

64
Q
+ Δ

p
junk|P|p

]
.

From Lemma 11 of [4] and Q ⊂ (1 + tG)Q̂ we conclude that 65
64
Q ⊂ 65

64
Q̂. Due

to the fact that Q̂ is η-simple with η ≥ tG, we know δQ ≥ tGδ̂Q
. From Lemma 5

of [4], we therefore conclude that ‖(f, P)‖ 65
64

Q ≤ C(tG)‖(f, P)‖ 65
64

̂Q
. So,

[
M(Q,A−)(f, P)

]p ≤ C(tG) ·
[
‖(f, P)‖p

65
64

̂Q
+ Δ

p
junk|P|

p
]
.

The number of cubes Q relevant to the sum in (I) is at most C(tG). Therefore,

(I) ≤ C(tG) ·
[
‖(f, P)‖p

65
64

̂Q
+ Δ

p
junk|P|p

]
.

The term (VI) is equal to Δp
new|P|p.

1098 C. Fefferman, A. Israel, and G.K. Luli

It remains to estimate the term (V). Recall that #(65
64
Q̂ ∩ E) ≤ N ≤ Δ−n

0

(see (2.71)). Hence,

(V) = Δ2p
new

∑
x∈ 65

64
̂Q∩E

|f(x) − P(x)|p ≤ Δ2p
new Δ−C

0 ‖(f, P)‖p65
64

̂Q
(2.112)

≤ ‖(f, P)‖p65
64

̂Q
.(2.113)

We explain below the previous two estimates.
We deduce the estimate in (2.112) by picking a function F̃ that satisfies

‖F̃‖p
X(65

64
̂Q)

+ δ
−mp
̂Q

‖F̃− P‖
Lp(65

64
̂Q) ≤ 2 · ‖(f, P)‖p65

64
̂Q

and F̃ = f on E ∩ 65
64
Q̂. For each x ∈ E ∩ 65

64
Q̂, we apply estimate (2.4) from

Lemma 10 of [3] to the function F = F̃− P. Hence, we have

|f(x) − P(x)| =
∣∣F̃(x) − P(x)

∣∣ ≤ C · δ−n/p

̂Q
‖F̃− P‖

Lp(65
64

̂Q) + δ
m−n/p

̂Q
‖F̃‖

X(65
64

̂Q).

Recall that δ
̂Q
≥ cΔ0, since Q̂ is a testing cube. Hence, we have |f(x) − P(x)| ≤

CΔ−C
0 |(f, P)| 65

64
̂Q
. Summing over x ∈ E∩ 65

64
Q̂ and using the fact that #(E∩ 65

64
Q̂) ≤

Δ−C
0 , we obtain the stated estimate.

We deduce the estimate in (2.113) from the estimate Δnew ≤ Δ
C/(2p)
0 ; see (2.82).

Therefore,[
M

̂Q
(f, P)

]p
= (I) + (V)+ (VI) ≤ C(tG) ·

[
‖(f, P)‖p65

64
̂Q
+ Δp

new|P|p + Δ
p
junk|P|

p
]
.

Since Δjunk ≤ Δnew (see (2.82)), the above estimate implies the conclusion of
Lemma 6. �

Lemma 6 implies the conditional inequality if Q̂ is η-simple for

η = min{c∗(A−), [100S(A−)]−1}.

So we may assume that Q̂ is not η-simple, for η as above (as in (1.107) of [4]).
Both Proposition 5 and 6 of [4] hold in the present setting, without change.

The proofs are as before.
We now prove the conditional inequality. We describe how the estimates from

before will need to be changed in the present setting.
On the right-hand side of (1.142) of [4] we add the terms (V) and (VI). Note

that

(V) + (VI) = Δ2p
new

∑
x∈ 65

64
̂Q∩E

|f(x) − P(x)|p + Δp
new

|P|p

≤ ‖(f, P)‖p
65
64

̂Q
+ Δp

new
|P|p (thanks to (2.112))

≤ [RHS of the conditional inequality]
p
.

Therefore, the extra terms do not hurt.

Fitting a Sobolev function to data III 1099

Our inductive assumption now states that

M(Q,A−)(f, R
̂Q
Q) ≤ C ·

[
‖(f, R̂Q

Q)‖ 65
64

Q + Δjunk|R
̂Q
Q|

]
≤ C ·

[
‖H‖

X(65
64

Q) + δ−m
Q ‖H− R

̂Q
Q‖Lp(65

64
Q) + Δjunk|R

̂Q
Q|

]
.

Hence, in place of (1.143) of [4], we now have

[
M

̂Q
(f, P)

]p ≤ C(tG) ·
[
‖H‖p

X(65
64

̂Q)
+ δ

−mp
̂Q

‖H− P‖p
Lp(65

64
̂Q)

+
∑

Q⊂(1+100tG)̂Q

[
‖H‖p

X(65
64

Q)
+ δ

−mp
Q ‖H− R

̂Q
Q‖p

Lp(65
64

Q)

]

+ Δ
p
junk

∑
Q⊂(1+100tG)̂Q

|R̂Q
Q|p (=: S)(2.114)

+
[
RHS of conditional inequality

]p]
.

The third and fourth lines contain new terms not present in the original estimate.

We will now estimate the extra term S in the third line of (2.114)

We write S = S1 +S2, with

S1 = Δ
p
junk

∑
Q⊂(1+100tG)̂Q

δQ≥tGδ
̂Q

|R̂Q
Q|p, and S2 = Δ

p
junk

∑
Q⊂(1+100tG)̂Q

δQ<tGδ
̂Q

|R̂Q
Q|p.

We estimate the term S1. The number of cubes in CZ(A−) is at most Δ−C
0 .

Moreover, by definition, R
̂Q
Q = P for each Q ∈ CZ(A−) relevant to the S1

(see (2.99)). Hence,

S1 ≤ Δ
p
junk · Δ

−C
0 · |P|p(2.115)

≤ Δp
new · |P|p ≤

[
RHS of conditional inequality

]p
.

(Here, we use that Δjunk ≤ Δ2
new ≤ Δnew · ΔC/p

0 ; see (2.82).)

We next estimate the term S2. Let Q ∈ CZ(A−) satisfy Q ⊂ (1 + 100tG)Q̂
and δQ < tGδ̂Q

. Then the keystone cube Q# = K(Q) associated to Q satisfies

S1Q
⊂ CQ ⊂ (1 + CtG)Q̂ ⊂ 65

64
Q̂, where the first inclusion is a property of

the map K (see the statement of the Keystone-oracle), the second inclusion is
due to δQ < tGδ̂Q

, and the last inclusion follows if we take tG sufficiently small.

By definition (2.99) we have R
̂Q
Q = R

#
Q# . Moreover, since the number of cubes in

CZ(A−) is at most Δ−C
0 , we have

(2.116) S2 ≤ max
Q# keystone

{
Δ

p
junkΔ

−C
0 |R#

Q# |p : S1Q
⊂ 65

64
Q̂
}
.

1100 C. Fefferman, A. Israel, and G.K. Luli

Let Q# be a keystone cube with S1Q
⊂ 65

64
Q̂. Lemma 5 states that

|R#
Q# − P| ≤ C ·

[
‖(f, P)‖S1Q# + Δjunk|P|

]
.

Hence,

(2.117) |R#
Q# |p ≤ C ·

[
‖(f, P)‖p

S1Q# + |P|p
]
.

We define
F̃ = P +

∑
x∈S1Q#∩E

θx · (f(x) − P(x))

where θx(y) (x ∈ E) are cutoff functions satisfying (a) θx ≡ 1 on a neighborhood
of x, (b) θx is supported on a ball B(x, cΔ0) for a small universal constant c, and
(c) ‖∂αθx‖L∞ ≤ Δ−C

0 for all |α| ≤ m. Indeed note that we may take θx(y) =
θ(y − x) for a fixed cutoff function θ supported on a small ball about the origin.
From (a) and (b) we deduce that θx(z) ≡ 0 for any z ∈ E \ {x}, since |x − y| ≥ Δ0

for distinct points x, y ∈ E. Thus, we have F̃(x) = f(x) for each x ∈ E. Moreover,

‖F̃‖p
X(S1Q#)

≤ Δ−C
0

∑
x∈S1Q#∩E

|f(x) − P(x)|p

and
‖F̃− P‖p

Lp(S1Q#)
≤ Δ−C

0

∑
x∈S1Q#∩E

|f(x) − P(x)|p.

Hence, by definition of the trace seminorm, ‖(f, P)‖p
S1Q# ≤ Δ−C

0

∑
x|f(x)−P(x)|p.

Thus, estimate (2.117) implies that

(2.118) |R#
Q# |p ≤ C

[
Δ−C ′

0

∑
x∈S1Q#∩E

|f(x) − P(x)|p + |P|p
]
.

Therefore, returning to (2.116), we have

S2 ≤ Δ
p
junkΔ

−C ′′
0

[∑
x∈ 65

64
̂Q∩E

|f(x) − P(x)|p + |P|p
]
.

Since Δ
p
junkΔ

−C ′′
0 ≤ Δ4p

new ·
[
Δp

newΔ
−C ′′
0

]
≤ Δ4p

new (see (2.82)), we conclude that

S2 ≤ Δ4p
new

∑
x∈65

64
̂Q∩E

|f(x) − P(x)|p + Δ4p
new|P|p ≤ Δ2p

new

[
M

̂Q
(f, P)

]p

≤ 1

2C(tG)

[
M

̂Q
(f, P)

]p
,

where C(tG) is the constant in (2.114). To obtain the previous estimates, we make
sure to choose

Δ2p
new

≤ 1

2C(tG)

(see (2.98)).
This completes our estimation of the term S2.

Fitting a Sobolev function to data III 1101

In the estimate (2.114), we consider the term C(tG)·S = C(tG)·S1+C(tG)·S2

on the right-hand side, and note that C(tG) ·S2 is irrelevant since it is bounded by
a half of the left-hand side; moreover, the term C(tG) ·S1 is bounded from above
by C(tG) · [RHS of conditional inequality]

p
, thanks to (2.115). Therefore, in place

of (2.114), we have the simpler estimate:

M
̂Q
(f, P)p ≤ C(tG)·

[
‖H‖p

X(65
64

̂Q)
+ δ

−mp
̂Q

‖H− P‖p
Lp(65

64
̂Q)

+
∑

Q⊂(1+100tG)̂Q

[
‖H‖p

X(65
64

Q)
+ δ

−mp
Q ‖H− R

̂Q
Q‖p

Lp(65
64

Q)

]

+ [RHS of conditional inequality]p
]
.(2.119)

The difference between the estimates (2.119) and (1.143) of [4] is that the right-
hand side of (2.119) contains an extra term: [RHS of conditional inequality]

p
.

The estimates in Stage II are unchanged. Using these estimates in (2.119),
we obtain

M
̂Q
(f, P)p ≤ C(tG) ·

(
‖H‖p

X(65
64

̂Q)
+ δ

−mp
̂Q

‖H− P‖p
Lp(65

64
̂Q)

(2.120)

+
∑

Q⊂(1+100tG)̂Q
δQ<tGδ

̂Q

δ
−mp
Q ‖H− R

#
K(Q)‖

p

Lp(65
64

Q)

+
[
RHS of conditional inequality

]p)

≤ C(tG) ·
(
‖H‖p

X(65
64

̂Q)
+ δ

−mp
̂Q

‖H− P‖p
Lp(65

64
̂Q)

+
∑

Q#
keystone

S1Q
#⊂ 65

64
̂Q

(δQ#)−mp‖H− R
#
Q#‖pLp(S1Q#)

+
[
RHS of conditional inequality

]p)
.

