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The Brenner–Hochster–Kollár and Whitney

problems for vector-valued functions and jets

Charles Fefferman and Garving K. Luli

Abstract. In this paper, we give analytic methods for finding Cm(Rn) and
Cm,1(Rn) solutions of a finite system of linear equations. Along the way,
we also solve a generalized Whitney problem for vector-valued functions
and jets.

1. Introduction

In [13], the first author and J. Kollár studied the following problem:

Problem 1 (The Brenner–Hochster–Kollár problem). Let X be a space of contin-
uous functions on a topological space E. Suppose we are given R

s-valued functions
f1, . . . , fd, and φ on E. How can we decide whether there exist φ1, . . . , φd ∈ X

such that

(1.1)
d∑

i=1

φifi = φ on E?

For X = C0(E) with E = R
n, [13] gives two effective methods (one analytic and

the other algebraic) for solving this problem when the given functions f1, . . . , fd
and φ are polynomials. ([13] also treats more general E.) Problem 1 in that
case arose from algebraic geometry; see Brenner [3], Epstein–Hochster [8], and
Kollár [15]. When φ1, . . . , φd exist, the algebraic method in [13] produces semi-
algebraic φ1, . . . , φd. On the other hand, the analytic method solves Problem 1
for X = C0 (Rn) without assuming that f1, . . . , fd and φ are polynomials. Here,
we extend the analytic method in [13] to solve Problem 1 for X = Cm(Rn) (the
space of real-valued functions whose derivatives up to order m are continuous and
bounded on R

n) and Cm,ω(Rn) (the space of real-valued functions whose m-th
derivatives have modulus of continuity ω; see Section 2 for more details). These
cases were left open in [13].
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Our work on Problem 1 relates to:

Problem 2 (Whitney’s extension problem). Let X denote a function space. Sup-
pose we are given a compact set E ⊂ R

n and a function f : E → R. How can we
decide whether there exists F ∈ X such that F = f on E?

For X = Cm,ω(Rn) and X = Cm(Rn), Problem 2 was solved in [11], [12],
building on previous work of H. Whitney [20], [21], Brudnyi–Shvartsman [4], [5],
[6], [7], and Bierstone–Milman–Paw�lucki [2].

For X = Cm(Rn), we will solve a more general problem that includes both the
Brenner–Hochster–Kollár and the Whitney problems as special cases. We believe
that this general problem is of independent interest.

To facilitate the statement of our generalization of Problems 1 and 2, we intro-
duce a few definitions and a bit of notation.

Let Cm(Rn,Rd) be the space of Rd-valued functions whose derivatives up to
order m are continuous and bounded on R

n. We write Pm,n to denote the vector
space of all (real) polynomials of degree at most m on R

n. For real-valued func-
tions F, Jmx F stands for the m-jet at x, which we identify with the Taylor polynomial

x̂ �−→ ∑
|α|≤m

1

α!
(∂αF) (x) (x̂− x)

α
.

Thus, the ring of Rx
m,n of m-jets of functions at x is identified with Pm,n, the

space of real m-th degree polynomials on R
n; and the multiplication �x

m,n in
Rx

m,n may be regarded as a multiplication on Pm,n. Here, the multiplication
�x

m,n is defined as P �x
m,n Q ≡ Jmx (PQ) for P,Q ∈ Rx

m,n. For vector-valued

functions �F = (F1, . . . , Fd), we write Jmx
�F to denote the vector

(Jmx F1, . . . , J
m
x Fd) ∈ Pm,n ⊕ . . .⊕ Pm,n︸ ︷︷ ︸

d

= (Pm,n)
d.

We regard (Pm,n)
d as an Rx

m,n-module by the multiplication rule

Q�x
m,n (P1, . . . , Pd) = (Q�x

m,n P1, . . . , Q�x
m,n Pd) .

To motivate the next few definitions, we note that the m-jet (P1, . . . , Pd) at x

of any solution of (1.1) belongs to

�H(x) =
{
�P = (P1, . . . , Pd) : P1(x)f1(x) + . . .+ Pd(x)fd(x) = φ(x)

}
⊂ (Pm,n)

d.(1.2)

Here, the affine subspace �H(x) ⊂ (Pm,n)
d may be computed from (1.1) by elemen-

tary linear algebra. Perhaps �H(x) is empty. (By convention, we allow the empty

set, single points, and all of (Pm,n)
d as affine subspaces of (Pm,n)

d.) If �H(x) is

nonempty and if �P0
x is any element of �H(x), then we may express

�H(x) = �P0
x +�I(x),

where �I(x) =
{
�P = (P1, . . . , Pd) : P1(x)f1(x) + · · · + Pd(x)fd(x) = 0

}
is an Rx

m,n-
submodule of the Rx

m,n-module (Pm,n)
d.
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A vector of functions �F ∈ Cm
(
R

n,Rd
)

solves equation (1.1) if and only if

Jmx
�F ∈ �H(x) for all x ∈ R

n.

Similarly, let f : E → R be as in Problem 2. For x ∈ E define

(1.3) H(x) =
{
P ∈ Pm,n : P(x) = f(x)

}
,

where

(1.4) fx = the constant polynomial x̂ �−→ f(x),

and

I(x) = {P ∈ Pm,n : P(x) = 0}.

Then H(x) = fx + I(x), I(x) is an ideal in Rx
m,n, and a function F ∈ Cm(Rn,R)

satisfies F = f on E if and only if Jmx F ∈ H(x) for all x ∈ E.

The above remarks motivate the following definitions. Fix integers m ≥ 0, n ≥ 1,
and d ≥ 1. Let E ⊂ R

n be compact. A bundle over E is a family �H =
(
�H(x)

)
x∈E

of (possibly empty) affine subspaces �H(x) ⊂ (Pm,n)
d, parametrized by the points

x ∈ E, such that each nonempty �H(x) has the form

�H(x) = �Px +�I(x)

for some �Px ∈ (Pm,n)
d and some Rx

m,n-submodule �I(x) of (Pm,n)
d.

We make no assumptions as to how �H(x), �Px, and �I(x) depend on x.

