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Groups with restrictions
on subgroups of infinite rank
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Abstract. It is known that a (generalized) soluble group whose proper
subgroups of infinite rank are abelian either is abelian or has finite rank.
It is proved here that if G is a group of infinite rank such that all its
proper subgroups of infinite rank have locally finite commutator subgroup,
then the commutator subgroup G′ of G is locally finite, provided that G
satisfies a suitable generalized solubility condition. Moreover, a similar
result is obtained for groups whose proper subgroups of infinite rank are
quasihamiltonian.

1. Introduction

A group G is said to have finite (Prüfer) rank r = r(G) if every finitely generated
subgroup ofG can be generated by at most r elements, and r is the least positive in-
teger with this property. A classical theorem of A. I. Mal’cev, proved in [14], states
that a locally nilpotent group of infinite rank must contain an abelian subgroup of
infinite rank. On the other hand, in [7], M.R. Dixon, M. J. Evans and H. Smith
proved that a (generalized) soluble group, in which all proper subgroups of infinite
rank are abelian, either is abelian or has finite rank. The investigation of groups
whose proper subgroups of infinite rank have a given property has been continued
in a series of papers (see, for instance, [8], [9], [10]).

It is not difficult to show that if G is a (generalized) soluble group of infinite rank
and all its proper subgroups of infinite rank have finite commutator subgroup, then
also the commutator subgroup G′ of G is finite. This and some more consequences
of the previous results will be proved in Section 3.

The aim of this paper is to provide a further contribution to this topic, and our
first main result is the following.
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Theorem A. Let G be a strongly locally graded group of infinite rank. If all proper
subgroups of infinite rank of G have locally finite commutator subgroup, then the
commutator subgroup G′ of G is also locally finite.

We will work within the universe of strongly locally graded groups, a class of
generalized soluble groups that can be defined as follows.

Recall that a group G is locally graded if every finitely generated nontrivial
subgroup of G contains a proper subgroup of finite index. Let D be the class of
periodic locally graded groups, and let D̄ be the closure of D under the operators
Ṕ, P̀,R and L (these and other relevant operators will be defined in Section 2,
and we shall use the first chapter of the monograph [18] as a general reference for
definitions and properties of closure operations on group classes). It is easy to prove
that any D̄-group is locally graded, and that the class D̄ is closed with respect to
forming subgroups. Moreover, in [2] N. S. Černikov proved that every D̄-group
with finite rank contains a locally soluble subgroup of finite index. Obviously,
all residually finite groups belong to D̄, and hence the consideration of any free
nonabelian group shows that the class D̄ is not closed with respect to homomorphic
images. We shall say that a group G is strongly locally graded if every section of G
is a D̄-group. Thus strongly locally graded groups form a large S and H-closed
class of generalized soluble groups, containing in particular all locally (soluble-by-
finite) groups.

The last section of the paper deals with groups whose proper subgroups of
infinite rank are quasihamiltonian. Recall that a subgroup H of a group G is said
to be permutable if HX = XH for each subgroup X of G, and the group G is
quasihamiltonian if all its subgroups are permutable, i.e., if XY = Y X for all
subgroups X and Y of G. The structure of quasihamiltonian groups has been
described by K. Iwasawa (see Chapter 2 of [22]). It has recently been proved by
M.R. Dixon and Z.Y. Karatas in [9] that if G is a strongly locally graded group
whose subgroups of infinite rank are permutable, then either G is quasihamiltonian
or it has finite rank. Our second main theorem deals with groups whose subgroups
of infinite rank are quasihamiltonian.

Theorem B. Let G be a strongly locally graded group of infinite rank. If all proper
subgroups of infinite rank of G are quasihamiltonian, then also G is quasihamilto-
nian.

It is well known that a group G is quasihamiltonian if and only if it is locally
nilpotent and the lattice L(G) of all subgroups of G is modular. Theorem B will
be obtained as a consequence of a similar result on groups for which the lattice of
subgroups of any proper subgroup of infinite rank is modular. The proof of this
latter theorem uses Theorem A, as locally graded groups with modular subgroup
lattice have locally finite commutator subgroup.

