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Extensions of finite cyclic group actions

on bordered surfaces

Emilio Bujalance, Francisco-Javier Cirre and Marston Conder

Abstract. We study the question of the extendability of the action of a
finite cyclic group on a compact bordered Klein surface (either orientable
or non-orientable). This extends previous work by the authors for group
actions on unbordered surfaces. It is shown that if such a cyclic action
is realised by means of a non-maximal NEC signature, then the action
always extends. For a given integer g ≥ 2, we determine the order of the
largest cyclic group that acts as the full automorphism group of a bordered
surface of algebraic genus g, and the topological type of the surfaces on
which the largest action takes place. In addition, we calculate the smallest
algebraic genus of a bordered surface on which a given cyclic group acts as
the full automorphism group of the surface. For this, we deal separately
with orientable and non-orientable surfaces, and we also determine the
topological type of the surfaces attaining the bounds.

Introduction

A natural extension of the definition of a compact Riemann surface, which has
no boundary and is orientable, is to allow surfaces with non-empty boundary and
to endow them with a dianalytic structure – that is, a structure whose transition
functions are either analytic or the composite of complex conjugation with an
analytic function. This structure yields the concept of Klein surface, using the
terminology introduced by Alling and Greenleaf in [1]. Under the well-known
functorial correspondence between compact Klein surfaces and real algebraic curves
explained in [1], the bordered surfaces (the ones we will consider here) correspond
to real algebraic curves with real points.

Let S be a compact bordered Klein surface of algebraic genus greater than 1.
An automorphism of S is a homeomorphism v : S → S which is dianalytic in
local coordinates. The group Aut(S) of all such homeomorphisms is called the full
automorphism group of S, and it is finite because S has algebraic genus greater
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than 1. A group G is said to act on S if it is a subgroup of Aut(S). Here we
consider the question of whether a cyclic group acting on S is the full group of all
automorphisms of S. The same question for Riemann surfaces and for unbordered
non-orientable Klein surfaces was considered in [6] and [4] respectively.

Given a finite group G acting effectively as a group of automorphisms on a
compact surface S, it is in general a difficult task to decide whether G is the full
group Aut(S) of all automorphisms of S or just a proper subgroup of Aut(S).
A fruitful technique to deal with this problem is the combinatorial theory of non-
euclidean crystallographic (NEC) groups. Let us briefly explain how to use it.

A compact bordered surface S of algebraic genus greater than 1 can be repre-
sented as the quotient H/Λ of the hyperbolic plane H under the action of a surface
NEC group Λ. A finite group G then acts as a group of automorphisms of S if and
only if G is isomorphic to Γ/Λ for some NEC group Γ containing Λ as a normal
subgroup. If G �= Aut(S), then Γ is properly contained with finite index in some
other NEC group Γ′, which also normalises Λ. The converse holds as well, and
accordingly, the above question is closely related to the finite-index extendability
of NEC groups.

The extendability of Γ depends mainly on the geometry of a fundamental re-
gion for Γ. In particular, although Γ could be contained in an NEC group Γ′

normalising Λ, the group Γ might be abstractly isomorphic to a maximal NEC
group – that is, to a group which is not contained as a subgroup of finite index in
any other NEC group. If this happens and f : Γ → f(Γ) is such an isomorphism,
then f(Γ)/f(Λ) is the group of all automorphisms of the surface H/f(Λ). For
some signatures, however, it can happen that every NEC group Γ with signature
σ is properly contained in another NEC group Γ′ with finite index, and the dimen-
sions of the Teichmüller spaces of Γ and Γ′ coincide. Such a signature σ is called
non-maximal, and the pair (σ, σ′) of signatures of Γ and Γ′ is called a normal pair
if Γ is normal in Γ′, and non-normal otherwise.

This question was originally analysed for Fuchsian signatures by Greenberg
in [12] and answered completely by Singerman in [21]. Using the list of non-
maximal Fuchsian signatures produced by Singerman, the first author produced a
complete list of normal pairs of NEC signatures in [3], and subsequently Estévez
and Izquierdo gave the list of the non-normal ones in [8]. These lists play a key role
in this paper, since it follows from the above remarks that if a finite group G can
be written, as above, as Γ/Λ and the signature of Γ does not appear in either list,
then G is the group of all automorphisms of some surface homeomorphic to H/Λ.
If, on the other hand, the signature of Γ is non-maximal, then the action of G in
any surface homeomorphic to H/Λ could possibly be extended. The main result of
this paper shows that such an extension always occurs when the group G is cyclic.

The paper is organised as follows. In Section 1 we recall basic facts and in-
troduce notation for NEC groups and bordered surfaces to be used in the paper.
In Section 2 we analyse the pairs (σ, σ′) of NEC signatures (from Table 1 in Sec-
tion 1) in terms of the possible extension of the action of a cyclic group. The analy-
sis produces our main result, namely Theorem 2.1. Some applications are described
in the subsequent sections. In Section 3 we calculate, for a given g ≥ 2, the order
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of the largest cyclic group that acts as the full automorphism group of a bordered
surface of algebraic genus g. The topological type of the surfaces attaining this
bound is also determined. This bound turns out to be the same as for unbordered
non-orientable surfaces, and we show that, in some cases, surfaces of both types
attaining the bound come together as the Klein surfaces associated to two sym-
metries on the same Riemann surface. In Section 4 we determine for each n the
smallest algebraic genus of a bordered surface on which the cyclic group of order
n acts as the full automorphism group of the surface. We call this the full real
genus of the cyclic group, following the definition by May [20] of the real genus
as the smallest algebraic genus of a bordered surface on which the cyclic group
acts effectively. We deal separately with orientable and non-orientable surfaces,
which leads to the concepts of full real orientable and full real non-orientable genus
of a group.

Let us mention that the concept analogous to the real genus for Riemann sur-
faces is called the symmetric genus of a group G (if we allow only orientation
preserving automorphisms then we are led to the concept of strong symmetric
genus). These are classic topics in Riemann and Klein surface theories which have
catalysed a large amount of research. Let us mention, for Riemann surfaces, the
seminal paper [13] by Harvey on cyclic groups, and [11], [14], [15], and [18], among
many others. For the real genus, see [17], [9], and [10], for instance.

Using the above mentioned functorial correspondence, all the results in this
paper can be translated into the language of real algebraic curves and birational
transformations among them. Each boundary component of a surface S corre-
sponds to an oval of its associated real curve C, and S is orientable if and only if C
disconnects its complexification.

Throughout the paper, a bordered surface will mean a compact bordered Klein
surface of algebraic genus greater than 1.

1. Preliminaries

We briefly recall the main facts about NEC groups to be used in the paper. For
a general account of this topic, we refer the reader to Section 0.2 in [7]. An NEC
group is a cocompact discrete subgroup of the group of orientation preserving or
reversing isometries of the hyperbolic plane H. The signature of an NEC group Γ,
as introduced by Macbeath in [16], is a collection of symbols and non-negative
integers, of the form

(1.1) σ(Γ) = (γ; ±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk)}) .

The integers m1, . . . ,mr are called proper periods ; each bracket (ni1, . . . , nisi) is a
period cycle, and the integers nij are called link periods. An empty set of proper
periods (where r = 0) will be denoted by [−], an empty period-cycle (where si = 0)
by (−).

The signature of Γ gives some topological features of the projection H → H/Γ,
and also provides a presentation of Γ. The generators are as follows:
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• Elliptic elements xi, for 1 ≤ i ≤ r ;

• Reflections ci0, . . . , cisi , for 1 ≤ i ≤ k ;

• Orientation-preserving elements ei, for 1 ≤ i ≤ k ;

• Hyperbolic elements ai and bi, for 1 ≤ i ≤ γ , if the sign is + ;

• Glide reflections di, for 1 ≤ i ≤ γ , if the sign is − ;

and the defining relations are these:

• xi
mi = 1 for 1 ≤ i ≤ r ;

• cij−1
2 = cij

2 = (cij−1cij)
nij = 1 for 1 ≤ j ≤ si, for 1 ≤ i ≤ k ;

• cisi = eici0ei
−1 for 1 ≤ i ≤ k ;

• x1 . . . xre1 . . . eka1b1a1
−1b1

−1 . . . aγbγa
−1
γ b−1

γ = 1 if the sign is + ;

• x1 . . . xre1 . . . ekd1
2 . . . dγ

2 = 1 if the sign is − .

A set of generators satisfying these conditions will be called a set of canonical
generators.

The orientation-preserving elements of Γ constitute the canonical Fuchsian sub-
group Γ+. These are the elements expressible as words in the canonical generators
of Γ containing an even number of occurrences of the reflections cij and glide
reflections di. Such words may be called orientable words , while those containing
an odd number of the cij and di may be called non-orientable words. In particu-
lar, Γ+ has index 1 or 2 in Γ. If the index is 1 (or equivalently, Γ = Γ+), then Γ is
a Fuchsian group, while if the index is 2 then Γ is called a proper NEC group.