The difference between the estimates (2.120) and (1.144) of [4] is the extra term[
RHS of conditional inequality

]p
that appears in (2.120).

We now examine the estimates in Stage III.

In place of the inequality (1.145) of [4], which reads

δ
−mp

Q# ‖H− R
#
Q#‖pLp(S1Q#)

≤ C‖H‖p
X(S1Q#)

,

we now apply (2.95) which reads

δ
−mp

Q# ‖H− R
#
Q#‖pLp(S1Q#)

≤ C
[
‖H‖p

X(S1Q#)
+ Δ

p
junk|R

#
Q# |p

]
.

1102 C. Fefferman, A. Israel, and G.K. Luli

Thus, from (2.118) we have

δ
−mp
Q# ‖H− R

#
Q#‖pLp(S1Q#)

≤ C‖H‖p
X(S1Q#)

+ CΔ
p
junk

[
Δ−C ′

0

∑
x∈S1Q#∩E

|f(x) − P(x)|p + |P|p
]
.

There are at most CN ≤ Δ−C
0 keystone cubes in CZ(A−). Hence, since the collec-

tion {S1Q
: Q# keystone} has bounded overlap, we have∑

Q# keystone

S1Q
#⊂ 65

64
̂Q

δ
−mp
Q# ‖H− R

#
Q#‖pLp(S1Q#)

≤ C ‖H‖p
X(65

64
̂Q)

+ CΔ
p
junkΔ

−C
0

[∑
x∈65

64
̂Q∩E

|f(x) − P(x)|p + |P|p
]
.

We haveCΔ
p
junkΔ

−C
0 ≤ CΔ3p

new
≤ 1

2C(tG)
Δ2p

new
, due to assumptions (2.82) and (2.98).

Thus, the term inside the curly braces in the above estimate is bounded by

1

2C(tG)
[(V) + (VI)] ≤ 1

2C(tG)
M

̂Q
(f, P)p.

We put the previous estimates into (2.120) to obtain

M
̂Q
(f, P)p ≤ C(tG)

[
‖H‖p

X(65
64

̂Q)
+ δ

−mp
̂Q

‖H− P‖p
Lp(65

64
̂Q)

+
1

2C(tG)
M

̂Q
(f, P)p

]
+
[
RHS of conditional inequality

]p
.

Thus, from the third bullet point in Proposition 5 of [4], we deduce that

M
̂Q
(f, P)p ≤ C(tG)Λ

(2D+1)p‖(f, P)‖p
65
64

̂Q
+
[
RHS of conditional inequality

]p
.

Since Λ2D+1 ≤ 1/ε, this estimate implies the conditional inequality in Proposi-
tion 2. This completes the proof of Proposition 2.

We fix tG > 0 to be a universal constant, small enough so that the preced-
ing results hold. We define the universal constant a(A) = anew, with anew as in
Lemma 11 of [4].

For a moment, we fix ε = ε0 in Proposition 2 for a small universal constant ε0.
This implies the following result.

Proposition 3. There exist universal constants ε0 > 0 and C ≥ 1 such that the
following estimates hold.

(Unconditional inequality) ‖(f, P)‖(1+a(A))̂Q ≤ C ·M
̂Q
(f, P).

(Conditional inequality) If 3Q̂ is tagged with (A, ε0), then

M
̂Q
(f, P) ≤ C

[
‖(f, P)‖ 65

64
̂Q
+ Δnew · |P|

]
.

Fitting a Sobolev function to data III 1103

We no longer fix ε = ε0. Once again, we assume that ε is a small parameter,
less than a small enough universal constant.

We assume that

(2.121) Δnew ≤ c(ε),

for a small enough constant c(ε), depending only on ε, m, n, and p.
We will need new proofs of Propositions 8, 9, and 10 of Section 1.5 of [4]. We

recall these results below (see Propositions 4, 5, and 6) and give the new proofs.

Proposition 4. Let Q̂ be a testing cube. If[
#
(65
64

Q̂ ∩ E
)
≤ 1 or σ(Q̂) has an (A ′, x

̂Q
, ε, δ

̂Q
)-basis for some A ′ ≤ A

]
,

then (1 + a(A))Q̂ is tagged with (A, εκ). Otherwise, no cube containing 3Q̂ is
tagged with (A, ε1/κ). Here, κ > 0 is a universal constant.

Proof. If #(65
64
Q̂ ∩ E) ≤ 1, then (1+ a(A))Q̂ is tagged with (A, ε).

Suppose σ(Q̂) has an (A ′, x
̂Q
, ε, δ

̂Q
)-basis with A ′ ≤ A. Call this basis

(Pα)α∈A ′ . Then

• Pα ∈ ε · δ|α|+n/p−m

̂Q
· σ(Q̂) for all α ∈ A ′.

• ∂βPα(x̂Q
) = δαβ for all α,β ∈ A ′.

• |∂βPα(x̂Q
)| ≤ ε · δ|α|−|β|

̂Q
for all α ∈ A ′, β ∈ M, β > α.

Since σ(Q̂) = {P : M
̂Q
(0, P) ≤ 1}, we have M

̂Q
(0, Pα) ≤ εδ

|α|+n/p−m

̂Q
for α ∈ A ′.

So, the unconditional inequality gives

‖(0, Pα)‖(1+a(A))̂Q
≤ C ′εδ|α|+n/p−m

̂Q
for all α ∈ A ′.

Thus,

Pα ∈ C ′εδ|α|+n/p−m

̂Q
σ((1+ a(A))Q̂) for all α ∈ A ′.

Thus, combined with the second and third bullet points above, we have that
(Pα)α∈A ′ is an (A ′, x

̂Q
, C ′ε, δ

̂Q
)-basis for σ((1 + a(A))Q̂). Hence, (Pα)α∈A ′ is

an (A ′, x
̂Q
, εκ, δ(1+a(A))̂Q)-basis for σ((1+a(A))Q̂), for a small enough universal

constant κ. Since A ′ ≤ A, it follows that (1 + a(A))Q̂ is tagged with (A, εκ), as
claimed. That proves the first half of Proposition 4.

On the other hand, suppose Q ⊃ 3Q̂ and suppose Q is tagged with (A, ε1/κ
′
),

for a small enough universal constant κ ′ > 0, to be chosen below (not any pre-

vious κ ′). Then 3Q̂ is tagged with (A, εκ/κ
′
) for some universal constant κ > 0,

thanks to Lemma 28 of [3]. Hence, as long as ε is small enough so that εκ/κ
′ ≤ ε0,

the conditional inequality applies:

M
̂Q
(0, P) ≤ C

[
‖(0, P)‖ 65

64
̂Q
+ Δnew|P|

]
for any P ∈ P .

1104 C. Fefferman, A. Israel, and G.K. Luli

By Lemma 28 of [3], we also know 65
64
Q̂ is tagged with (A, εκ/κ

′
). So either

#(65
64
Q∩E) ≤ 1 (in which case we have finished the proof of Proposition 4) or else

σ(65
64
Q) has an (A ′, x

̂Q
, εκ/κ

′
, δ

̂Q
)-basis for some A ′ ≤ A.

In the latter case, Lemma 25 of [3] gives an (A ′′, x
̂Q
, εκ/κ

′
, δ

̂Q
, Λ)-basis, with

A ′′ ≤ A ′ ≤ A, κ̃ ≤ κ ≤ ˜̃κ, with κ̃, ˜̃κ > 0 universal constants independent of κ ′,

and εκ/κ
′
Λ100D ≤ εκ/2κ

′
.

Call this basis (Pα)α∈A ′′ . Then

• Pα ∈ εκ/κ
′ · δ|α|+n/p−m

̂Q
· σ(65

64
Q) for all α ∈ A ′′.

• ∂βPα(x̂Q
) = δαβ for all α,β ∈ A ′′.

• |∂βPα(x̂Q
)| ≤ εκ/κ

′ · δ|α|−|β|

̂Q
for all α ∈ A ′′, β ∈ M, β > α.

• |∂βPα(x̂Q
)| ≤ Λ · δ|α|−|β|

̂Q
for all α ∈ A ′′, β ∈ M.

We deduce a few conclusions from the above bullet points. The first bullet point

implies that ‖(0, Pα)‖ 65
64

̂Q
≤ εκ/κ

′
δ
|α|+n/p−m

̂Q
; the last bullet point implies that

|∂βPα(x̂Q
)| ≤ Λ · Δ−C

0 for all α ∈ A ′′, β ∈ M (since Δ0 ≤ δ
̂Q
≤ 1), hence

|Pα| =
(∑

β∈M
|∂βPα(0)|p

)1/p

≤ C ·
(∑

β∈M
|∂βPα(x̂Q

)|p
)1/p

(since |x
̂Q
| ≤ C)

≤ C ′Λ · Δ−C
0 .

Hence, the (known) conditional inequality implies the estimate

M
̂Q
(0, Pα) ≤ C ·

[
‖(0, Pα)‖ 65

64
̂Q
+ Δnew · |Pα|

]
≤ Cεκ/κ

′
δ
|α|+n/p−m
̂Q

+ CΛΔ−C
0 Δnew ≤ C ′εκ/κ

′
δ
|α|+n/p−m
̂Q

,(2.122)

for α ∈ A ′′, where we have used that δ
̂Q
≤ 1 and |α|+ n/p−m < 0, and

Λ · Δ−C
0 Δnew

(2.82)

≤ Λ · Δ1/2
new

(2.121)

≤ Λ · ε2·˜κ̃/κ ′ ≤ εκ/κ
′
.

Here, in the last inequality, we use that Λ ≤ Λ100D ≤ ε−κ/2κ ′
, where κ ≤ ˜̃κ.

Now, the estimate (2.122) implies that

Pα ∈ C ′εκ/κ
′
δ
|α|+n/p−m

̂Q
· σ(Q̂) for all α ∈ A ′′.

This estimate, together with the second and third bullet points above, shows that

(Pα)α∈A ′′ is an (A ′′, x
̂Q
, Cεκ/κ

′
, δ

̂Q
)-basis for σ(Q̂).

We ensure that Cεκ/κ
′ ≤ ε by choosing κ ′ to be a small enough universal constant.

Hence, σ(Q̂) has an (A ′′, x
̂Q
, ε, δ

̂Q
)-basis with A ′′ ≤ A ′ ≤ A. This completes the

proof of Proposition 4. �

Fitting a Sobolev function to data III 1105

Proposition 5. . Suppose Q̂1 ⊂ Q̂2 are testing cubes with #(3Q̂2 ∩ E) ≥ 2, and

(1+a(A))Q̂1 ∩E = 3Q̂2 ∩E. Suppose σ(Q̂1) has an (A ′, x
̂Q1

, ε, δ
̂Q2

)-basis. Then

3Q̂2 is tagged with (A ′, εκ) for a universal constant κ.

Proof. By Lemma 27 of [3], σ(Q̂1) has an (A ′′, x
̂Q2

, εκ, δ
̂Q2

)-basis, with A ′′ ≤ A ′,
for some universal constant κ. Call that basis (Pα)α∈A ′′ . Then for each α ∈ A ′′,
we have

• Pα ∈ εκ · δ|α|+n/p−m

̂Q2

· σ(Q̂1).

• ∂βPα(x̂Q2
) = δαβ for all β ∈ A ′′.

• |∂βPα(x̂Q2
)| ≤ εκ · δ|α|−|β|

̂Q2

for β ∈ M, β > α.

The first condition here gives M
̂Q1

(0, Pα) ≤ εκδ
|α|+n/p−m
̂Q2

. So, by the uncondi-

tional inequality,

‖(0, Pα)‖(1+a(A))̂Q1
≤ Cεκ δ

|α|+n/p−m

̂Q2

.