We mention here that Theorem A is also a necessary step in the study of groups
whose proper subgroups of infinite rank have finite conjugacy classes; such groups
are investigated in [5].

Most of our notation is standard and can be found in [18].
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2. Preliminary results

Theorem A will be obtained as a special case of a general theorem of the same
type concerning abstract group classes with certain suitable properties. We recall
here the definitions of the main closure operations on group classes that will be
used in our arguments. If X is any class of groups, then:

• SX is the class of all groups whose subgroups belong to X,

• HX is the class of all groups whose homomorphic images belong to X,

• NX is the class of all groups generated by normal X-subgroups,

• LX is the class of all groups such that every finite subset is contained in
an X-subgroup; in particular, if SX = X, then LX is the class of all groups
whose finitely generated subgroups belong to X,

• PX is the class of all groups admitting a finite series with X-factors,

• ṔX is the class of all groups admitting an ascending series with X-factors,

• P̀X is the class of all groups admitting a descending series with X-factors,

• RX is the class of all groups which can be embedded in a cartesian product
of X-subgroups,

• if Y is any group class, XY is the class of all groups G containing a normal
X-subgroup N such that G/N belongs to Y.

Lemma 2.1. Let X be an S-closed class of groups such that (LX)X = LX. Then
the class LX is P-closed, i.e., (LX)(LX) = LX.

Proof. Let G be a group containing a normal LX-subgroup N such that the factor
group G/N is locally X, and let E be any finitely generated subgroup of G. Then
EN/N belongs to X and so E lies in (LX)X = LX. Therefore E is an X-group
and G is locally X. �

Corollary 2.2. Let X be a class of groups such that SX = HX = X and (LX)X =
LX. Then the class LX is N-closed.

If X is a class of groups, recall that the X-radical of a group G is the subgroup
generated by all normal X-subgroups of G. Although the X-radical of a group need
not belong to X in general, this turns out to be true for some relevant group classes.
In fact, if X is any class of groups such that SX = HX = X and (LX)X = LX,
it follows from Corollary 2.2 that in any group G the LX-radical is locally X and
contains all ascendant LX-subgroups of G (see Lemma 1.31 in part 1 of [18]).

Lemma 2.3. Let G be a strongly locally graded group whose proper subgroups have
finite rank. Then G has finite rank.

Proof. Assume, aiming at a contradiction, that the group G has infinite rank.
Then G has no proper subgroups of finite index, so that in particular it cannot be
finitely generated. It follows that every finitely generated subgroup of G has finite
rank, and so it is soluble-by-finite by Černikov’s theorem [2]. Since G has infinite
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rank, it must contain a locally soluble subgroup H of infinite rank (see [6]), and
hence G = H is locally soluble. Therefore G has finite rank (see Lemma 1 of [7]),
and this contradiction proves the lemma. �

The knowledge of the structure of groups whose proper normal subgroups have
finite rank will be relevant in our considerations. This structure is described by
the following result.

Lemma 2.4. Let G be a strongly locally graded group of infinite rank whose proper
normal subgroups have finite rank. Then either G is locally nilpotent or it has a
simple homomorphic image of infinite rank.

Proof. The factor group G/G′ has finite rank, as it cannot contain proper sub-
groups of infinite rank; then G′ has infinite rank and so G = G′ is perfect. More-
over, any proper normal subgroup of G is a strongly locally graded group of finite
rank, so that it contains a locally soluble subgroup of finite index. It follows that
the product of two arbitrary locally soluble normal subgroups of G is locally sol-
uble, and hence the join L of all locally soluble normal subgroups of G is likewise
locally soluble. It is also clear that all proper normal subgroups of G/L are finite.
Assume first that G is not locally soluble, i.e., L �= G. As G does not contain
proper subgroups of finite index, G/L cannot be covered by its finite normal sub-
groups, and so it contains a largest proper normal subgroup K/L. Then K/L is
finite and G/K is a simple group of infinite rank.