We call �H(x) the fiber of �H at x. If �H′ =
(
�H′(x)

)
x∈E

is another bundle over E,

then we call �H′ a subbundle of �H provided �H′(x) ⊆ �H(x) for each x ∈ E. If �H′

is a subbundle of �H, then we write �H ⊇ �H′. Finally, a section of a bundle �H =(
�H(x)

)
x∈E

is an R
d-valued function �F ∈ Cm(Rn,Rd) such that Jmx

�F ∈ �H(x) for
each x ∈ E.

We can now state:

Problem 3 (Generalized Whitney’s extension problem for Cm). Fix m, n and d.

How can we decide whether a given bundle �H =
(
�H(x)

)
x∈E

has a section?

From our discussion of the bundles formed by (1.2) and by (1.3), we see that
Problem 1 for X = Cm(Rn,Rd) and Problem 2 for X = Cm(Rn,R) are special
cases of Problem 3.

For the scalar case (i.e., d = 1), Problem 3 is well understood thanks to
Bierstone–Milman–Paw�lucki [2] and the first author [12] (see references therein).
Problem 3 for X = C0(Rn,Rd) is solved in [13]. In this paper, we solve Problem 3
for all m n and d by reducing it to the known scalar case d = 1.

A variant of Problem 3 with Cm(Rn,Rd) replaced by Cm,ω(Rn,Rd) is also of
interest. Here, Cm,ω(Rn,Rd) is the space of Cm functions whose m-th derivatives
have a given modulus of continuity ω (see Section 2). More precisely, we assume
that ω is a “regular modulus of continuity” (again, see Section 2).
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Problem 4 (Generalized Whitney’s extension problem for Cm,ω). Fix m, n

and d. Let E be an (arbitrary) given subset of Rn. Suppose at each x ∈ E, we

are given an m-jet �f(x) ∈ (Pm,n)
d and a convex set σ(x) ⊆ (Pm,n)

d, with σ(x)

symmetric about the origin. How can decide whether there exist �F ∈ Cm,ω(Rn,Rd)

and M < ∞ such that Jmx
�F− �f(x) ∈ Mσ(x) for all x ∈ E?

For the case d = 1, Problem 4 has been extensively studied (see [4], [5], [6], [7],
[9], [10] and [11]). More specifically, for d = 1, if the convex sets σ(x) are assumed
to satisfy a condition called “Whitney ω-convexity,” then a complete answer to
Problem 4 is given in [9].

In this paper, we formulate the notion of Whitney ω-convexity for the general
case (all m, n and d), and solve Problem 4 under the assumption that the convex
sets σ(x) are Whitney ω-convex.

We will see that every Rx
m,n-submodule of (Pm,n)

d is Whitney ω-convex. Con-
sequently, Problem 4 includes the direct analogue of Problem 3 with Cm(Rn,Rd)
replaced by Cm,ω(Rn,Rd). Thus, by solving Problems 3 and 4 as promised above,
we also solve Problem 1 for X = Cm(Rn,Rd) and for X = Cm,ω(Rn,Rd).

Our definition of Whitney ω-convexity is given in Section 2. As we explain
there, each Whitney ω-convex set has a “Whitney constant” A ≥ 1. In a spirit
similar to that of [9], we solve Problem 4 for Whitney ω-convex σ(x) by means of
the following:

Theorem 1. Fix m, n and d. Then there exists an integer k# (depending only on
the integers m, n and d) such that the following holds. Let E ⊂ R

n be an arbitrary
subset and let ω be a regular modulus of continuity. Suppose for each x ∈ E, we
are given an m-jet �f(x) ∈ (Pm,n)

d and a Whitney ω-convex set σ(x) ⊆ (Pm,n)
d

(with Whitney constant A). Let M be a positive real number.
Assume the following condition is satisfied: for each S ⊆ E with # (S) ≤ k#,

there exists �FS ∈ Cm,ω(Rn,Rd) such that

(i) Jmx
�FS ∈ �f(x) +Mσ(x) for all x ∈ S;

(ii) ‖�FS‖Cm,ω(Rn,Rd) ≤ M.

Then there exists �F ∈ Cm,ω
(
R

n,Rd
)
such that Jmx

�F ∈ �f(x) + C (A)Mσ(x) for

all x ∈ E, and ‖�F‖Cm,ω(Rn,Rd) ≤ C (A)M. Here, C (A) depends only on A,m,n, d.

Theorem 1 is a type of “Finiteness Principle”; the constant k# is often referred
to as a “finiteness constant.” The idea of the Finiteness Principle originated in
the work of Brudnyi–Shvartsman (see [5] and [16]). In essence, Theorem 1 reduces
Problem 4 for a general set E to the special case of finite E with bounded cardinality.
This special case is readily solvable, as we explain in Section 5.

We are pleasantly surprised to learn that the proof of Theorem 1 follows from
the scalar case (d = 1), which has been proven in [9]. We should also remark that
P. Shvartsman has communicated to us his unpublished proof of Theorem 1 for
the case m = 0, as a consequence of his results [17], [18] on “Lipschitz selection.”
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To explain our solution to Problem 3, we need to introduce some more termi-
nology.

Fix m, n and d, and let k# be a large enough constant depending only on m, n
and d (see Section 4 for a discussion on the size of k#).

Let �H = (�H(x))x∈E be a bundle. Then the “Glaeser refinement” �H′= (�H′(x))x∈E

is a subbundle of �H, defined as follows.
Given x0 ∈ E and �P0 ∈ �H (x0) , we say that �P0 ∈ �H′ (x0) if and only if

the following condition holds: given ε > 0, there exists δ > 0 such that for all
x1, . . . , xk# ∈ E ∩ B (x0, δ), there exist �P1 ∈ �H (x1) , . . . ,�Pk# ∈ �H (xk#) with∣∣∂α

(
�Pi − �Pj

)
(xi)

∣∣ ≤ ε |xi − xj|
m−|α|

,

for |α| ≤ m and 0 ≤ i, j ≤ k#. (Compare with Glaeser [14], Bierstone–Milman–
Paw�lucki [2], C. Fefferman [12], and C. Fefferman–Kollár [13].)

The Glaeser refinement has three crucial properties:

(P1) �H′ is a subbundle of �H.

(P2) Any section of �H is also a section of �H′. (This follows easily from Taylor’s
theorem.)