The area of a fundamental region for an NEC group Γ with signature (1.1)
is 2πμ(Γ), where

μ(Γ) = αγ + k − 2 +

r∑
i=1

(
1− 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1− 1

nij

)
,

with α = 2 if the sign is + and α = 1 otherwise. The expression μ(Γ) is usually
called the reduced area of Γ. If Γ′ is a subgroup of finite index in Γ, then Γ′ is also
an NEC group, and its area is given by the Riemann–Hurwitz formula:

μ(Γ′) = [Γ : Γ′] · μ(Γ).
The algebraic genus g of a compact surface of topological genus γ with k bound-

ary components, is defined as

g =

{
2γ + k − 1 if the surface is orientable,
γ + k − 1 otherwise.

It follows from the uniformisation theorem that any bordered surface of algebraic
genus g ≥ 2 and k > 0 boundary components is of the form H/Λ, for some proper
NEC group Λ with signature

(γ;±; [−]; {(−), k. . ., (−)}),
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where the sign is + if the surface is orientable, and − otherwise. We will call
each NEC group with such a signature a bordered surface NEC group. A finite
group G acts (faithfully) as a group of automorphisms of a bordered surface if and
only if there exist an NEC group Γ and an epimorphism θ : Γ → G whose kernel
is a bordered surface NEC group Λ. In this case, the surface is H/Λ, and we say
(for short) that θ is a smooth epimorphism, and that G acts with signature σ(Γ).

The next lemma imposes necessary and sufficient restrictions on the signature
of an NEC group Γ for it to admit a smooth epimorphism θ : Γ → Cn onto a cyclic
group; see Theorems 2.4.2 and 2.4.4 in [7].

Lemma 1.1. An NEC group Γ contains a bordered surface NEC group Λ as a
normal subgroup with cyclic factor group Γ/Λ if and only if the signature of Γ has
some period cycle and each period cycle is either empty or formed just by an even
number of link periods equal to 2. In particular, if the index |Γ : Λ| is odd then all
the period cycles of Γ are empty.

Lemma 1.1 rules out all of the non-normal pairs of NEC signatures, and 23 of
the 36 normal pairs, namely the pairs 1, 2, 5, 9, 10, 12, 13, 16, 17, 22, 23, 24, 25,
26, 27, 28, 29, 31, 32, 33, 34, 35 and 36 listed in Table 3 in [8]. Also the normal
pairs 7 and 15 can occur only for t = 2, while the normal pair 18 can occur only
for u = 2. (Actually there are typographic errors in the entries for the pairs 3,
17, 18 and 26 in Table 3 in [8], and the 28th pair should not be listed at all, since
the real Teichmüller dimension of Fuchsian groups with signature (2;+; [−]; {−})
is 6 while that of NEC groups with signature (0;+; [−]; {(2, 2, 2, 2, 2, 2)}) is 3.)
This leaves the 13 normal pairs in Table 1 below to be analysed.

Signature σ = σ(Γ) Signature σ′ = σ(Γ′) |Γ′ : Γ|
Case 1 (2;−; [−]; {(−)}) (0; +; [2, 2]; {(2, 2)}) 2

Case 2 (1; +; [−]; {(−)}) (0; +; [2, 2, 2]; {(−)}) 2

Case 3 (1;−; [t]; {(−)}) (0; +; [2]; {(2, 2, t)}) 2

Case 4 (1;−; [−]; {(2, 2)}) (0; +; [2]; {(2, 2, 2)}) 2

Case 5 (1;−; [−]; {(−), (−)}) (0; +; [2]; {(2, 2, 2, 2)}) 2

Case 6 (0; +; [−]; {(−), (−), (−)}) (0; +; [−]; {(2, 2, 2, 2, 2, 2)}) 2

Case 7 (0; +; [t]; {(−), (−)}) (0; +; [−]; {(2, 2, 2, 2, t)}) 2

Case 8 (0; +; [−]; {(2, 2), (−)}) (0; +; [−]; {(2, 2, 2, 2, 2)}) 2

Case 9 (0; +; [t]; {(2, 2)}) t ≥ 3 (0; +; [−]; {(2, 2, 2, t)}) 2

Case 10 (0; +; [t, u]; {(−)}), max(t, u) ≥ 3 (0; +; [−]; {(2, 2, t, u)}) 2

Case 11 (0; +; [t, t]; {(−)}) t ≥ 3 (0; +; [t]; {(2, 2)}) 2

Case 12 (0; +; [t, t]; {(−)}) t ≥ 3 (0; +; [t, 2]; {(−)}) 2

Case 13 (0; +; [t, t]; {(−)}) t ≥ 3 (0; +; [−]; {(2, 2, 2, t)}) 4

Table 1. Normal pairs of NEC signatures to be analysed.
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2. Analysis of cases

For each normal pair (σ, σ′) in Table 1, we consider the possibility of some extension
of a smooth epimorphism θ : Γ → Cn to a smooth epimorphism θ′ : Γ′ → G′,
where Γ is a NEC group with signature σ, and Γ′ is a NEC group with signature σ′,
such that Γ can be embedded as a subgroup of Γ′ with finite index m, and G′ is
a finite group containing Cn as a subgroup of index m. Observe that under these
circumstances, ker θ = ker θ′ and so G′ also acts on the surface H/ ker θ. Two
embeddings i1, i2 : Γ → Γ′ are said to be equivalent if there exists an automorphism
β ∈ Aut(Γ′) such that βi1 = i2. Observe that the extendability of θ does not
depend on the representative chosen in the equivalence class of the embedding.
In the cases that follow, inequivalent embeddings were found and analysed with
the help of the Magma system [2].

We will use the following standard notation: |G : K| denotes the index of a
subgroup K in a group G, and [a, b] denotes the commutator a−1b−1ab of any
pair (a, b) of elements of a group, while ax denotes the conjugate x−1ax of a by
the element x (or the image of a under the automorphism x, depending on the
context). Note that the index |Γ′ : Γ| is 2 in all cases other than case 13, where
it is 4.

Cases 1, 2, 3, 5, 6, 7, 10, 11, 12 and 13 are the same as cases 3, 4, 5, 6, 9, 10, 11,
12, 13 and 15 in [4] respectively, where it was shown that in the first seven of these,
the cyclic action with signature σ always extends to an action with signature σ′,
while in the last three, it does not always extend. In each of these last three cases,
however, the NEC group Γ has signature (0 ;+; [t, t]; {(−)}), and the action always
extends in the way prescribed in case 10, with u = t. Hence we need only consider
extendability in the three remaining cases from Table 1, namely cases 4, 8 and 9.

Case 4: σ = (1;−; [−]; {(2, 2)}), σ′ = (0;+; [2]; {(2, 2, 2)}).
The group Γ is generated by two involutions a0 and a1 and a third element d

such that (a0a1)
2 = (a1d

2a0d
−2)2 = 1, while Γ′ is generated by four involutions

x, c0, c1, c2 such that (c0c1)
2 = (c1c2)

2 = (c2xc0x)
2 = 1. An embedding of Γ

in Γ′ is given by taking d = c2x, a0 = c0 and a1 = c1. There are two other
embeddings, but those are equivalent to this one under outer automorphisms of Γ′.
Conjugation by x gives an involutory automorphism, with dx = d−1, a0

x = da0d
−1

and a1
x = d−1a1d. Hence in any extension of θ : Γ → Cn to a smooth epimorphism

θ′ : Γ′ → G′ with |G′ : Cn| = 2, conjugation by the image of x must invert the
images of all the generators of Γ, and so G′ is the dihedral group Dn. Such an
extension is always possible, and therefore the given action of Cn is never maximal.

Case 8: σ = (0;+; [−]; {(2, 2), (−)}), σ′ = (0;+; [−]; {(2, 2, 2, 2, 2)}).
Here Γ is generated by three involutions a0, a1, a2 and a fourth element e such

that (a0a1)
2 = (a1ea0e

−1)2 = [a2, e] = 1, while Γ′ is generated by five involutions
c0, c1, c2, c3, c4 such that (c0c1)

2 = (c1c2)
2 = (c2c3)

2 = (c3c4)
2 = (c4c0)

2 = 1.
An embedding of Γ in Γ′ is given by taking e = c3c1, a0 = c0, a1 = c4 and a2 = c2.
Note that there are other possible embeddings, but all of them are equivalent
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under a dihedral group of 10 outer automorphisms of Γ′ (preserving the generating
set {c0, c1, c2, c3, c4}). Conjugation by c1 gives an involutory automorphism with
ec1 = e−1, a0

c1 = a0, a1
c1 = e−1a1e and a2

c1 = a2. As above, an extension is
always possible to an epimorphism from Γ′ onto Dn, with c1 being taken to any
element of Dn \ Cn.

Case 9: σ = (0;+; [t]; {(2, 2)}), σ′ = (0;+; [−]; {(2, 2, 2, t)}), t ≥ 3.

