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On the existence of almost-periodic solutions for

the 2D dissipative Euler equations

Luigi C. Berselli and Luca Bisconti

Abstract. In this paper we study the two-dimensional dissipative Euler
equations in a smooth and bounded domain. In the presence of a suffi-
ciently large dissipative term (or equivalently a sufficiently small external
force) precise uniform estimates on the modulus of continuity of the vor-
ticity are proved. These allow us to show existence of Stepanov almost-
periodic solutions.

1. Introduction

In this paper we prove some results related with the long-time behavior of the Euler
equations (with dissipation) for incompressible fluids in two space dimensions,
aimed at proving existence of almost-periodic solutions. For the Euler equations
it is well known that in the 2D case it is possible to prove, for smooth enough
data, existence and uniqueness of smooth solution, for all positive times; see also
the discussion in the next section for certain less standard results. It is also clear
that without any smoothing or dissipation, one cannot expect to have uniform
boundedness of the energy and of other interesting quantities such as the enstrophy
or higher norms of the velocity. In order to study general properties as attractors
or existence of almost-periodic solutions (where uniform bounds are sought) we
consider the dissipative Euler equations

(1.1)

∂tu+ χu+ (u · ∇)u +∇π = f in (0,∞)× Ω,

∇ · u = 0 in (0,∞)× Ω,

u · n = 0 on (0,∞)× Γ,

u0(0, x) = u0(x) in Ω,

where Ω ⊂ R
2 is a bounded open set with smooth boundary Γ, n is the unit outward

normal vector on Γ, the vector u(t, x) = (u1(t, x), u2(t, x)) is the velocity of the
fluid, π(t, x) is the kinematic pressure, and f = f(t, x) is the external force field.
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The damping term χu (with a constant χ > 0) models the friction along the
bottom in some 2D oceanic models (when this system is considered in a bounded
domain; in that case, the system is called the viscous Charney–Stommel barotropic
ocean circulation model of the gulf stream) or the Rayleigh friction in the plan-
etary boundary layer (with space-periodic boundary conditions). The positive
constant χ is the Rayleigh friction coefficient (or the Ekman pumping/dissipation
constant) or also the sticky viscosity, when the model is used to study motion in
the presence of rough boundaries; see for instance Gallavotti [23]. Early existence
results can be found in Barcilon, Constantin, and Titi [3], while links between the
driven and damped 2D Navier–Stokes equations, attractors, and statistical solu-
tions are proved in Ilyin, Miranville, and Titi [25]; Constantin and Ramos [18];
and Constantin, Tarfulea, and Vicol [19]. In recent years the present model has
been considered by a number of authors, see for instance [11], [13], [16], [17], [24].
The system (1.1) represents (probably) the “weakest” dissipative modification of
the Euler equations and results on the long-time behavior of the damped/driven
Navier–Stokes equations do not pass directly to the limit as the “viscosity goes
to zero”, hence a completely different treatment is required to study the problem
without viscosity. This is why here we use some special topologies, which are not
derived from the classical Hölder or Sobolev norms.

The main result we will prove is the existence of almost-periodic solutions in
the sense of Stepanov, (see [10]) with values in L2(Ω), under certain restrictions on
the relative sizes of the external force and of the dissipation term; see Theorem 5.1
for the precise statement. To this end we need to show precise estimates, uniform
in time, for the vorticity. The boundedness of the vorticity, although sufficient to
show uniqueness of weak solutions, is not enough to prove results of asymptotic
stability, which is one of the main points generally needed to prove existence of
almost-periodic solutions; see Amerio and Prouse [1]. For dissipative equations this
is now well established (see also the recent results in [9] for an inverse problem) but
the Euler system does not directly satisfy the assumptions needed to use abstract
results, and this motivates using a stronger topology. In particular, the regularity
needed to quantitatively estimate the difference between two solutions over large
time-intervals seems to be the represented by the supremum norm (with respect
to the x variable) of the gradient of velocity. The topology of Hölder spaces seems
to be poorly suited to this problem, hence we resort to something quite sharp,
the Dini norm of the vorticity field. We point out that the use of this topology
on continuous functions goes back to Beirão da Veiga [5] in the context of global
well-posedness of the 2D Euler equations, while in questions of stability the role of
Dini-continuous vorticity was first recognized by Koch [29], even if the application
to almost-periodic solutions and some of the techniques we apply here are, so far
as we know, original.

2. Notation and preliminary facts

Here and in the sequel, we suppose, without loss of generality, the diameter of the
bounded set Ω to be one. To avoid technical complications, we assume also that Ω
is simply connected, referring to the cited bibliography for how to modify the proofs
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to deal also with this case. Adhering to the notation standard in mathematical
fluid mechanics, let V denote the space of infinitely differentiable vector fields v
on Ω with compact support strictly contained in Ω and satisfying the constraint
∇ · v = 0. We introduce the space H of measurable vector fields v : Ω → R

2 which
are square integrable, divergence free, and tangential to the boundary Γ:

H :=
{
v ∈ [L2(Ω)]2 : ∇ · v = 0 in Ω, v · n = 0 on Γ

}
.

In H the normal trace is well defined in H−1/2(Γ) and, moreover, H is a separable
Hilbert space with the inner product of [L2(Ω)]2, denoted in the sequel by 〈·, ·〉,
and corresponding norm ‖ . ‖2; see for instance [33]. (This space is also the closure
of V with respect to the norm ‖ · ‖2.) As usual we will also denote by ‖ . ‖p the
Lp-norm with respect to the space variables belonging to Ω. Let V ⊂ H be the
following subspace:

V :=
{
v ∈ [H1(Ω)]2 : ∇ · v = 0 in Ω, v · n = 0 on Γ

}
.

The space V is a separable Hilbert space with the inner product induced by
[H1(Ω)]2 and its natural norm denoted by ‖ · ‖1,2. We also introduce the trilinear
form on V , defined as

b(u, v, w) :=

∫
Ω

(u · ∇) v · w dx.

Since we study time evolution problems, given a Banach spaceX , for p ∈ [1,∞)
we denote the usual Bochner spaces Lp(0, T ;X) with associated norm ‖f‖pLp(0,T ;X)

:=
∫ T

0
‖f(s)‖pX ds, (the lower upper bound of ‖f(s)‖X if p = ∞) while Lp

loc(X) is
the space of measurable functions R 
→ X belonging to Lp(T1, T2;X), for any
T1 ≤ T2 ∈ R.

The definition of weak solution (see [13]) for the system (1.1), is the following.

Definition 2.1. We say that a function u is a weak solution to (1.1) on [0,∞),
provided that the following four properties hold true:

u ∈ C([0,∞);H) ∩ L∞
loc(0,∞;V ) with ∂tu ∈ L2

loc(0,∞;V ′),(2.1a)

for almost every t ≥ t0 ≥ 0 and for all v ∈ V ,

‖u(t)‖22 + 2χ

∫ t

t0

‖u(s)‖22 ds ≤ ‖u(t0)‖22 +
∫ t

t0

〈f(s), u(s)〉 ds,(2.1b)

‖u(t)‖21,2 ≤ ‖u(t0)‖21,2 e−χ(t−t0) +
1

χ

∫ t

t0

‖f(s)‖21,2 e−χ(t−s) ds,(2.1c)

〈u(t)− u(t0), v〉+
∫ t

t0

(
χ 〈u(s), v〉+ b(u(s), u(s), v)

)
ds =

∫ t

t0

〈f(s), v〉 ds.(2.1d)

The following existence theorem is proved in [13], by adapting the well known
technique developed by Yudovich [35], which is based on approximation by a special
Navier–Stokes system and by using a priori estimates in L2(Ω) on both velocity
and vorticity, obtained from the momentum equation and from (2.2) below.
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Theorem 2.1. Given u0 ∈ V and f ∈ L2
loc(0,∞;V ), there exists a weak solu-

tion for (1.1). Such a weak solution is unique if curlu0 ∈ L∞(Ω) and curl f ∈
L1
loc(0,∞;L∞(Ω)).