(P3) In principle, �H′ may be computed from �H by doing elementary linear algebra
and computing a lim sup. We explain this in Section 5 below.

Let us consider the implication of the Glaeser refinement for Problem 3. Start-
ing with a bundle �H0 over E and repeatedly taking the Glaeser refinement, we
obtain a sequence of bundles

�H0 ⊇ �H1 ⊇ �H2 ⊇ · · · over E.

For each l, �Hl+1 is the Glaeser refinement of �Hl. By (P1) and (P2), the bundles
�Hl have the same sections. Therefore, Problem 3 for a given bundle �H0 is the
same as Problem 3 for any of the iterated Glaeser refinements �Hl.

A lemma adapted from [12] (which in turn is adapted from [14] and [2]) shows

that �Hl =
(
�Hl(x)

)
x∈E

stablizes after a finite number of iterations. More precisely,

for L = 2dim[(Pm,n)
d] + 1, we have �Hl(x) = �HL(x) for all l ≥ L and x ∈ E. For

the sake of completeness, we reproduce a proof of this in Section 5 below.
Passing from �H0 to �HL, we therefore reduce Problem 3 to the special case in

which �H is its own Glaeser refinement.
This special case of Problem 3 is solved by means of the following.

Theorem 2. Let �H = (�H(x))x∈E be a bundle. Suppose �H is its own Glaeser

refinement and each fiber of �H is nonempty. Then �H admits a section.

In the scalar case d = 1, Theorem 2 is proven in [12]. We will prove Theorem 2
in general by reducing it to the known scalar case, just as for Theorem 1.

We remark that our methods for solving Problem 1 for X = Cm,ω(E) and
X = Cm(E) with E = R

n apply equally well to the solution of Problem 1 for
X = Cm,ω(E) and X = Cm(E) with E being a manifold.
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2. Notation and definitions

We fix integers d ≥ 1, n ≥ 1 and m ≥ 0. Cm(Rn,Rd) denotes the space of functions
F : Rn → R

d whose derivatives up to order m are continuous and bounded on R
n.

For �F = (F1, . . . , Fd) ∈ Cm
(
R

n,Rd
)
, we define the norm

‖�F‖Cm(Rn,Rd) = sup
x∈Rn

max
1≤j≤d,|α|≤m

|∂αFj(x)| .

Cm,ω(Rn,Rd) denotes the space of all Cm(Rn,Rd) functions �F : Rn → R
d for

which the norm

‖�F‖Cm,ω(Rn,Rd)

= max
{
‖�F‖Cm(Rn,Rd), sup

x,y∈Rn,0<|x−y|≤1

max
1≤j≤d,|α|=m

∣∣∣∂αFj(x) − ∂αFj (y)

ω (|x− y|)

∣∣∣}
is finite.

A function ω : [0, 1] → [0,∞) is called a “regular modulus of continuity” if it
satisfies the following conditions:

• ω(0) = limt→0+ ω(t) = 0 and ω(1) = 1.

• ω(t) is increasing on [0, 1].

• ω(t)/t is decreasing on (0, 1].

Fix x ∈ R
n. We say that σ(x) ⊆ (Pm,n)

d
is “Whitney ω-convex (in (Pm,n)

d
)

at x with Whitney constant A” if the following conditions are satisfied:

• σ(x) is closed, convex, symmetric (that is, �P ∈ σ(x) if and only if −�P ∈ σ(x)).

• Let (P1, . . . , Pd) ∈ σ(x), Q ∈ Rx
m,n, and δ ∈ (0, 1]. Assume (P1, . . . , Pd)

and Q satisfy the following estimates:

|∂α Pj(x)| ≤ ω (δ) δm−|α| for 1 ≤ j ≤ d and |α| ≤ m;

|∂αQ(x)| ≤ δ−|α| for |α| ≤ m.

Then
(P1 �x

m,n Q, . . . , Pd �x
m,n Q) ∈ Aσ(x),

where �x
m,n denotes the multiplication in Rx

m,n.

From the definition of Whitney ω-convexity, it immediately follows that every
Rx

m,n-submodule of (Pm,n)
d is Whitney ω-convex with Whitney constant 1.
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3. Finiteness principle for Cm,ω

In this section, we prove Theorem 1.
We suppose we are given an arbitrary subset E ⊂ R

n, a regular modulus of
continuity ω, a vector-valued m-jet �f(x) ∈ (Px

m,n)
d and a Whitney ω-convex set

σ(x) ⊆ (Pm,n)
d (with Whitney constant A) at each point x ∈ E.

We denote by x̂ = (x̂1, . . . , x̂n) a dummy variable in R
n and v̂ = (v̂1, . . . , v̂d) a

dummy variable in R
d.

We note that if P(x̂, v̂) is an (m + 1)-jet on R
n+d, then [P(x̂, v̂)]|v̂=0 is an

(m + 1)-jet on R
n, and [∂v̂j

P]|v̂=0 is an m-jet on R
n.

To prove the theorem, we will show that there exists G (x̂, v̂) : Rn+d → R such
that

1. G(x̂, 0) ≡ 0;

2.
(
Jmx

[
∂v̂1

G (x̂, v̂)|
v̂=0

]
, . . . , Jmx

[
∂v̂d

G(x̂, v̂)|
v̂=0

])∈�f(x)+MCσ(x) for all x∈E;

3. ‖G‖Cm+1,ω(Rn+d) ≤ CM, for some constant C depending only on m,n,

and d.

Once this is proven, the theorem follows at once by taking

�F(x̂) =
(
[∂v̂1

G(x̂, v̂)]|
v̂=0

, . . . , [∂v̂d
G(x̂, v̂)]|

v̂=0

)
.

First, we recall the following result (Theorem 3 in [9]); our proof of Theorem 1
will be based on it.

Theorem 3 (Finiteness principle for real-valued jets, C. Fefferman [9]). Given
integers m ≥ 0 and n ≥ 1, there exists k#, depending only on m and n, such that
the following holds.

Letω be a regular modulus of continuity, Ē ⊂ R
n an arbitrary subset, and Ā > 0.