Here Γ is generated by two involutions a0 and a1 and a third element x of order t
such that (a0a1)

2 = (a1xa0x
−1)2 = 1, while Γ′ is generated by four involutions

c0, c1, c2, c3 such that (c0c1)
2 = (c1c2)

2 = (c2c3)
2 = 1 and the product c3c0 has

order t ≥ 3. An embedding of Γ in Γ′ is given by taking x = c0c3, a0 = c2 and
a1 = c1. There is another embedding with x = c3c0, a0 = c1 and a1 = c2, but
this is equivalent under an outer automorphism of Γ′. Conjugation by c0 gives an
involutory automorphism with xc0 = x−1, a0

c0 = xa0x
−1 and a1

c0 = a1. Again,
an extension is always possible to an epimorphism from Γ′ onto Dn, with c0 being
taken to any element of Dn \ Cn.

Thus we have proven the following.

Theorem 2.1. Every effective action of a finite cyclic group with non-maximal
signature on a bordered surface S extends to the action of a larger group on S.

Remark 2.2. Under the hypothesis above, the action of the cyclic group Cn

extends in all cases to an action of the dihedral group Dn (at least) on the same
surface. This is shown above for cases 4, 8 and 9, and in [4] for the other ten cases.

Remark 2.3. Theorem 2.1 contrasts with the situation for cyclic actions on un-
bordered orientable surfaces – that is, on Riemann surfaces. For these surfaces, a
cyclic group acting with a non-maximal Fuchsian signature does not always extend;
see Theorem 4.1 in [6].

3. Largest cyclic full groups of automorphisms

It is well known that the maximum order of a cyclic group of automorphisms acting
on a bordered surface of algebraic genus g is 2g + 2 if g is even and 2g is g is odd.
This was proved by May in [19], and then refined in Theorem 3.2.18 in [7], where
the authors distinguish between orientable and non-orientable surfaces, and orien-
tation preserving and orientation reversing automorphisms of orientable surfaces.
If θ : Γ → C2g+2 or C2g is a smooth epimorphism realising such a maximal cyclic
action, then the signature of Γ is

• (0;+; [g + 1]; {(2, 2)}) or (0;+; [2, g + 1]; {(−)}) if g is even (and the image
is C2g+2),

• (0;+; [2g]; {(2, 2)}) or (0;+; [2, 2g]; {(−)}) if g is odd (and the image is C2g).
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It is also known that such a maximal cyclic action on a bordered surface always
extends to a larger group of automorphisms; see [5]. We can now give a direct
proof of this result, as a corollary of Theorem 2.1.

Corollary 3.1. Let S be a compact bordered surface of algebraic genus g ≥ 2 ad-
mitting an automorphism v of maximum possible order (namely, 2g+2 if g is even,
or 2g if g is odd). Then the full automorphism group of S properly contains 〈v〉.
Proof. This is a consequence of the fact that such a maximal cyclic group 〈v〉 acts
with signature of the form (0;+; [t]; {(2, 2)}) or (0;+; [t, u]; {(−)}), and these are
non-maximal signatures, occurring in cases 9 and 10 of Table 1, and dealt with
in Section 2. �

It is worth mentioning that the full automorphism group of such a surface is a
dihedral 2-extension of 〈v〉, except for three surfaces of odd genus and one of even
genus; see [5].

Next, it is a natural question to ask what is the largest order of a cyclic group
that acts as the full group of automorphisms of some bordered surface S of given
genus g. We answer this question in Theorem 3.3 below, where the topological
types of the surfaces attaining the bounds are also given. For a fixed value of g,
the topological type of a surface is encoded in the symbol εk, where ε is + if
the surface is orientable, or − if it is non-orientable, and k is the number of its
boundary components.

If θ : Γ → Cn is the smooth epimorphism corresponding to the cyclic action
of Cn on S = H/ ker θ, then the topological type of S can be obtained from the
signature of ker θ. Namely, the orientability of S coincides with the sign of σ(ker θ)
and the number of its boundary components is the number of (empty) period
cycles of σ(ker θ). Results in Sections 2.1 and 2.3 in [7] can be used to determine
both parameters, but for the reader’s convenience we display in Lemma 3.2 the
important things we will use here.

Lemma 3.2. Let θ : Γ → Cn be a smooth epimorphism with n even.

1) If Γ is orientable then ker θ is orientable if and only if no non-orientable
word of Γ with respect to ker θ belongs to ker θ. (A word of Γ with respect to
ker θ is a composition of canonical generators of Γ, none of which belongs to
ker θ.)

If Γ is non-orientable then ker θ is non-orientable if and only if ker θ con-
tains either a glide reflection (from the canonical generators of Γ) or a non-
orientable word.

2) Each period cycle of σ(Γ) of the form (2, 2r. . ., 2) produces rn/2 empty period
cycles in σ(ker θ).

Let C be an empty period cycle in σ(Γ), and let c0 and e be its associ-
ated canonical generators. If θ(c0) �= 1 then C produces no period cycle
in σ(ker θ), while if θ(c0) = 1 then C produces n/m empty period cycles in
σ(ker θ), where m is the order of θ(e).
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Theorem 3.3. For every integer g ≥ 2, the order of the largest cyclic group that
acts as the full group of automorphisms of a bordered surface of algebraic genus g
is given in Table 2, together with all possibilities for the corresponding signature of
the cyclic action and the topological type of the surfaces on which the action takes
place.

Genus Largest n Possible signatures Topological type

g≡1 (mod 4) g + 1 (0; +; [ g+1
2

]; {(2, 2, 2, 2)}) +(g + 1)

(0; +; [2, 2, g+1
2

]; {(−)}) +2

(0; +; [2, g+1
2

]; {(2, 2)}) − g+1
2

g even g (0; +; [g];{(2, 2, 2, 2)}) −g

(0; +; [2, 2, g]; {(−)}) +1

(0; +; [2, g]; {(2, 2)}) − g
2

or (0; +; [−];{(2, 6. . ., 2)}) when g = 2 +3

or (0; +; [3, 3]; {(2, 2)}) when g = 6 +3

or (0; +; [2, 3, 3]; {(−)}) when g = 6 +3 or +1

or (0; +; [2, 3, 4]; {(−)}) when g = 12 +1

or (0; +; [3, 4]; {(2, 2)}) when g = 12 −6

or (0; +; [3, 5]; {(2, 2)}) when g = 30 +15

or (0; +; [2, 3, 5]; {(−)}) when g = 30 +1

g≡3 (mod 4) g − 1 (0; +; [−];{(2, 2), (2, 2)}) +(g − 1) or −(g − 1)

(0; +; [−];{(−), (2, 2, 2, 2)}) +(g + 1),+(g − 1),

−(g − 1) or −g

(1;−; [−];{(2, 2, 2, 2)}) +(g − 1)

(0; +; [2, 2]; {(−), (−)}) +2,+4,−1 or −2

(1;−; [2, 2]; {(−)}) −2

(0; +; [2]; {(−), (2, 2)}) − g−1
2

,− g+1
2

or − g+3
2

(1;−; [2]; {(2, 2)}) − g−1
2

or (0; +; [−];{(2, 8. . ., 2)}) when g = 3 +4

or (0; +; [2];{(2, 6. . ., 2)}) when g = 3 −3

or (0; +; [2, 2]; {(2, 4. . ., 2)}) when g = 3 −2

or (0; +; [2, 2, 2]; {(2, 2)}) when g = 3 −1

or (0; +; [2, 2, 2, 2]; {(−)} when g = 3 +2

or (0; +; [2, 3, 6]; {(−)}) when g = 7 +6 or +2

or (0; +; [3, 6]; {(2, 2)}) when g = 7 −3

Table 2. Largest Cn as full automorphism group of a bordered surface of genus g.

Proof. If θ : Γ → Cn is a smooth epimorphism then, by Lemma 1.1,

σ = σ(Γ) = (γ;±; [m1, . . . ,mr]; {(−), k. . ., (−), (2, r1. . ., 2), . . . , (2, rd. . ., 2)})
where ri is even for i = 1, . . . , d and k + d ≥ 1, with d = 0 if n is odd. By the
Riemann–Hurwitz formula, μ(Γ) = (g−1)/n. We first find all possible signatures σ
for which n ≥ g − 1, that is, μ(σ) ≤ 1. Since 1 − 1/mi ≥ 1/2 for all i = 1, . . . , r,
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we have

(3.1) αγ + k + d+
r

2
+

r1 + · · ·+ rd
4

≤ 3,

where α = 2 if the sign is + and α = 1 otherwise. A straightforward calculation
shows there are 26 different types of NEC signatures that satisfy these conditions,
namely the following:

(2;−; [−]; {(−)}), (1; +; [−]; {(−)}), (1;−; [m]; {(−)}),
(1;−; [−]; {(2, 2)}), (1;−; [−]; {(−), (−)}), (0;+; [−]; {(−),(−),(−)}),
(0; +; [m]; {(−), (−)}), (0; +; [−]; {(−), (2, 2)}), (0;+; [m]; {(2, 2)}),
(0; +; [m1,m2]; {(−)}), (0; +; [m]; {(2, 2, 2, 2)}), (0;+; [−]; {(2, 2), (2, 2)}),
(0; +; [−]; {(−), (2, 2, 2, 2)}), (1;−; [−]; {(2, 2, 2, 2)}), (0;+; [−]; {(2, 8. . ., 2)}),
(0; +; [2]; {(2, 2, 2, 2, 2, 2)}), (0; +; [2, 2]; {(2, 2, 2, 2)}), (0;+; [2, 2, 2]; {(2, 2)}),
(0; +; [2, 2, 2, 2]; {(−)}), (0; +; [−]; {(2, 2, 2, 2, 2, 2)}), (0;+; [2]; {(−), (2, 2)}),
(1;−; [2]; {(2, 2)}), (0; +; [2, 2]; {(−), (−)}), (1;−; [2, 2]; {(−)}),
(0; +; [m1,m2]; {(2, 2)}), (0; +; [m1,m2,m3]; {(−)}).

