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A group-theoretic viewpoint on Erdős–Falconer

problems and the Mattila integral

Allan Greenleaf, Alex Iosevich, Bochen Liu and Eyvindur Palsson

Abstract. We obtain nontrivial exponents for Erdős–Falconer type point
configuration problems. Let Tk(E) denote the set of distinct congruent
k-dimensional simplices determined by (k + 1)-tuples of points from E.
For 1 ≤ k ≤ d, we prove that there exists a tk,d < d such that, if E ⊂ R

d,
d ≥ 2, with dimH(E) > tk,d, then the

(
k+1
2

)
-dimensional Lebesgue measure

of Tk(E) is positive. Results of this type were previously obtained for
triangles in the plane (k = d = 2) in [8] and for higher k and d in [7]. We
improve upon those exponents, using a group action perspective, which
also sheds light on the classical approach to the Falconer distance problem.

1. Introduction

One of the most important and far reaching problems in modern geometric measure
theory is the Falconer distance problem, which asks: How large does the Hausdorff
dimension s of a compact set E ⊂ Rd, d ≥ 2, need to be to ensure that the distance
set of E, Δ(E) := {|x − y| : x, y ∈ E} ⊂ R, has positive Lebesgue measure?
Falconer proved that s > d/2 is necessary, up to the endpoint, and conjectured
that it is also sufficient [6]. The best exponent known to date is d/2 + 1/3, due to
Wolff in the plane [15] and Erdog̃an in higher dimensions [3].

A natural extension of the Falconer distance problem is the congruent simplex
problem [4], [8], [7]. We say that {x1, . . . , xk+1} ⊂ Rd is nondegenerate (or affinely
independent) if {x2−x1, x3−x1, . . . , xk+1−x1} is linearly independent. This con-
dition is of course invariant under permutations, and is equivalent with the convex
hull of {x1, . . . , xk+1} having positive k-dimensional volume and thus being rea-
sonably called the k-simplex generated by x1, . . . , xk+1, denoted Δ(x1, . . . , xk+1).

Given a set E ⊂ Rd, let Ek+1 := E × E × · · · × E, (k + 1)-times.

Definition 1.1. Let d ≥ 2 and 1 ≤ k ≤ d. Given a set E ⊂ Rd, define the set
of distinct congruent simplices determined by E to be Tk(E) := Ek+1/ ∼, where
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(x1, . . . , xk+1) ∼ (y1, . . . , yk+1) if and only if {xi}k+1
j=1 and {yi}k+1

j=1 are nondegen-

erate and |xi − xj | = |yi − yj | for 1 ≤ i < j ≤ k + 1.

There is thus a map Tk(E) ↪→ R(
k+1
2 ), well-defined modulo permutations (which

have no effect on positivity of Lebesgue measure and hence will be ignored),[
(x1, . . . , xk+1)

] −→ (|xi − xj |)
1≤i<j≤k+1

.

One may also consider similar simplices instead of congruent ones:

Definition 1.2. Given a compact set E ⊂ R
d define the set of distinct simi-

lar simplices determined by E to be Sk(E) := Ek+1/ ∼, where (x1, . . . , xk+1) ∼
(y1, . . . , yk+1) if and only if {xi}k+1

j=1 and {yi}k+1

j=1 are nondegenerate and, for

some λ > 0, |xi − xj | = λ|yi − yj|, for 1 ≤ i < j ≤ k + 1.

By considerations similar to those for Tk(E), one can view Sk(E) as a subset

of the projective space RP
(k+1

2 )−1 or, in local coordinates, R(
k+1
2 )−1.

In this paper, we obtain improved (i.e., reduced) lower bounds on the Hausdorff
dimension of E that guarantee that Tk(E) and Sk(E) are of positive

(
k+1
2

)
and(

k+1
2

) − 1 dimensional Lebesgue measure, resp. The central idea is a geometric
mechanism for studying such problems based on group actions, a method that sheds
some new light even on the classical approach to the Falconer distance problem.
Our first two results contain the essential features of the method.

Theorem 1.3. Let E be a compact set in Rd, d ≥ 2, and μ a finite, nonnegative
measure supported on E. For g ∈ O(d), the orthogonal group on Rd, define a
measure νg, supported on E − gE, by the relation

(1.1)

∫
Rd

f(z) dνg(z) :=

∫
E

∫
E

f(u− gv) dμ(u) dμ(v), f ∈ C0(R
d).