In the context of existence and uniqueness of solutions in classes broader than
of bounded vorticity we want also to recall the recent results by Bernicot and
Hmidi [6], Azzam and Bedrossian [2], and references therein.

We now recall the definition of some other functional spaces that will be fre-
quently used in the sequel. We denote by Lp

uloc(X), the Banach space of uniformly
locally p-integrable functions on R, defined for 1 ≤ p <∞, by

Lp
uloc(X) :=

{
u : R → X, u ∈ Lp

loc(R;X) : sup
t∈R

∫ t+1

t

‖u(s)‖pX ds <∞
}
,

endowed with the norm

‖u‖Lp
uloc(X) :=

[
sup
t∈R

∫ t+1

t

‖u(s)‖pX ds
]1/p

.

We give now the precise definition of the almost-periodic functions we will use.

Definition 2.2. We say that a function f ∈ L2
uloc(X) is Stepanov 2-almost-

periodic (or simply Stepanov almost-periodic) if the set of its translates is rela-
tively compact in the L2

uloc(X)-topology. The space of Stepanov almost-periodic
functions will be denoted by S2(X)

The condition that f ∈ S2(X) is given explicitly as follows: f ∈ L2
uloc(X) and

for any sequence {rm} there is a subsequence {rmk
} and a function f̃ ∈ L2

uloc(X)
such that

sup
t∈R

∫ t+1

t

‖f(s+ rmk
)− f̃(s)‖22 ds→ 0.

Results about and further properties of Stepanov spaces can be found for instance
in the classical book by Besicovitch [10].

In the study of 2D Euler equations fundamental estimates are obtained by the
analysis of the transport equation for the vorticity. In the case of the dissipative
system (1.1) the equation satisfied by the vorticity ξ = curlu := ∂1u2 − ∂2u1 is

(2.2) ∂tξ + (u · ∇) ξ + χ ξ = φ,

where φ := curl f . By a change of variables we can also write

∂tη + (u · ∇) η = φ eχt,

with η := ξ eχt, recovering a transport equation, without zero order terms.
Since we work with space-time functions, we also define ΩT := [0, T ]× Ω and

we use the following notation: for a given T > 0,

|||f |||L∞ := sup
(x,t)∈ΩT

|f(t, x)|.
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What makes the two-dimensional Euler equations very special is that the con-
nection between velocity and vorticity can be made very explicit by the use of
the stream-function; it is particularly clean in the case of a simply-connected do-
main. Let ψ := −Δ−1θ be the solution of the Poisson equation with homogeneous
Dirichlet data {

−Δψ = θ in Ω,

ψ = 0 on Γ.

Then the vector v := ∇⊥ψ := (−∂2ψ, ∂1ψ) satisfies⎧⎪⎨⎪⎩
curl v = θ in Ω,

∇ · v = 0 in Ω,

v · n = 0 on Γ,

and for this reason we use the notation v = ∇⊥(−Δ−1θ) := curl−1 θ.
The use of the vorticity equation, being a nonlocal transport equation, is also

at the basis of the classical existence results of classical solutions, dating back to
Lichtenstein, Hölder, Wolibner, Leray, Schaeffer, and Kato. See also the historical
account in Brezis and Browder [15], §11.

As will be clear later on, in order to prove sharp estimates on the growth of the
vorticity, we will use a particular topology, namely that of Dini-continuous func-
tions CD(Ω) ⊂ C(Ω). This space is the subset of continuous functions f : Ω → R

n

such that

‖f‖CD := ‖f‖L∞ + [f ]CD := ‖f‖L∞ +

∫ 1

0

ω(f, σ)
dσ

σ
<∞,

where, for σ > 0, the quantity ω(f, σ) denotes the modulus of continuity of f ,
defined by

ω(f, σ) := sup
{|f(x)− f(y)| with x, y ∈ Ω, |x− y| < σ

}
.

As will be clear in the next section, the main reason for using this space is that
there holds the potential-theoretic estimate:

(2.3) ∃C0 = C0(Ω) > 0 : ‖∇u‖∞ ≤ C0‖ curlu‖CD ,

where curlu is the vorticity. Some classical (well-known) results dating back to
Dini [21] imply in fact that the second derivatives of −Δ−1f are bounded (more
precisely they are also continuous) if f ∈ CD(Ω), while the simple boundedness
of f is not enough (recall that −Δ−1f is the solution of the Poisson problem
with vanishing Dirichlet data and right-hand side equal to f .) We do not exclude
further extensions to other functional settings such as Besov or multiplier spaces
as in Vishik [34] or Koch and Sickel [30], however here we are not interested in
these kind of technicalities, but rather focus on a functional setting that is properly
defined also in the case of a domain with boundary.
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3. A basic estimate on the Dini norm of the vorticity

We start proving existence and uniqueness of strong solutions to the dissipative
Euler equations.

Definition 3.1. We say that a vector field u is a strong solution to (1.1) in
[0, T ] if u ∈ C([0, T ];C(Ω)) is divergence-free and tangential to the boundary,
curlu ∈ C([0, T ];C(Ω)), ∂tu ∈ L1(0, T ;L2(Ω)), π ∈ L1(0, T ;W 1,2(Ω)), u is a weak
solution and, in addition,

‖ curlu(t)‖∞ ≤ ‖ curlu0‖∞ +

∫ t

0

‖ curl f(s)‖∞ eχs ds ∀ t ∈ [0, T ].

These solutions are called “strong solutions” since they are unique and depend
continuously on the data, but not classical, since a priori ∇u ∈ C([0, T ];Lp(Ω)) for
all p <∞, but ∇u may be not pointwise bounded. The proof is an easy adaption
of the sharp results of Hadamard well-posedness proved in [5]. Nevertheless, since
we will use these results (which are a sort of endpoint for the well-posedness of the
Euler equations), and they are not easily found in literature, we sketch the proof
and we make some remarks in order to make the presentation self-contained.

The main theorem on existence and uniqueness for strong solutions is the fol-
lowing, which is proved below after some preliminary lemmas.

Theorem 3.1. Let u0 ∈ H with curlu0 ∈ C(Ω). Assume also that f ∈ L1(0, T ;H)
with curl f ∈ L1(0, T ;C(Ω)), and χ > 0. Then, there exists a unique strong
solution of the dissipative Euler equations in [0, T ].

By using a classical approach (see the discussion in [15] and other remarks
in [8]) the proof is based on a representation formula for the vorticity, by means
of characteristics U(t, s, x), which are solutions of the Cauchy problem for the
ordinary differential equation⎧⎨⎩

dU(t, s, x)

dt
= u(t, U(t, s, x)),

U(s, s, x) = x,

where (t, s, x) ∈ [0, T ]2 ×Ω, while u is the velocity field sought. From the solution
of above family of Cauchy problems one can easily infer (see Eq. (7) in [29]) that

(3.1) |∇U(t, s, x)| ≤ e

∣∣ ∫ t

s
supx∈Ω |∇u(τ, x)| dτ ∣∣ ∀ (t, s, x) ∈ [0, T ]2 × Ω.