Suppose for each x̄ ∈ Ē, we are given a (real-valued) m-jet f̄(x) ∈ Rx
m,n, and a

Whitney ω-convex set σ̄(x) ⊆ Rx
m,n with Whitney constant Ā.

Assume the following condition is satisfied: For each S ⊆ Ē with # (S) ≤ k#,
there exists a map x �−→ Px from S → Pm,n such that (i) Px ∈ f̄(x) +Mσ̄(x) for
all x ∈ S; (ii)

∣∣∂βPx(x)
∣∣ ≤ M for all x ∈ S, |β| ≤ m; and (iii)

∣∣∂β (Px − Py) (x)
∣∣ ≤

ω (|x− y|) |x− y|
m−|β|

for |β| ≤ m and |x− y| ≤ 1, x, y ∈ S.

Then there exists G ∈ Cm,ω(Rn) such that

(i) ‖G‖Cm,ω(Rn) ≤ CM and

(ii) Jmx G ∈ f̄(x) + CMσ̄(x) for all x ∈ E.

Here, C depends only on Ā, m, and n.

Remark 1. In [7], Brudnyi–Shvartsman showed Theorem 3 for C1,ω(Rn) and
σ̄(x) ≡ 0 (for all x ∈ E) with the sharp constant k# = 3 × 2n−1. Theorem 3 was
first conjectured by Brudnyi and Shvartsman. It was proven by C. Fefferman [9]
with a large constant k# (depending only on m and n). Later, Bierstone–Milman
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in [1] and Shvartsman in [19] independently improved the constant k# in the
case σ̄(x) ≡ 0 by showing that k# = 2dim(Pm,n) is sufficient. For Whitney ω-
convex sets σ̄, Shvartsman in [19] also showed that Theorem 3 holds with k# =
2min{l+1,dimPm,n}, where l = maxx∈Ē dim σ̄(x).

For each x ∈ E, define

σ̂((x, 0)) =
{
P̂ ∈ R(x,0)

m+1,n+d : P̂
∣∣
v̂=0

≡ 0 and
(
[∂v̂1

P̂]|v̂=0, . . . , [∂v̂d
P̂]|v̂=0

) ∈ σ(x)
}

,

where σ(x) ⊆ (Pm,n)
d is as given in Theorem 1.

Lemma 3.1. σ̂((x, 0)) is Whitney ω-convex in R(x,0)
m+1,n+dwith Whitney constant A.

Proof. That σ̂((x, 0)) is closed, convex, and symmetric follows directly from the
definition of σ̂((x, 0)) and the fact that σ(x) is Whitney ω-convex.

Suppose P̂ ∈ σ̂((x, 0)) and Q̂ ∈ R(x,0)
m+1,n+d.

Assume

(3.1)
∣∣∂γP̂(x, 0)

∣∣ ≤ ω (δ) δm+1−|γ|

and

(3.2)
∣∣∂γQ̂(x, 0)

∣∣ ≤ δ−|γ|

for |γ| ≤ m+ 1.

We need to show that P̂ �(x,0)
m+1,n+d Q̂ ∈ Aσ̂((x, 0)), where �(x,0)

m+1,n+d denotes

the multiplication in R(x,0)
m+1,n+d.

First of all, we have

(3.3)
[
P̂ �(x,0)

m+1,n+d Q̂
]∣∣

v̂=0
≡ P̂

∣∣
v̂=0

�x
m+1,n Q̂

∣∣
v̂=0

≡ 0,

since P̂
∣∣
v̂=0

≡ 0 by virtue of the fact that P̂ ∈ σ̂ ((x, 0)).

Let πm : R(x,0)
m+1,n+d → R(x,0)

m,n+d be the natural projection. We have(
∂v̂1

[
P̂ �(x,0)

m+1,n+d Q̂
]
, . . . , ∂v̂d

[
P̂ �(x,0)

m+1,n+d Q̂
])∣∣∣

v̂=0

=
(
∂v̂1

P̂|v̂=0 �x
m,n πmQ̂|v̂=0 + πmP̂|v̂=0 �x

m,n ∂v̂1
Q̂|v̂=0, . . . ,

∂v̂d
P̂|v̂=0 �x

m,n πmQ̂|v̂=0 + πmP̂|v̂=0 �x
m,n ∂v̂d

Q̂|v̂=0

)
(3.4)

=
(
∂v̂1

P̂|v̂=0 �x
m,n πmQ̂|v̂=0, . . . , ∂v̂d

P̂|v̂=0 �x
m,n πmQ̂|v̂=0

)
,

since P̂
∣∣
v̂=0

≡ 0.

We write ∂γ = ∂α
x̂∂

β
v̂

. If β = 1, from (3.1), we have
∣∣∂α

x̂∂
β
v̂
P̂(x, 0)

∣∣ ≤ ω (δ) δm−|α|.
Therefore, we have

(3.5)
∣∣∂α

x̂

[(
∂v̂j

P̂
)∣∣

v̂=0

]
(x)

∣∣ ≤ ω (δ) δm−|α| for 1 ≤ j ≤ d, |α| ≤ m.

From (3.2), we have

(3.6)
∣∣∂α

x̂

[
πmQ̂

∣∣
v̂=0

]
(x)

∣∣ = ∣∣∂α
x̂ Q̂(x, 0)

∣∣ ≤ δ−|α| for |α| ≤ m.
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From (3.4), (3.5), (3.6), and the assumption that σ(x) is Whitney ω-convex

(in (Pm,n)
d

) with Whitney constant A, we conclude that(
∂v̂1

(
P̂ �(x,0)

m+1,n+d Q̂
)∣∣

v̂=0
, . . . , ∂v̂d

(
P̂ �(x,0)

m+1,n+d Q̂
)∣∣

v̂=0

)
∈ Aσ(x).

This together with (3.3) shows that P̂ �(x,0)
m+1,n+d Q̂ ∈ Aσ̂((x, 0)).

This concludes the proof. �

Given an R
d-valued m-jet �f(x) = (f1(x), . . . , fd(x)) ∈ (Pm,n)

d
for each x ∈ E,

we define, for each point (x, 0) ∈ E × {0} ⊂ R
n × R

d, a real-valued (m + 1)-jet

f̂(x, 0) ∈ R(x,0)
m+1,n+d by

(3.7) f̂(x, 0)(x̂, v̂) =

d∑
j=1

v̂j [fj(x)(x̂)] .