Define also a measure ν on Tk(E) ⊂ R(
k+1
2 ) by∫

f(t) dν(t)

=

∫
· · ·

∫
f
(|x1 − x2|, . . . , |xi − xj |, . . . , |xk − xk+1|) dμ(x1) . . . dμ(xk+1),(1.2)

where the entries of the
(
k+1
2

)
-vector t are the distances tij from xi to xj, 1 ≤ i <

j ≤ k + 1.
Then, if νg is absolutely continuous for a.e. g ∈ O(d), with density also de-

noted νg, and

(1.3)

∫
O(d)

∫
Rd

νk+1
g (x) dx dg <∞,

where dg is Haar measure on O(d), then the measure ν in (1.2) has an L2 density

and L(k+1
2 )(Tk(E)) > 0.
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We obtain an analogous result for similarity classes.

Theorem 1.4. Let E and μ be as in Theorem 1.3. For a ∈ R+, g ∈ O(d), define
a measure νa,g by

(1.4)

∫
Rd

f(z) dνa,g(z) :=

∫
E

∫
E

f(u− agv) dμ(u) dμ(v),

Let I ⊂ R+ be a a compact interval. Then, if νa,g is absolutely continuous for
a.e. (a, g) ∈ I ×O(d) and

(1.5)

∫
I

∫
O(d)

∫
Rd

νk+1
a,g (x) dx dg

da

a
<∞,

then L(k+1
2 )−1(Sk(E)) > 0.

As applications of Theorems 1.3 and 1.4, one obtains:

Theorem 1.5. Let E ⊂ Rd, d ≥ 2, and 2 ≤ k ≤ d. Suppose that

(1.6) dimH(E) > tk,d :=
dk + 1

k + 1
.

Then L(k+1
2 )(Tk(E))>0. If d = k = 2, the same conclusion holds if dimH(E)>8/5.

Now suppose that

(1.7) dimH(E) > sk,d :=
dk

k + 1
.

Then L(k+1
2 )−1(Sk(E)) > 0.

Remark 1.6. In order to illustrate the extent to which the exponents in The-
orem 1.5 improve on those in [8] and [7], consider the case k = d where sd,d =
d−1+2/(d+ 1). The exponent obtained in [8], [7] is s′d,d = d−1/2+1/(2d). Note
that sd,d < s′d,d for every d ≥ 2, and, asymptotically as d → ∞, the improvement
is from d − 1/2 to d − 1. To put this in perspective, one has the following lower
bound, which shows that for k = d one cannot do better than d − 1; for further
discussion, see Section 4.

Remark 1.7. While the results of Theorem 1.5 significantly improve and extend
the exponents in [4], [8], [7], the group-theoretic nature of our methods also casts
new light upon the classical Mattila integral (see Section 5), potentially leading to
further progress on related problems.

Theorem 1.8. Let αk,d denote the optimal exponent for the congruent d-dimensional

simplex problem, i.e., αk,d is the infimum of those α for which L(k+1
2 )(Tk(E)) > 0

whenever dimH(E) > α. Then

αk,d ≥ max
{
k − 1, d/2

}
.

Moreover, α2,2 ≥ 3/2.
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2. Proofs of Theorem 1.3 and Theorem 1.4

Motivated by the geometric viewpoint in [9], the essence of our approach is the

following. Define a measure dν on R(
k+1
2 ) = Rk(k+1)/2, with support in Tk(E), as

in (1.2) above. We will show that to prove Theorem 1.3 it suffices to obtain an
upper bound on the L2 norm of the density, i.e., the Radon–Nikodym derivative
of dν, which we denote by ν(t). We start by showing that∫

ν2(t) dt ≤ ck,d · lim inf
ε→0

ε−k(k+1)/2μ2(k+1)
{
(x1, . . . , xk+1, y1, . . . , yk+1)

∈ (Rd)2(k+1) :
∣∣|xi − xj | − |yi − yj |∣∣ ≤ ε, 1 ≤ i < j ≤ k + 1

}
,(2.1)

where μ2(k+1) denotes μ × · · · × μ, 2(k + 1) times, with the proof showing that
if the right-hand side of (2.1) is finite, then in fact dν is absolutely continu-
ous with respect to Lebesgue measure dt, with density ν(t) ∈ L2. Let φ ∈
C∞

0 (Rk(k+1)/2) such that φ ≥ 0, supp(φ) ⊂ {t| ≤ 1}, and ∫
φdt = 1, and let

φε(·) = ε−k(k+1)/2φ(ε−1·), for 0 < ε < ∞, be the resulting approximate identity.
Setting νε = φε ∗ dν ∈ C∞

0 , one has dν = wk∗−limε→0 νε, and (2.1) will follow if
one shows that lim infε→0 ||νε||2L2 = C <∞.