Moreover, (see Kato [27]) the following potential-theoretic estimates for the char-
acteristics hold true. If ξ ∈ L∞(ΩT ), and if u = curl−1 ξ , then there is c1 > 0
(depending only on Ω, and hence independent of T ) such that

(3.2)

|||u|||L∞ ≤ c1 |||ξ|||L∞ ,

|u(t, x)− u(t, y)| ≤ c1 |||ξ|||L∞ |x− y| log
( e

|x− y|
)

∀ t ∈ [0, T ], ∀x �= y.
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Further, it is well known that in presence of bounded vorticity, characteristics are
uniquely defined and are Hölder continuous, see e.g. [5], and they satisfy

(3.3)
|U(t, s, x)− U(t1, s1, x1)|

≤ c1 |||ξ|||L∞ |t− t1|+ e (1 + c1 |||ξ|||L∞) (|x− x1|α + |s− s1|α),
where the exponent is defined by α := e−c1|||ξ|||L∞ T .

To construct the strong solution u to (1.1) we consider the Banach space

X :=
{
θ : ΩT → R : θ ∈ C(ΩT )

}
,

and we define a map J : X → X by

[Jθ](t, x) := ξ0(U [θ](0, t, x)) e−χt +

∫ t

0

φ(s, U [θ](s, t, x)) e−χ(t−s) ds,

where ξ0 = curlu0 is the initial vorticity, while φ = curl f , u[θ] = curl−1 θ, and
the characteristics U [θ](t, s, x) are constructed tracing the trajectories by using the
field u[θ].

We first show that this mapping has a fixed point, then that this fixed point is
the vorticity of a strong solution of the dissipative Euler equations. This solution is
also a weak solution and uniqueness follows by standard results on weak solutions
to the Euler equations with bounded vorticity. We split the proof in two lemmas,
following step-by-step the approach in [5].

Lemma 3.1. Define the convex set

K :=
{
θ ∈ X : |||θ|||L∞ ≤ R}

,

where R := ‖ curlu0‖∞ +
∫ T

0
‖ curl f(s)‖∞eχs ds. Then J(K) ⊂ K and, moreover,

J(K) is an equicontinuous family of functions in ΩT .

Proof. The bound |||Jθ|||L∞ ≤ R is obvious as also is the equicontinuity of the
family ξ0(U [θ](0, t, x)) e−χt (in fact ξ0 is continuous on Ω and there is a composition
with the uniformly continuous U [θ] as follows by using (3.3)).

For the integral appearing in the definition of Jθ we write∣∣∣ ∫ t

0

φ(s, U [θ](s, t, x)) e−χ(t−s) ds−
∫ t1

0

φ(s, U [θ](s, t1, x1)) e
−χ(t1−s) ds

∣∣∣
≤

∣∣∣∣∫ t

t1

‖φ(s)‖∞ eχs ds

∣∣∣∣ + |e−χt − e−χt1 |
∫ T

0

‖φ(s)‖∞ eχs ds

+

∫ t

0

|φ(s, U [θ](s, t, x)) − φ(s, U [θ](s, t1, x1))| eχs ds.

The first and second term from the right-hand side clearly go to zero uniformly
as t1 → t, by the absolute continuity of the integral and the continuity of the
exponential function. For the last term observe that the function

�(s, ε) := sup
|z−z1|<ε

eχs |φ(s, z)− φ(s, z1)|,
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satisfies the bound �(s, ε) ≤ 2 eχs‖φ(s)‖∞ and �(s, ε) → 0 as ε → 0 for almost
every s ∈ [0, T ]. Hence, we can apply the Lebesgue dominated convergence theorem
to show that its integral can be made as small as we wish. Combining this with
the continuity of characteristics gives the claim. For further details, see the proof
of Theorem 2.1 in [5]. �

We then use some compactness results to employ a fixed-point argument.

Lemma 3.2. The mapping J has a fixed point.

Proof. In order to show existence of a fixed point we just need to show that the
mapping J is continuous with respect to the L∞(ΩT ) topology. (This result, or
some of its variations, seems to be folklore and its proof is sketched in Theorem 2.2
of [5] and Lemma 2.8 of [27]. For the reader’s convenience we include an elementary
and complete alternative proof.)

By the compactness of the mapping, which is ensured by equicontinuity and
the Arzelà–Ascoli theorem, it follows that all the other hypotheses of the Schauder
fixed point theorem are satisfied.

To this end, let {θm}m ⊂ K be such that θm → θ uniformly in ΩT . The unique
function um such that um = curl−1 θm satisfies um → u uniformly in ΩT . We show
now that Um(t, s, x) → U(t, s, x) uniformly in [0, T ]2×Ω, where Um is a solution of⎧⎨⎩

dUm(t, s, x)

dt
= um(t, Um(t, s, x)), t ∈ [0, T ],

Um(s, s, x) = x, s ∈ [0, T ].

Fix some ε ∈ (0, 1). Then, there exists N = N(ε) ∈ N such that

sup
(x,t)∈ΩT

|un(t, x)− u(t, x)| < ε, ∀n > N.

Define ζn,s(t) := |Un(t, s, x) − U(t, s, x)|2 and observe that, for n > N , and by
using (3.2) and the bound R on the elements of the set K,∣∣∣dUn(t, s, x)

dt
− dU(t, s, x)

dt

∣∣∣
≤ |un(Un(t, s, x))− u(Un(t, s, x))| + |u(Un(t, s, x)) − u(U(t, s, x))|
≤ ε+ c1R|Un(t, s, x)− U(t, s, x)| log

( e

|Un(t, s, x)− U(t, s, x)|
)
.

For some λ ∈ (0, 1) (sufficiently small in a manner to be made precise later),

τn := inf{t > s : ζn,s(t) ≥ λ2}.
Note that τn is strictly larger than s, since ζn,s(s) = 0 and ζn,s is a continuous
function of its arguments. We then obtain, in [s, τn],∣∣∣dζn,s

dt

∣∣∣ ≤ 2λ ε+ c2 ζn,s log
( e

ζn,s

)
.
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We define Zn,s(t) := 2λ ε/c2 + ζn,s(t) and, with simple calculations after optimiza-
tion in ε ∈ (0, 1], we can see that for

0 < λ < λ0 :=

√
1

e
+

1

c22
− 1

c2
,

there holds for s < t < τn,

2λ ε+ c2 ζn,s(t) log
( e

ζn,s(t)

)
≤ c2 Zn,s(t) log

( e

Zn,s(t)

)
.

We recall the fact that, from the differential inequality

y′(t) ≤ C y(t) log
( e

y(t)

)
, with y(0) = y0,

we have by direct integration

y(t) ≤ e
(y0
e

)e−C t

t ≥ s,

consequently applying this to the function Zn,s we have

Zn,s(t) ≤ e
(2λ ε
c2 e

)e−c2 t

≤ e
(2λ ε
c2 e

)e−c2 T

∀ t ∈ [s,min{τn, T }],

provided that 0 < ε < ε0, where ε0 := min{1, c2 e
2λ0

}. Hence, we obtain

(3.4) ζn,s(t) ≤ 2λ ε

c2
+ e

(2λ ε
c2 e

)e−c2 T

∀ t ∈ [s,min{τn, T }].