Suppose now thatG is locally soluble. Then for each proper normal subgroupN
of G there is a positive integer k, depending only on the rank of N , such that the
subgroup N (k) is hypercentral (see Lemma 10.39 of part 2 of [18]). In particular,
as G is not simple, it contains an abelian non-trivial normal subgroup. On the
other hand, the hypotheses are obviously inherited by homomorphic images, and
so G is a hyperabelian group. Assume, aiming a contradiction, that G is not locally
nilpotent, so that G properly contains its Hirsch–Plotkin radical H . Then H has
finite rank, and hence G contains a normal subgroup V such that the index |G : V |
is finite and the subgroup V ′ is hypercentral (see Theorem 8.16 of part 2 of [18]).
It follows that V = G, so that G = G′ is hypercentral, and this contradiction
completes the proof of the lemma. �

We consider now the case of simple groups whose proper subgroups of infinite
rank have a certain property.

Lemma 2.5. Let X be a class of groups which is S and L-closed, and let G be a
simple strongly locally graded group of infinite rank. If all proper subgroups of G
of infinite rank belong to X, then either G is an X-group or it is locally finite.

Proof. Assume that G is not an X-group. As G is simple and locally graded,
it cannot be finitely generated. Moreover, since X is a local class, G contains
a finitely generated subgroup G1 which is not an X-group. If E is any finitely
generated subgroup of G, the proper subgroup 〈E,G1〉 does not belong to X, and
hence it has finite rank. Therefore all finitely generated subgroups of G have finite
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rank, and Černikov’s result yields that they are soluble-by-finite, i.e., G is locally
(soluble-by-finite).

Since G has infinite rank, the ranks of its finitely generated subgroups are
unbounded, and so there exists in G an ascending chain

G1 < G2 < · · · < Gn < Gn+1 < · · ·
of finitely generated subgroups such that r(Gn) < r(Gn+1) for each n. Clearly, the
countable subgroup

〈Gn | n ∈ N〉
has infinite rank and does not belong to X, so that

G = 〈Gn | n ∈ N〉.
For each positive integer n, let Rn be the soluble radical of Gn, and put

R = 〈Rn | n ∈ N〉.
As the subgroup Rn is normalized by Ri for every i ≤ n, it follows that

〈R1, . . . , Rn〉 = R1 . . . Rn

is soluble, and hence R is locally soluble. Moreover, G1 is contained in the normal-
izer NG(R), so that the index |G1R : R| is finite and G1R is (locally soluble)-by-
finite. In particular, G1R is a proper subgroup of G which does not belong to X,
and so G1R has finite rank. However the subgroupsGn have unbounded ranks, and
hence the orders of the finite groups Gn/Rn are unbounded. It follows that also
the socles of the finite groups Gn/Rn have unbounded ranks (see Propositions 2.1
and 2.4 of [6]).

As R is a locally soluble group of finite rank, there exists a positive integer k
such that the k-th term R(k) of the derived series of R is periodic (see Lemma 10.39
in part 2 of [18]). It is well known that each subgroup Gn is minimax (see, for
instance, [17]). Thus for every n we can choose a locally finite normal subgroup Ln

of Gn in such a way that the subgroups Ln have unbounded ranks (see [6], Propo-
sition 3.3). The subgroup Ln is normalized by Li for all i ≤ n, so that

L = 〈Ln | n ∈ N〉
is locally finite. Moreover, L has infinite rank and G1 ≤ NG(L), so that G1L = G
and L is normal in G. Therefore G = L is locally finite. �

Corollary 2.6. Let X be a class of groups which is S and L-closed and contains
all finite groups, and let G be a simple strongly locally graded group of infinite rank.
If all proper subgroups of infinite rank of G belong to X, then G is an X-group.

Our next two lemmas are useful for reducing our arguments to certain special
situations.