Now,

νε(t) = 〈dν, φε(· − t)〉 =
∫
φε
( (|xi − xj | − tij

)
1≤i<j≤k+1

)
dμ(x1) · · · dμ(xk+1).

Due to the nonnegativity of φε and dμ, this is dominated by∫ ∏
1≤i<j≤k+1

ε−1χ
{∣∣|xi − xj | − tij

∣∣ < ε
}
dμ(x1) · · · dμ(xk+1),

where χA(·) denotes the characteristic function of a set A, and thus

||νε||2L2 �
∫ ∏
1≤i<j≤k+1

ε−1χ
{∣∣|xi − xj | − tij

∣∣<ε} ∏
1≤i<j≤k+1

ε−1χ
{∣∣|yi − yj| − tij

∣∣<ε}
· dμ(x1) · · · dμ(xk+1) dμ(y1) · · · dμ(yk+1) dt.(2.2)

Now, by the triangle inequality, one has

χ
{∣∣|xi − xj | − tij

∣∣ < ε
} · χ{∣∣|yi − yj| − tij

∣∣ < ε
} ≤ χ

{∣∣|xi − xj | − |yi − yj |∣∣ < 2ε
}
,

and thus, integrating out dt, the right-hand side of (2.2) is

� ε−k(k+1)/2

∫ ∏
1≤i<j≤k+1

χ
{∣∣|xi − xj | − |yi − yj|∣∣ < 2ε

}
· dμ(x1) · · · dμ(xk+1) dμ(y1) · · · dμ(yk+1).

Taking the lim inf as ε→ 0 yields the right-hand side of (2.1).
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To continue, we next introduce some notation. We write x := (x1, . . . , xk+1) for
an ordered (k+1)-tuple of elements of Rd. If the corresponding set {x1, . . . , xk+1}
is nondegenerate (i.e., affinely independent), then

π(x) := span{x2 − x1, . . . , xk+1 − x1}
is a k-dimensional linear subspace of Rd. Let Δ(x) be the (unoriented) simplex
generated by {x1, . . . , xk+1}, i.e., the closed convex hull, which is contained in the
affine plane x1+π(x). Both π(x) and Δ(x) are independent of the order of the xj .
If {y1, . . . , yk+1} is congruent to {x1, . . . , xk+1}, as defined in Definition 1.1, then
an elementary argument shows that, up to permutation of y1, . . . , yk+1, there exists
a g ∈ O(d) such that xj − x1 = g(yj − y1), 2 ≤ j ≤ k+1, which is equivalent with
xj − xi = g(yj − yi), 1 ≤ i < j ≤ k + 1, and Δ(x) = (x1 − gy1) + gΔ(y). The
group O(d) acts on the Grassmanians G(k, d) and G(d − k, d) of k (respectively,
d − k) dimensional linear subspaces of Rd, and if x is congruent to y, one has
π(x) = gπ(y) and π(x)⊥ = g

(
π(y)⊥

)
. The set of g ∈ O(d) fixing Δ(x) is a

conjugate of O(d − k) ⊂ O(d), and we refer to this as the stabilizer of Δ(x),
denoted Stab(x).

For x, y congruent as above, let g̃ ∈ O(d) be such that π(x) = g̃π(y). Then,
xi−xj = g̃h(yi−yj) for all h ∈ Stab(y). For each y, take a cover of O(d)/Stab(y)
by balls of radius ε (with respect to some Riemannian metric) with finite overlap.
Since the dimension of O(d)/Stab(y) is that of O(d)/O(d− k), namely

d(d− 1)

2
− (d− k)(d− k − 1)

2
= kd− k(k + 1)

2
,

we need N(ε) ∼ Cε−(kd−k(k+1)/2) balls to cover it. Choose sample points, g̃m(y),
1 ≤ m ≤ N(ε), one in each of the balls.