Since 2λ ε/c2 + e
(
2λ ε/(c2 e)

)e−c2T

is monotonically increasing in λ, the quan-
tity ζn,s(t) is bounded by the value assumed at λ = λ0. Hence we can choose
0 < ε1 < ε0 so small such that

2λ0 ε

c2
+ e

(2λ0 ε
c2 e

)e−c2 T

≤ λ2 ∀ ε ∈ (0, ε1).

This shows that, for small enough ε > 0, the same bound (3.4) holds for all
s ∈ [0, T ], for all t ∈ [s, T ], and for all x ∈ Ω. Consequently, ζn,s goes to zero
uniformly when ε goes to zero. The same reasoning can be used also for t ∈ [0, s].
Hence we obtain that Um converges uniformly to U in [0, T ]2 × Ω.

Finally, from the definition of J (being a composition of uniformly continuous
functions) it follows that if θm → θ, then Jθm → Jθ uniformly. �

We can now prove the existence result for strong solutions.

Proof of Theorem 3.1. The fixed point ξ ∈ K of the map J satisfies ξ = Jξ.
That is,

(3.5) ξ(t, x) = ξ0(U(0, t, x)) e−χt +

∫ t

0

φ(s, U(s, t, x)) e−χ(t−s) ds, t ∈ [0, T ].
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By a standard argument (adapting for instance that in Lemmas 2.3-2.4 of [5],
and Lemma 2.4 of [27]) we obtain that x 
→ U(t, s, x) is measure preserving (since
∇ · u = 0, where u := curl−1 ξ). Multiplying (3.5) by a smooth test function Ψ,
integrating over (0, T )×Ω, and making a change of variables in the multiple integral
yields that the scalar ξ satisfies∫ T

0

∫
Ω

[
ξ
∂Ψ

∂t
+ (ξ u) · ∇Ψ− χ ξΨ+ φΨ

]
dx dt = 0 ∀Ψ ∈ C∞

0 ((0, T )× Ω),

and u is (also) a weak solution of the dissipative Euler equations. Finally the
basic uniqueness results as in Yudovich [35] and Bardos [4] (see also Bessaih and
Flandoli, [12], [13], for the dissipative case) show that the solution is unique. �

We prove now the fundamental estimate needed to prove the existence of
almost-periodic solutions to the dissipative Euler equations. The main point is
a uniform (in time) bound for the Dini norm of the vorticity. To this end we recall
that the existence of classical (since now all terms are defined pointwise) solutions
to the Euler equations such that ξ ∈ C([0, T ];CD(Ω)) is not new. This appeared
first in Beirão da Veiga (see Theorem 1.4 in [5]) and again and in an independent
way (with a slightly-different proof) in Koch (see Theorem 2 in [29]). We do not
reproduce here the proof, which is also in this case based on the representation
formula (3.5) and the Schauder fixed point theorem, but we give just the main
point, which is a uniform estimate for the Dini norm of the vorticity.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, assume that curlu0∈
CD(Ω)) and that curl f ∈L1

loc(0,∞;CD(Ω)). Then, for any T >0, the unique strong
solution of the dissipative Euler equations is such that curlu ∈ C([0, T ];CD(Ω)).

Moreover, if curl f ∈ L∞(0,∞;CD(Ω)), then there exists χ0 > 0 (depending on
the initial datum ξ0, the force f , and the domain Ω; see (3.8)) such that if χ > χ0,
then

(3.6) sup
t≥0

‖ curlu(t)‖CD ≤ C <∞.

where C = C(ξ0, f, χ,Ω).

Proof. We already know from Theorem 3.1 the existence and uniqueness of a strong
solution corresponding to the data (u0, f), for any χ > 0. In particular, adapt-
ing Theorem 1.4 in [5] and Theorem 2 in [29], it is straightforward to show that
the solution is such that curlu ∈ C([0, T ];CD(Ω)). For the reader’s convenience
we recall that the main point is to check that the fixed point of the mapping J
satisfies ξ = Jξ ∈ C([0, T ];CD(Ω)). This allows to use the Schauder fixed point
argument in the topology of L∞(ΩT ).

We show now that, in presence of a large enough dissipative constant χ, the
representation formula allows us to obtain uniform bounds on the Dini norm of
the vorticity over all positive times. For any given T > 0, ξ is the fixed point of
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the mapping J , hence it satisfies (3.5). Next, we give a uniform bound for the Dini
norm of ξ. First the L∞(Ω) bound

‖ξ(t)‖∞ ≤ ‖ξ0‖∞ e−χt + sup
t≥0

‖φ(t)‖∞ 1− e−χt

χ
∀ t ≥ 0,

is straightforward and it is shown also in [13]. In the following calculations we
assume that there is a unique solution such that ξ ∈ C([0, T ];CD(Ω)). This im-
plies that U is Lipschitz continuous (especially in the space variable) and that its
Lipschitz norm is bounded by the Dini norm of ξ. We will work on a given inter-
val [0, T ] and then we will show that the estimates are independent of T , for large
enough χ > 0.

We estimate the Dini-continuity of η = ξ eχt, where ξ is the vorticity of the
solution, hence such that ξ = Jξ on [0, T ]. Observe that, from the equation satisfied
by η we have the representation formula

η(t, x) = ξ0(U(0, t, x)) +

∫ t

0

φ(s, U(s, t, x)) eχs ds,

and clearly

‖η(t)‖∞ ≤ ‖ξ0‖∞ + sup
t≥0

‖φ(t)‖∞ eχt − 1

χ
.

Moreover, we observe that [η(t)]CD = [ξ(t)]CDe
χt, as follows easily from the defi-

nition. We estimate the Dini seminorm of η as follows:

(3.7)

[η(t)]CD
:=

∫ 1

0

sup
|x−y|≤ρ

|η(t, x)− η(t, y)| dρ
ρ

≤
∫ 1

0

sup
|x−y|≤ρ

|ξ0(U(0, t, x))− ξ0(U(0, t, y))| dρ
ρ

+

∫ t

0

∫ 1

0

sup
|x−y|≤ρ

|φ(s, U(s, t, x))− φ(s, U(s, t, y))| eχs dρ

ρ
ds

=: B1 +B2.

Next, we estimate separately B1 and B2. For the first term, making a change of
variable by means of the unitary diffeomorphism U(0, t, x), we have that

B1 ≤
∫ 1

0

sup
|x−y|≤ρ‖∇U(0,t,·)‖∞

|ξ0(x) − ξ0(y)| dρ
ρ

≤
∫ 1

0

sup
|x−y|≤ρ

|ξ0(x)− ξ0(y)| dρ
ρ

+ 2 ‖ξ0‖∞
∫ ‖∇U(0,t,·)‖∞

1

dρ

ρ

≤ [ξ0]CD + 2 ‖ξ0‖∞ log ‖∇U(0, t, ·)‖∞,

(where the term 2‖ξ0‖∞ log ‖∇U(0, t, ·)‖∞ is set to zero if ‖∇U(0, t, ·)‖∞ < 1), and,
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by appealing to (3.1), we obtain

B1 ≤ [ξ0]CD + 2 ‖ξ0‖∞
∫ t

0

‖∇u(s)‖∞ ds ≤ [ξ0]CD + 2C0 ‖ξ0‖∞
∫ t

0

‖ξ(s)‖CD ds

≤ [ξ0]CD + 2C0 ‖ξ0‖∞
∫ t

0

‖η(s)‖CD e−χs ds.