Lemma 2.7. Let X be an S-closed class of groups, and let G be a group of infi-
nite rank whose proper subgroups of infinite rank belong to X. If the commutator
subgroup G′ of G has finite rank, then all proper subgroups of G belong to X.
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Proof. Let X be any subgroup of finite rank of G. Then the product XG′ like-
wise has finite rank, and so the factor group G/XG′ has infinite rank. It follows
that XG′ is contained in a proper subgroup of G of infinite rank, and hence X
belongs to X. �

Lemma 2.8. Let X be a class of groups which is S and L-closed, and let G be
a group whose proper subgroups of infinite rank belong to X. If the commutator
subgroup G′ of G has infinite rank, then either G is an X-group or G/G′ is finitely
generated.

Proof. Assume that G is not an X-group. As X is a local class, there exists a
finitely generated subgroup E of G which is not in X. Then the subgroup EG′ has
infinite rank and does not belong to X, so that EG′ = G and hence G/G′ is finitely
generated. �

The last lemma of this section deals with the case of locally nilpotent groups.

Lemma 2.9. Let X be a group class which is L-closed and contains all abelian
groups. If G is a locally nilpotent group of infinite rank whose proper subgroups of
infinite rank belong to X, then either G is an X-group or it contains a maximal
subgroup which belongs to X.

Proof. Suppose that G does not belong to X. As G is locally nilpotent, it contains
an abelian subgroup A of infinite rank (see p. 38 in part 2 of [18]). On the other
hand, the class X is L-closed, and hence by Zorn’s Lemma there exists a maximal
X-subgroupM of G containing A. If x is any element of G\M , the subgroup 〈x,M〉
has infinite rank and does not belong to X, so that 〈x,M〉 = G. Therefore M is a
maximal subgroup of G, and the lemma is proved. �

3. Restrictions on commutator subgroups

We begin this section with some results concerning groups in which proper sub-
groups of infinite rank have finite commutator subgroup or certain slightly stronger
properties. The structure of groups whose proper subgroups have finite commu-
tator subgroup has been investigated by V.V. Belyaev and N. F. Sesekin in [1];
in particular, it turns out that any locally graded minimal non-(finite-by-abelian)
group is a Černikov group, and so in particular it is locally finite and has finite
rank. Recall here that, if X is a group class, a group G is minimal non-X if it is
not an X-group but all its proper subgroups belong to X.

Proposition 3.1. Let G be a strongly locally graded group of infinite rank. If evert
proper subgroup of infinite rank of G has a finite commutator subgroup, then also
the commutator subgroup G′ of G is finite.

Proof. As every proper subgroup of G either is finite-by-abelian or has finite rank,
it follows that G′ has finite rank (see [8]). Then every proper subgroup of G has a
finite commutator subgroup by Lemma 2.7, and hence G′ is finite by the theorem
of Belyaev and Sesekin. �



Groups with rank restrictions 543

Corollary 3.2. Let G be a strongly locally graded group of infinite rank. If all
proper subgroups of infinite rank of G are central-by-finite, then the factor group
G/Z(G) is finite.

Proof. A famous theorem of Schur proves that every central-by-finite group has
a finite commutator subgroup. Then every proper subgroup of infinite rank of G
has finite commutator subgroup (see, for instance, Theorem 4.12 of part 1 of [18]),
and hence it follows from Proposition 3.1 that the commutator subgroup G′ of G
is likewise finite. In particular, every element of G has finitely many conjugates
and so its centralizer has finite index in G. Of course, it can be assumed that G
is not abelian, so that it must contain a proper subgroup H of finite index. Then
H/Z(H) is finite, so that G is abelian-by-finite and hence G/Z(G) is finite, as G′

is finite. �

A group is said to be metahamiltonian if all its nonabelian subgroups are nor-
mal. Metahamiltonian groups have been introduced and investigated by G.M. Ro-
malis and N. F. Sesekin ([19], [20] and [21]), who proved in particular that the
commutator subgroup of any locally graded metahamiltonian group is finite with
prime-power order.