From basic geometry one sees that the set{
(x,y) :

∣∣|xi − xj | − |yi − yj |∣∣ ≤ ε, 1 ≤ i < j ≤ k + 1
}

is contained in

N(ε)⋃
m=1

{
(x,y) :

∣∣(xi − xj)− g̃m(y)h(yi − yj)
∣∣ ≤ Cε, ∀ 1 ≤ i < j ≤ k+1, h ∈ Stab(y)

}
,

where C = 2max{diam(E), 1}. Thus, the expression within the lim inf on the
right-hand side of (2.1) is bounded above by

ε−k(k+1)/2

N(ε)∑
m=1

μ2(k+1)
{
(x,y) :

∣∣(xi − xj)− g̃m(y)h(yi − yj)
∣∣ ≤ Cε,

∀ 1 ≤ i < j ≤ k + 1, h ∈ Stab(y)
}
,

which can also be written as

ε−kd

N(ε)∑
m=1

εkd−k(k+1)/2μ2(k+1)
{
(x,y) :

∣∣(xi − g̃m(y)hyi)− (xj − g̃m(y)hyj)
∣∣ ≤ Cε,

∀ 1 ≤ i < j ≤ k + 1, h ∈ Stab(y)
}
.(2.3)
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Since this holds for any choice of sample points g̃m(y), we can pick these points
such that they minimize (up to a factor of 1/2, say) the quantity

μ2(k+1)
{
(x,y) :

∣∣(xi − g̃m(y)hyi)− (xj − g̃m(y)hyj)
∣∣ ≤ ε,

∀ 1 ≤ i < j ≤ k + 1, h ∈ Stab(y)
}
.

Now consider the N(ε) preimages, under the natural projection from O(d),
of the balls used to cover O(d)/Stab(y); we can label these ε-tubular neigh-
borhoods of the preimages of the sample points g̃m(y) as T ε

1 , . . . , T
ε
N(ε). Since

dim(O(d)/Stab(y)) = kd − k(k + 1)/2, each T ε
m has volume ∼ εkd−k(k+1)/2. The

infimum over a set is less than or equal to the average over the set, so we obtain

μ2(k+1){(x,y) : ∣∣(xi − g̃m(y)hyi)− (xj − g̃m(y)hyj)
∣∣ ≤ ε,

∀ 1 ≤ i < j ≤ k + 1, h ∈ Stab(y)}
� 1

εkd−k(k+1)/2

∫
T ε
m

μ2(k+1)
{
(x,y) :

∣∣(xi − gyi)− (xj − gyj)
∣∣ ≤ ε,

1 ≤ i < j ≤ k + 1
}
dg.

We can thus bound (2.3) above by

ε−kd

N(ε)∑
m=1

∫
T ε
m

μ2(k+1){(x,y) : ∣∣(xi − gyi)− (xj − gyj)
∣∣ ≤ ε, 1 ≤ i < j ≤ k + 1} dg.

Since the cover has finite overlap, this in turn can be bounded above, up to a
constant ck,d, by

ε−kd

∫
μ2(k+1){(x,y) : ∣∣(xi − gyi)− (xj − gyj)

∣∣ ≤ ε, 1 ≤ i < j ≤ k + 1} dg,

and taking the liming, we obtain a constant multiple of the expression (1.3). This
completes the proof of Theorem 1.3.

If one studies similar simplices instead of congruent ones, letting Sk(E) as in
Definition 1.2, then the preceding analysis goes through essentially unchanged,
except that in place of (1.3) we have (1.5). This establishes Theorem 1.4.

3. Proof of Theorem 1.5

The matters have been reduced in the introduction to the estimation of (1.3).
We shall need the following result.

Theorem 3.1. Let μ be a compactly supported Borel measure. Then, for s ≥ d/2,
and ε > 0, ∫

Sd−1

|μ̂(tω)|2dω ≤ Cε Is(μ) t
ε−γs ,

with γs = (d+ 2s− 2)/4 if d/2 ≤ s ≤ (d+ 2)/2, and γs = s− 1 for s ≥ (d+ 2)/2.

For s ≤ (d + 2)/2, this is due to Wolff [15] (d = 2) and Erdog̃an [3] (d ≥ 3);
the easier case of s ≥ (d+ 2)/2 is due to Sjölin [14].
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As we note above, the proof of Theorem 1.5 is reduced to the verification
of (1.3). Let ψ be a smooth cutoff function supported in

{
ξ ∈ R

d : 1/2 ≤ |ξ| ≤ 4
}

and identically equal to 1 in
{
ξ ∈ R

d : 1 ≤ |ξ| ≤ 2
}
. Let νg,j denote the jth

Littlewood–Paley piece of νg, defined by the relation ν̂g,j(ξ) = ν̂g(ξ)ψ(2
−jξ).