For the term B2, by making the change of variables by means of U(s, t, x), we have
that

B2 ≤
∫ t

0

∫ 1

0

sup
|x−y|≤ρ‖∇U(s,t,·)‖∞

|φ(s, x) − φ(s, y)| dρ
ρ

eχs ds

≤
∫ t

0

[φ(s)]CD(Ω)e
χs ds+ 2 ‖φ(s)‖∞

∫ t

0

∫ ‖∇U(s,t,·)‖∞

1

dρ

ρ
eχs ds

≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχsds+ 2 sup
t≥0

‖φ(t)‖∞
∫ t

0

log ‖∇U(s, t, ·)‖∞ eχs ds

≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχsds+ 2 sup
t≥0

‖φ(t)‖∞
∫ t

0

log ‖∇U(s, t, ·)‖∞ eχs ds

≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχs ds+ 2 sup
t≥0

‖φ(t)‖∞
∫ t

0

∫ t

s

‖∇u(τ)‖∞ eχs dτ ds.

Changing the order of integration in the last integral we have

B2 ≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχsds+ 2 sup
t≥0

‖φ(t)‖∞
∫ t

0

∫ τ

0

‖∇u(τ)‖∞ eχs ds dτ

≤ sup
t≥0

[φ(t)]CD

eχt − 1

χ
+ 2C0 sup

t≥0
‖φ(t)‖∞

∫ t

0

∫ τ

0

‖ξ(τ)‖CD eχs ds dτ

≤ sup
t≥0

[φ(t)]CD

eχt − 1

χ
+ 2C0 sup

t≥0
‖φ(t)‖L∞

∫ t

0

‖ξ(τ)‖CD

eχτ − 1

χ
dτ

≤ sup
t≥0

[φ(t)]CD

eχt

χ
+

2C0

χ
sup
t≥0

‖φ(t)‖∞
∫ t

0

‖η(τ)‖CD dτ.

Collecting all the estimates we get the inequality

‖η(t)‖CD ≤ ‖ξ0‖CD +
2Φ

χ
eχt + 2C0

[
‖ξ0‖CD +

Φ

χ

] ∫ t

0

‖η(s)‖CD ds,

where Φ := sup
t

‖φ(t)‖CD . By using the Gronwall lemma we get

‖η(t)‖CD ≤
[
‖ξ0‖CD +

2Φ

χ
− 2Φχ

χ2 − 2C0 (Φ + ‖ξ0‖CDχ)

]
e

2C0t(Φ+‖ξ0‖CD
χ)

χ

+
2Φχ

χ2 − 2C0 (Φ + ‖ξ0‖CDχ)
etχ ,
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and consequently

‖ξ(t)‖CD ≤
[
‖ξ0‖CD +

2Φ

χ
− 2Φχ

χ2 − 2C0(Φ + ‖ξ0‖CDχ)

]
e t

2C0(Φ+‖ξ0‖CD
χ)

χ −χ

+
2Φχ

χ2 − 2C0(Φ + ‖ξ0‖CDχ)
,

which is uniformly bounded on [0∞) if

2C0Φ + 2C0 ‖ξ0‖CDχ− χ2 < 0,

that is if

(3.8) χ > χ0 := C0 ‖ξ0‖CD +
√
C2

0 ‖ξ0‖2CD
+ 2C0 Φ. �

Remark 3.1. To obtain directly continuity of the mapping J and also uniform
estimates, the Hölder topology seems not to work. The reader can also compare
with Remark. 2.2 in [5], and also the related observation in [29], page 494, on
the noncontinuity of C1,α-under simple rigid rotations. The fixed point and other
arguments also require handling these topologies, especially when looking for prop-
erties valid for arbitrary positive times. The connection between continuity of the
mapping t 
→ u(t), the growth in a critical way of different norms (Dini, Hölder,
and Sobolev), and the long-time behavior is addressed in [29]. Moreover, in the
recent work of Kiselev and Šverák [28] it is shown that for the Euler equations
(that is in the case χ = 0) it is possible to find smooth initial data producing
solutions with sharp growth in derivatives of the vorticity, such that exponential
growth for ‖∇u(t)‖∞ follows.

Remark 3.2. Especially in connection with the existence of attractors, hence with
uniform bounds together with a semigroup condition, a similar approach is used
in [8], by employing other arguments, closely related with the Hadamard well-
posedness. Results concerning the existence of certain strong global-attractors
were announced in [7].

4. Existence of solutions defined on the entire real line

This section is devoted to proving the existence of weak solutions to (1.1) defined
on the entire real axis. To do so, we follow the analysis carried out in Section 3
of [31] and in Section 1 of [13] to obtain the following result.

Theorem 4.1. Assume that f ∈ L2
loc(R;V ) and that curl f ∈ L∞(R;CD(Ω)).

Then, if χ > χ1(f,Ω) :=
√
2C0Φ > 0 (see (3.8), with Φ := ‖ curl f‖L∞(R;CD)),

there exists a weak solution ũ to (1.1), defined on R, which satisfies

(4.1) sup
t∈R

‖∇ũ(t)‖∞ ≤ C2,

with C2 := C0C1, where the constants C0 and C1 are given in (2.3) and (4.3),
respectively.
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Proof. We consider the system (1.1) in [−k,∞), k ∈ N, with initial datum
uk(−k) = 0 (and so ξk(−k) ≡ 0). Arguing as in the proof of Theorem 3.2, we
get the existence of a unique strong solution uk to (1.1), on the interval [−k,∞),
such that curluk ∈ C([−k,∞);CD(Ω)).

As a further consequence of the results in Theorem 3.2, it follows that if χ > χ1,
then

(4.2) sup
t≥−k

‖ curluk(t)‖CD ≤ C1 <∞,

where

(4.3) C1(f, χ,Ω) :=
2Φχ

χ2 − 2C0 Φ

is the constant C = C(ξ0, f, χ,Ω), introduced in (3.6), in the case when ξ0 = 0.
Now we set

ũk(t) :=

{
uk(t) for t ∈ [−k,∞),
0 for t ∈ (−∞,−k].

Clearly, relation (4.2) remains true for ũk, k ∈ N, and, by appealing to the inequal-
ity (2.3), we get

1

C0
sup
t∈R

‖∇ũk(t)‖∞ ≤ sup
t∈R

‖ curl ũk(t)‖CD ≤ C1.

In particular, we have that ∇ũk is uniformly bounded in R × Ω by C2. There-
fore, there is a subsequence of ũk (labeled again ũk) and a function with ∇ũ ∈
L∞(R;L∞(Ω)) such that

(4.4) ∇ũk ⇀ ∇ũ in L∞(R;L∞(Ω))-weak	,

and, due to the weak	 lower semicontinuity of the norm, we also get

sup
t∈R

‖∇ũ(t)‖∞ ≤ C2.