Hence, Pα ∈ Cεκδ
|α|+n/p−m

̂Q2

σ((1 + a(A))Q̂1). By Lemma 15 of [3], we know

σ(3Q̂2) is comparable to σ((1 + a(A))Q̂1) + B(x
̂Q2

, δ
̂Q2

), so

σ((1 + a(A))Q̂1) ⊂ Cσ(3Q̂2).

Thus, Pα ∈ Cεκδ
|α|+n/p−m

̂Q2

σ(3Q̂2) for all α ∈ A ′′. With the second and third

bullet points above, this shows that σ(3Q̂2) has an (A ′′, x
̂Q2

, Cεκδ
̂Q2

)-basis, with

A ′′ ≤ A ′. Therefore, 3Q̂2 is tagged with (A ′, εκ/2), if ε is less than a small enough
universal constant. This completes the proof of Proposition 5. �

Corollary 1 of [4] is a direct consequence of Proposition 5, just as before.

Proposition 6. Suppose that Q̂1 ⊂ Q̂2 are testing cubes, #(3Q̂2 ∩ E) ≥ 2, and

(1+ a(A))Q̂1 ∩ E = 3Q̂2 ∩ E. Suppose 3Q̂2 is tagged with (A, ε). Then σ(Q̂1) has
an (A ′, x

̂Q1
, εκ

′
, δ

̂Q2
)-basis for some A ′ ≤ A and for some universal constant κ ′.

Proof. Since 3Q̂1 ⊂ 3Q̂2 and 3Q̂2 is tagged with (A, ε), Lemma 28 of [3] shows

that 3Q̂1 is tagged with (A, εκ) for a universal constant κ. Hence, the Conditional

Inequality holds for Q̂1. Hence,

(2.123) M
̂Q1

(0, P) ≤ C
[
‖(0, P)‖ 65

64
̂Q1

+ Δnew|P|
]

for P ∈ P .

Now, since 65
64
Q̂1 ∩ E = 3Q̂2 ∩E and 65

64
Q̂1 ⊂ 3Q̂2, we know from Lemma 15 of [3]

that

σ(3Q̂2) ⊂ C ·
[
σ
(65
64

Q̂1

)
+ B

(
x
̂Q2

, δ
3̂Q2

)]
.

(We have B(x
̂Q1

, δ
3̂Q2

) ⊂ CB(x
̂Q2

, δ
3̂Q2

), because |x
̂Q1

− x
̂Q2

| ≤ δ
̂Q2

. Hence, the

above inclusion follows from Lemma 15 of [3].)

1106 C. Fefferman, A. Israel, and G.K. Luli

Recall that 3Q̂2 is tagged with (A, ε) and #(3Q̂2 ∩E) ≥ 2. Hence, σ(3Q̂2) has
an (A ′, x

̂Q2
, ε, δ

3̂Q2
)-basis, for some A ′ ≤ A. By Lemma 25 of [3], there exist a

multiindex set A ′′ ≤ A ′ ≤ A and numbers Λ ≥ 1, κ1 ≤ κ ≤ κ2, such that

σ(3Q̂2) has an (A ′′, x
̂Q2

, εκ, δ
3̂Q2

, Λ)-basis, where εκΛ100D ≤ εκ/2,

for some universal constants κ1, κ2 ∈ (0, 1]. Therefore,

σ
(65
64

Q̂1

)
+ B(x

̂Q2
, δ

3̂Q2
) has an (A ′′, x

̂Q2
, Cεκ, δ

3̂Q2
, Λ)-basis.

From Lemma 23 of [3], we see that σ
(
65
64
Q̂1

)
has an (A ′′, x

̂Q2
, C ′εκΛ, δ

3̂Q2
, CΛ)-

basis. Here, C ′εκΛ ≤ C ′εκ/2 ≤ εκ/4, for sufficiently small ε. Let (Pα)α∈A be
that basis. Thus, for each α ∈ A ′′,

• Pα ∈ εκ/4 · δ|α|+n/p−m

̂Q2

· σ(65
64
Q̂1).

• ∂βPα(x̂Q2
) = δαβ for all β ∈ A ′′.

• |∂βPα(x̂Q2
)| ≤ εκ/4 · δ|α|−|β|

̂Q2

for all β ∈ M, β > α.

• |∂βPα(x̂Q2
)| ≤ CΛ · δ|α|−|β|

̂Q2

for all β ∈ M.

The first and fourth bullet points imply that ‖(0, Pα)‖ 65
64

̂Q1
≤ Cεκ/4δ

|α|+n/p−m

̂Q2

and |Pα| ≤ CΛΔ−C
0 , hence (2.123) gives

(2.124) M
̂Q1

(0, Pα) ≤ C ′εκ/4δ|α|+n/p−m

̂Q2

+ CΛΔ−C
0 Δnew ≤ C ′εκ/4 δ|α|+n/p−m

̂Q2

,

which implies that

(2.125) Pα ∈ C ′εκ/4 δ|α|+n/p−m

̂Q2

· σ(Q̂1) for α ∈ A ′′.

Here, to prove (2.124), we use that δ
̂Q2

≤ 1 and |α|+ n/p −m < 0, and

Λ · Δ−C
0 Δnew

(2.82)

≤ Λ · Δ1/2
new

(2.121)

≤ Λ · ε2κ2 ≤ εκ.

Here, in the last inequality, we use that Λ ≤ Λ100D ≤ ε−κ/2, where κ ≤ κ2.
With the second and third bullet points, (2.125) shows that (Pα)α∈A ′′ forms an

(A ′′, x
̂Q2

, Cεκ/4, δ
̂Q2

)-basis for σ(Q̂1). Hence, by Lemma 26 of [3], it follows that

σ(Q̂1) has an (A ′′′, x
̂Q1

, εκ
′
, δ

̂Q2
)-basis for some A ′′′ ≤ A ′′ ≤ A ′ ≤ A and for a

small enough universal constant κ ′. This completes the proof of Proposition 6. �

The statements and proofs of Propositions 11 and 12 of [4] are unchanged.
The statement of the algorithm Optimize basis requires modification.

Algorithm: Optimize basis (finite-precision)

We perform one time work at most CN logN in space CN, after which we can
answer queries as follows.

A query consists of a testing cube Q̂ and a set A ⊂ M
We respond to the query (Q̂,A) by producing the following.

Fitting a Sobolev function to data III 1107

• A collection of machine intervals I� (1 ≤ � ≤ �max). The intervals I� are
pairwise disjoint, the union of the I� is

[
Δg, Δ

−1
g

]
, and �max ≤ C.

• A list of non-negative machine numbers a� (� = 1, . . . , �max). The numbers
a� are bounded in magnitude by Δ−C

g .

• A list of numbers λ�. Each λ� has the form μ� + ν�/p, with μ�, ν� ∈ Z and
|μ�| , |ν�| ≤ C.

• Let η(̂Q,A)(δ) := a� δ
λ� for δ ∈ I�. Then we have:

(A1) For each δ ∈ [Δg, Δ
−1
g] there exists A ′ ≤ A such that σ(Q̂) has an

(A ′, x
̂Q
, η1/2, δ)-basis for all η > C · η(̂Q,A)(δ).

(A2) For each δ ∈ [Δg, Δ
−1
g] and any A ′ ≤ A, σ(Q̂) does not have an

(A ′, x
̂Q
, η1/2, δ)-basis for any η < c · η(̂Q,A)(δ).

(A3) Moreover, c · η(̂Q,A)(δ1) ≤ η(̂Q,A)(δ2) ≤ C · η(̂Q,A)(δ1) whenever
1
10
δ1 ≤ δ2 ≤ 10δ1 and δ1, δ2 ∈ [Δg, Δ

−1
g].

(A4) Also, η(̂Q,A)(δ) ≥ ΔC
g , for all δ ∈ [Δg, Δ

−1
g].

• To answer a query requires work at most C logN.

Explanation. Recall that we can perform arithmetic operations to within preci-
sion Δε.

We denote Z[1/p] =
{
λ = k+ � · 1

p
: k, � ∈ Z

}
. If λ = k+ � · 1

p
∈ Z[1/p], with k

and � bounded by a universal constant, then we say that λ is a machine element of
Z[1/p]. Such a λ can be stored on our computer using at most C units of storage.

Recall that we defined |P|x =
(∑

α∈M|∂αP(x)|p
)1/p

for P ∈ P and x ∈ Rn, and
|P| = |P|0. The vectors (∂αP(x))α∈M and (∂αP(0))α∈M are related by multiplica-
tion against an invertible matrix A(x) = (Aαβ(x))α,β∈M. This is a consequence
of Taylor’s formula. Note that the operator norm of the matrix A(x) is bounded
by a universal constant if |x| ≤ 1. Thus,

(2.126) C−1 |P|x ≤ |P| ≤ C |P|x for P ∈ P and |x| ≤ 1.

Using Approximate new trace norm (see Section 2.13.1), we compute a

quadratic form q
̂Q
on P such that {q

̂Q
≤ c} ⊂ σ(Q̂) ⊂ {q

̂Q
≤ C}, where c > 0 and

C ≥ 1 are universal constants.2 The quadratic form q
̂Q
is given in the form

q
̂Q
(P) =

∑
α,β∈M

q̃αβ · 1

α!
∂αP(0) · 1

β!
∂βP(0),

where we compute the numbers q̃αβ with parameters (ΔC
g , Δ

−C
g Δε). Using a linear

change of basis, we write

q
̂Q
(P) =

∑
α,β∈M

qαβ · 1

α!
∂αP(x

̂Q
) · 1

β!
· ∂βP(x

̂Q
).

2Recall that by now we have fixed tG to be a universal constant; hence, the constants c(tG)
and C(tG) in Approximate new trace norm are now universal constants c, C.

1108 C. Fefferman, A. Israel, and G.K. Luli

Each qαβ is a linear combination of all the numbers q̃αβ. Thus, we can compute
each qαβ with parameters (ΔC

g , Δ
−C
g Δε).

From the conditions in the algorithmApproximate new trace norm (finite-
precision), we know that q

̂Q
(P) ≥ c · (M

̂Q
(0, P))2. Furthermore, the term (VI) =

Δp
new

· |P|p is a summand in
[
M

̂Q
(0, P)

]p
, hence M

̂Q
(0, P) ≥ Δnew · |P| (see (2.102)).

Hence, using (2.126), we see that

q
̂Q
(P) ≥ c ′Δ2

new|P|2 ≥ c ′′Δ2
new|P|2x

̂Q
.

(Note that |x
̂Q
| ≤ 1, since Q̂ ⊂ Q◦ = [0, 1)n.)

Therefore, the matrix (qαβ) satisfies

(qαβ) ≥ cΔ2
new · (δαβ) ≥ Δg · (δαβ).

This means that we can apply the finite-precision version of Fit basis to convex

body to the matrix (qαβ) and the convex body σ(Q̂) (see Section 2.5). We can

therefore compute a piecewise monomial function η
(̂Q,A ′)
∗ (δ) for each A ′ ≤ A. We

guarantee that

• For any δ ∈ [Δg, Δ
−1
g],

– (P1) σ(Q̂) has an (A ′, x
̂Q
, η1/2, δ)-basis, for any η > C · η(̂Q,A ′)

∗ (δ),

– (P2) σ(Q̂) does not have an (A ′, x
̂Q
, η1/2, δ)-basis, for any η < c ·

η
(̂Q,A ′)
∗ (δ).

• (P3) Moreover, c · η(̂Q,A ′)
∗ (δ1) ≤ η

(̂Q,A ′)
∗ (δ2) ≤ C · η(̂Q,A ′)

∗ (δ1), whenever
1
10
δ1 ≤ δ2 ≤ 10δ1, for δ1, δ2 ∈ [Δg, Δ

−1
g].