Since νg is compactly supported, we may assume that j ≥ 0. Using the Littlewood–
Paley decomposition of νg, the integral in (1.3) equals∫ ∑

j1,...,jk+1

νg,j1(x)νg,j2 (x) · · · νg,jk+1
(x) dx.

We can split this sum up into k(k+1) sums of the type where we sum up over
indices where j1 ≥ j2 ≥ j3, . . . , jk+1 and permutations thereof. It suffices to show
bounds for one of those sums so without loss of generality we may assume we are
in the case j1 ≥ j2 ≥ j3, . . . , jk+1. Passing to the Fourier side we can write∫ ∑

j1≥j2≥j3...,jk+1

νg,j1(x) νg,j2 (x) · · · νg,jk+1
(x) dx

=
∑

j1≥j2≥j3...,jk+1

∫
ν̂g,j1 ∗ ν̂g,j3 ∗ · · · ∗ ν̂g,jk+1

(ξ) · ν̂g,j2(ξ) dξ.

Now ν̂g,j1 ∗ ν̂g,j3 ∗ · · · ∗ ν̂g,jk+1
is supported on scale 2j1 + 2j3 + · · · + 2jk+1 ∼ 2j1 ,

while ν̂g,j2 is supported on scale 2j2 , so by Plancherel it is clear that the sum
vanishes if j1 − j2 > 2. Thus it suffices to consider the case j1 = j2 and to study

(3.1)
∑

j1=j2≥j3...,jk+1

∫
νg,j1(x) νg,j2 (x) · · · νg,jk+1

(x) dx.

As above, νg,j(x) = μj ∗ μj(g·), so
||νg,j ||∞ ≤ ||μj ||1 · ||μj ||∞ ≤ C 2j(d−s),

for any s < dimH(E), since μ is a Frostman measure supported on E (see, e.g.,
Chapter 8 in [12]). To see this, observe that ||μj ||1 ≤ 1 trivially since μ is a
probability measure and

|μj(x)| = 2dj
∣∣μ ∗ ψ̂(2j ·)(x)∣∣ ≤ CN 2dj

∫
(1 + 2j |x− y|)−N

dμ(y) ≤ C′
N 2j(d−s)

since μ is a Frostman measure on E. Using this estimate on the terms correspond-
ing to the indices j3, . . . , jk+1 we can bound (3.1) above, up to a fixed constant, by∑

j

( ∑
j3,...,jk+1≤j

2(j3+···+jk+1)(d−s)
)
ν2g,j(x) �

∑
j

2j(k−1)(d−s) ν2g,j(x).

It follows that we can bound (1.3) by a finite sum of terms of the type

(3.2)
∑
j

2j(k−1)(d−s) ·
∫∫

ν2g,j(x) dx dg.



806 A. Greenleaf, A. Iosevich, B. Liu and E. Palsson

By Plancherel (see the discussion in Section 5 below),∫∫
ν2g,j(x) dx dg ≈

∫ 2j+1

2j

(∫
Sd−1

|μ̂(tω)|2dω
)2

td−1dt ≤ C′′ 2j(d−s) 2−jγ(s,d),

with the inequality following from Theorem 3.1.
Let us first handle the case d ≥ 3. Inserting the last inequality back into (3.2),

we see that geometric series converges if (d − s)k − (s − 1) < 0, which yields the
condition s > (dk + 1)/(k + 1), as claimed. If d = k = 2, γ(s, 2) = s/2 and the
geometric series converges if s > 8/5. This completes the proof of the first part of
Theorem 1.5.

To prove the second part, as explained in Section 2, it suffices to estimate (1.5).
Following the proof of the first part of Theorem 1.5 above, the second part would
follow from the estimate

(3.3)
∣∣∣ ∫ 2

1

∫
|μ̂(agξ)|2 dg da

a

∣∣∣ ≤ C |ξ|−s
,

where the reduction to a ∈ [1, 2] is accomplished by simple pigeon-holing and
scaling. Indeed, recall that μ is a Frostman measure supported on E (see, e.g.,
Chapter 8 in [16], ) means that for any ε > 0 there exists Cε > 0 such that if Bδ

is a ball of radius δ centered at the origin, then

(3.4) μ(Bδ) ≤ Cε δ
s−ε,

where s is the Hausdorff dimension of E and ε > 0 is arbitrarily small. If δ is
sufficiently small, this quantity is < 1/2, so the intersection E and the complement
of Bδ has μ-measure > 1/2. Renaming this intersection as E and rescaling, the
procedure that does not affect whether the Lebesgue measure of Tk(E) (or Sk(E))
is positive, we achieve the desired setup.