Next, we show that ũ is a solution to (1.1) in the distributional sense and that it
satisfies the relations (2.1a)-(2.1d). In such a way, we will retrieve the existence
of a weak solution to (1.1), defined on R, with the property that ‖∇ũ(t)‖∞ is
uniformly bounded on the whole real line. This latter fact will be crucial in order
to prove the existence of S2(H)-almost-periodic solutions to (1.1)

Let L > 0 be an arbitrary number. By using (2.1d) for the sequence ũk we get

|〈ũk(t)− ũk(s), ϕ〉| ≤ χ

∫ t

s

|〈ũk(τ), ϕ〉| dτ +

∫ t

s

|b(ũk(τ), ũk(τ), ϕ)| dτ

+

∫ t

s

|〈f(τ), ϕ〉| dτ,

for all ϕ ∈ V , and for all −k ≤ s ≤ t ≤ L. By the boundedness of ∇ũk in
L∞(R;L∞(Ω)), and the hypotheses on f , it follows that ũk(t)− ũk(s) is bounded
in L2

loc(−∞, L;V ′). In particular, the sequence ũk is bounded in L2
loc(−∞, L;V )∩

W 1,2
loc (−∞, L;V ′).
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By using classical compactness arguments, we can extract a subsequence (still
written as ũk) such that

ũk → ũ in L2(−L,L;H)-strong,

ũk ⇀ ũ in L∞(−L,L;V )-weak	,

ũk ⇀ ũ in L2(−L,L;V )-weak,
∂tũk ⇀ ∂tũ in L2(−L,L;V ′)-weak,

∃E⊂ [−L,L] of zero Lebesgue measure s.t. ∀ t∈ [−L,L]∖E, ũk(t) → ũ(t) in H,

and the limit ũ coincides with that in (4.4), due to the uniqueness of the limit for
the convergence in distribution. Moreover, by using standard interpolation theory
(see, e.g. [13], [33]), it follows that ũ ∈ C(R;H), and so condition (2.1a) is satisfied.

As a consequence of the strong convergence of ũk to ũ in L2
loc(R;H), for any

compact interval [−L,L] ⊆ R, we can pass to the limit in equation (2.1d), proving
that ũ is solution to (1.1) in the space D′(R;V ′) of distributions.

Now, take inequality (2.1b) for ũk, i.e.,

(4.5) ‖ũk(t)‖22 + χ

∫ t

−k

‖uk(s)‖22 ds ≤
∫ t

−k

|〈f(s), ũk〉| ds for a.e. t ∈ [−k, L].

Using again the strong convergence of ũk to ũ in L2
loc(R;H), passing to the limit

on both sides of (4.5), it follows that the left-hand side of (4.5) converges to

‖ũ(t)|22 + χ
∫ t

−k ‖ũ(s)‖22 ds and the right-hand-side converges to
∫ t

−k〈f(s), ũ(s)〉 ds.
Then, for all k ∈ N,

‖ũ(t)‖22 + χ

∫ t

−k

‖ũ(s)‖22 ds ≤
∫ t

−k

|〈f(s), ũ(s)〉| ds for a.e. t ∈ [−k,∞].

Thus, ũ satisfies (2.1b).
Finally, relation (2.1c) easily follows by exploiting the same argument used

in Section 3 of [13] and the solution to elliptic problem for ũ = curl−1 ξ̃, as ex-
plained in the previous section. �

The previous result leads to the definition below.

Definition 4.1. Provided that f ∈ L2
loc(R;V ), we say that a weak solution u of

the dissipative Euler equation (1.1) is “global” if it satisfies (2.1a) on R, and the
properties (2.1b)–(2.1d) hold for almost every t, t0 ∈ R, with t ≥ t0.

Remark 4.1. Since u is tangential to the boundary, and Ω is bounded then the
Poincaré inequality holds. Consequently, from ∇u ∈ L∞(R × Ω) it follows also
that u is uniformly bounded.

4.1. Some remarks on uniform bounds in Hilbert spaces

Simpler and more standard techniques can be used to show the following uniform
bounds, which are nevertheless too weak for the existence of almost-periodic solu-
tions. We report them for the reader’s convenience and also to show in a different
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way some related estimates, which (unlike those in the previous section) hold true
for any positive χ. We point out that they are useless to show certain asymp-
totic equivalence properties, that is to quantitatively estimate the difference of
two solutions starting from different initial data, explaining the critical role of the
functional setting we use and of the restrictions on the dissipation constant χ.

Lemma 4.1. In addition to the hypotheses of Theorem 2.1, assume that f ∈
L2
uloc(0,∞;H). Then, weak solutions u to (1.1) are defined for all t ≥ 0, they

belong to L∞(0,∞;H), and the estimate

(4.6) ‖u(t)‖22 ≤ ‖u0‖22 e−χt +
3

χ2
‖f‖2L2

uloc
(0,∞;H), t ∈ [0,∞),

holds.

Proof. Consider the dissipative Euler equations (1.1). Using u as a test function,
we get the inequality

d

dt
‖u‖22 ≤ −χ ‖u‖22 +

1

χ
‖f‖22.

Notice that the calculations can be made rigorous by considering the same equa-
tions on Galerkin approximate functions, or using the fact that the solution is a
weak solution over [0, T ], for all positive T . Set z(t) := ‖u(t)‖22 and β(t) := ‖f(t)‖22
(in particular β ∈ L1

uloc(0,∞)). Now, to estimate z in L∞(0,∞), we follow a more
or less classical argument, as in Proposition 2.1 of [31]. Suppose there exists
t ∈ [0,∞[ such that z(t) ≤ z(t+ 1). Then, it follows that

0 ≤ z(t+ 1)− z(t) =

∫ t+1

t

∂tz(s) ds ≤ −χ
∫ t+1

t

z(s) ds+
1

χ

∫ t+1

t

β(s) ds,

that is

χ

∫ t+1

t

z(s) ds ≤ 1

χ

∫ t+1

t

β(s) ds ≤ 1

χ
‖β‖L1

uloc(R
+).

Observe now that for every τ, σ ∈ [t, t+ 1], there holds

|z(τ)− z(σ)| ≤
∫ t+1

t

∣∣∣∣−χz(s) + 1

χ
β(s)

∣∣∣∣ ds ≤ 2

χ
‖β‖L1

uloc(R
+).

By the integral mean value theorem, it follows that there exists ζ ∈ (t, t+ 1) such

that z(ζ) =
∫ t+1

t
z(s) ds, so we obtain

z(t) ≤ z(t+ 1) ≤ |z(t+ 1)− z(ζ)|+
∫ t+1

t

z(s) ds

≤ 2

χ
‖β‖L1

uloc(R
+) +

1

χ2
‖β‖L1

uloc(R
+) ≤

3

χ2
‖β‖L1

uloc(R
+),

and the above estimate holds for every t ∈ [0,∞) such that z(t) ≤ z(t+1). Instead,
in the case when z(t) > z(t+1), one repeats the same procedure for z(t−1) and z(t).
Continuing in this manner, we need to estimate z(t) on [0, 1]. The estimate in [0, 1]
follows by applying the Gronwall inequality. In this way we find (4.6). �
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By using the same approach, one can easily show also the following result.

Lemma 4.2. In addition to the hypotheses of Theorem 2.1, assume that f ∈
L2
uloc(0,∞;V ). Then, weak solutions u to (1.1) belong to L∞(0,∞;V ), and the

following estimate holds:

‖u(t)‖21,2 ≤ ‖u0‖21,2 e−χt +
3

χ2
‖f‖2L2

uloc(R
+;V ), t ∈ [0,∞).

If f ∈ L2
uloc(V ), Lemmas 4.1 and 4.2 then suffice to show, by the same argument

with the initial value problem in [−k,∞) and then letting k → ∞, that

∃C > 0 : ‖u(t)‖1,2 ≤ C ∀ t ∈ R.

The same argument as before implies then the following result.

Theorem 4.2. In addition to the hypotheses of Theorem 2.1 assume that f ∈
L2
uloc(R;V ). Then, there exists a weak solution ũ to (1.1), defined on R, such that

sup
t∈R

‖ũ(t)‖1,2 ≤ C <∞.

The reason why this result is useless is that the estimate for u ∈ V does not
imply any kind of uniqueness. Bounded vorticity is enough to obtain uniqueness,
but to estimate in a uniform way the difference of two solutions a bound on the
gradient in L∞(Ω) seems necessary and the larger space in which we are able to
prove this result is that of Dini-continuous vorticities.