We will check that the assumption in Theorem 3 is satisfied with E× {0}, m+1,

n + d, f̂(x, 0), and σ̂((x, 0)) in place of Ē, m, n, f̄(x), and σ̄(x), respectively.
Toward this end, we let S× {0} ⊆ E× {0} with # (S) ≤ k# and show that there

exists a map (x, 0) �−→ P̂(x,0) from S× {0} → R(x,0)
m+1,n+d such that

1) P̂x − f̂(x, 0) ∈ Mσ̂((x, 0)) for all x ∈ S;

2)
∣∣∂γP̂(x,0)(x, 0)

∣∣ ≤ M for all x ∈ S, |γ| ≤ m + 1;

3)
∣∣∂γ

(
P̂(x,0) − P̂(y,0)

)
(x, 0)

∣∣ ≤ Mω (|x− y|) |x− y|
m+1−|γ|

for |γ| ≤ m+ 1 and
|x− y| ≤ 1, x, y ∈ S.

By the assumption of Theorem 1, there exists �FS ∈ Cm,ω(Rn,Rd) such that

(i) Jmx
�FS ∈ f(x) +Mσ(x) for each x ∈ S and (ii) ‖�FS‖Cm,ω(Rn,Rd) ≤ M.

For each x ∈ S, we consider the R
d-valued m-jet Jmx

�FS ≡ (Px
1 , . . . , P

x
d) and

define a real-valued (m+ 1)-jet at (x, 0) by

(3.8) P̂(x,0)(x̂, v̂) ≡
d∑

j=1

v̂jP
x
j (x̂).

We will show that P̂(x,0) defined above satisfies 1), 2) and 3).

By the definitions of f̂(x, 0) and P̂(x,0) (see (3.7) and (3.8)), we have

(3.9)
[
P̂(x,0) − f̂(x, 0)

]∣∣
v̂=0

≡ 0.

Furthermore, we have((
∂v̂1

[
P̂(x,0) − f̂(x, 0)

])∣∣
v̂=0

, . . . ,
(
∂v̂d

[
P̂(x,0) − f̂(x, 0)

])∣∣
v̂=0

)
= (Px

1 − fx1, . . . , P
x
d − fxd) ∈ Mσ(x), since Jmx

�FS ∈ �f(x) +Mσ(x).(3.10)

This together with (3.9) proves 1).
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For 2) and 3), we write ∂γ = ∂α
x̂ ∂

β
v̂

.

From (3.8), we see that

(3.11) ∂β
v̂
P̂(x,0)|v̂=0 ≡ 0 if|β| �= 1.

Thanks to (3.11), we have
∣∣∂α

x̂ ∂
β
v̂
P̂(x,0)(x, 0)

∣∣ = 0 if |β| �= 1; by (3.8), we have

∣∣∂α
x̂ ∂

β
v̂
P̂(x,0)(x, 0)

∣∣ = ∣∣∂α
x̂ Px

j (x)
∣∣ ≤ M

for some 1 ≤ j ≤ d if |β| = 1 and
∣∣α∣∣ ≤ m. (Here we used the assumption

that ‖�FS‖Cm,ω(Rn,Rd) ≤ M.) To wit, we have |∂γP̂(x,0)(x, 0)| ≤ M for all x ∈ S,
|γ| ≤ m+ 1. This shows 2).

To prove 3), we consider two cases: |β| �= 1 and |β| = 1. For x, y ∈ S and
|β| �= 1, in view of (3.11), we see that

(3.12)
∣∣∂γ

(
P̂(x,0) − P̂(y,0)

)
(x, 0)

∣∣ = 0,

which trivially implies 3). Now, for |β| = 1 and for all x, y ∈ S with |x−y| ≤ 1, we
have∣∣∂γ(P̂(x,0) − P̂(y,0))(x, 0)

∣∣
=

∣∣∂α
x̂ (P

x
j − P

y
j )(x)

∣∣ for some 1 ≤ j ≤ d,

≤ Mω (|x− y|) |x− y|
m−|α|, since ‖�FS‖Cm,ω(Rn,Rd) ≤ M,

≤ Mω (|x− y|) |x− y|m+1−|γ|, since |γ| = 1+ |α| when |β| = 1.(3.13)

From (3.12) and (3.13), we obtain 3).

We have verified 1), 2) and 3); by Theorem 3, we can conclude that there exists
G ∈ Cm+1,ω

(
R

n+d
)

such that

1. ‖G‖Cm+1,ω(Rn+d) ≤ CM;

2. Jm+1
(x,0)G− f̂(x, 0) ∈ CMσ̂((x, 0)) for all x ∈ E.

Here, C depends only on A, m, n, and d. By the definition of σ̂((x, 0)) and (3.7),
we see that G(x̂, v̂) : Rn+d → R satisfies:

1. G(x̂, 0) ≡ 0;

2.
(
Jmx [∂v̂1

G|v̂1=0], . . . , J
m
x [∂v̂d

G|v̂=0]
) ∈ �f(x) +MCσ(x) for all x ∈ E;

3. ‖G‖Cm+1,ω(Rn+d) ≤ CM, for some constant C depending only on m, n, d,
and A.

In view of the remarks at the beginning of this section, we have proven Theorem 1.



The Brenner–Hochster–Kollár and Whitney problems 885

4. Proof of the Cm extension theorem

In this section, we prove Theorem 2. The relevant terminology is given in the
introduction.

Before we embark on the proof of Theorem 2, we recall the following result
(Theorem 2 in [12]).

Theorem 4 (Cm extension theorem for real-valued functions, C. Fefferman [12]).
Let Ē ⊂ R

n be compact. Suppose for each x ∈ Ē we are given an affine subspace
H̄(x) ⊆ Rx

m,n having the form H̄(x) = f̄(x) + Ī(x), where f̄(x) ∈ Rx
m,n and Ī(x)

is an ideal in Rx
m,n. Assume that {H̄(x)}x∈Ē is its own Glaeser refinement. Then

there exists F̄ ∈ Cm(Rn) with Jmx F̄ ∈ H̄(x) for all x ∈ E.