Corollary 3.3. Let G be a strongly locally graded group of infinite rank. If all
proper subgroups of infinite rank of G are metahamiltonian, then also G is meta-
hamiltonian.

Proof. As a locally graded metahamiltonian group has a finite commutator sub-
group, it follows from Proposition 3.1 that the commutator subgroup G′ of G
is finite. Then all proper subgroups of G are metahamiltonian by Lemma 2.7,
and hence G itself is metahamiltonian, because locally graded minimal nonmeta-
hamiltonian groups are finite (see [3], Lemma 4.2). �

The rest of this section is devoted to the proof of a theorem concerning groups
whose proper subgroups of infinite rank have commutator subgroups in a given
class. Theorem A will be obtained as a special case of this result. In the following,
we shall denote by A the class of all abelian groups, so that, for any S-closed group
class X, XA is the class of groups whose commutator subgroup belongs to X. Our
next two results provide, in particular, information on the structure of minimal
non-(LF)A groups.

Lemma 3.4. Let X be a class of groups such that SX=HX=X and (LX)X=LX,
and suppose that all strongly locally graded minimal non-XA groups are locally X.
If G is a minimal non-(LX)A group, then G is finitely generated and has no proper
subgroups of finite index.

Proof. As the class (LX)A is clearly S and L-closed, the group G must be finitely
generated. Assume now that G contains a proper normal subgroup H of finite
index. Then H is an (LX)A-group and so its commutator subgroup H ′ belongs
to LX. Moreover, the factor group G/H ′ is a finitely generated abelian-by-finite
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group, and in particular it satisfies the maximal condition on subgroups, so that
all its proper subgroups belong to XA. As minimal non-XA homomorphic images
of G are locally X, it follows that G/H ′ belongs to XA. Therefore G′/H ′ is an
X-group and hence G′ belongs to (LX)X=LX. This contradiction proves that the
group G contains no proper subgroups of finite index. �

Corollary 3.5. Let X be a class of groups such that SX=HX=X and (LX)X =LX,
and suppose that all strongly locally graded minimal non-XA groups are locally X.
If G is a group whose proper subgroups are in the class (LX)A and either G is
locally graded or G′ �= G, then G itself belongs to (LX)A.

Recall that a group class X is said to be a Schur class if for any group G such
that the factor group G/Z(G) belongs to X also the commutator subgroup G′ of G
is an X-group. Thus the already quoted theorem of Schur on the finiteness of the
commutator subgroup of a central-by-finite group just states that the class F of
finite groups is a Schur class. Moreover, if X is any Schur class which is S and
H-closed, it is easy to show that the class LX consisting of all (locally X) groups
also has the Schur property; in particular, the class LF of all locally finite groups is
a Schur class. Many other Schur classes of groups can be introduced by imposing
suitable finiteness conditions (see, for instance, [11]).

Lemma 3.6. Let X be a Schur class containing all finite groups and such that
SX = HX = X and (LX)X = LX, and let G be a strongly locally graded group
whose proper subgroups of infinite rank belong to (LX)A. If G contains a normal
subgroup K such that G/K is simple of infinite rank, then G belongs to (LX)A.

Proof. The class (LX)A is clearly S and L-closed, so that it follows from Corol-
lary 2.6 that the simple group G/K belongs to (LX)A and hence it must be lo-
cally X. Moreover, Lemma 2.3 yields that G/K contains a proper subgroup H/K
of infinite rank. Then H belongs to (LX)A and so its commutator subgroup H ′ is
locally X. Let R be the LX-radical of K. Then H ′ ∩K is contained in R, so that
K/R is abelian and [H ′,K] ≤ R. Therefore H ′R/R is contained in CG/R(K/R),
and so K/R is a proper subgroup of its centralizer (observe here that if H ′ is con-
tained in K, then H/R is abelian and hence it centralizes K/R). It follows that
K/R is contained in the centre of G/R, and so the group G′R/R is locally X, as
LX is a Schur class. On the other hand, the subgroup R belongs to the class LX
by Corollary 2.2, so that G′ is locally X by Lemma 2.1 and G lies in (LX)A. �

Lemma 3.7. Let X be a group class containing all finite groups and such that
SX = HX = X, (LX)X = LX and all strongly locally graded minimal non-XA
groups are locally X. If G is a group of infinite rank whose proper subgroups of
infinite rank belong to (LX)A, and G′ �= G, then G belongs to (LX)A.