5. Existence of almost-periodic solutions

We finally prove existence of almost-periodic solutions, under the natural assump-
tion that the external force field f is in S2(H) and is also such that curl f ∈
L∞(R;CD(Ω)). With these hypotheses we will show that the global weak solution
built in Theorem 4.1 is S2(H)-almost-periodic as well, but a restriction on the size
of χ is needed.

To reach this goal, some preliminary facts are needed. Let f and f̂ be two
external force fields satisfying the hypotheses of Theorem 4.1, and let u and û be
the associated global weak solutions constructed as in Theorem 4.1. Denote the
differences by w := u − û and g := f − f̂ . Taking the difference of the equations
satisfied by u and û we get

∂tw + χw +∇(π − π̂) = −(u · ∇)w − (w · ∇) û + g.

Now, taking the L2-product with w we obtain

1

2

d

dt
‖w(t)‖22 + χ‖w(t)‖22 ≤ |b(w(t), û(t), w(t))| + ‖w(t)‖ ‖g(t)‖

≤ ‖w(t)‖22 ‖∇û(t)‖∞ +
χ

2
‖w(t)‖22 +

1

2χ
‖g(t)‖22

≤ C2 ‖w(t)‖22 +
χ

2
‖w(t)‖22 +

1

2χ
‖g(t)‖22,
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where we used the inequality (4.1). Hence, via standard manipulations we get

(5.1) ‖w(t)‖22 ≤ ‖w0‖22 e (2C2−χ)(t−t0) +
1

χ

∫ t

t0

‖g(τ)‖22 e (2C2−χ)(t−τ) dτ,

where w0 = u0 − û0, and t, t0 ∈ R with t ≥ t0.

Remark 5.1. Let u be a global weak solution constructed as in Theorem 4.1.
Given the external force field f as in the hypotheses, it is always possible to choose
the parameter χ large enough such that χ >

√
2C0Φ, so that from the existence

result there follows
sup
t∈R

‖∇u(t)‖∞ ≤ C2.

Thus, to have 2C2 − χ < 0, it suffices to take

χ >
√
6C0 Φ >

√
2C0 Φ.

For the reminder of this section we always assume that 2C2 − χ is strictly
negative. We are now ready to prove our main result.

Theorem 5.1. Suppose that the hypotheses of Theorem 4.1 are satisfied and also
that f ∈ S2(H). Moreover, suppose that χ > χ2 :=

√
6C0Φ. Then, there exists a

weak solution u of (1.1) such that u ∈ S2(H).

Proof. We prove that the global solution u of (1.1), constructed as in the previous
section, belongs to S2(H). As usual we argue by contradiction; see, for instance,
Foias [22], for early results on the Navier–Stokes equations with “large viscosity”,
instead of the large dissipation used here (notice that in that case the condition on
the viscosity is used to ensure global regularity for the three-dimensional problem).

There is a sequence {hm} and a function f̃ such that

(5.2) sup
t∈R

∫ t+1

t

‖f(s+ hm)− f̃(s)‖22 ds→ 0,

and there exist a sequence {tk}, two subsequences {hmk
} and {hnk

} (of {hm}),
and a constant δ0 > 0 such that

(5.3) 0 < δ0 ≤
∫ tk+1

tk

‖u(s+ hmk
)− u(s+ hnk

)‖22 ds ∀k ∈ N.

Since f is S2(H)-almost-periodic, by relation (5.2), one has that there exist f∗
1

and f∗
2 such that

(5.4)

sup
t∈R

∫ t+1

t

‖f(s+ tk + hmk
)− f∗

1 (s)‖22 ds→ 0,

sup
t∈R

∫ t+1

t

‖f(s+ tk + hnk
)− f∗

2 (s)‖22 ds→ 0.



Almost periodic solutions for the 2D dissipative Euler equations 285

This holds up to a subsequence {k′} of {k} (still denoted by {k}) hence by taking
{tk′}, {hmk′} and {hnk′}. Applying the triangle inequality twice, it can be easily
proved that f∗

1 = f∗
2 =: f∗ (for details see Theorem 4.1 in [31]).

For any k ∈ N we can construct two global solutions uk1(r) := u(r + tk + hmk
)

and uk2(r) := u(r+ tk+hnk
), with r ∈ R, corresponding to the external force fields

fk
1 (r) := f(r + tk + hmk

) and fk
2 (r) := f(r + tk + hnk

). Hence, relation (5.3) can
be rewritten as

(5.5) δ0 ≤
∫ tk+1

tk

‖uk1(s− tk)− uk2(s− tk)‖22 ds =
∫ 1

0

‖uk1(s)− uk2(s)‖22 ds.

Observe that, under our hypotheses,

sup
t∈R

‖∇uki (t)‖∞ ≤ C2 <∞, for i = 1, 2,

where C2 is given in (4.1).
Following the lines of reasoning in the proof of Theorem 4.1, from uk1 and uk2 we

can extract subsequences (still labeled uk1 and uk2) strongly converging in L
2
loc(R;H)

to the global weak solutions u1 and u2, respectively. Thus, passing to the limit
in (5.5), we get

(5.6) δ0 ≤
∫ 1

0

‖u1(s)− u2(s)‖22 ds.

On the other hand, exploiting inequality (5.1), we get (recall that χ− 2C2 > 0)∫ 1

0

‖uk1(s)− uk2(s)‖22 ds ≤ ‖uk1(t0)− uk2(t0)‖22
∫ 1

0

e (2C2−χ)(s−t0) ds

+
1

χ

∫ 1

0

ds

∫ s

t0

‖fk
1 (τ) − fk

2 (τ)‖22 e (2C2−χ)(s−τ) dτ

≤ 1

χ− 2C2
‖uk1(t0)− uk2(t0)‖22 e (χ−2C2)t0

(
1− e−(χ−2C2)

)
+

1

χ

∫ 1

0

e−(χ−2C2)s ds

∫ 1

t0

‖fk
1 (τ)− fk

2 (τ)‖22 e (χ−2C2)τ dτ,

and consequently

(5.7)

∫ 1

0

‖uk1(s)− uk2(s)‖22 ds ≤
1

χ− 2C2
‖uk1(t0)− uk2(t0)‖22 e (χ−2C2)t0

+
1

χ

∫ 1

t0

‖fk
1 (s)− fk

2 (s)‖22 e(χ−2C2)s ds.

Here, without loss of generality, we can assume that t0 ≤ 0. Recall that ‖uki ‖2 is
bounded uniformly. Then, fix t0 < 0 small enough, such that there holds

1

χ− 2C2
‖uk1(t0)− uk2(t0)‖22 e (χ−2C2)t0 <

δ0
4
.
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In order to estimate the second term on the right-hand side of (5.7), we employ
a well-known argument used for instance in Lemma 4.1 of [26]. Given t0 ≤ 0
determined from the previous inequality, let M ∈ N be such that t0 + (M − 1) ≤
1 ≤ t0 +M . Therefore, we have that∫ 1

t0

‖fk
1 (s)− fk

2 (s)‖22 e (χ−2C2)s ds

≤
M∑

m=1

∫ t0+m

t0+m−1

‖fk
1 (s)− fk

2 (s)‖22 e (χ−2C2)s ds

≤
M∑

m=1

∫ t0+m

t0+m−1

‖fk
1 (s)− fk

2 (s)‖22 e (χ−2C2)(m+2−M) ds

= e (χ−2C2)(2−M)
M∑

m=1

e (χ−2C2)m

∫ t0+m

t0+m−1

‖fk
1 (s)− fk

2 (s)‖22 ds,

where we used that χ− 2C2 > 0 and also that by the definition of M , t0 ≤ 2−M .
Hence, adding to both sides m ∈ N, the upper bound for the exponential in the
interval [t0 + (m− 1), t0 +m] follows.