• (P4) Also, η
(̂Q,A ′)
∗ (δ) ≥ ΔC

g for any δ ∈ [Δg, Δ
−1
g].

• The function η
(̂Q,A ′)
∗ :

[
Δg, Δ

−1
g

] → R is given in the form

η
(̂Q,A ′)
∗ (δ) = a�,A ′ · δλ�,A′ for δ ∈ I�,A ′ .

To represent η
(̂Q,A ′)
∗ we store the following data: pairwise disjoint machine

intervals I�,A ′ (1 ≤ � ≤ �max(A ′)) that form a partition of
[
Δg, Δ

−1
g

]
; machine

numbers a�,A ′ ∈ [ΔC
g , Δ

−C
g]; and exponents λ�,A ′ that are machine elements

of Z[1/p]. We guarantee that �max(A ′) ≤ C for each A ′ ≤ A.

By computing all the nonempty intersections of the intervals I�,A ′ , we write each

η
(̂Q,A ′)
∗ (δ) in the form

η
(̂Q,A ′)
∗ (δ) = c�,A ′ · δγ�,A′ for δ ∈ I� (� = 1, 2, . . . , �max).

Here, we compute the following: machine intervals I� (1 ≤ � ≤ �max) that partition[
Δg, Δ

−1
g

]
; machine numbers c�,A ′ ∈ [ΔC

g , Δ
−C
g]; and exponents γ�,A ′ that are

machine elements in Z[1/p]. Moreover, �max ≤ C.

Fitting a Sobolev function to data III 1109

We define

(2.127) η(δ) := min
A ′≤A

η
(̂Q,A ′)
∗ (δ).

We will compute a piecewise-monomial approximation to the function η(δ) using
the following procedure.

Procedure: Process monomials

Assume that we are given the following: A machine interval I ⊂ [Δg, Δ
−1
g],

machine numbers a1, a2 ∈ [ΔC
g , Δ

−C
g], and machine elements γ1, γ2 ∈ Z[1/p]. We

define monomial functions m1(δ) = a1δ
γ1 and m2(δ) = a2δ

γ2 . Then we produce
one of three outcomes:

1. We guarantee that m1(δ) ≤ m2(δ) + Δ
1/2
ε for all δ ∈ I.

2. We guarantee that m2(δ) ≤ m1(δ) + Δ
1/2
ε for all δ ∈ I.

3. We compute a machine number δ∗ ∈ I, and distinct indices j, k ∈ {1, 2}, such
that {

mj(δ) ≤ mk(δ) + Δ1/2
ε for δ ∈ I ∩ (0, δ∗],

mk(δ) ≤ mj(δ) + Δ1/2
ε for δ ∈ I ∩ [δ∗,∞).

This computation requires work and storage at most C.

Explanation. If γ1 = γ2 then outcome (1) occurs if a1 ≤ a2, and outcome (2)
occurs if a1 > a2. Thus, we can respond in the case when γ1 = γ2

Assume instead that γ1 �= γ2. In this case we have c0 ≤ |γ1 − γ2| ≤ C0 for
universal constants c0 and C0, since γ1 and γ2 are machine elements in Z[1/p].3

We define a monomial functionm(δ) := m1(δ)/m2(δ) = a·δγ, where a = a1/a2

and γ = γ1 − γ2. The unique solution to the equation m(δ) = 1 is given by

(2.128) δsol := a1/γ.

Since monomial functions are monotonic, we have either

(a) m(δ) < 1 for Δg ≤ δ < δsol, and m(δ) > 1 for δsol < δ ≤ Δ−1
g ; or

(b) m(δ) > 1 for Δg ≤ δ < δsol, and m(δ) < 1 for δsol < δ ≤ Δ−1
g .

We know that (a) holds if γ > 0, and (b) holds if γ < 0. We can determine which
case occurs because the rational number γ is given to exact precision.

Since a ∈ [ΔC
g , Δ

−C
g] and c0 ≤ |γ| ≤ C0, due to the numerical stability of

exponentiation we can compute a machine number δ∗ such that

(2.129) δ∗ ∈ [ΔC
g , Δ

−C
g] and |δ∗ − δsol| ≤ Δ−C

g Δε (see (2.128)).

From (2.129) and the Lipschitz continuity of m(δ), we have |m(δ) − 1| ≤ Δ−C
g Δε

for all δ in the interval between δ∗ and δsol.

3The constant c0 here depends only on m, n, and p, but it may depend sensitively on the
approximation of 1/p by rationals with low denominators.

1110 C. Fefferman, A. Israel, and G.K. Luli

Therefore, in case (a) we have m(δ) = m1(δ)/m2(δ) ≤ 1 + Δ−C
g Δε for all

Δg ≤ δ ≤ δ∗, and m(δ) = m1(δ)/m2(δ) ≥ 1− Δ−C
g Δε for all δ∗ ≤ δ ≤ Δ−1

g . Note

that both m1(δ) and m2(δ) are in the range [ΔC
g , Δ

−C
g] if δ ∈ [Δg, Δ

−1
g]. Thus, in

case (a) we determine that

m1(δ) ≤ m2(δ)·(1+Δ−C
g Δε) ≤ m2(δ)+Δ−2C

g Δε ≤ m2(δ)+Δ1/2
ε for Δg ≤ δ ≤ δ∗,

and similarly, m1(δ) ≥ m2(δ) − Δ
1/2
ε for δ∗ ≤ δ ≤ Δ−1

g . Thus, we can respond as
follows:

• If δ∗ is to the left of the interval I then outcome (2) occurs.

• If δ∗ is to the right of the interval I then outcome (1) occurs.

• If δ∗ belongs to the interval I then outcome (3) occurs with j = 1 and k = 2.

Similarly, in case (b) we determine that m1(δ) ≥ m2(δ) − Δ
1/2
ε for all Δg ≤

δ ≤ δ∗, and similarly, m1(δ) ≤ m2(δ) + Δ
1/2
ε for all δ∗ ≤ δ ≤ Δ−1

g . Thus, we can
respond as follows:

• If δ∗ is to the left of the interval I then outcome (1) occurs.

• If δ∗ is to the right of the interval I then outcome (2) occurs.

• If δ∗ belongs to the interval I then outcome (3) occurs with j = 2 and k = 1.

This completes the explanation of procedure Process monomials. Clearly,
the work and storage of this algorithm are at most C for a universal constant C. �

We return to the setting before the above procedure.
Fix � ∈ {1, . . . , �max}. Applying the procedure Process monomials, for each

pair (A ′,A ′′) such that A ′ ≤ A and A ′′ ≤ A, we produce one of three outcomes.

In outcome (1), we guarantee that η
(̂Q,A ′)
∗ ≤ η

(̂Q,A ′′)
∗ +Δ

1/2
ε , uniformly on the

interval I�.

In outcome (2), we guarantee that η
(̂Q,A ′′)
∗ ≤ η

(̂Q,A ′)
∗ +Δ

1/2
ε , uniformly on the

interval I�.
In outcome (3), we divide the interval I� at the point δ�,A ′,A ′′ = δ∗ ∈ I� to

obtain split subintervals I−� = I� ∩ (0, δ∗] and I+� = I� ∩ (δ∗,∞). (A subinterval

may contain only a single point or be empty.) We guarantee that η
(̂Q,A ′)
∗ ≤

η
(̂Q,A ′′)
∗ + Δ

1/2
ε on one of the split subintervals, and η

(̂Q,A ′′)
∗ ≤ η

(̂Q,A ′)
∗ + Δ

1/2
ε on

the other. We determine which inequality is satisfied on each subinterval.
For each pair (A ′,A ′′) such that outcome (3) occurs, we have computed a

machine number δ�,A ′,A ′′ in I�. We sort these numbers and remove duplicates to
obtain a list

δ1 < δ2 < · · · < δK�
.

Note that K� ≤ #{(A ′,A ′′) : A ′ ≤ A, A ′′ ≤ A} ≤ C for a universal constant C.
We define δ0 and δK�+1 to be the left and right endpoints of I�, respectively. We let
Ik� := [δk, δk+1] for each 0 ≤ k ≤ K�. We thus obtain a (possibly trivial) partition

of I� into subintervals I0� , . . . , I
K�

� .

Fitting a Sobolev function to data III 1111

For each interval Ik� and each pair (A ′,A ′′) such that A ′ ≤ A and A ′′ ≤ A, we

guarantee either that η
(̂Q,A ′)
∗ ≤ η

(̂Q,A ′′)
∗ +Δ

1/2
ε on Ik� (A ′ beats A ′′ on Ik�), or that

η
(̂Q,A ′′)
∗ ≤ η

(̂Q,A ′)
∗ + Δ

1/2
ε on Ik� (A ′′ beats A ′ on Ik�). To make such a guarantee,

we look at the previous outcomes. If outcome (1) occurs, then A ′ beats A ′′ on Ik� .
If outcome (2) occurs, then A ′′ beats A ′ on Ik� . If outcome (3) occurs, then we
determine which of the split subintervals of I� contains I

k
� . Once we have done that,

we can make a correct guarantee by using the guarantee made in outcome (3) for
the split subinterval.

For each of the intervals Ik� we perform the following computation. We initialize
S = {A ′ ⊂ M : A ′ ≤ A}. We initialize A to be any member of S. Then we run
the following loop.

• While: S �= {A}

• – Select an arbitrary A ′ ∈ S \ {A}.

– If we guarantee that A ′ beats A on Ik� , then discard A from S and set
A = A ′.

– If we guarantee that A beats A ′ on Ik� , then discard A ′ from S. Do not
modify A.

– (Note that we make at most one guarantee.)

Let A1 denote the sole member remaining in S once the loop is complete. For
any A ′ ⊂ M with A ′ ≤ A, there is a sequence of “competitors” A2, . . . ,AJ with
AJ = A ′, such that Aj beats Aj+1 on Ik� for j = 1, . . . , J−1. This is clear because A ′

is selected in the loop at some iteration, and as long as A ′ �= A1 we can be certain
thatA ′ is beaten by some competitor, who in turn is beaten by another competitor,
and so on until the loop terminates with the final competitor A1. Clearly, the
number of competitors J is bounded by a universal constant C. By combining the

estimates coming from each competition, we learn that η
(̂Q,A1)∗ ≤ η

(̂Q,AJ)∗ + JΔ
1/2
ε .

Therefore, η
(̂Q,A1)∗ ≤ η

(̂Q,A ′)
∗ + CΔ

1/2
ε .

Thus, for each 0 ≤ k ≤ K�, we can compute a multiindex set Ak
� ≤ A such that

(2.130) η
(̂Q,Ak

�)∗ (δ) ≤ η
(̂Q,A ′)
∗ (δ) + CΔ1/2

ε for all δ ∈ Ik� , for all A ′ ≤ A.

We repeat the previous construction for each � ∈ {1, . . . , �max}.
We therefore obtain machine intervals Ik� (0 ≤ k ≤ K�, 1 ≤ � ≤ �max), which

form a partition of [Δg, Δ
−1
g], and multiindex sets Ak

� as in (2.130).

We define a function η̃ :
[
Δg, Δ

−1
g

] → R by

η̃(δ) := η
(̂Q,Ak

�)∗ (δ) = c�,Ak
�
· δλ�,Ak

� if δ ∈ Ik� .

Since �max ≤ C, the previous construction can be executed using work and
storage at most a universal constant C ′.

We will make use of the properties (P1)–(P4) of the functions η
(̂Q,A ′)
∗ that

were stated earlier in this section.

1112 C. Fefferman, A. Israel, and G.K. Luli

Recall that η(δ) is the minimum of η
(̂Q,A ′)
∗ (δ) over all A ′ ≤ A (see (2.127)).