Proof. Assume first that the commutator subgroup G′ of G has finite rank, so that
all proper subgroups of G belong to the class (LX)A by Lemma 2.7. Then G itself
lies in (LX)A by Corollary 3.5.
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Suppose now that G′ has infinite rank, so that G′ belongs to (LX)A, and
hence G′′ is locally X. If G′′ has infinite rank, then all proper subgroups of G/G′′ lie
in (LX)A and another application of Corollary 3.5 yields that G′/G′′ is locally X.
As the class LX is P-closed by Lemma 2.1, it follows that G′ belongs to LX,
and so G is in (LX)A. Assume finally that G′′ has finite rank. Then G/G′′ has
infinite rank, and it is enough to show that the group G/G′′ belongs to (LX)A,
so that replacing G by G/G′′ we may suppose without loss of generality that G
is metabelian. Assume, aiming at a contradiction, that G′ is not locally X, and
let R be the LX-radical of G′. As R is locally X by Corollary 2.2, it is properly
contained in G′ and so G/R is not abelian. On the other hand, if X is any proper
subgroup of infinite rank of G, then X ′ is locally X, and hence it is contained in R.
Therefore all proper subgroups of infinite rank of G/R are abelian and it follows
that G/R must have finite rank (see [7]). Thus R has infinite rank, so that all
proper subgroups of G/R are abelian, and G/R is a soluble minimal nonabelian
group. Therefore G/R is finite and G is locally X, since all finite groups belong
to X. This contradiction proves the lemma. �

We are now ready to prove the main result of this section.

Theorem 3.8. Let X be a Schur class containing all finite groups and such that
SX = HX = X, (LX)X = LX and suppose that all strongly locally graded minimal
non-XA groups are locally X. If G is a strongly locally graded group of infinite rank
whose proper subgroups of infinite rank belong to (LX)A, then G belongs to (LX)A.

Proof. By Lemma 3.7 we may suppose that the group G is perfect. Suppose first
that G contains a proper normal subgroup N of infinite rank. Then all proper
subgroups of G/N belong to (LX)A, so that also G/N lies in this class by Corol-
lary 3.5, and hence G/N is locally X as G′ = G. Let V be the LX-radical of N ,
and let g be any element of G. Clearly 〈g,N〉 is a proper subgroup of infinite rank
of G, so that it belongs to (LX)A, and in particular [N, g] is locally X. Then [N, g]
is contained in V , and so N/V lies in the centre of G/V . Since LX is a Schur class
and G is perfect, it follows that G/V belongs to LX, so that G is locally X, as V
is in LX and LX is P-closed.

Assume now that all proper normal subgroups of G have finite rank. It follows
from Lemma 3.6 that the statement is true if G has a simple homomorphic image
of infinite rank, so that by Lemma 2.4 we may suppose that G is locally nilpotent.
Assume, aiming at a contradiction, that G does not belong to the class (LX)A, so
that it contains a finitely generated subgroup E with the same property. Clearly, G
has a countable subgroup H of infinite rank, and we have G = 〈E,H〉, so that G
must be countable and in particular all its cyclic subgroups are ascendant. Let W
be the LX-radical of G. Then W is locally X and the LX-radical of G/W is trivial,
as LX is P-closed. It follows that G/W has no cyclic X-subgroups, and hence W
contains all locally X subgroups of G. Therefore, the commutator subgroup of any
proper subgroup of infinite rank ofG is contained inW , and so all proper subgroups
of infinite rank of G/W are abelian. On the other hand, G/W has infinite rank
(as W is a proper subgroup of G), so that G/W is abelian (see [7]) and hence
G′ ≤ W is locally X. This contradiction completes the proof of the theorem. �
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The result of Belyaev and Sesekin quoted at the beginning of this section,
together with Schur’s theorem, allows us to apply Theorem 3.8 when X is the
class F of all finite groups, and shows that Theorem A is a special case of this
latter result.