Among these, 10 are non-maximal NEC signatures, in which case Theorem 2.1
shows that the cyclic action is never the full group of automorphisms of the surface.
We deal with the remaining 16 signature types below. Since each of them is
maximal, we may choose a maximal NEC group Γ with such signature, so that
if θ : Γ → Cn is a smooth epimorphism then the maximality of Γ prevents θ from
being extended to a larger group Γ′. Accordingly, this guarantees that Cn acts as
the full group of automorphisms of the bordered surface H/ ker θ.

If Cn acts with signature of the form (0;+; [m]; {(2, 2, 2, 2)}) then Cn is gener-
ated by elements of orders m and 2 and so either m = n or m = n/2, the latter
case occurring only if n/2 is odd. If σ(Γ) = (0;+; [n]; {(2, 2, 2, 2)}) then n = g,
since μ(Γ) = 1−1/n. There exists a unique smooth epimorphism θ : Γ → Cn = 〈v〉
(up to automorphism of Cn) given by θ(x1)=v=θ(e)−1, θ(ci)=vn/2 for i = 0, 2, 4
and θ(ci) = 1 for i = 1, 3, where {x1, c0, c1, c2, c3, c4, e} is a set of canonical genera-

tors of Γ.We observe that x
n/2
1 c0 is a non-orientable word in ker θ, and so Cn acts as

full group on non-orientable surfaces. As to the number of boundary components,
Lemma 3.2 shows that the number of (empty) period cycles of σ(ker θ) equals n.
Hence for g even, the cyclic group Cg acts with signature (0;+; [g]; {(2, 2, 2, 2)}) as
the full group of automorphisms on surfaces of topological type −g. It will follow
from the analysis of the other cases we consider below that no larger cyclic action
occurs, and this gives the first row for the case where g is even, in Table 2.

If σ(Γ) = (0;+; [n/2]; {(2, 2, 2, 2)}) (with n/2 odd) then n = g+1, since μ(Γ) =
1 − 2/n. In this case Cn acts on orientable surfaces since any word with an odd
number of proper canonical reflections is mapped by θ onto an odd power of v and
so there is no non-orientable word in ker θ. (A canonical reflection c ∈ Γ is proper
(with respect to ker θ) if c /∈ ker θ.) Again Lemma 3.2 implies that the number of
empty period cycles in σ(ker θ) is n. Consequently, for g ≡ 1 (mod 4) the cyclic
group Cg+1 acts with signature (0;+; [(g + 1)/2]; {(2, 2, 2, 2)}) as the full group of
automorphisms on surfaces of topological type +(g + 1). It will follow from the
analysis of the other cases we consider below that for these values of g no larger
cyclic action occurs, and this gives the first row of Table 2.
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If σ(Γ) = (0;+; [−]; {(2, 2), (2, 2)}) or (0;+; [−]; {(−), (2, 2, 2, 2)}), then n is
even because Cn contains elements of order two, and n = g − 1 because μ(Γ) = 1.
We do not have to consider the case g ≡ 1 (mod 4), since for these values of g
we have just shown the existence of a larger cyclic action. Hence we may assume
that n/2 is odd. The image θ(e1) of the canonical generator e1 (which coincides
with θ(e2)

−1) must have order n or n/2, in order for θ to be an epimorphism.

In the first case, e
n/2
1 c20 is a non-orientable word in ker θ, while in the second,

any word with an odd number of proper canonical reflections is mapped by θ onto
an odd power of v and so there is no non-orientable word in ker θ. If σ(Γ) =
(0;+; [−]; {(2, 2), (2, 2)}), then the number of empty period cycles in σ(ker θ) is n,
irrespective of the order of θ(e1), and so Cg−1 acts with this signature on topological
types +(g−1) and−(g−1).On the other hand, if σ(Γ)=(0;+; [−];{(−), (2, 2, 2, 2)}),
then the number of empty period cycles in σ(ker θ) depends on the orders of θ(c10)
and θ(e1); see the second part of Lemma 3.2. If θ(c10) �= 1 then the number
of empty period cycles of σ(ker θ) is g − 1, while if θ(c10) = 1 then this num-
ber equals g when θ(e1) has order n, and g + 1 when θ(e1) has order n/2. To-
gether with the analysis of orientability, this implies that Cg−1 acts with signature
(0;+; [−]; {(−), (2, 2, 2, 2)}) on topological types +(g−1), −(g−1), −g or +(g+1).
It will follow from the analysis of the other cases we consider below that no larger
cyclic action occurs, and so this gives the first two rows for the case g ≡ 3 (mod 4)
in Table 2.

If σ(Γ) = (1;−; [−]; {(2, 2, 2, 2)}), then n is even and n = g − 1. As above, we
do not have to consider the case g ≡ 1 (mod 4), so g ≡ 3 (mod 4). The image of
the canonical glide reflection d1 must have order n or n/2, but in either case there
is no non-orientable word in ker θ because n/2 is odd. Thus Cg−1 acts with this
signature on orientable surfaces, with n = g − 1 boundary components according
to Lemma 3.2.

If σ(Γ) = (0;+;[−]; {(2, 8. . .,2)}), (0;+;[2]; {(2, 6. . ., 2)}), (0;+;[2,2]; {(2, 2, 2, 2)}),
(0;+; [2, 2, 2]; {(2, 2)}) or (0;+; [2, 2, 2, 2]; {(−)}), then n = 2 because Cn is gen-
erated by involutions, and n = g − 1 (and so g = 3) because μ(Γ) = 1 in all
cases. By Lemma 3.2, the actions occur on surfaces with 4, 3, 2, 1 and 2 boundary
components, respectively. In the first and last cases there is no non-orientable
word in ker θ, and so C2 acts as full group with signature (0;+;[−]; {(2, 8. . .,2)})
or (0;+; [2, 2, 2, 2]; {(−)}) on orientable surfaces. In the remaining cases, x1c0 is a
non-orientable word in ker θ, and so C2 acts with these signatures on non-orientable
surfaces.

Similarly, if σ(Γ)=(0;+; [−]; {(2, 6. . ., 2)}), then n=2 and g=2 (since μ(Γ)= 1
2 ),

and C2 acts on orientable surfaces with 3 boundary components.

If σ(Γ)=(0;+; [2]; {(−), (2, 2)}) or (1;−;[2]; {(2, 2)}), then n is even and n=g−1,
and again we do not have to consider the case g ≡ 1 (mod 4). If c is a proper
canonical reflection in Γ then x1c is a non-orientable word in ker θ for any θ. Hence
any action of Cn with either signature occurs only on non-orientable surfaces.
The number of boundary components is n/2 = (g − 1)/2 for the second signature,
and (g − 1)/2, (g + 1)/2 or (g + 3)/2 for the first one, depending on the orders of
the images of c10 and e1.
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If σ(Γ) = (0;+; [2, 2]; {(−), (−)}), then n is even and n = g − 1, and once
again we do not have to consider the case g ≡ 1 (mod 4). If the two canonical
reflections of Γ belong to ker θ then there is no non-orientable word in ker θ, but if
one of them, say c10, does not belong to ker θ, then x1c10 is a non-orientable word
in ker θ. The order of θ(e1) is n or n/2, and the number of empty period cycles
of σ(ker θ) is 2 or 4 in the former case, and 1 or 2 in the latter.

Similarly, if σ(Γ) = (1;−; [2, 2]; {(−)}) then n is even, and n = g−1, so we may
assume that g ≡ 3 (mod 4), and hence n/2 is odd. The image θ(d1) of the canon-
ical glide reflection d1 must have order n or n/2. In either case, θ(e1) = θ(d1)

−2

has order n/2, and so σ(ker θ) has two empty period cycles. With regard to ori-

entability, ker θ always contains a non-orientable word, such as d
n/2
1 x1 when θ(d1)

has order n, and d
n/2
1 when θ(d1) has order n/2.