Since Ak
� ≤ A for all (k, �), we have η̃(δ) ≥ η(δ). Moreover, taking the minimum

with respect to A ′ in (2.130), we conclude that η̃(δ) ≤ η(δ) + CΔ
1/2
ε . Thanks

to (P4), we have η(δ) ≥ ΔC
g ≥ CΔ

1/2
ε . Thus, we learn that

(2.131) η(δ) ≤ η̃(δ) ≤ 2 · η(δ).

We next prove that the the function η(̂Q,A)(δ) = η̃(δ) satisfies (A1)–(A4).

Proof of (A1). Let δ ∈ [Δg, Δ
−1
g]. Also, let η > C · η̃(δ), with C as in (P1). Then,

thanks to (2.131), we have

η > C · η(δ) = C · min
A ′≤A

η
(̂Q,A ′)
∗ (δ).

Hence, η > C · η(̂Q,A ′)
∗ (δ) for some A ′ ≤ A. According to (P1), we learn that

σ(Q̂) has an (A ′, x
̂Q
, η1/2, δ)-basis. This completes the proof of (A1).

Proof of (A2). Let δ ∈ [Δg, Δ
−1
g]. Also, let η < c

2
· η̃(δ), with c > 0 as in (P2).

Then, thanks to (2.131), we have

η ≤ c · η(δ) = c · min
A ′≤A

η
(̂Q,A ′)
∗ (δ).

Hence, η < c · η(̂Q,A ′)
∗ (δ) for all A ′ ≤ A. According to (P2), we learn that σ(Q̂)

does not have an (A ′, x
̂Q
, η1/2, δ)-basis for any A ′ ≤ A. This completes the proof

of (A2).

Proof of (A3). Let δ1, δ2 ∈ [Δg, Δ
−1
g], with 1

10
δ1 ≤ δ2 ≤ 10δ1.

According to (P3), for each A ′ ≤ A we have

c · η(̂Q,A ′)
∗ (δ1) ≤ η

(̂Q,A ′)
∗ (δ2) ≤ C · η(̂Q,A ′)

∗ (δ1).

Taking the minimum with respect to A ′ ≤ A, we learn that c · η(δ1) ≤ η(δ2) ≤
C · η(δ1). According to (2.131), we therefore have 1

4
c · η̃(δ1) ≤ η̃(δ2) ≤ 4C · η̃(δ1).

This completes the proof of (A3).

Proof of (A4). We have

η̃(δ)
(2.131)

≥ η(δ) = min
A ′≤A

η
(̂Q,A ′)
∗ (δ)

(P4)

≥ ΔC
g .

This completes the proof of (A4).

Thus, conditions (A1), (A2), (A3), and (A4) hold for η(̂Q,A)(δ) = η̃(δ).

This concludes the explanation of the algorithm. �

Fitting a Sobolev function to data III 1113

2.15. Computing lengthscales

Each point x ∈ E is assumed to be an S-bit machine point. Recall that Δ0 = 2−S.
Hence,

(2.132) |x ′ − x ′′| ≥ Δ0 for distinct x ′, x ′′ ∈ E.

Recall that CZ(A−) consists of disjoint dyadic cubes that form a partition of
Q◦ = [0, 1)n. According to the Main Technical Results for A−, we have δQ ≥ c·Δ0

for each Q in CZ(A−), for a universal constant c. Therefore, each Q in CZ(A−)

is an S̃-bit machine cube, where S̃ ≤ CS for a universal constant C.
Recall that a testing cube is a dyadic cube Q̂ ⊂ Q◦ that can be written as

a disjoint union of cubes in CZ(A−). We then have δ
̂Q
≥ c · Δ0 for a universal

constant c > 0 (see Remark 1). We set λ := 1/40.

Algorithm: Compute interesting cubes (finite-precision)

We compute a tree T consisting of testing cubes. The nodes in T consist of all
the cubes Q ∈ CZ(A−) that contain points of E, all the testing cubes Q̂ for which

diam(3Q̂ ∩ E) ≥ λ · δ
̂Q
, and the unit cube Q◦.

Here, T is a tree with respect to inclusion. We mark each internal node Q in T

with pointers to its children, and we mark each node Q in T (except for the root)
with a pointer to its parent.

The number of nodes in T is at most CN, and T can be computed with work
at most CN logN in space CN.

Explanation. We follow the explanation in Section 1.6 of [4]. We need to check
that the computation is valid in our finite-precision model of computation.

We compute representative pairs from the well-separated pairs decomposition
of E using the algorithm Make WSPD (see Section 4.2 of [3]). The representative
pairs (x ′

ν, x
′′
ν) ∈ E × E \ {(x, x) : x ∈ E} (1 ≤ ν ≤ νmax) satisfy |x ′

ν − x ′′
ν | ≥ Δ0,

thanks to (2.132).

Next, we loop over all ν and list all the dyadic cubes Q̃ with x ′
ν, x

′′
ν ∈ 5Q̃

and |x ′
ν − x ′′

ν | ≥ λ
2
δ
˜Q
. We call this list Q1, . . . , QK. Since 5Qk contains some

representative pair (x ′
ν, x

′′
ν), we have δQk

≥ 1
5
|x ′

ν − x ′′
ν| ≥ 1

5
Δ0 for each k =

1, . . . , K.
Note that the “BBD Tree algorithm” in Theorem 35 of [3] is unchanged in

finite-precision, so we can compute diam(3Qk ∩ E) for each k = 1, . . . , K. We
remove any cubes from our list that satisfy diam(3Qk ∩ E) < λδQk

, which occurs
if and only if δQk

> 40 · diam(3Qk ∩ E). We also compute the cube in CZ(A−)
that contains the center of each Qk, using the CZ(A−)-oracle. If Qk is strictly
contained in this cube, then we remove Qk from our list. Denote the surviving
cubes by Q̃1, . . . , Q̃˜K

.
We list all the cubes Q ∈ CZ(A−) that contain points of E (take all the cubes Q

in CZmain(A−) that satisfy E∩Q �= ∅), the cubes Q̃1, . . . , Q̃˜K
, and the unit cubeQ◦.

We sort this list to remove duplicates, and organize it in a tree T using the algorithm
Make forest (see Section 4.1.5 of [3]). That completes the explanation of the
algorithm. �

1114 C. Fefferman, A. Israel, and G.K. Luli

Algorithm: Compute critical testing cubes (finite-precision)

Given ε > 0, which is less than a small enough universal constant, we produce
a collection Q̂ε of testing cubes with the following properties.

(a) Each point x ∈ E belongs to some cube Q̂x ∈ Q̂ε.

(b) The cardinality of Q̂ε is at most C ·N.

(c) If Q̂ ∈ Q̂ε strictly contains a cube in CZ(A−), then (1 + a(A))Q̂ is tagged
with (A, εκ).

(d) If Q̂ ∈ Q̂ε and δ
̂Q
≤ c∗, then no cube containing SQ̂ is tagged with (A, ε1/κ).

(e) Each cube Q in Qε satisfies δQ ≥ c · Δ0.

The algorithm requires work at most CN logN in space CN.
Here, c∗ > 0 and S ≥ 1 are integer powers of 2, which depend only on m, n, p;

also, κ ∈ (0, 1) and C ≥ 1 are universal constants.

Explanation. The main change to the explanation is that we use the finite-precision
version of Optimize basis instead of the infinite-precision version. We also need
to show that the roundoff errors that can arise have little effect.

Note that condition (e) will hold for each Q in Qε, since we promise that Qε

contains only testing cubes. (See Remark 1.)

We let Λ ≥ 1 be a sufficiently large integer power of two, as before. We will
later choose Λ to be bounded by a universal constant, but not yet. We assume
that Λ is a machine number.

We construct a tree T of interesting cubes with the algorithm Compute in-

teresting cubes (finite-precision).

We next explain the construction of the collection Q̂ε.
We proceed with Steps 0-6. The construction is almost identical to that in

infinite-precision. We refer the reader to the earlier text. We will only record the
necessary changes

We assume we have carried out the one-time work of the BBD Tree. Thus,
given an S̃-bit machine cube Q, with S̃ ≤ CS, we can compute #

(
65
64
Q ∩ E

)
using

work at most C · logN.

Therefore, we can compute #
(
65
64
Q ∩ E

)
for each Q in T .

For each cube Q1 in T we perform Steps 0-3.
Step 0 is unchanged: We find the parent Q2 of Q1 in T .

In Step 1 in the infinite-precision text, it says “We determine whether or not
there exists a number δ ∈ [Λ10δQ1

, Λ−10δQ2
] with the property that ε1/κ5 ≤

η(Qup
1

,A)(δ) ≤ εκ5 . If such a δ exists, we can easily find one.” We can no longer
make such an accurate determination because of inevitable roundoff errors. We
will need to make the modifications listed below.

• Step 1 (modified). In finite-precision, we compute a piecewise-monomial rep-
resentation for the function η(Qup

1
,A)(δ) using the finite-precision version of Op-

timize basis, where Qup

1 is the dyadic cube with Q1 ⊂ Qup

1 and δQup
1

= Λ · δQ.

Fitting a Sobolev function to data III 1115

We produce one of two outcomes. Either we guarantee that there does not exist a
δ ∈ [Λ10δQ1

, Λ−10δQ2
] such that

(2.133) ε1/κ5 ≤ η(Qup
1

,A)(δ) ≤ εκ5 ,

or else we compute a machine number δ ∈ [Λ10δQ1
, Λ−10δQ2

] satisfying

(2.134)
1

2
ε1/κ5 ≤ η(Qup

1
,A)(δ) ≤ 2εκ5 .

The number δ is computed exactly.

The factors of 2 in the above estimate arise because of roundoff errors in the
computation of δ. Indeed, we can bound any roundoff error by Δε Δ

−C
g , which

is at most 100−1 · ε1/κ5 , since Δε Δ
−C
g ≤ Δ

1/2
ε (see (2.81)) and Δ

1/2
ε ≤ Δnew ≤

100−1 · ε1/κ5 (see (2.82) and (2.121)).

As in the proof of (1.159) of [4], in the second alternative we can find a dyadic
cube Q with Q1 ⊂ Q ⊂ Q2, Λ

10δQ1
≤ δQ ≤ Λ−10δQ2

, and such that

(2.135)
[
ε1/κ6 ≤ η(Qup

1
,A)(δQ)

]
and

[
η(Qup

1
,A)(δQ) ≤ εκ6

]
.

Here, by choosing κ6 sufficiently small, we can make the extra factors of 2

disappear.

In the second alternative, we add Q to the collection Q̂ε. That completes the
computation in Step 1.

Note that [δQ1
, δQ2

] ⊂ [Δg, Δ
−1
g], since each cube in T has sidelength in [c ·

Δ0, 1], and since Δg ≤ c · Δ0. This comment justifies the previous computation,
since the function η(Qup

1
,A)(δ) is defined only for δ ∈ [Δg, Δ

−1
g].

Similarly, in Steps 2–6, we make the following changes.

• Step 2 (modified). We examine each dyadic cube Q with Q1 ⊂ Q ⊂ Q2, δQ ≤
Λ−10, and [δQ ≤ Λ10δQ1

or δQ ≥ Λ−10δQ2
]. We compute a piecewise-monomial

function η(Qup,A)(δ) using the finite-precision version of Optimize basis. We
produce one of two outcomes. Either we guarantee that

(2.136)
[
εκ

−1
5 > η(Qup,A)(δQup)

]
or

[
#
(65
64

Q ∩ E
)
≥ 2 and η(Q,A)(δQ) > εκ5

]
,

where Qup is the unique dyadic cube with Q ⊂ Qup and δQup = ΛδQ, or else we
guarantee that

(2.137)
[
1
2
εκ

−1
5 ≤ η(Qup,A)(δQup)

]
and

[
#
(65
64

Q∩E
)
≤ 1 or η(Q,A)(δQ) ≤ 2εκ5

]
.