4. Quasihamiltonian groups

Recall that a lattice L is modular if the identity

(x ∨ y) ∧ z = x ∨ (y ∧ z)

holds for all elements x, y and z of L such that x ≤ z. Obviously, if G is any
abelian group, the lattice L(G), consisting of all subgroups of G, is modular,
and hence groups with modular subgroup lattice naturally arise in the study of
isomorphisms between lattices of subgroups. On the other hand, there exist also
infinite simple groups with modular subgroup lattices, such as, for instance, Tarski
groups (i.e., infinite simple groups all of whose proper nontrivial subgroups have
prime order). The main result of this section describes the behavior of groups
whose proper subgroups of infinite rank have a modular subgroup lattice. The
structure of groups with modular subgroup lattices has been completely described
by K. Iwasawa and R. Schmidt. Our next statement collects some of their results
(see Theorems 2.4.11, 2.4.16 and 2.4.21 of [22]); for other properties of groups with
modular subgroup lattices we refer to chapter 2 of [22].

Lemma 4.1. Let G be a locally graded group with modular subgroup lattice. Then G
is metabelian, the elements of finite order of G form a locally finite subgroup T ,
and G/T is abelian. Moreover, if G is nonperiodic, then it is quasihamiltonian,
and either G is abelian or G/T has rank 1.

We will also need the following information on the subgroup lattices of the
projective special linear group and the Suzuki group over a locally finite field.

Lemma 4.2. Let K be an infinite locally finite field. Then the simple groups
PSL(2,K) and Sz(K) contain proper subgroups of infinite rank with nonmodular
subgroup lattice.

Proof. Let G be one of the groups PSL(2,K) and Sz(K). In [16], J. Otal and
J.M. Peña proved that G contains a subgroup H which is a semidirect product
of a normal subgroup V by a subgroup U of infinite rank such that there exist
subgroups of V which are not normalized by U . In this situation it is well known
that the lattice L(H) is not modular (see, for instance, Lemma 3.3 of [4]). �

Lemma 4.3. Let G be a locally finite group containing a normal subgroup N of
infinite rank such that each subgroup of N has finitely many conjugates in G. Then
every finite subgroup of G is contained in a proper subgroup of infinite rank.
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Proof. Since N has finite conjugacy classes of subgroups, the factor group N/Z(N)
is finite (see [15]), and so Z(N) contains a subgroup A which is the direct product
of infinitely many groups of prime order. If H is any finite subgroup of G, there
exists a subgroup B of A such that

A = (A ∩H)×B,

and we may consider a proper subgroup of finite index V of B. Since V has only
finitely many conjugates in G and the index |A : V | is finite, also the core W of V
in G has finite index in A. In particular, W has infinite rank and the product HW
is a proper subgroup of G containing H . �

We are now ready to prove the following result.

Theorem 4.4. Let G be a strongly locally graded group of infinite rank. If all
proper subgroups of infinite rank of G have a modular subgroup lattice, then also
the lattice of subgroups of G is modular.

Proof. The commutator subgroup of any locally graded group with modular sub-
group lattice is locally finite by Lemma 4.1, so that it follows from Theorem A
that the commutator subgroup G′ of G is locally finite. In particular, the elements
of finite order of G form a subgroup T and G/T is torsion-free abelian.

If G′ has finite rank, we obviously have that G is not finitely generated; more-
over, by Lemma 2.7, every proper subgroup of G has modular subgroup lattice,
and hence G itself has modular subgroup lattice since the class of groups with
modular subgroup lattices is L-closed (see, for instance, Lemma 5.1 of [12]).