Remark 2. In [12], the first author showed that the large constant k# appearing
implicitly in Theorem 4 can be bounded by a constant depending only on m and n.
Later, in [1], Bierstone–Milman gave a sharper upper bound on k# in the case
Ī(x) ≡ {0}. In that case, they showed that k# = 2dim(Pm,n) is sufficient. Compare
with Remark 1.

Proof of Theorem 2. We recall that each fiber of the given bundle �H = (�H(x))x∈E

takes the form
�H(x) = �Px +�I(x),

where �Px = (Px
1 , . . . , P

x
d) ∈ (Pm,n)

d and �I(x) is an Rx
m,n-submodule of (Pm,n)

d.

Define f̂ : E× {0} ⊂ R
n × R

d → Pm+1,n+d by

(4.1) f̂((x, 0)) =

d∑
j=1

v̂jP
x
j (x̂) ∈ R(x,0)

m+1,n+d.

For each (x, 0) ∈ E× {0}, consider the set

Î((x, 0)) =
{
P ∈ R(x,0)

m+1,n+d :P(x̂, 0) ≡ 0,

([∂v̂1
P(x̂, v̂)] |v̂=0, . . . , [∂v̂d

P(x̂, v̂)] |v̂=0) ∈�I(x)
}
.

Lemma 4.1. For each (x, 0) ∈ E× {0}, Î((x, 0)) is an ideal in R(x,0)
m+1,n+d.

Proof of Lemma 4.1. Let P ∈ Î((x, 0)) and Q ∈ R(x,0)
m+1,n+d. We must show that

(4.2)
[
P �(x,0)

m+1,n+d Q
] ∈ Î((x, 0)),

where �(x,0)
m+1,n+d denotes the multiplication in R(x,0)

m+1,n+d.
Since P(x̂, 0) ≡ 0, we have

(4.3)
[
P �(x,0)

m+1,n+d Q
]∣∣

v̂=0
≡ P|v̂=0 �x

m+1,n Q|v̂=0 ≡ 0.
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Now, let πm : R(x,0)
m+1,n+d → R(x,0)

m,n+d be the natural projection. We have

(
∂v̂1

(
P �(x,0)

m+1,n+d Q
)∣∣

v̂=0
, . . . , ∂v̂d

(
P �(x,0)

m+1,n+d Q
)∣∣

v̂=0

)
=(∂v̂1

P|
v̂=0

�x
m,n πmQ|v̂=0 + πmP|v̂=0 �x

m,n ∂v̂1
Q|

v̂=0
, . . . ,

∂v̂d
P|

v̂=0
�x

m,n πmQ|v̂=0 + πmP|v̂=0 �x
m,n ∂v̂d

Q|
v̂=0

)

= (∂v̂1
P|v̂=0 �x

m,n πmQ|v̂=0, . . . , ∂v̂d
P|v̂=0 �x

m,n πmQ|v̂=0) ∈�I(x),(4.4)

where we used the facts that P ∈ Î((x, 0)) (so that πmP|v̂=0 ≡ 0) and that �I(x) is

an Rx
m,n-submodule of (Px

m,n)
d.

From (4.3) and (4.4), we conclude the proof of (4.2). �

Remark 3. We recall that
{
�H(x)

}
x∈E

is assumed to be its own Glaeser refinement.
We will show that the bundle

(4.5)
{
Ĥ((x, 0)) := f̂((x, 0)) + Î((x, 0))

}
(x,0)∈E×{0}

.

is also its own Glaeser refinement.
With n+d, m+1, E×{0}, f̂, Î((x, 0)), and

{
Ĥ((x, 0))

}
(x,0)∈E×{0}

in place of n, m,

Ē, f̄, Ī(x), and
{
H̄(x)

}
x∈Ē

in Theorem 4, we see that there exists G ∈ Cm+1(Rn+d)

with Jm+1
(x,0)(G) ∈ Ĥ((x, 0)) for all (x, 0) ∈ E× {0}.

Setting
�F(x̂) =

(
[∂v̂1

G(x̂, v̂)]|
v̂=0

, . . . , [∂v̂d
G(x̂, v̂)]|

v̂=0

)
,

in view of the definition of Ĥ((x, 0)), we have Jmx
�F ∈ �H(x) for all x ∈ E, thus

proving Theorem 2.

Therefore, the crux of the matter is to verify (4.5). To this end, let x0 ∈ E and

P̂0 ∈ Ĥ ((x0, 0)). We will prove that P̂0 ∈ Ĥ′ ((x0, 0)).
Since P̂0 ∈ Ĥ ((x0, 0)), we can write

(4.6) P̂0(x̂, v̂) = f̂ ((x0, 0)) (x̂, v̂) +
∑

1≤|ξ|≤m+1

1

ξ!
v̂ξ Pξ (x̂) ,

where Pξ ∈ Pm,n with

�P ≡
((

∂v̂1

[ ∑
1≤|ξ|≤m+1

1

ξ!
v̂ξ Pξ(x̂)

])∣∣∣
v̂=0

, . . .

. . . ,
(
∂v̂d

[ ∑
1≤|ξ|≤m+1

1

ξ!
v̂ξ Pξ (x̂)

])∣∣∣
v̂=0

)
∈�I(x).(4.7)

We write
�P0 ≡ (P0,1, . . . , P0,d) ≡ �Px0 + �P.



The Brenner–Hochster–Kollár and Whitney problems 887

Thanks to (4.7), we have

(4.8) �P0 ∈ �H(x0).

From (4.6), we have

(4.9) P̂0(x̂, v̂) =
∑

1≤k≤d

v̂kP0,k(x̂) +
∑

2≤|ξ|≤m+1

1

ξ!
v̂ξ Pξ(x̂).

Fix ε > 0. Since
{
�H(x) = �Px+�I(x)

}
x∈E

is its own Glaeser refinement, we know

that there exists δ > 0 such that for all x1, . . . , xk# ∈ E ∩ B (x0, δ), there exist

(4.10) �P1 = (P1,1, . . . , P1,d) ∈ �H (x1) , . . . ,�Pk# = (Pk#,1, . . . , Pk#,d) ∈ �H (xk#)

with

(4.11) |∂α (Pi,k − Pj,k) (xi)| ≤ ε |xi − xj|
m−|α|

for |α| ≤ m, 0 ≤ i, j ≤ k# and 1 ≤ k ≤ d.