The extra factors of 2 allow for small additive errors in the computation of
η(Qup,A)(δQup).

We add Q to the collection Q̂ε in the second alternative.

1116 C. Fefferman, A. Israel, and G.K. Luli

• Step 3 (modified). We examine each dyadic cube Q with Q1 ⊂ Q ⊂ Q2 and
δQ ≥ Λ−10. We apply the finite-precision version of Optimize basis to compute
a function η(Q,A)(δ). We produce one of two outcomes. Either we guarantee that

(2.138)
[
#
(65
64

Q ∩ E
)
≥ 2 and η(Q,A)(δQ) > εκ5

]
,

or else we guarantee that

(2.139)
[
#
(65
64

Q ∩ E
)
≤ 1 or η(Q,A)(δQ) ≤ 2εκ5

]
.

The extra factors of 2 allow for roundoff errors in the computation of η(Q,A)(δQ).

We add Q to the collection Q̂ε in the second alternative.

• Step 4 (modified). We apply the finite-precision version of Optimize basis

to compute a function η(Q◦,A)(δ). We produce one of two outcomes. Either we
guarantee that

(2.140)
[
η(Q◦,A)(δQ◦) > εκ5

]
,

or else we guarantee that

(2.141)
[
η(Q◦,A)(δQ◦) ≤ 2εκ5

]
.

We add Q◦ to the collection Q̂ε in the second alternative.

• Step 5 (modified). We examine all dyadic cubesQ ⊂ Q◦ such that δQ ≥ Λ−10.

We add Q to the collection Q̂ε if and only if Q ∈ CZ(A−).

• Step 6 (modified). We examine all cubes Q ∈ CZ(A−) such that δQ ≤ Λ−10

and Q ∩ E �= ∅. We apply the finite-precision version of Optimize basis to
compute a function η(Qup,A)(δ), where Qup is the dyadic cube with Q ⊂ Qup and
δQup = ΛδQ. We produce one of two outcomes. Either we guarantee that

(2.142)
[
εκ

−1
5 > η(Qup,A)(δQup)

]
,

or else we guarantee that

(2.143)
[
1
2
εκ

−1
5 ≤ η(Qup,A)(δQup)

]
.

We add Q to the collection Q̂ε in the second alternative.

As before, we see that #(Q̂ε) ≤ C(Λ) ·N, hence property (b) holds.
Recall that Propositions 8 and 12 of [4] are unchanged in the finite-precision

case – only their proofs required modification. Hence, the analysis that the above
algorithm works proceeds as before. In place of the conditions (1.159)–(1.163) we
use the conditions (2.135), (2.137), (2.139), (2.141), and (2.143).

The proof of properties (c) and (d) requires minor changes to reflect the loss
of factors of 2. By choosing smaller values for κ1, . . . , κ20, we arrange that the
extra factors of 2 can be absorbed into relevant estimates in the proof. Thus, we
can prove properties (c) and (d) for each cube in Qε using the same argument as
before.

Fitting a Sobolev function to data III 1117

The proof of property (a) requires minor changes to reflect the loss of factors
of 2. We fix a point x ∈ E.

As before, we consider the increasing chain of cubes Q0 ⊂ Q1 ⊂ · · · ⊂ Qνmax

in T , such that Q�+1 is a parent of Q� in T , x ∈ Q0, and Q0 ∈ CZ(A−).

To prove (a), we will show that there exists a cube Q ∈ Q̂ε such that x ∈ Q.
As before, we consider the first extreme case (A), the second extreme case (B),

and the main case (C).

In the first extreme case, we assume that 3Q◦ is tagged with (A, ε) and deduce
that η(Q◦,A)(δQ◦) ≤ εκ5 . Hence, according to the above construction in Step 4,

we included Q◦ in Q̂ε.

In the second extreme case, we assume that 3Q0 is not tagged with (A, ε) and
we deduce that η(Qup

0
,A)(δQup

0
) ≥ ε1/κ5 . Hence, according to the construction in

Step 6, we included Q0 in Q̂ε.

In the GI subcase of the main case, from the assumptions in the GI subcase we
prove (1.172) and (1.173) of [4] (see the analysis in infinite-precision). This means
that (2.136) does not hold for the cube Q. Hence, according to the construction

in Step 2, we included Q in Q̂ε.

In the GUI subcase of the main case, from the assumptions in the GUI subcase
we prove (1.174) and (1.175) of [4]. Hence, (2.133) holds with δ = δQ. Thus, we
pass to the second alternative in our construction in Step 1 (for the cube Qν ∈ T).

Hence, we decided to include in Q̂ε a cube Q ′ with Qν ⊂ Q ′ ⊂ Qν+1.

In the NM subcase of the main case, from the assumptions in the NM subcase
we prove (1.176) of [4]. Hence, (2.138) fails to hold for the cube Q. Hence, in the

construction in Step 3, we included Q in Q̂ε.
Thus, as in infinite-precision, we see that there exists Q ′ ∈ Q̂ε with Q0 ⊂ Q ′ ⊂

Qνmax , and hence x ∈ Q ′. This completes the proof of (a).
We choose Λ ≥ 1 to a be a large enough universal constant so that the above

holds. That concludes the explanation of the algorithm. �

According to our construction, each Q in Qε satisfies δQ ≥ c·Δ0. Furthermore,
by hypothesis, each x ∈ E is an S-bit machine point.

Thus, we can apply the algorithm Placing a point inside target cuboids

to compute a cube Qx ∈ Qε containing each x ∈ E. This requires work at most
CN logN in space CN. Thus, the algorithm Compute lengthscales is un-
changed in finite-precision (see Section 1.6.2 of [4]).

Proposition 13 of [4] still holds in the finite-precision setting.

2.16. Passing from lengthscales to CZ decompositions

We explain how to define a decomposition CZ(A) of Q◦ into machine cubes, and
how to define a CZ(A)-oracle.

For each x ∈ E, we compute the machine numbers

ΔA(x) := δQx
.

1118 C. Fefferman, A. Israel, and G.K. Luli

We say that a testing cube Q ⊂ Q◦ is OK(A) if either Q ∈ CZ(A−) or ΔA(x) ≥
KδQ for all x ∈ E∩3Q, where K := 230/a(A) (here, the constant 109 in Section 1.7
of [4] is replaced by 230).

We define a Calderón–Zygmund decomposition CZ(A) of the unit cube Q◦ to
consist of the maximal dyadic subcubes Q ⊂ Q◦ that are OK(A).

Clearly, CZ(A−) refines the decomposition CZ(A), namely, each cube in CZ(A)
is a disjoint union of the cubes in CZ(A−). Since δQ ≥ 1

32
·Δ0 for eachQ ∈ CZ(A−)

(by the finite-precision version of the Main Technical Results for A−), we have

(2.144) δQ ≥ 1

32
· Δ0 for each Q ∈ CZ(A).

This implies an additional property of CZ(A) that is required in the finite-precision
version of Main Technical Results for A.

We construct a CZ(A)-oracle using the Glorified CZ-Oracle, where we

take Δ(x) := ΔA(x)/K = ΔA(x) ·a(A) · 2−30. Note that a(A) = anew = 2−
˜S, where

S̃ ≤ CS for a universal constant C (see (2.97)). Note also that ΔA(x) = δQx
is an

S̃-bit machine number (recall that Qx is a testing cube, and use Remark 1). Thus,

Δ(x) is an S̃-bit machine number for each x ∈ E, where S̃ ≤ C ′S for a universal
constant C ′. Thus, the extra hypotheses required for the finite-precision version
of the Glorified CZ-Oracle are valid (see Section 2.10).

We refer the reader to Section 1.7 of [4] for a proof of the remaining properties
(CZ1)–(CZ5) of the decomposition CZ(A). See Propositions 14, 15, and 16 of [4],
and equations (1.179) and (1.180) of [4].

We have thus proven all the properties of the decomposition CZ(A) stated in
the Main Technical Results for A.

2.17. Completing the induction

In executing the algorithm Produce all supporting data in finite-precision,
we need to produce extra stuff, since we added stuff to the definition of modified
supporting data (see Modification 1 in Section 2.13.2). For each Q ∈ CZmain(A),
we need to list all the points x ∈ E ∩ 65

64
Q. However, it’s easy to do that. The

procedure is as follows: we loop over all points x ∈ E. For each x, we use the CZ(A)-
oracle to find all the Q ∈ CZmain(A) such that x ∈ 65

64
Q, and we then add x to a

list associated to each relevant Q. Any given x is associated to at most C cubes Q,
and we can find each cube in the list CZmain(A) by binary search that requires
work at most C logN. Therefore, this procedure requires work at most CN logN
in space CN. Thus, the work and storage used by the finite-precision version of
the algorithm Produce all supporting data are bounded as required.

In place of (1.182) and (1.183) of [4], we have to prove the estimates

‖(f, P)‖(1+a(A))̂Q ≤ CM
̂Q
(f, P) and M

̂Q
(f, P) ≤ C‖(f, P)‖ 65

64
̂Q
+ CΔnew|P|.

We prove these estimates using the finite-precision unconditional and conditional
inequalities, just as in the infinite-precision case.

Fitting a Sobolev function to data III 1119

We separately treat the simple and non-simple cubes Q̂ ∈ CZ(A) as in Sec-
tions 1.8.1 and 1.8.2 of [4]. We make a few small changes to the analysis. which
are documented below.

• In Section 1.8.1 of [4]: We defined lists Ξ(Q̂,A) and Ω(Q̂,A) of linear func-

tionals, and a linear map T(̂Q,A) for each of the non-simple cubes Q̂ ∈ CZ(A). The

definitions are unchanged. See the versions of the algorithms Compute new as-

sists, Compute new assisted functionals, and Compute new extension

operator in Section 2.13.2. The linear functionals and linear maps here are all
computed with parameters (ΔC

g , Δ
−C
g Δε).

• In Section 1.8.1 of [4]: We need to control an extra sum when evaluating the
upper bound on the work and storage. Namely, we have to control the sum∑

̂Q∈CZmain(A)

{
#
(65
64

Q̂ ∩ E
)}

.

This extra term arises from the work of applying the finite-precision version of
Compute new assisted functionals (see Section 2.13.2). This sum is bounded

by CN, thanks to the bounded overlap of the cubes 65
64
Q̂, for Q̂ ∈ CZ(A). Hence,

the work and storage needed to compute all the functionals defined in Section 1.8.1
of [4] are bounded as required.

• In Section 1.8.2 of [4]: We defined lists Ξ(Q̂,A) andΩ(Q̂,A), and a linear map

T(̂Q,A) for each of the simple cubes Q̂ ∈ CZ(A). The definitions are unchanged.

See the relevant text. The linear functionals and linear maps here are all computed
with parameters (ΔC

g , Δ
−C
g Δε).

• In Section 1.8.2 of [4]: The finite-precision version of (1.185) (from the Main
Technical Results for A−) states that

(2.145) C−1‖(f, R)‖(1+a)Q ≤ M(Q,A−)(f, P)| ≤ C
[
‖(f, P)‖ 65

64
Q + Δjunk|P|

]
.

• In Section 1.8.2 of [4]: The statement and proof of Prop. 17 are unchanged.

• In Section 1.8.2 of [4]: The finite-precision version of Lemma 15 states that

C−1‖(f, P)‖
(1+anew)̂Q

≤ M
(̂Q,A)

(f, P) ≤ C
[
‖(f, P)‖ 65

64
̂Q
+ Δnew|P|

]
.