Next, by using the explicit expression for the summation of a geometric sum,
we obtain

e (χ−2C2)(2−M)
M∑

m=1

e (χ−2C2)m

∫ t0+m

t0+m−1

‖fk
1 (s)− fk

2 (s)‖22 ds,

≤ e (χ−2C2)(2−M) max
m=1,...,M

∫ t0+m

t0+m−1

‖fk
1 (s)− fk

2 (s)‖22 ds ·
M∑

m=1

e(χ−2C2)m

≤ e(χ−2C2)(M+1) − 1

eχ−2C2 − 1
e (χ−2C2)(2−M) sup

t≥t0

∫ t+1

t

‖fk
1 (s)− fk

2 (s)‖22 ds

≤ e3(χ−2C2)(M+1)

eχ−2C2
sup
t∈R

∫ t+1

t

‖fk
1 (s)− fk

2 (s)‖22 ds.

Next, recall that, due to (5.4), fk
i , for i = 1, 2, converges to f∗ in L2

uloc(H), as k
goes to ∞. Hence, by collecting the estimates and for fixed t0 ≤ 0 and for k large
enough, we obtain

1

χ

∫ 1

t0

‖fk
1 (s)− fk

2 (s)‖22 e(χ−2C2)s ds

≤ 1

χ

e 3(χ−2C2)(M+1)

eχ−2C2
sup
t∈R

∫ t+1

t

‖fk
1 (s)− fk

2 (s)‖22 ds <
δ0
4
.

Hence, by collecting all the estimates, we get∫ 1

0

‖uk1(s)− uk2(s)‖22 ds <
δ0
2
,
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and since uki converges strongly in L2 to ui (and also almost everywhere up to a
redefinition on a subset E ⊂ R of Lebesgue measure zero), we obtain that∫ 1

0

‖u1(s)− u2(s)‖22 ds ≤
δ0
2
,

contradicting (5.6), and the assertion is proved. �

5.1. Further regularity of almost-periodic solutions

By using a classical characterization of Stepanov almost-periodic functions and a
theorem of Dafermos [20] we can prove also the following easy corollary.

Corollary 5.1. Suppose that the hypotheses of Theorem 5.1 are satisfied. Then,
there exists a weak solution u of (1.1) such that u ∈ S2(V ∩ W 1,q(Ω)), for all
q <∞, and curlu ∈ S(C(Ω)).

The proof of Corollary 5.1 is based first on a characterization of Stepanov
almost-periodicity in terms of Bohr–Bochner almost-periodicity; see Bochner [14].
To this end, recall that if we set t 
→ ut(s) = u(t + s), with s ∈ [0, 1], then
for u ∈ L2

uloc(R;X) we can define the map t 
→ u∗ := ut, which belongs to
C(R;L2(0, 1;X)). Then, u ∈ S2(X) (that is u is Stepanov almost-periodic with
values in X), if and only if u∗ ∈ AP (R;L2(0, 1;X)), that is u∗ is Bohr–Bochner
almost-periodic with values in L2(0, 1;X) (Recall that a function is Bohr–Bochner
almost-periodic if it continuous and its translates are relatively compact in the
C0-topology.)

Further, we will apply the following lemma due to Dafermos [20].

Lemma 5.1. Let Y and Z be complete metric spaces, continuously embedded in a
Hausdorff space W . Suppose that

u : R → Y ∩ Z
is almost-periodic in Y and its range is relatively compact in Z. Then u is almost-
periodic in Z. (Here almost-periodicity is in the sense of Bohr–Bochner.)

Next, we will need the following compactness result in the style of Aubin–Lions
(in particular we use a version valid for non reflexive spaces proved by Dubinskĭı;
see Simon [32])

Lemma 5.2. Let be given three Banach spaces Y1 ↪→↪→X ↪→Y2 (that is, the first in-
clusion is compact and the second continuous), the set F of functions f : [0, T ] → Y1
such that there exists C > 0

F := {f ∈ L2(0, T ;Y1), ft ∈ L2(0, T ;Y2) : ‖f‖L2(0,T ;Y1) + ‖ft‖L2(0,T ;Y2) ≤ C}
is relatively compact in L2(0, T ;X).

Proof of Corollary 5.1. We observe that, by easy computations, we have

ut ∈ L2
uloc(R;L

2(Ω)).
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In fact, by testing the equation (1.1) with ut and by the Young inequality we get

1

2
‖ut‖22 +

χ

2

d

dt
‖u‖22 ≤ ‖u‖22 ‖∇u‖2∞ + ‖f‖22.

Hence, by using the previously obtained bounds for ‖u‖2 and ‖∇u‖∞, and inte-
grating over a generic interval [t, t+ 1], we obtain that

ut ∈ L2
uloc(R;H),

since ∇ · ut = 0 and (ut · n)|Γ = 0.
Defining the Banach space

E(Ω) := {
v : Ω → R

2 : v ∈ V ∩ C(Ω), ∇v ∈ C(Ω), curl v ∈ CD(Ω)
}
,

we can observe that we are in the following situation with respect to the time
translates:

v∗(s) ∈ C(R;L2(0, 1; E(Ω))) (v∗)t(s) ∈ C(R;L2(0, 1;H)).

We use the compactness result from Lemma 5.2 with Y1 = E(Ω), X = F(Ω),
and Y2 = H , where

F(Ω) :=
{
v : Ω → R

2 : v ∈ H ∩ C(Ω), ∇v ∈ Lq(Ω) ∀q <∞, curl v ∈ C(Ω)
}
.

We briefly show the compactness of the inclusion E(Ω) ↪→↪→ F(Ω). Let {fn} be a
bounded sequence in E(Ω). Then

∃C : ‖fn‖V ∩L∞ + ‖∇fn‖L∞ + ‖ curl fn‖CD ≤ C ∀n ∈ N.

We recall now that the embedding of CD(Ω) into C(Ω) is compact, since (see [29],
page 498) for x close enough to y

|φ(x) − φ(y)| ≤ ‖φ‖CD∣∣ log |x− y|∣∣ ∀φ ∈ CD(Ω).

Hence we have equicontinuity and the Arzelà–Ascoli theorem applies. With this
observation and by using classical Rellich–Kondrachov results on Sobolev spaces,
we can extract a subsequence (relabelled as {fn}) and find f ∈ F(Ω) such that

fn⇀f V ∩W 1,q(Ω), ∀ q <∞,

fn
∗
⇀ f W 1,∞(Ω),

fn → f H ∩ C0,α(Ω), ∀α < 1,

curl fn → curl f L∞(Ω),

∇fn → ∇f Lq(Ω), ∀q <∞,

where in particular, we used that the Lq-norm of the gradient, for all q <∞, can be
controlled with those of the curl and the divergence (which vanishes), for functions
tangential to the boundary. This is a by-product of the representation formulas
coming from the potential theory. Hence, recalling that u ∈ S2(H) by Theorem 5.1,
all the hypotheses of Lemma 5.1 are satisfied with Y = X = L2(0, 1;H) and
Z = L2(0, 1;F(Ω)), concluding the proof. �
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