Suppose that G′ has infinite rank, so that Lemma 2.8 allows us to suppose that
G/G′ is finitely generated and in particular G/T is a free abelian group of finite
rank. Assume first that G is not periodic. If G/T has rank at least 2, then

G/T = 〈aT 〉 ×H/T,

where a is an element of infinite order and H �= T . For each prime number p, the
proper subgroup 〈ap, H〉 of G has infinite rank and so it has modular subgroup
lattice; it follows that 〈ap, H〉 is abelian, since the rank of 〈ap, H〉/T is greater
than 1. Then [H, a] = {1} and G = 〈a,H〉 is likewise abelian. On the other hand,
if G/T is cyclic, we have G = 〈a〉�T for some a, and for each prime number p the
lattice L(〈ap, T 〉) is modular; then T is abelian, a normalizes all subgroups of T
and [x, a] = 1 for each element x of T whose order is either a prime or 4, and so it
follows that also the subgroup lattice of G is modular (see Theorem 2.4.11 of [22]).

Suppose now that G is periodic (and so even locally finite), so that G/G′

is finite. If every proper normal subgroup of G has finite rank, it follows from
Lemma 2.4 that either G is locally nilpotent or it has a simple homomorphic
image G/K of infinite rank. On the other hand, all proper subgroups of G are
(locally soluble)-by-finite by Černikov’s result and hence in the latter case the
group G/K must be isomorphic either to PSL(2, F ) or to Sz(F ) for some infinite
locally finite field (see [13]), and this is impossible by Lemma 4.2. Therefore G is
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locally nilpotent and has no maximal subgroups, so that G is quasihamiltonian by
Lemma 2.9.

Assume finally that G contains a proper normal subgroup N of infinite rank.
Then the lattice L(N) is modular and every proper subgroup of G/N has modular
subgroup lattice, so that either the lattice L(G/N) is modular or G/N is a finite
group whose proper subgroups are supersoluble (note here that a finite group with
modular subgroup lattice is supersoluble). In both cases G/N is soluble, and
hence G is a soluble group. Therefore G′ is a proper subgroup of infinite rank, so
that G′ has modular subgroup lattice and hence G′′ is abelian and all subgroups
of G′′ are normal in G′. In particular, every subgroup of G′′ has finitely many
conjugates in G. If G′′ has infinite rank, it follows from Lemma 4.3 that each finite
subgroup of G is contained in a proper subgroup of infinite rank, so that every
finite subgroup has modular subgroup lattice and also the lattice L(G) is modular.
Finally, if G′′ has finite rank, we have obviously that G′/G′′ has infinite rank,
and another application of Lemma 4.3 yields that every finite subgroup of G/G′′ is
contained in a proper subgroup of infinite rank, and hence it has modular subgroup
lattice. Therefore the lattice L(G/G′′) is modular, and so all subgroups of G′/G′′

are normal in G/G′′. Let U/G′′ be a subgroup of infinite rank of G′/G′′ such that
also G/U has infinite rank. For each finite subgroup X of G, the product XU is
a proper subgroup of infinite rank, so that L(XU) is modular and hence X has
modular subgroup lattice. Therefore the lattice L(G) is modular also in this case,
and the proof is complete. �

We just mention here that if G is a strongly locally graded group whose proper
subgroups of infinite rank have distributive subgroup lattices, then G has finite
rank. In fact, it is well known that a group has a distributive subgroup lattice
if and only if it is locally cyclic (see Theorem 1.2.3 of [22]), and hence the above
condition is just the requirement that all proper subgroups of G have finite rank;
in this situation, it follows from Lemma 2.3 that G must have finite rank.

Proof of Theorem B. Assume, aiming at a contradiction, that the group G is not
quasihamiltonian. As the lattice L(G) is modular by Theorem 4.4, it follows
from Lemma 4.1 that G is locally finite, and so it contains a finite subgroup which
is not quasihamiltonian. Then G′ has infinite rank by Lemma 2.7. Moreover, G′ is
abelian and all its subgroups are normal in G, so that it follows from Lemma 4.3
that each finite subgroup of G is contained in a proper subgroup of infinite rank.
This contradiction proves the theorem. �
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