By the action of the orthogonal group on the sphere, (3.3) would follow from∣∣∣ ∫ 2

1

∫
Sd−1

∣∣μ̂ (a|ξ|ω)∣∣2 dω da
a

∣∣∣ ≤ C|ξ|−s

for any s < dimH(E). This in turn is proven by observing that∫ 2

1

∫
Sd−1

|μ̂(a|ξ|ω)|2 dω da
a

=

∫ 2|ξ|

|ξ|

∫
Sd−1

|μ̂(aω)|2 dω da
a

≤ |ξ|−d
∫ 2|ξ|

|ξ|

∫
Sd−1

|μ̂(aω)|2 dω ad−1 da = |ξ|−d
∫
|ξ|≤|x|≤2|ξ|

|μ̂(x)|2 dx ≤ C|ξ|−s.

4. Sharpness of lower bounds

We now turn to the proof of Theorem 1.8. If E is contained in a (k−1)-dimensional
plane, every simplex with k + 1 points in E is degenerate, so the restriction
αk,d > k − 1 is clear. The lower bound αk,d > d/2 is also necessary, since this
threshold is needed to ensure that L1(Δ(E)) > 0 for general E, as was noted in
the introduction.
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The restriction α2,2 > 3/2 follows from a lattice construction and simple
number-theoretic analysis, given below but previously obtained by Burak Erdog̃an
and the second listed author [5]. Start by considering the following construc-
tion in Rd for general d ≥ 1. Let q1 = 2 and recursively choose qi ∈ N with

qi+1 > qii, ∀i ≥ 1. Fix s < d and let Ei denote the q
−d/s
i -neighborhood of

Z
d ∩ [0, qi]

d
, scaled by q−1

i so as to be a subset of [0, 1]d. Define E = ∩iEi.
The proof that dimH(E) = s can be found in Chapter 8 of [6] in the case of d = 1.
The higher dimensional argument follows from the same argument.

Now let d = 2. To show that α2,2 ≥ 3/2, let q = qi, for i very large. We claim
that

(4.1) L3(T2(Eq)) � q−6/s ·#T2({Z2 ∩ [0, q]
2}) ≤ Cε q

−6/s · q4+ε.

In fact, note that, by translation invariance, in order to count congruence classes
determined by the unrescaled Z2 ∩ [0, q]

2
it is enough to place one vertex at the

origin. Call the remaining vertices v and w and let |v| = a, |w| = b. For our
purposes it is sufficient to know that the number of choices is ≤ Cq2. To see this
simply observe that squares of the distances from the origin are integers in [0, 2q2],
so there cannot possibly be more than 2q2 of them. Once |v| and |w| are fixed,
it remains to compute how many possibilities there are for |v − w|. This number
cannot exceed the product of the number of integer points on {x : |x| = a} and the
number of integer points on {x : |x| = b}. It is well known that for any ε > 0, the
number of lattice points on the circle of radius r in the plane does not exceed Cεr

ε;
see, e.g., [10]. The estimate (4.1) thus follows and we conclude that L3(T2(E)) is
not in general positive if the Hausdorff dimension of E is smaller than 3/2.

Note that this argument does not show what happens at s = 3/2.

Examination of α3,3 leads to an interesting lattice point problem. Take d = 3
in the construction above. Once again, we place one vertex at the origin and call
the remaining vertices v1, v2, v3. There are ≈ q2 choices for |vi|. It remains to
count the number of non-congruent configurations that vis can form. Each vi lies
on a sphere of radius at most q and it is well-known that the number of lattice
points a sphere of radius r in R3 is � q. It follows by trivial counting that the
number of non-congruent configurations of vjs is � q3. We deduce that

L6(T4(Eq)) � q−18/s · q6 · q3,

which results in the trivial restriction s > 2. So the question of whether we can
obtain a tighter restriction on dimH(E), needed to ensure that L6(T4(E)) > 0,
comes down to estimating the size of the discrete set