Next, for NEC groups Γ with signature type (0;+; [m1,m2]; {(2, 2)}) we have
μ(Γ) = 3/2− 1/m1 − 1/m2, and the only pairs (m1,m2) with 2 ≤ m1 ≤ m2 which
give μ(Γ) ≤ 1 are the following: (2,m) for any m ≥ 2, (3, 3), (3, 4), (3, 5), (3, 6)
and (4, 4). In all cases, n = lcm(m1,m2, 2), since Cn is generated by elements of
orders m1, m2 and 2; for example, in the first case m = n or m = n/2, with the
latter value occurring only when n/2 is odd. For signature (0;+; [4, 4]; {(2, 2)}) we
have n = 4 and g = 5, and we can rule this out because C4 is not the largest full
cyclic group acting in genus five. With regard to orientability of the surface on

which Cn acts, we observe that if one of the proper periodsmi is even, then x
mi/2
i c0

is a non-orientable word in ker θ for any θ, where xi is an elliptic canonical generator
of order mi. Otherwise, if both proper periods m1 and m2 are odd, then any word
with an odd number of proper canonical reflections is mapped by θ onto an odd
power of v, and so there is no non-orientable word in ker θ. Summarising, the
analysis of orientability for actions with signature type (0;+; [m1,m2]; {(2, 2)})
splits into the following cases:

Actions on non-orientable surfaces Actions on orientable surfaces

(0;+; [2, n]; {(2, 2)}), n = g even; (0;+; [3, 3]; {(2, 2)}), n=g=6;
(0;+; [2, n/2], {(2, 2)}), n=g + 1≡2 (mod 4); (0;+; [3, 5]; {(2, 2)}), n=g=30;
(0;+; [3, 4]; {(2, 2)}), n = g = 12;
(0;+; [3, 6]; {(2, 2)}), n = 6, g = 7.

In all cases, the actions occur on surfaces with n/2 boundary components, by
Lemma 3.2.

Finally, for NEC groups Γ with signature type (0;+; [m1,m2,m3]; {(−)}), we
have μ(Γ) = 2 − 1/m1 − 1/m2 − 1/m3, and the only triples (m1,m2,m3) with
2 ≤ m1 ≤ m2 ≤ m3 such that μ(Γ) ≤ 1 are the following: (2, 2,m) where m ≥ 2,
(2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 3, 6), (2, 4, 4) and (3, 3, 3). Note also that the unique
canonical generating reflection c0 of Γ has to be killed by θ. This implies that
n = lcm(m1,m2,m3), since Cn is generated by elements of orders m1, m2 and m3.
For signatures (0;+; [2, 4, 4]; {(−)}) and (0;+; [3, 3, 3]; {(−)}), we have n=g−1=4
and n=g−1=3 respectively, and we can rule both of these out since C4 is not the
largest full cyclic group acting in genus five, and C3 is not the largest in genus four.
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For the remaining signatures, the values of n and g are as follows:

(0;+; [2, 2, n]; {(−)}) n=g even; (0;+; [2, 2, n/2], {(−)}) n=g + 1≡ 2 (mod 4);
(0;+; [2, 3, 3]; {(−)}) n=g=6; (0;+; [2, 3, 4]; {(−)}) n = g = 12;
(0;+; [2, 3, 5]; {(−)}) n=g=30; (0;+; [2, 3, 6]; {(−)}) n = 6, g = 7.

With regard to orientability, c0 is the unique orientation reversing canonical gen-
erator of Γ and so ker θ contains no non-orientable word. The number of the
boundary components equals n/m where m is the order of θ(e) = θ(x1x2x3)

−1.
For signatures (0;+; [2, 2, n]; {(−)}) and (0;+; [2, 2, n/2]; {(−)}), where necessar-
ily θ(x1) = θ(x2), this order is n or n/2 respectively. Thus Cn acts with sig-
nature (0;+; [2, 2, n]; {(−)}) on surfaces of topological type +1, and with sig-
nature (0;+; [2, 2, n/2]; {(−)}) on surfaces of topological type +2. For signature
(0;+; [2, 3, 3]; {(−)}) we have θ(x1)=v3, θ(x2) = v±2 and θ(x3) = v±2, and
so θ(e) = v, v3 or v5. This gives one or three boundary components. For sig-
nature (0;+; [2, 3, 4]; {(−)}) we have θ(x1) = v6, θ(x2) = v±4 and θ(x3) = v±3,
so θ(e) = v±1 or v±5, and there is just one boundary component. For signature
(0;+; [2, 3, 5]; {(−)}) we have θ(x1) = v15, θ(x2) = v±10 and θ(x3) = v±6 or v±12,
so θ(e) = v±1, v±7, v±11 or v±13, and again this gives one boundary component.
Finally, for signature (0;+; [2, 3, 6]; {(−)}) we have θ(x1) = v3, θ(x2) = v±2 and
θ(x3) = v±1, so θ(e) = 1 or v±2, giving six or two boundary components. �

As a consequence of Remark 2.2 and the proof of Theorem 3.3 we also have the
following.

Corollary 3.4. If the cyclic group Cn acts faithfully on a bordered surface S of
algebraic genus g ≥ 2, and either n > g + 1 with g ≡ 1 (mod 4), or n > g with
g is even, or n > g− 1 with g ≡ 3 (mod 4), then also the dihedral group Dn acts
faithfully on S.

In [4] it was shown that the order of the largest cyclic group that acts as the
full group of automorphisms on an unbordered non-orientable surface of algebraic
genus g is g + 1 if g ≡ 1 (mod 4), g if g is even, and g − 1 if g ≡ 3 (mod 4).
These are the same bounds as for bordered surfaces, according to Theorem 3.3.
Proposition 3.5 below shows examples of the phenomenon that a bordered and
an unbordered surface attaining the same bound may come together as the Klein
surfaces associated with two different symmetries on the same compact Riemann
surface. Here we recall the definition of a symmetry of a Riemann surface X as an
antianalytic involution τ : X → X. Given such a τ , the orbit space X/τ admits a
dianalytic structure which makes it a compact Klein surface. Moreover, all such
surfaces arise in this way; see [1]. In addition, the full group Aut(X/τ) of auto-
morphisms of the Klein surface X/τ is isomorphic to the centraliser in Aut+(X)
of τ, where Aut+(X) stands for the group of analytic automorphisms of X .

Proposition 3.5. For every integer g ≥ 2 there exists a compact Riemann sur-
face X of genus g with two symmetries τ1 and τ2 such that the full group of au-
tomorphisms of the associated Klein surfaces X/τi is cyclic of the largest possible
order, with one of the surfaces being bordered, and the other one unbordered.
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Proof. For each g ≥ 2, take n = g + 1, g or g − 1, according to whether g ≡ 1
(mod 4), or g is even, or g ≡ 3 (mod 4) respectively. We will provide an epimor-
phism φ from a maximal NEC group Γ of the appropriate signature to Cn ×C2 =
〈v, t | vn = t2 = [v, t] = 1〉, such that kerφ is a surface Fuchsian group (a surface
NEC group with no orientation reversing element). The orbit space X = H/ kerφ
of the hyperbolic plane under the action of kerφ is then a compact Riemann sur-
face. The maximality of Γ assures that Cn × C2 is the full group Aut±(X) of
analytic and antianalytic automorphisms of X, and the epimorphism φ will be
defined so that the subgroup of analytic automorphisms will be cyclic of order n.
This way, the Riemann surface X will have exactly two non-conjugate symme-
tries, say τ1 and τ2, and the full group Aut(X/τi) of each associated Klein surface
will be cyclic of the largest possible order. For each symmetry τi, we can write
〈τi〉 = Λi/ kerφ where Λi = φ−1(〈τi〉) is a surface NEC group uniformising X/τi,
since X/τi =

(
H/ kerφ

)
/
(
Λi/ kerφ

)
= H/Λi. Hence the topological type of X/τi

can be read from the sign and the number of empty period cycles in the signa-
ture of Λi. Results from Sections 2.1 and 2.3 of [7] can be used to determine both
parameters of σ(Λi).

If g ≡ 1 (mod 4), then we take a maximal NEC group Γ with signature σ(Γ) =
(0;+; [2, 2, g+1

2 ]; {(−)}) and define φ : Γ → Cg+1 × C2 = 〈v〉 × 〈t〉 by setting

φ(x1) = φ(x2) = v(g+1)/2, φ(x3) = v2, φ(e1) = v−2, φ(c0) = t.

It is clear that kerφ is a surface Fuchsian group, and so X = H/ kerφ is a compact
Riemann surface, of genus g by the Riemann–Hurwitz formula. Let τ1 := t and
τ2 := tv(g+1)/2 be the two symmetries of X. The preimage φ−1(〈τ1〉) is a surface
NEC group with no non-orientable word (with respect to Γ), and whose signature
has two empty period cycles, and so the Klein surface X/τ1 has topological type
+2. The preimage φ−1(〈τ2〉) is a surface NEC group containing the non-orientable
word x1c0, and whose signature has no period cycle, and it follows that the Klein
surface X/τ2 is unbordered and non-orientable.

If g is even, then we take a maximal NEC group Γ with signature σ(Γ) =
(0;+; [2, 2, g];{(−)}), and define φ : Γ → Cg × C2 = 〈v〉 × 〈t〉 by setting

φ(x1) = φ(x2) = vg/2, φ(x3) = v, φ(e1) = v−1, φ(c0) = t.