We prove this estimate as follows. From (2.145) we have[
M

(̂Q,A)
(f, P)

]p ≤ C
∑

Q∈CZmain(A−)

Q⊂(1+tG)̂Q

[
‖(f, P)‖p65

64
Q
+ Δ

p
junk|P|

p
]
.

The number of Q arising in the above sum is at most C. Hence,

M
(̂Q,A)

(f, P) ≤ C
[
‖(f, P)‖ 65

64
̂Q
+ Δnew|P|

]
,

as in the proof in the infinite-precision setting. Here, we use that Δjunk ≤ Δnew;
see (2.82).

1120 C. Fefferman, A. Israel, and G.K. Luli

• In the Closing Remarks: We fix ε to be a small enough universal constant.
The parameters Δg = Δg(A−), Δε = Δε(A−), and Δnew are assumed to satisfy
(2.82), (2.98) and (2.121).4 We also impose the assumptions Δjunk(A) ≥ Δnew,
Δg(A) ≤ ΔC

g , and Δε(A) ≥ Δ−C
g Δε, for a large enough universal constant C.

Thus, we obtain the Main Technical Results for A from the above bullet points.

• If A = ∅ (the maximal multiindex set) then the induction is complete. We
do not fix a choice of the parameters Δε(A), Δg(A), Δjunk(A) (for A ⊂ M) just
yet. These parameters are determined later in the proofs of our Main Theorems.

2.18. Main theorems

2.18.1. Homogeneous Sobolev spaces. In this section we prove Theorem 1
using the Main Technical Results for A = ∅.

We assume we are given parameters Δmin = 2−KmaxS, Δ◦
ε := 2−K1S, Δ◦

g :=

2−K2S, and Δ◦
junk := 2−K3S, for integers K1, K2, K3, Kmax ≥ 1 as in Theorem 1.

The proof is identical to the argument in Section 2.1 of [4], except for minor
changes, which we describe below.

We start from the sentence “By translating and rescaling, we may assume · · · .”
We let the parameters Δε = Δε(∅), Δg = Δg(∅), and Δjunk = Δjunk(∅) be as in

the Main Technical Results for A = ∅.
According to the Main Technical Results for A = ∅, we are given the following

objects.
There is a dyadic decomposition CZ of the unit cube Q◦. The CZ-Oracle

operates as before, except that the query point x ∈ Q◦ is required to be an S-bit
machine point. We can list all the cubes Q ∈ CZ such that x ∈ 65

64
Q, using work

at most C logN.
For each Q ∈ CZ with 65

64
Q ∩ E �= ∅, we are given a collection Ω(Q) ⊂[

X(E ∩ 65
64
Q)

]∗
of assist functionals, a collection Ξ(Q) ⊂

[
X(E ∩ 65

64
Q)⊕ P

]∗
of

assisted functionals, and a linear map TQ : X(E ∩ 65
64
Q)⊕ P → X.

We recall some of the main properties of these objects in the points below.

• Modification 1. For each Q ∈ CZ with 65
64
Q ∩ E �= ∅, the linear func-

tionals ω ∈ Ω(Q) are given with parameters (Δg, Δε); also, the linear function-
als ξ ∈ Ξ(Q) are given in short form with parameters (Δg, Δε) in terms of the
assists Ω(Q).

Given Q ∈ CZ with 65
64
Q ∩ E �= ∅, given an S-bit machine point x ∈ Q◦, and

given α ∈ M, we compute the linear functional (f, P) �→ ∂α(TQ(f, P))(x) in short
form with parameters (Δg, Δε) in terms of the assists Ω(Q).

• Modification 2. We replace (2.1) of [4] with the corresponding estimate
from the finite-precision version of the Main Technical Results for A = ∅, namely:

(2.146)
∑

ξ∈Ξ(Q)

|ξ(f, P)|p ≤ C
[
‖(f, P)‖p65

64
Q
+ Δ

p
junk|P|

p
]
.

4Recall that we have fixed tG and ε to be universal constants. Hence, the conditions (2.98)
and (2.121) state that Δnew is less than a small enough universal constant. These are among the
conditions (2.73) and (2.74) imposed before.

Fitting a Sobolev function to data III 1121

• The linear maps TQ satisfy (2.2) and (2.3) of [4] just as before.

• From the conditions in the Main Technical Results we learn that δQ > c∗
for every Q ∈ CZ, for the universal constant c∗ = c∗(∅). Using the CZ-Oracle,
we can list all the cubes in CZ using work at most C logN. The algorithm is as
before.

• Modification 3. As before, we let a denote the universal constant a(∅).
According to the finite-precision version of the Main Technical Results, we know
that a is an integer power of 2. Thus, a is a machine number. We define a
family of cutoff functions θ̃Q (for Q ∈ CZ) as before. For a statement of the

relevant properties of θ̃Q, we refer the reader to the text following (2.4) of [4]. The
finite-precision version of the algorithm Compute auxiliary functions requires
slight modification to allow for roundoff errors. Given Q ∈ CZ and given an S-
bit machine point x ∈ Q◦, we compute the numbers ∂α(θ̃Q)(x) for all α ∈ M.

We guarantee that the numbers ∂α(θ̃Q)(x) have magnitude at most Δ−C
g and are

computed to precision Δ−C
g Δε for a universal constant C. For the explanation, we

define a spline function θ̃ (depending on a) with θ̃ ≥ 1/2 on Q◦ = [0, 1)n, θ̃ ≡ 0

outside (1 + a)Q◦, 0 ≤ θ̃Q ≤ 1 on Rn, and
∣∣∂βθ̃Q(x)

∣∣ ≤ C (for β ∈ M, x ∈ Rn).

We also assume that the derivatives of θ̃ at a general S-bit machine point in Rn

can be computed to precision Δε. This is possible because the machine precision
of our computer is Δmin 	 Δε. We define θ̃Q to be an appropriately shifted and

rescaled version of θ̃ that is supported on the cube (1 + a)Q. Since δQ ≥ c∗ for

all Q ∈ CZ, we learn that
∣∣∂βθ̃Q(x)

∣∣ ≤ C ′ ≤ Δ−C ′
g for a large enough universal

constant C ′. We can compute ∂αθ̃Q(x) (for α ∈ M) with precision Δ−C
g Δε by

rescaling the α-derivative of θ̃ at a suitable machine point in Rn (determined by x).

• Modification 4. We modify Compute POU2 to take into account round-
off errors. Given Q ∈ CZ and given an S-bit machine point x ∈ Q◦, we compute
the numbers ∂α(θQ)(x) for each α ∈ M. The numbers ∂α(θQ)(x) are bounded
in magnitude by Δ−C

g and are computed to precision Δ−C
g Δε for a universal con-

stant C. Here, θQ is defined in terms of θ̃Q as in the infinite-precision text. The
explanation is obvious. We choose the function η(t) to be a spline function whose
derivatives can be computed to precision Δε, and we compute the derivatives of θQ
using the Leibniz rule. Of course, we still have properties (1)–(4) of the partition
of unity (θQ).

• The definitions of Ξ◦, Ω◦, and T◦, are unchanged. We define Ξ◦ to be the
union of the lists Ξ(Q), and we define Ω◦ to be the union of the lists Ω(Q). We
define T◦(f, P) as in (2.5) of [4], namely:

T◦(f, P) =
∑

Q∈CZ
65
64

Q∩E�=∅

θQ · TQ(f, P) +
∑

Q∈CZ
65
64

Q∩E=∅

θQ · P.

• Modification 5. The second bullet point in Proposition 18 of [4] is changed
to account for roundoff errors. Given an S-bit machine point x ∈ Q◦ and given

1122 C. Fefferman, A. Israel, and G.K. Luli

α ∈ M, we compute the linear functional (f, P) �→ ∂α(T◦(f, P))(x) in short form
with parameters (ΔC

g , Δ
−C
g Δε) in terms of the assistsΩ◦. The explanation is an ob-

vious consequence of the Leibniz rule, since the functionals (f, P) �→ ∂β(TQ(f, P))(x)
can be computed with parameters (ΔC

g , Δ
−C
g Δε), and the numbers ∂β(θQ)(x) can

be computed with parameters (ΔC
g , Δ

−C
g Δε).

• Modification 6. The fourth bullet point of Proposition 18 of [4] is changed
to instead consist of the estimate

(2.147)
∑
ξ∈Ξ◦

|ξ(f, P)|p ≤ C ·
[
‖(f, P)‖p65

64
Q◦ + Δ

p
junk|P|

p
]
.

Next, we explain how to modify the proof of Proposition 18.

• Modification 7. We replace (2.10) of [4] with∑
Q∈CZ

65
64

Q∩E�=∅

∑
ξ∈Ξ(Q)

|ξ(f, P)|p ≤ C ·
∑

Q∈CZ
65
64

Q∩E�=∅

[
‖(f, P)‖p65

64
Q
+ Δ

p
junk|P|p

]
,

which follows from (2.146).
Now, the cardinality of CZ is at most a universal constant and ‖(f, P)‖ 65

64
Q ≤

C‖(f, P)‖ 65
64

Q◦ , just as before. Hence, we have∑
Q∈CZ

65
64

Q∩E�=∅

∑
ξ∈Ξ(Q)

|ξ(f, P)|p ≤ C ·
[
‖(f, P)‖p65

64
Q◦ + Δ

p
junk|P|

p
]
.

But this is just the estimate in the modified fourth bullet point (see Modifica-
tion 6). The remainder of the proof of Proposition 18 of [4] is unchanged. This
completes the proof of the modified version of Proposition 18 of [4].

• Modification 8. Now we introduce a linear map R : X(E) �→ P using the
finite-precision version of Optimize via matrix with Δ = Δjunk. We compute
the map R in short form with parameters (Δg, Δε) in the following sense: for each
α ∈ M, we compute the linear functional f �→ ∂α(R(f))(0) in short form with
parameters (ΔC

g , Δ
−C
g Δε) (without assists). We guarantee that

(2.148)
∑
ξ∈Ξ◦

|ξ(f,R(f))|p ≤ C ·
[∑
ξ∈Ξ◦

|ξ(f, R)|p + Δ
p
junk|R|

p
]

for any R ∈ P .

(This estimate is the finite-precision analogue of (2.14) of [4].)
We can answer slightly more general queries: given an S-bit machine point

x ∈ Q◦, and given α ∈ M, we compute the linear functional f �→ ∂α(R(f))(x).
This follows because of Taylor’s formula, which allows us to express the functional
f �→ ∂α(R(f))(x) as a weighted combination∑

|β|≤m−1−|α|

1

β!
· (x)β ∂α+β(R(f))(0)

of the linear functionals f �→ ∂γ(R(f))(0) (γ ∈ M). The coefficients in this combi-
nation can be computed to precision (Δg, Δε), and so the claim follows.

Fitting a Sobolev function to data III 1123

• Modification 9. The list Ξ consists of all the functionals ξ : f �→ ξ◦(f,R(f))
with ξ◦ ∈ Ξ◦. We compute each ξ ∈ Ξ with parameters (ΔC

g , Δ
−C
g Δε) by composing

a linear functional ξ◦ ∈ Ξ◦ with the linear map f �→ R(f).

• Modification 10. The cutoff function θ◦ is defined as before. The same
properties (1)–(4) hold. For the construction, we choose θ◦ to be an appropriate
spline function. The computation of θ◦ is modified to take into account roundoff er-
rors. Given an S-bit machine point x ∈ Q◦, we compute the numbers ∂α(θ◦)(x) (all
α ∈ M) to within precision Δ−C

g Δε; these numbers have magnitude at most Δ−C
g .

This computation requires work at most C.