T3(S1 ∩ Z
3, S2 ∩ Z

3, S3 ∩ Z
3),

the number of non-congruent triangles with vertices at lattice points on spheres
S1, S2, S3 of radii ≈ q. Any estimate of the form

(4.2) #T3(S1 ∩ Z
3, S2 ∩ Z

3, S3 ∩ Z
3) ≤ C q3−δ



808 A. Greenleaf, A. Iosevich, B. Liu and E. Palsson

for some δ > 0 would immediately allow one to conclude that

α3,3 ≥ 2 + δ′

for some δ′ > 0. We do not know whether (4.2) holds, and pose this question as
an open problem that is interesting in its own right.1

5. A stationary phase-free proof of the (d+1)/2 exponent in
the Falconer problem

The purpose of this section is to make a couple of simple observations regarding the
Falconer distance conjecture and the methods of proof that have been employed to
attack it. First, we apply the results of Section 3 to the case k = 1, corresponding
to the Falconer distance problem. Applying (1.1) with f(z) = e−2πiz·ξ, we obtain

ν̂g(ξ) = μ̂(ξ) μ̂(gξ),

which means that, via Plancherel, the expression in (1.3), with k = 1 is equal to∫
Rd

|μ̂(ξ)|2
{∫

O(d)

|μ̂(g ξ)|2 dg
}
dξ.

A moment’s reflection shows that this quantity equals a constant multiple of

(5.1)

∫ ( ∫
Sd−1

|μ̂(t ω)|2 dω
)2

td−1 dt,

the classical Mattila integral derived in [11], which has so far been the main tool
in the study of the Falconer distance problem. The fact that the boundedness
of this integral implies a lower bound on the Lebesgue measure of the distance
set is typically derived using the method of stationary phase (see also Chapter 9
of [16]), but the argument above shows that a group-theoretic argument can be
used instead.

We now establish the fact that the threshold (d+1)/2 for the Falconer distance
conjecture can be established using our geometric methods without the use of the
method of stationary phase. See also Mitsis [13] for another geometric argument
in the context of the Falconer distance problem.

The argument culminating in (5.1) above, reproves the classical result due
to Mattila, namely that if E is a compact subset of Rd of Hausdorff dimension
s > d/2, and the Mattila integral given by (5.1) is bounded for some Borel mea-
sure μ supported on E, then the Lebesgue measure of Δ(E) is positive. The fact
that the expression in (5.1) is bounded if the Hausdorff dimension of E is greater
than (d+ 1)/2 for any Frostman measure μ supported on E (see [12], p. 112, for
background on Frostman’s lemma) follows immediately from the following simple
observation. Recall the s-energy integral of μ,

(5.2) Is(μ) =

∫ ∫
|x− y|−s

dμ(x) dμ(y).

1After submission of this paper, this question was answered in the negative by Demeter [2].
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Lemma 5.1 ([16], p. 61). Let μ be a compactly supported Borel measure on Rd,
d ≥ 2. Then, for any s ≥ d/2,∫

Sd−1

|μ̂(tω)|2 dω ≤ C Is(μ) t
−(s−1), 0 < t <∞.

We give the proof of Lemma 5.1 for the sake of completeness. Let φ be a radial
smooth function with compact support whose Fourier transform is ≥ 1 on the
support of μ. Then it suffices to estimate∫

|φ ∗ μ̂(tω)|2 dω ≤
(∫ ( ∫

|φ(x − tω)|2 |μ̂(x)|2 dω
)1/2

dx
)2

≤ C′ t−(d−1)

∫
||x|−t|≤C′′

|μ̂(x)|2 dx ≤ C′′′ Is(μ) t−s+1,

finishing the proof.
To see how Lemma 5.1 implies the (d+1)/2 exponent for the Falconer problem,

it is enough to prove that the Mattila integral (5.1) is bounded if μ is a Borel
measure supported on a set of Hausdorff dimension greater than (d+ 1)/2. Using
Lemma 5.1 we see that (with Is(μ) as in (5.2) above)

∫ (∫
Sd−1

|μ̂(tω)|2dω
)2

td−1 dt ≤ C

∫∫
td−1 t−s+1 |μ̂(tω)|2 dω dt

= C

∫
|μ̂(ξ)|2 |ξ|−s+1

dξ

= C

∫
|μ̂(ξ)|2 |ξ|−d+(d−s+1)

dξ ≤ C′′ Is(μ)

if s > (d+ 1)/2, as desired.
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