As above, it is easy to check that X = H/ kerφ is a compact Riemann surface
of genus g with two symmetries τ1 := t and τ2 := tvg/2, such that X/τ1 has
topological type +1 while X/τ2 is unbordered and non-orientable.

If g ≡ 3 (mod 4), then we take a maximal NEC group Γ with signature σ(Γ) =
(0;+; [2, 2]; {(−), (−)}), and define φ : Γ → Cg−1 × C2 = 〈v〉 × 〈t〉 by setting

φ(x1) = φ(x2) = v(g−1)/2, φ(e1) = v, φ(e2) = v−1, φ(c10) = φ(c20) = t.

The two symmetries of the genus g compact Riemann surface X = H/ kerφ
are τ1 := t and τ2 := tv(g−1)/2. In this case, the topological type of X/τ1 is +2,
while X/τ2 is unbordered and non-orientable.
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Also if g ≡ 3 (mod 4), we can take a maximal NEC group Γ with signature
σ(Γ) = (1;−; [2, 2]; {(−)}), and define φ : Γ → Cg−1 × C2 = 〈v〉 × 〈t〉 by setting

φ(d) = v, φ(x1) = φ(x2) = t, φ(e1) = v−2, φ(c0) = v(g−1)/2.

The orbit space X := H/ kerφ is a compact Riemann surface of genus g, with
two symmetries τ1 := v(g−1)/2 and τ2 := tv(g−1)/2 such that X/τ1 has topological
type −2 while X/τ2 is unbordered and non-orientable. �

Remark 3.6. In analogy with the notion of q-hyperellipticity on Riemann surfaces,
a compact Klein surface S of algebraic genus g ≥ 2 is said to be q-hyperelliptic if
it admits an involutory automorphism ϕ such that the quotient surface S/ϕ has
algebraic genus q. If q = 0 then S is hyperelliptic, while 1-hyperelliptic surfaces are
usually called elliptic-hyperelliptic. In [4] it is shown that the unbordered and non-
orientable surface S = X/τ occurring in Proposition 3.5 is hyperelliptic if g �≡ 3
(mod 4), and elliptic-hyperelliptic but not hyperelliptic if g ≡ 3 (mod 4), for all
g �= 3, 6, 7, 12, 30. Viewing ϕ as an analytic automorphism of X , we can consider
the orbit space X/ϕ, which is a compact Riemann surface. It is easy to see that the
genus of X/ϕ is the same as the algebraic genus of the Klein surface S/ϕ. Hence the
compact Riemann surface X occurring in Proposition 3.5 is hyperelliptic if g �≡ 3
(mod 4), and elliptic-hyperelliptic but not hyperelliptic if g ≡ 3 (mod 4), for all
g �= 3, 6, 7, 12, 30.

Remark 3.7. The Riemann surface X in the statement of Proposition 3.5 is not
unique within its genus, but is a member of an infinite family of Riemann surfaces
with the same property. The reason this happens is that the Teichmüller dimension
of the maximal Fuchsian groups Γ in the proof of the proposition is positive.

4. The full real genus of a cyclic group

The real genus of a finite group G is the minimum algebraic genus of any compact
bordered surface S on which G acts effectively as a group of automorphisms; this
was defined by May in [20]. For surfaces of genus g ≥ 2, this parameter has
been completely determined for all cyclic G; see Chapter 3 in [7]. For instance,
if n ≡ 2 (mod 4) with n > 2 then the real genus of Cn is n/2 − 1, attainable via
a smooth epimorphism θ : Γ → Cn where Γ has signature (0;+; [n/2]; {(2, 2)}) or
(0;+; [2, n/2]; {(−)}). These signatures correspond to cases 9 and 10 of Section 2,
and so Theorem 2.1 implies that the smooth epimorphism θ always extends to a
larger group action. Hence for all such n, whenever Cn acts on a bordered surface
of the minimum genus, the full automorphism group of the surface is strictly larger
than Cn. A natural question arises from these observations: Given a finite group G,
what is the minimum algebraic genus of a bordered surface S on which G acts
effectively as the full automorphism group of S? We call this number the full real
genus of the group G.

It is interesting to point out that when n ≡ 2 (mod 4) and n > 2, the above real
genus n/2− 1 is attained for orientable surfaces, whereas the minimum algebraic
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genus of a non-orientable surface on which Cn acts is n/2. This makes it sensible to
split the concept of real genus into two, by defining the real orientable genus and
(respectively) the real non-orientable genus of a group G as the minimum algebraic
genus of the compact bordered orientable surfaces and the non-orientable surfaces
on which G acts. Then in turn, we may define the full real orientable genus
and the full real non-orientable genus of G as the minimum algebraic genus of the
compact bordered orientable surfaces and (respectively) the non-orientable surfaces
on which G acts effectively as the full automorphism group. In this section, we
compute the full real orientable genus and the full real non-orientable genus of the
cyclic group Cn, for all n. In addition, we also determine the number of boundary
components of the surfaces for which these minima are attained.

Observe that the cyclic group C2 acts on every surface of algebraic genus 2,
since these are hyperelliptic. Moreover, most surfaces of genus 2 have no non-trivial
automorphisms other than the hyperelliptic involution, and it follows that the full
real genus (orientable or non-orientable) of C2 is 2. Note that by most surfaces,
we mean all (classes of) surfaces in each of the four connected components of the
moduli space of bordered surfaces of genus 2, except for those in a subvariety of
codimension one. Accordingly, from now on we will assume that n > 2.

Suppose the finite group G acts on a bordered surfaceH/Λ of algebraic genus g,
and let θ : Γ → G be the corresponding smooth epimorphism, with ker θ = Λ. Then
since the area 2πμ(Λ) of the surface NEC group Λ is 2π(g − 1), the Riemann–
Hurwitz formula μ(Λ) = |G|μ(Γ) gives

g = 1 + |G|μ(Γ).
Hence in order to find the full real genus of G, we have to minimise the area of Γ
among all NEC groups admitting a non-extendable smooth epimorphism θ : Γ → G.

For G = Cn, Theorem 2.1 shows that Γ cannot have any of the signatures σ
occurring in the second column of Table 1. We find the only signatures for which
the full real orientable genus can be attained, in Lemma 4.1 below. The analogous
result for the full real non-orientable genus is given in Lemma 4.6.

4.1. The full real orientable genus of a cyclic group

Lemma 4.1. If the full real orientable genus of Cn (n > 2) is attained by means
of a smooth epimorphism θ : Γ → Cn, then the signature of Γ is of the form
(0;+; [m1,m2,m3]; {(−)}) or (0;+; [n/2]; {(2, 2, 2, 2)}), with the latter occurring
only when n/2 is odd.

Proof. We first show that the reduced area μ(Γ) of Γ is bounded above by

(4.1) μ(Γ) ≤ 2− 2

p
− 1

n
,

where p is the smallest prime divisor of n. To show this, we choose a maximal
NEC group Δ with signature σ(Δ) = (0;+; [p, p, n]; {(−)}) and define a smooth
epimorphism θ : Δ → Cn = 〈v〉 by setting

θ(x1) = θ(x2) = vn/p, θ(x3) = v, θ(e) = v−2n/p−1, θ(c) = 1.
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By the maximality of Δ, it follows that Cn acts as the full automorphism group
of the bordered surface H/ ker θ. We observe that H/ ker θ is orientable, because
the only orientation reversing canonical generator of Δ belongs to ker θ; see The-
orems 2.1.2 and 2.1.3 in [7]. Hence μ(Γ) ≤ μ(Δ) = 2 − 2/p − 1/n, which gives
inequality (4.1).

Next, we look for NEC groups Γ uniformising an action of Cn as the full group
of a bordered orientable surface, such that the reduced area μ(Γ) satisfies the above
inequality. We know by Lemma 1.1 that Γ has signature

σ = σ(Γ) = (γ;±; [m1, . . . ,mr]; {(−), k. . ., (−), (2, r1. . ., 2), . . . , (2, rd. . ., 2)})
where ri is even for i = 1, . . . , d, and k + d ≥ 1, with d = 0 if n is odd.

Let us first consider odd values of n. Since each mi is a divisor of n we get
mi ≥ p for all i, and so

αγ + k− 2+ r
(
1− 1

p

)
≤ αγ + k− 2+

r∑
i=1

(
1− 1

mi

)
= μ(Γ) ≤ 2− 2

p
− 1

n
< 2− 2

p
.

This gives αγ+k+(r(p−1)+2)/p<4, and then since k ≥ 1 we get αγ+k = 1, 2 or 3.
Actually α = 2, since for n odd, ker θ and Γ have the same sign; see Theorem 2.1.2
in [7].

Now a straightforward calculation shows that there are five different types of
NEC signatures that satisfy these conditions, namely the following:

(0;+; [m1,m2]; {(−)}), (0;+; [m1,m2,m3]; {(−)}), (0;+; [m]; {(−), (−)}),
(0;+; [−]; {(−), (−), (−)}), (1;+; [−]; {(−)}).