Now, for any (x1, 0) , . . . , (xk# , 0) ∈ (E× {0}) ∩ B ((x0, 0) , δ), we claim the fol-
lowing:

a) P̂1(x̂, v̂) ≡
d∑

j=1

v̂j P1,j(x̂) +
∑

2≤|ξ|≤m+1

1

ξ!
v̂ξ Pξ(x̂) ∈ Ĥ ((x1, 0)) ,

...

P̂k#(x̂, v̂) ≡
d∑

j=1

v̂j Pk#,j(x̂) +
∑

2≤|ξ|≤m+1

1

ξ!
v̂ξ Pξ (x̂) ∈ Ĥ ((xk# , 0)) ,

where �P1, . . . ,�Pk# are as chosen in (4.10); Pξ are as in (4.6).

b) For all |γ| ≤ m+ 1, we have

(4.12)
∣∣∂γ

(
P̂i − P̂j

)
((xi, 0))

∣∣ ≤ ε |xi − xj|
m+1−|γ|

, for 0 ≤ i, j ≤ k#.

To see a), fix an integer i ∈ {
1, . . . , k#

}
and consider

P̂i(x̂, v̂)− f̂((xi, 0))(x̂, v̂)

=
( d∑

j=1

v̂j Pi,j(x̂) +
∑

2≤|ξ|≤m+1

1

ξ!
v̂ξ Pξ(x̂)

)
−

d∑
j=1

v̂j P
xi

j (x̂)

=
d∑

j=1

v̂j
(
Pi,j − Pxi

j

)
(x̂) +

∑
2≤|ξ|≤m+1

1

ξ!
v̂ξ Pξ(x̂).(4.13)

Notice that

(4.14)

[
∂β
v̂

( ∑
2≤|ξ|≤m+1

1

ξ!
v̂ξ Pξ (x̂)

)]∣∣∣∣
v̂=0

≡ 0 for |β| ≤ 1.
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From (4.13) and (4.14), it follows that

(4.15)
[
P̂i(x̂, 0) − f̂((xi, 0))

]
(x̂, 0) ≡ 0.

Next, we have([
∂v̂1

(
P̂i − f̂((xi, 0))

)
(x̂, v̂)

]∣∣∣
v̂=0

, . . . ,
[
∂v̂d

(
P̂i − f̂((xi, 0))

)
(x̂, v̂)

]∣∣∣
v̂=0

)
= ((Pi,1 − Pxi

1 ) (x̂), . . . , (Pi,d − Pxi

d ) (x̂)) ∈�I (xi) ,

where the first equality follows from (4.13) and (4.14); and the last relation follows
from (4.10). Together with (4.15), this completes the proof of a).

For b), we write ∂γ = ∂α
x̂ ∂β

v̂
and observe that for 0 ≤ i ≤ k#,

(4.16)
[
∂β
v̂
P̂i

]∣∣∣
v̂=0

≡
⎧⎨
⎩

0
Pi,j

Pβ

if |β| = 0
for some 1 ≤ j ≤ d, if |β| = 1

|β| ≥ 2
.

In view of (4.16), we see that (4.12) holds trivially for |β| �= 1. Therefore, it suffices

to show (4.12) for |β| = 1. Without loss of generality, we may assume ∂β
v̂
= ∂v̂k

for some k ∈ {1, . . . , d}. We have∣∣∂γ
(
P̂i − P̂j

)
((xi, 0))

∣∣ =
∣∣∂α

x̂∂v̂k

(
P̂i − P̂j

)
((xi, 0))

∣∣
= |∂α

x̂ (Pi,k − Pj,k) (xj)|

≤ ε |xi − xj|
m−|α|

, thanks to (4.11),

= ε |xi − xj|
m+1−|γ|

,

establishing (4.12).

Properties a) and b) show that P̂0 ∈ Ĥ ′ ((x0, 0)). Since x0 ∈ E and P̂0 ∈
Ĥ ((x0, 0)) are arbitrary, this completes the proof of (4.5). Theorem 2 now follows
from Remark 3. �

5. Solutions to Problem 1 for X = Cm(Rn) and X = Cm,ω(Rn)

Armed with Theorems 1 and 2, we are now in a position to answer Problem 1
for X = Cm(Rn) and X = Cm,ω(Rn).

We write Qo = [−1/2, 1/2]n to denote the unit cube in R
n.

For X = Cm,ω(Qo), to apply Theorem 1, we will take E = Qo and

σ(x) =
{
P ∈ (Pm,n)

d :

d∑
i=1

Pi(x)fi(x) = 0
}
.

It is easy to see that σ(x) is Whitney ω-convex with Whitney constant 1.
By Theorem 1 and the standard Whitney extension Theorem for Cm,ω(Rn) (see
Theorem 3), we easily see that the solvability of Problem 1 for X = Cm,ω(Qo) is
equivalent to the solvability of the following elementary linear algebra problem:
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Does there exist M < ∞ such that the following holds: Given any k# distinct
points x1, . . . , xk# ∈ Qo, there exist Pj

1, . . . , P
j

k# ∈ Pm,n for 1 ≤ j ≤ d such
that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑d
j=1 fj (xk)P

j
k (xk) = φ (xk) for k = 1, . . . , k#∑k#

k=1

∑d
j=1

∑
|α|≤m

∣∣∣∂α Pj
k (xk)

∣∣∣2
+
∑

1≤k<k′≤k#

∑d
j=1

∑
|α|≤m

∣∣∣∣ ∂α(Pj
k
−P

j

k′)(xk)

ω(|xk−xk′ |)|xk−xk′ |m−|α|

∣∣∣∣
2

≤ M2

?

Next, we describe the solution to Problem 1 for X = Cm(Qo).
It is easy to see that the m-jet of any Cm (Qo) solution of Problem 1 at x ∈ Qo

belongs to

�H(x) =
{
�P = (P1, . . . , Pd) ∈ (Pm,n)

d :
d∑

i=1

Pi(x)fi(x) = φ(x)
}

.