• Modification 11. Just as before, we define T : X(E) → X by the formula
Tf = θ◦ · T◦(f,R(f)) + (1 − θ◦) · R(f). We need to modify the query algorithm
for T to take into account roundoff error. Given an S-bit machine point x ∈ Q◦,
and given α ∈ M, we compute the linear functional f �→ ∂α(T(f))(x) in short form
with parameters (ΔC

g , Δ
−C
g Δε) in terms of the assists Ω. The explanation is an

obvious consequence of the Leibniz rule, since the linear maps R, T◦, and the cutoff
function θ◦ have been computed with parameters (ΔC

g , Δ
−C
g Δε), as described in

the previous bullet points.

• For the same reason as before, we have

‖Tf‖p
X
≤ C ·

∑
ξ∈Ξ

|ξ(f)|p .

(As in the proof of (2.17) of [4]).

• Modification 12. The estimate (2.18) of [4] no longer holds. Instead, we
have∑

ξ∈Ξ

|ξ(f)|p =
∑

ξ◦∈Ξ◦
|ξ◦(f,R(f))|p ≤ C inf

R∈P

{ ∑
ξ◦∈Ξ◦

|ξ◦(f, R)|p + Δ
p
junk|R|p

}
≤ C inf

R∈P

{
‖(f, R)‖p65

64
Q◦ + Δ

p
junk|R|p

}
.

(As in the proof of (2.20) of [4].)
For an arbitrary F ∈ X with F = f on E, set R = JxF, and estimate ‖F −

R‖Lp(65
64

Q◦) ≤ C‖F‖X using the Sobolev inequality. Also, by the Sobolev inequality,

|JxF| ≤ ‖F‖X + ‖F‖Lp(Q◦). So the last infimum above is dominated by C ·
[
‖F‖p

X
+

Δ
p
junk‖F‖

p
Lp(Q◦)

]
. Hence,∑

ξ∈Ξ

|ξ(f)|p ≤ C · inf
{
‖F‖p

X
+ Δ

p
junk‖F‖

p
Lp(Q◦) : F ∈ X, F = f on E

}
.

• Just as before, we prove that

c · ‖f‖p
X(E) ≤

∑
ξ∈Ξ

|ξ(f)|p .

(As in the proof of (2.20) of [4].)

Recall that we have set Δg = Δg(∅), Δε = Δε(∅), and Δjunk = Δjunk(∅) in the
above bullet points.

1124 C. Fefferman, A. Israel, and G.K. Luli

From (2.73), we may impose the assumption Δjunk ≤ Δ◦
junk. Thus, from the

last three bullet points we learn that

c‖f‖X(E) ≤
(∑

ξ∈Ξ

|ξ(f)|p
)1/p

≤ C inf
{
‖F‖X + Δ◦

junk‖F‖Lp(Q◦) : F ∈ X, F = f on E
}

and
‖Tf‖X ≤ C · inf

{
‖F‖X + Δ◦

junk · ‖F‖Lp(Q◦) : F ∈ X, F = f on E
}
,

as desired (see Theorem 1).
All of the functionals f �→ ω(f), f �→ ξ(f), and f �→ ∂α(Tf)(x) in the above bullet

points, which arise in the statement of Theorem 1, are specified with parameters
(ΔC0

g , Δ−C0
g Δε) for a universal constant C0. According to (2.73) and (2.74), we

may assume that Δ◦
g ≤ (Δg)

C0 and Δ−C0
g Δε ≤ Δ

1/2
ε ≤ Δ◦

ε. Thus, we can compute
all of the functionals relevant to Theorem 1 with parameters (Δ◦

g, Δ
◦
ε).

This completes the proof of Theorem 1.

2.18.2. Inhomogeneous Sobolev spaces. Once we pass from Homogeneous
Lm,p(Rn) to Inhomogeneous Wm,p(Rn), the error terms Δ◦

junk‖F‖Lp(Q◦) in Theo-
rem 1 will become irrelevant.

Our main result for inhomogeneous Sobolev spaces is Theorem 2 written below.
We follow the argument in Section 2.2 of [4], with the following changes.

• Modification 1. We let T◦, Ξ◦,Ω◦ be defined as in the previous section. We
will use the finite-precision version of Proposition 18 of [4], which guarantees the
following:

• We list the functionals in Ω◦. Each ω◦ ∈ Ω◦ is specified in short form with
parameters (ΔC

g , Δ
−C
g Δε).

• We list the functionals in Ξ◦. Each ξ◦ ∈ Ξ◦ is specified in short form in
terms of the assists Ω◦ with parameters (ΔC

g , Δ
−C
g Δε). The functionals in Ξ◦

satisfy the modified estimate (2.147).

• Given an S-bit machine point x ∈ Q◦ and given α ∈ M, we compute the
linear functional (f, P) �→ ∂α(T◦(f, P))(x) in short form with parameters
(ΔC

g , Δ
−C
g Δε) in terms of the assists Ω◦, using work at most C logN.

• Modification 2. We introduce a cutoff function θ◦. Let x ∈ Q◦ be a
given point with S-bit machine numbers as coordinates. We compute the numbers
∂α(θ◦)(x) (all α ∈ M) up to an additive error of absolute value at most Δ−C

g Δε;

these numbers have absolute value at most Δ−C
g . This requires work at most C.

• Modification 3. In the proof of (2.23) of [4], we use the modified esti-
mate from the fourth bullet point in the finite-precision version of Proposition 18.
(See (2.147).) This gives∑

ξ∈Ξ◦
|ξ(f, 0)|p ≤ C inf

{
‖F‖p

Lm,p(65
64

Q◦) + ‖F‖p
Lp(65

64
Q◦) : F ∈ X, F = f on E

}
.

The junk term in (2.147) disappears because we set P = 0.

Fitting a Sobolev function to data III 1125

• Modification 4. The rest of the content of the section is unchanged. In
particular, the collections Ξ and Ω consisting of linear functionals on X(E), and
the linear map T : X(E) �→ X are defined as before. The functionals in Ω are
computed in short form with parameters (ΔC

g , Δ
−C
g Δε), and the functionals in Ξ

are computed in short form with parameters (ΔC
g , Δ

−C
g Δε) in terms of the assistsΩ.

Given an S-bit machine point x ∈ Q◦ and given α ∈ M, we can compute the linear
functional f �→ ∂α(T(f))(x) in short form with parameters (ΔC

g , Δ
−C
g Δε) in terms

of the assists Ω, using work at most C logN.

All the functionals in the above bullet points are computed with parameters
(ΔC0

g , Δ−C0
g Δε) for a universal constant C0. According to (2.73) and (2.74), we

may assume that Δ◦
g ≤ (Δg)

C0 and Δ−C0
g Δε ≤ Δ

1/2
ε ≤ Δ◦

ε, for parameters Δ◦
g and

Δ◦
ε as in the statement of Theorem 1. Thus, we can compute our functionals with

parameters (Δ◦
g, Δ

◦
ε) for suitable Δ◦

g and Δ◦
ε (see below).

We have proven the following theorem, which is our main extension theorem
for inhomogeneous Sobolev spaces in a finite-precision model of computation.

Theorem 2. There exists C = C(m,n, p) ≥ 1 such that the following holds.
Let S ≥ 1 be an integer.
Assume E ⊂ 1

32
Q◦ satisfies #(E) = N ≥ 2, where Q◦ = [0, 1)n. Assume that

the points of E have S-bit machine numbers as coordinates.
Assume that K1, K2, Kmax ∈ N satisfy Kmax ≥ C · K1 ≥ C2 · K2 ≥ C3.

Let Δ◦
min = 2−KmaxS, Δ◦

ε := 2−K1S, and Δ◦
g = 2−K2S.

We assume that our computer can perform arithmetic operations on S-bit ma-
chine numbers with precision Δ◦

min, where S = Kmax · S.
Then we compute lists Ω and Ξ, consisting of linear functionals on Wm,p(E) =

{f : E → R}, with the following properties.

• The sum of depth(ω) over all ω ∈ Ω is bounded by CN. The number of
functionals in Ξ is at most CN.

• Each functional ξ in Ξ has Ω-assisted bounded depth.

• The functionals ω ∈ Ω and ξ ∈ Ξ are computed in short form with parame-
ters (Δ◦

g, Δ
◦
ε).

• For all f ∈ Wm,p(E) we have

C−1 ‖f‖Wm,p(E) ≤
[∑
ξ∈Ξ

|ξ(f)|p
]1/p

≤ C ‖f‖Wm,p(E).

Moreover, there exists a linear map T : Wm,p(E) → Wm,p(Rn) with the follow-
ing properties.

• T has Ω-assisted bounded depth.

• Tf = f on E and
‖Tf‖Wm,p(Rn) ≤ C · ‖f‖Wm,p(E)

for all f ∈ X(E).

1126 C. Fefferman, A. Israel, and G.K. Luli

• We produce a query algorithm that operates as follows.

Given an S-bit machine point x ∈ Q◦ and given α ∈ M, we compute
a short form description of the Ω-assisted bounded depth linear functional
Wm,p(E) � f �→ ∂α(Tf)(x). We compute this functional in short form with
parameters (Δ◦

g, Δ
◦
ε). This requires work at most C logN.

The computations above require one-time work at most CN logN in space CN.

References

[1] de Berg, M., Cheong, O., van Kreveld, M. and Overmars, M.: Computa-
tional geometry: algorithms and applications. Springer-Verlag, 2008.

[2] Fefferman, C. and Klartag, B.: Fitting a Cm-smooth function to data II. Rev.
Mat. Iberoam. 25 (2009), no. 1, 49–273.

[3] Fefferman, C., Israel, A. and Luli, G.K.: Fitting a Sobolev function to data I.
Rev. Mat. Iberoam. 32 (2016), no. 1, 275–376.

[4] Fefferman, C., Israel, A. and Luli, G.K.: Fitting a Sobolev function to data II.
Rev. Mat. Iberoam. 32 (2016), no. 2, 649–750.

[5] von Neumann, J.: First draft of a report on the EDVAC. Contract No. W-670-
ORD-492, Moore School of Electrical Engineering, Univ. of Penn., Philadelphia,
1945. Reprinted in IEEE Ann. Hist. Comput. 15 (1993), no. 4, 27–75.

Received November 19, 2014.

Charles Fefferman: Department of Mathematics, Princeton University, Fine Hall,
Washington Road, Princeton, NJ 08544, USA.

E-mail: cf@math.princeton.edu

Arie Israel: Department of Mathematics, University of Texas at Austin, RLM Hall,
2515 Speedway, Austin, TX 78712, USA.

E-mail: arie@math.utexas.edu

Garving K. Luli: Department of Mathematics, University of California at Davis,
One Shields Avenue, Davis, CA 95616, USA.

E-mail: kluli@math.ucdavis.edu

Charles Fefferman’s research is supported by NSF grant DMS-1265524 and AFOSR grant
FA9550-12-1-0425. Arie Israel’s research is supported by an NSF postdoctoral fellowship, DMS-
1103978. Garving Luli’s research is supported by NSF grant DMS-1355968.

mailto:cf@math.princeton.edu
mailto:arie@math.utexas.edu
mailto:kluli@math.ucdavis.edu

	Introduction
	Modifications for finite-precision
	The finite-precision model of computation
	Algorithms in finite-precision
	Short form
	Main algorithms in finite-precision
	Bases for the space of polynomials
	Compressing norms in finite-precision
	Algorithm: Optimize via matrix
	Statement of main technical results
	Algorithms for dyadic cubes
	CZ decompositions
	Starting the induction
	The induction step
	The non-monotonic case
	The monotonic case
	Keystone cubes

	An approximation to the sigma
	Testing functionals
	Supporting data

	Inequalities for testing functionals
	Computing lengthscales
	Passing from lengthscales to CZ decompositions
	Completing the induction
	Main theorems
	Homogeneous Sobolev spaces
	Inhomogeneous Sobolev spaces