Of these, all but (0;+; [m1,m2,m3]; {(−)}) are non-maximal NEC signatures, and
in those cases, Theorem 2.1 shows that the cyclic action is never the full group of
automorphisms of the surface. Hence in particular, the lemma holds for all odd
values of n.

For even values of n, we have

αγ + k + d− 2 +

r∑
i=1

(
1− 1

mi

)
+

r1 + · · ·+ rd
4

= μ(Γ) ≤ 2− 2

p
− 1

n
= 1− 1

n
< 1.

If d ≥ 2 then (r1 + · · · + rd)/4 ≥ 1 because each ri is even, and it follows
that μ(Γ)≥αγ + k +

∑
(1− 1/m1) + 1≥1, which contradicts the above inequality.

If d = 0 then k ≥ 1 and αγ + k = 1 or 2. Then if α = 2, we can repeat the same
calculations as in the case n odd to conclude that (0;+; [m1,m2,m3]; {(−)}) is the
only maximal NEC signature which satisfies these conditions. On the other hand,
if α = 1, then we have γ = k = r = 1, and this gives (1;−; [m]; {(−)}), which is a
non-maximal NEC signature.

Finally, if d = 1 then, since 1− 1/mi ≥ 1/2 for all i we get

αγ + k − 1 +
r

2
+

r1
4

≤ μ(Γ) < 1
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and so αγ + k = 0 or 1. A straightforward calculation then reveals there are eight
different types of NEC signatures satisfying these conditions, namely the following:

(0;+; [m]; {(2, 2)}), (0;+; [−]; {(−), (2, 2)}), (1;−; [−]; {(2, 2)}),
(0;+; [3, 3]; {(2, 2)}), (0;+; [3, 5]; {(2, 2)}), (0;+; [m]; {(2, 2, 2, 2)}),
(0;+; [3, 4]; {(2, 2)}), (0;+; [2,m]; {(2, 2)}).

The three NEC signatures in the first row are non-maximal, and so Theorem 2.1
rules them out. Also if the signature of Γ is one of the two occurring in the
last row, then there exists no smooth epimorphism θ : Γ → Cn with orientable
kernel, by part of the proof of Theorem 3.3. The same happens if Γ has signature
(0;+; [m]; {(2, 2, 2, 2)}) with m even; on the other hand, if m is odd, then n = 2m
since Cn is generated by elements of order m and 2, and then there does exist a
smooth epimorphism with orientable kernel.

If σ(Γ) = (0;+; [3, 3]; {(2, 2)}) or (0;+; [3, 5]; {(2, 2)}) then n = 6 or 30 re-
spectively, and there do exist smooth epimorphisms with orientable kernel in
both cases. The full real orientable genus of C6, respectively C30, however, can-
not be attained by an NEC group with signature (0;+; [3, 3]; {(2, 2)}), respectively
(0;+; [3, 5]; {(2, 2)}), since its area is larger than the area of (0;+; [3]; {(2, 2, 2, 2)}),
respectively (0;+; [15]; {(2, 2, 2, 2)}).This proves the lemma for even values of n. �

Conditions on the signature σ(Γ) of an NEC group Γ that are necessary and suf-
ficient for it to admit a smooth epimorphism θ : Γ → Cn, with ker θ orientable, can
be obtained from Section 3.1 in [7]. For signature type (0;+; [m1,m2,m3]; {(−)}),
one requires only that lcm(m1,m2,m3) = n. This condition is necessary since Cn

has to be generated by elements θ(x1), θ(x2) and θ(x3) of orders m1, m2 and m3,
respectively; and conversely, if lcm(m1,m2,m3) = n then by setting θ(xi) = vn/mi

for i = 1, 2, 3 and θ(c) = 1, we get a smooth epimorphism θ : Γ → Cn = 〈v〉
with ker θ orientable. For signature (0;+; [n/2]; {(2, 2, 2, 2)}), no extra condition
is required as long as n/2 is odd, as observed in the proof of Lemma 4.1.

Hence in order to find the full real orientable genus of Cn, we have to minimise
the reduced area μ(σ) = 2 − (1/m1 + 1/m2 + 1/m3) among all NEC signatures
of the form (0;+; [m1,m2,m3]; {(−)}) under the condition lcm(m1,m2,m3) = n.
This was carried out in Lemma 4.2 in [4], and for the reader’s convenience, we
restate the result here, as follows.

Lemma 4.2. Let n = p1
e1p2

e2 · · · pses be the prime-power decomposition of n, such
that p1 < p2 < · · · < ps. Then the maximum value of 1/m1 + 1/m2 + 1/m3 over
all triples (m1,m2,m3) such that 2 ≤ m1 ≤ m2 ≤ m3 and lcm(m1,m2,m3) = n
is attained by:

(a) (p1, p2, p3), when n is of the form p1p2p3 with 3 < p1 < p2 < p3 < p1(p2−1)
p2−p1

,

(b) (p1, p1, n/p1), when s > 1 and e1 = 1 and n is not of the form in (a), and

(c) (p1, p1, n) otherwise.

If n/2 is odd then the minimum reduced area is attained by either signa-
ture (0;+; [2, 2, n/2]; {(−)}) (see case (b) above) or (0;+; [n/2]; {(2, 2, 2, 2)}) (see
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Lemma 4.1) since both have the same reduced area. Using Lemmas 4.1, 4.2 and
the Riemann–Hurwitz formula, we find that the full real orientable genus of Cn is
as given in Theorem 4.3, for all n ≥ 2.

Theorem 4.3. Let n = p1
e1p2

e2 · · · pses be the prime-power decomposition of n,
such that p1 < p2 < · · · < ps. Then the full real orientable genus of the cyclic
group Cn is

(a) 2p1p2p3 − p1p2 − p1p3 − p2p3 + 1 when n = p1p2p3 with 3 < p1 < p2 < p3 <
p1(p2−1)
p2−p1

,

(b) 2n− 2n/p1 − p1 +1 when s > 1 and e1 = 1 and n is not of the form in (a),
and

(c) 2n− 2n/p1 otherwise.

Remark 4.4. Note that when n is even and n > 2, the full real orientable genus
of Cn is n− 1 if n ≡ 2 (mod 4), and n if n ≡ 0 (mod 4). For these values of n, in
Theorem 4.7 we will see that the full real orientable genus is equal to the full real
non-orientable genus.

The number of boundary components (and hence the topological type) of the
surfaces attaining the full real orientable genus is almost completely determined
by the signature with which Cn acts, as the proof of the next proposition shows.

Proposition 4.5. The number of boundary components of a surface S attaining
the full real orientable genus of a cyclic group of order n is either 1, p or g + 1,
where p is the smallest prime divisor of n.

Proof. If n is as in part (a) of Theorem 4.3, then σ(Γ) = (0;+; [p1, p2, p3]; {(−)}),
assuming the same notation as in Lemma 4.1. In this case, the number of boundary
components of S is k = n/m, where m is the order of θ(e) = θ(x1x2x3)

−1; see
Theorem 2.3.1 in [7]. It is clear that θ(x1x2x3) has order p1p2p3 = n, and so k = 1
for any such n.

If n is as in part (b) of Theorem 4.3, then σ(Γ) = (0;+; [n/2]; {(2, 2, 2, 2)}) with
n/2 odd, or σ(Γ) = (0;+; [p1, p1, n/p1]; {(−)}). In the first case, Lemma 3.2 implies
that k = n, and then since for n/2 odd, the full real orientable genus g is n− 1, we
have k = g + 1. In the second case, k = n/m where m is the order of θ(x1x2x3);
in this case, if θ(x1x2) is trivial then m = n/p1 and so k = p1, while otherwise
θ(x1x2) has order p1 and then since gcd(p1, n/p1) = 1 the order of θ(x1x2x3) is n,
and so k = 1.

Finally, if n is as in part (c) of Theorem 4.3, then σ(Γ)=(0;+; [p1, p1, n]; {(−)}).
Writing v = θ(x3) we have θ(x1x2x3) = v

n
p (α1+α2)+1 for some α1 and α2, both

coprime with p1. This element has orderm = n/d where d = gcd(np (α1+α2)+1, n).

Now if p2 divides n, then p divides n/p and so d = 1, which gives m = n and
k = n/m = 1; otherwise n = p and then d = 1 or p, so k = n/m = d = 1 or p
as well. �
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4.2. The full real non-orientable genus of a cyclic group

Lemma 4.6. For n > 2, if the full real non-orientable genus of Cn is attained by
means of a smooth epimorphism θ : Γ → Cn, then the signature of Γ is of the form

(1;−; [m1,m2]; {(−)})
whenever n is odd, and

(0;+; [2,m]; {(2, 2)}), (0;+; [n]; {(2, 2, 2, 2)}) or (0;+; [3, 4]; {(2, 2)})
whenever n is even, with the last of these signatures occurring only when n = 12.