We consider the bundle �H =
(
�H(x)

)
x∈Qo . Solving Problem 1 amounts to deciding

whether this bundle admits a section.
By Taylor’s theorem, we know that the sections of a bundle �H coincide with

the sections of its Glaeser refinement.

Now we describe an effective method for computing the Glaeser refinements.
Given points x0, x1, . . . , xk ∈ R

n, and given polynomials �P0 =
(
�P0,1, . . . ,�P0,d

)
,

�P1 =
(
�P1,1, . . . ,�P1,d

)
, . . . ,�Pk =

(
�Pk,1, . . . ,�Pk,d

) ∈ (Pm,n

)d
, we define

Q(�P0,�P1, . . . ,�Pk; x0, x1, . . . , xk) ≡
k∑

i′,i=0
xi �=xi′

d∑
j=1

∑
|α|≤m

∣∣∣∂α(Pi,j − Pi′,j)(xi)

|xi − xi′ |m−|α|

∣∣∣2.

Fix x0 ∈ Qo and �P0 ∈ �H(x0). For fixed x1, . . . , x
#
k ∈ Qo, we compute the

minimum for the following quadratic form over a finite-dimensional affine space:

MIN(x0,�P0; x1, . . . , x
#
k )

≡ min
{Q(�P0,�P1, . . . ,�Pk# ; x0, x1, . . . , xk#) : �P1 ∈ �H(x1), . . . ,�Pk# ∈ �H(xk#)

}
.

Determining MIN(x0,�P0; x1, . . . , x
#
k ) is just a routine linear algebra problem. From

the definition of Glaeser refinement, it is easy to see that given x0 ∈ Qo and
�P0 ∈ �H(x0), we have �P0 ∈ �H′(x0) if and only if

lim sup
δ↓0,x1,...,x

#
k
∈B(x0,δ)

MIN(x0,�P0; x1, . . . , x
#
k ) = 0.

To wit, computing the Glaeser refinement of a bundle �H involves doing elementary
linear algebra and calculating the lim sup.

The following lemma states that the Glaeser refinements stabilize after a finite
number of iterations.
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Lemma 5.1 (Stabilization Lemma adapted from [12] (which in turn is adapted
from [14] and [2])). Let E ⊂ R

n be compact. Suppose we are given a bundle
�H0 = {�H(x)}x∈E. For l ≥ 0, let �Hl+1 = {�Hl+1(x)}x∈E be the Glaeser refinement

of �Hl = {�Hl(x)}x∈E. For each x ∈ E, if dim �H2k+1(x) ≥ dim
[
(Pm,n)

d
]
− k, then

�Hl(x) = �H2k+1(x) for all l ≥ 2k + 1.

Proof of Lemma 5.1. Fix x ∈ E. We proceed by induction on k. For k = 0, the
lemma asserts that

(5.1) if �H1(x) = (Pm,n)
d, then �Hl(x) = �H1(x) for all l ≥ 1.

From the definition of �Hl, one sees that

(5.2) dim �Hl+1(x) ≤ lim
y→x

inf dim �Hl(y).

Hence, if �H1(x) = (Pm,n)
d

, then �H0(y) = (Pm,n)
d

for all y in a neighborhood

of x. Consequently, �Hl(y) = (Pm,n)
d

, for all l ≥ 1, proving (5.1).
For the induction step, fix some k ≥ 0 and assume Lemma 5.1 holds for that k.

We must show that

if dim �H2k+3(x) ≥ dim
[
(Pm,n)

d ]
− (k + 1) ,

then �Hl(x) = �H2k+3(x) for all l ≥ 2k + 3.(5.3)

By the inductive hypothesis, we know that if dim �H2k+1(x) ≥ dim[(Pm,n)
d] − k,

then �Hl(x) = �H2k+1(x) for all l ≥ 2k + 1; consequently, (5.3) holds. Thus, to
prove (5.3), we may assume that

dim �H2k+1(x) ≤ dim
[
(Pm,n)

d ]
− (k+ 1) .

Thus,

(5.4) dim �H2k+1(x) = dim �H2k+2(x) = dim �H2k+3(x) = dim
[
(Pm,n)

d ]
− (k+ 1) .

Note that dim �H2k+1(y) ≥ dim(Pm,n)
d−(k+1) for all y sufficiently close to x

since otherwise (5.2) (with l = 2k + 1) would contradict (5.4).
Next, we will show the following:

(5.5) �H2k+2(y) = �H2k+1(y) for all y sufficiently close to x.

Suppose toward a contradiction that (5.5) fails; that is,

(5.6) there exists y arbitrarily near x such that dim �H2k+2(y) ≤ dim �H2k+1(y)−1.

Then, since we are assuming Lemma 5.1 for k, we must have

(5.7) dim �H2k+1(y) ≤ dim
[
(Pm,n)

d ]
− (k+ 1)

for all y as in (5.6).
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This together with (5.6) shows

(5.8) dim �H2k+2(y) ≤ dim
[
(Pm,n)

d ]
− k − 2 for all y arbitrarily close to x.

From (5.2) and (5.8), we get

dim �H2k+3(x) ≤ dim
[
(Pm,n)

d ]
− k − 2,

contradicting (5.4). Therefore, (5.5) cannot fail.

By (5.5), we see easily that �Hl(y) = �H2k+1(y) for all l ≥ 2k + 1 and all y ∈ E

sufficiently close to x. In particular, we have �Hl(x) = �H2k+3(x) for all l ≥ 2k + 3.
This completes the induction step, and proves Lemma 5.1. �

According to this lemma, we know that �Hl = �H2 dim[(Pm,n)d]+1 for

l ≥ 2dim[(Pm,n)
d] + 1.

Moreover, following the argument for Lemma 2.1 in [12], we see that if �H(x) =
�f(x)+�I(x) for some Rx

m,n-submodule�I(x) of (Pm,n)
d and if the Glaeser refinement

�H′(x) �= ∅, then �H′(x) = �f1(x) +�I1(x) for some �f1(x) ∈ �H′(x) and some Rx
m,n-

submodule �Il(x) of (Pm,n)
d. Consequently, by Theorem 2, we easily see that

Problem 1 is solvable for X = Cm(Rn) if and only if the bundle �H2 dim[(Pm,n)d]+1

contains no empty fiber.
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