Proof. For n odd, we choose a maximal NEC group Δ with signature (1;−; [p, p];
{(−)}), where p is the smallest prime divisor of n, and define θ : Δ → Cn = 〈v〉 by
setting

θ(d) = v, θ(x1) = θ(x2) = vn/p, θ(e) = v−2−2n/p, θ(c) = 1.

For n even, we let Δ be a maximal NEC group with signature (0;+; [2, n]; {(2, 2)}),
and take

θ(x1) = vn/2, θ(x2) = v, θ(e) = v−n/2−1, θ(c0) = θ(c2) = vn/2, θ(c1) = 1.

Observe that each surface H/ ker θ is bordered (since ker θ contains one canoni-
cal reflection of Δ), and also is non-orientable (since ker θ contains a non-orientable
word w ∈ Δ, namely w = dn/px−1

1 for n odd, and w = x1c0 for n even; see Theo-
rem 2.1.3 in [7]). Accordingly,

(4.2) μ(Γ) ≤ μ(Δ) =

{
2− 2/p if n is odd;
1− 1/n if n is even.

Next we look for maximal NEC groups Γ uniformising an action of Cn as the
full group of a non-orientable bordered surface, such that the reduced area μ(Γ)
satisfies the corresponding inequality in (4.2). Lemma 1.1 implies that Γ has
signature

σ = σ(Γ) = (γ;±; [m1, . . . ,mr]; {(−), k. . ., (−), (2, r1. . ., 2), . . . , (2, rd. . ., 2)})
where ri is even for all i, and d = 0 if n is odd, and k + d ≥ 1.

For n odd, we know that ker θ and Γ have the same sign; see Theorem 2.1.2
in [7]. It is now easy to see (by the arithmetic arguments made in Lemma 4.1)
that γ + k = 2 or 3. A straightforward calculation shows there are four different
types of NEC signatures that satisfy these conditions, namely the following:

(1;−; [m1,m2]; {(−)}), (1;−; [m]; {(−)}), (1;−; [−]; {(−), (−)}), (2;−; [−]; {(−)}).
All but the first one of these are non-maximal NEC signatures, and so this proves
the lemma for the case where n is odd.
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For n even, we have d = 0 or 1, because if d ≥ 2 then we have μ(Γ) ≥ 1; see
the proof of Lemma 4.1. If d = 0 then αγ + k = 1 or 2. If αγ+ k = 1, we find that
σ(Γ) = (0;+; [m1, . . . ,mr]; {(−)}), but there is no smooth epimorphism from an
NEC group Γ with this signature that has non-orientable kernel. Hence αγ+k = 2.
This implies that r = 1, and so σ(Γ) = (0;+; [m]; {(−), (−)}) or (1;−; [m]; {(−)});
but these are both non-maximal NEC signatures, and so Theorem 2.1 rules them
out. For d = 1, the same argument as used in the proof of Lemma 4.1 shows that
the only maximal signatures that can occur in this case are

(0;+; [3, 3]; {(2, 2)}), (0;+; [3, 5]; {(2, 2)}), (0;+; [m]; {(2, 2, 2, 2)}),
(0;+; [2,m]; {(2, 2)}), (0;+; [3, 4]; {(2, 2)}).

If σ(Γ) = (0;+; [3, 3]; {(2, 2)}) or (0;+; [3, 5]; {(2, 2)}), then by the proof of
Theorem 3.3, any smooth epimorphism θ : Γ → Cn has orientable kernel, so we
may discard these two cases. The same happens to (0;+; [m]; {(2, 2, 2, 2)}) if m is
odd; on the other hand, if m is even (and then m = n because Cn is generated
by elements of orders m and 2), then there does exist a smooth epimorphism with
non-orientable kernel. If σ(Γ) = (0;+; [2,m]; {(2, 2)}), then n = m if m is even
while n = 2m if m is odd, and if σ(Γ) = (0;+; [3, 4]; {(2, 2)}) then n = 12; it
is also easy to see that there do exist smooth epimorphisms with non-orientable
kernel, for each of these two signatures. Note that the full real non-orientable
genus of C12 can be attained by an NEC group with signature (0;+; [3, 4]; {(2, 2)}),
(0;+; [12]; {(2, 2, 2, 2)}) or (0;+; [2, 12]; {(2, 2)}) since all three of these signatures
have the same area. �

Conditions for an NEC group Γ with given signature to admit a smooth epimor-
phism θ : Γ → Cn with ker θ non-orientable are obtainable from Section 3.1 in [7].
For signature type (1;−; [m1,m2]; {(−)}) with n odd, one requires only that n is
divisible by each ofm1 and m2. This condition is clearly necessary, and is also suffi-
cient, because if we set θ(d) = v, θ(x1) = vn/m1 , θ(x2) = vn/m2 and θ(c) = 1, then
we get a smooth epimorphism θ : Γ → Cn = 〈v〉, with ker θ non-orientable (since it
contains the non-orientable word x1d

−n/m1). Clearly, the minimum reduced area of
all such signatures is 2−2/p, attained by (1;−; [p, p]; {(−)}) where p is the smallest
prime divisor of n. For signatures (0;+; [2, n/2]; {(2, 2)}), (0;+; [2, n]; {(2, 2)}) and
(0;+; [n]; {(2, 2, 2, 2)}), no extra condition is required, provided that for the first
one, n is even with n/2 odd. The reduced area for the first one is 1 − 2/n, while
the areas for the last two are both 1− 1/n. This latter is also the reduced area of
(0;+; [3, 4]; {(2, 2)}), which is valid for n = 12.

All of this, when together with the Riemann–Hurwitz formula, gives the fol-
lowing.

Theorem 4.7. The full real non-orientable genus of the cyclic group Cn is

(a) 2n− 2n/p+ 1 where p is the smallest prime divisor of n, if n is odd ;

(b) n if n ≡ 0 (mod 4);

(c) n− 1 if n ≡ 2 (mod 4).
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Next, we determine the number of boundary components (and hence the topo-
logical type) of the surfaces attaining the full real non-orientable genus. This
number k is completely determined by n if n ≡ 2 (mod 4) or n is odd, as the proof
of the next proposition shows.

Proposition 4.8. The number of boundary components of a surface S attaining
the full real non-orientable genus g of the cyclic group Cn is g/2, (g + 1)/2 or g
when n is even, and is 1 or p, where p is the smallest prime divisor of n, when n
is odd.

Proof. If n ≡ 2 (mod 4) then σ(Γ) = (0;+; [2, n/2]; {(2, 2)}), where we are using
the same notation as in Lemma 4.1. Hence the number of boundary components
of S is k = n/2; see Lemma 3.2. Since for these values of n the full real non-
orientable genus g is n− 1, we find that k = n/2 = (g + 1)/2.

Next, if n ≡ 0(mod 4), then σ(Γ)=(0;+; [2, n]; {(2, 2)}), (0;+; [n]; {(2, 2, 2, 2)})
or (0;+; [3, 4]; {(2, 2)}), with the last of these occurring only when n = 12. The
number of boundary components is k = n/2 for the first and the last signatures,
and k = n for the second. Thus k = g/2 or k = g (because g = n for these values
of n).

We assume from now on that n is odd. Then σ(Γ) = (1;−; [p, p]; {(−)}) and in
this case k = n/m where m is the order of θ(e) = θ(d 2

1 x1x2)
−1. Observe that Cn is

generated by θ(d1), θ(x1) and θ(x2), of orders r (say), p and p. It follows that r = n
or r = n/p, with the latter occurring only if p2 does not divide n.

If p2 divides n, then p2 must divide r and so r = n. Then taking v = θ(d1), we

have θ(e) = θ(d 2
1 x1x2) = v2+

n
p (α1+α2) for some α1 and α2, both coprime with p.

This element has order n/d, where d = gcd(2 + n
p (α1 + α2), n), which is 1 since n

is odd and p divides n/p. Hence m = n and k = 1 in this case.

Similarly, if p2 does not divide n, but r=n, then θ(e)=θ(d 2
1 x1x2) has order n/d

where d = gcd(2 + n
p (α1 + α2), n), and this must be 1 or p. Both possibilities can

occur, for instance by taking α1 = 1 = −α2 to get d = 1, and using the fact
that p and n/p are coprime to choose α1 + α2 (and then α1 and α2) such that
2+ n

p (α1 +α2) is divisible by p, to get d = p. Thus m = n or n/p, and k = 1 or p.

Finally, if p2 does not divide n, and r = n/p, then the orders of θ(d 2
1 ) and θ(x1x2)

are n/p and either 1 or p, and hence are coprime, so the order of θ(e) = θ(d 2
1 x1x2)

is either n/p or n. Thus k = n/m = p or 1 in this case too. �

As noted in Remark 4.4, the full real orientable genus and the full real non-
orientable genus coincide for even values of n. For odd values of n, it is easy
to see that the full real non-orientable genus 2n − 2n/p1 + 1 is larger than the
corresponding quantities occurring in parts (a), (b) and (c) of Theorem 4.3. As a
consequence, we have the following.

Corollary 4.9. The full real genus of the cyclic group Cn is equal to its full real
orientable genus, as given in Theorem 4.3.
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