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Transversality of isotropic projections,

unrectifiability, and Heisenberg groups

Risto Hovila

Abstract. We show that the family of m-dimensional isotropic projec-
tions in R

2n is transversal. As an application we show that the Besicovitch–
Federer projection theorem holds for isotropic projections. We also use
transversality to obtain almost sure estimates on the Hausdorff dimension
of isotropic projections of subsets E ⊂ R

2n. These results may also be ap-
plied to gain information on the horizontal projections of the Heisenberg
group H

n.

1. Introduction

The behaviour of different dimensions under projection-type mappings has been
studied for decades. The study was initiated by Marstrand in 1954, when he proved
a well-known theorem according to which the Hausdorff dimension of a planar set
is preserved under typical orthogonal projections. Over the decades this result has
been extended in different directions by many authors. For a detailed survey of
a variety of related developments see [7]. In 1968 Kaufman reproved Marstrand’s
theorem using potential theoretic methods. He also provided an estimate on the
size of the set of exceptional directions. Mattila generalized Marstrand’s result to
higher dimensions in 1975. The wide investigation of related topics culminated
in the work of Peres and Schlag, [9]. They introduced a very general formalism
for transversal mappings and proved dimension conservation results analogous to
Marstrand’s theorem. Mattila’s generalization of Marstrand’s theorem together
with Kaufman’s exceptional set estimate is actually a special case of the results
in [9]. In this paper we show that the family of isotropic projections in R2n satisfies
a transversality condition. From this result we draw several corollaries both in R

2n

and in the Heisenberg group Hn.
Let R

2n be equipped with the standard symplectic form ω : R
2n × R

2n →
R, ω(x, y) =

∑n
i=1 xi+nyi − xiyi+n. In this note we examine properties of m-di-
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mensional isotropic projections in R2n, that is, orthogonal projections onto m-di-
mensional isotropic subspaces of R2n. A linear subspace V ⊂ R

2n is isotropic if
ω(v, w) = 0 for all v, w ∈ V . Isotropic subspaces are closely related to horizontal
subgroups of the Heisenberg group Hn. Indeed, V ⊂ Hn is a horizontal subgroup
if and only if V = V × {0} for some isotropic subspace V ⊂ Hn. Thus the study
of isotropic projections also yields results about the horizontal projections of Hn.

Our main result is the following theorem.

Theorem 1.1. Let n and m be integers such that 0 < m ≤ n, let Gh(n,m)
be the submanifold of the Grassmannian G(2n,m) consisting of all isotropic sub-
spaces of R2n, and denote by PV : R2n → V the orthogonal projection onto the
m-plane V ∈ Gh(n,m). Then the projection family {PV : R2n → V }V ∈Gh(n,m) is
transversal.

There are several notions of transversality in mathematics. Here transversality
is understood as in the paper [9] of Peres and Schlag, and it will be defined in
Section 3.

This paper is organized as follows. In Section 2 we introduce the basic defi-
nitions and notation. In Section 3 we will prove Theorem 1.1. As an application
of the main result we give necessary and sufficient conditions under which a sub-
set E ⊂ R2n projects onto a set of measure zero under almost all m-dimensional
isotropic projections (Theorem 4.1). We also give almost sure dimension esti-
mates on the Hausdorff dimension of isotropic projections of subsets of R2n (Theo-
rem 4.3). These estimates were already proven in Theorem 1.2 of [2] using different
methods. We improve the result by providing estimates on the dimension of excep-
tional parameters. The results mentioned above also yield corollaries concerning
the dimension of horizontal projections of subsets of the Heisenberg group. These
applications will be discussed in Section 4.

2. Preliminaries

2.1. Symplectic geometry

Let M be a manifold of dimension 2n. A symplectic form on M is a closed nonde-
generate 2-form on M . The standard form ω on R2n is defined by

ω(x, y) =

n∑
i=1

xi+nyi − xiyi+n = (Jx | y),

where (· | ·) is the Euclidean inner product on R2n and J is the 2n× 2n-matrix

J =
(

0 In×n

−In×n 0

)
.

By a well-known theorem of Darboux, every symplectic form on M is locally dif-
feomorphic to the standard form ω on R

2n. Furthermore, every symplectic vector
space is isomorphic to (R2n, ω). Below we work only on R2n equipped with the
standard form ω. For more information on symplectic geometry, see [4].
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For a linear subspace V ⊂ R2n, we define its symplectic orthogonal V ω by

V ω =
{
w : ω(w, v) = 0 for all v ∈ V

}
.

A linear subspace V is said to be isotropic if V ⊂ V ω and Lagrangian if V = V ω.
A subspace V can be Lagrangian only when dimV = n. For integers 0 < m ≤ n,
we denote by G(2n,m) the space of all m-dimensional linear subspaces of R2n. It is
a compact manifold of dimension m(2n−m). Furthermore, we define the isotropic
Grassmannian Gh(n,m) by

Gh(n,m) =
{
V ∈ G(2n,m) : V is an isotropic subspace of R2n

}
.

In the case m = n, Gh(n, n) is called the Lagrangian Grassmannian. Gh(n,m) is
a smooth manifold of dimension 2nm−m(3m− 1)/2, so, for m > 1, the isotropic
Grassmannian Gh(n,m) is a submanifold of G(2n,m) with positive codimension.
For m = 1, these manifolds are the same, Gh(n,m) = G(2n,m). The isotropic
Grassmannian can be endowed with a natural measure μn,m in a similar way as
the usual Grassmannian is endowed with the measure γn,m, using unitary instead
of orthogonal matrices. See Section 2 of [2] for details.

Next we define local coordinates on the isotropic Grassmannian Gh(n,m). We
begin by recalling the definition of local coordinates on the Grassmann mani-
fold G(2n,m). Fix an m-plane V ∈ G(2n,m) and choose an orthonormal ba-
sis {e1, . . . , e2n} of R2n such that V =< e1, . . . , em >. Consider all linear maps
L(V, V ⊥) = {L : V → V ⊥ : L linear}. The graph G(L) = {(x, Lx) : x ∈ V }
of any such map is an m-plane whose intersection with the (2n − m)-plane V ⊥

is the zero subspace. Conversely, any m-plane with this property is the graph
of a unique linear map L : V → V ⊥. Using the basis {e1, . . . , em} of V and the
basis {em+1, . . . , e2n} for V ⊥, L(V, V ⊥) can be identified with M(2n − m,m),
the space of all (2n − m) × m matrices. The m-plane associated to a matrix
A = (aij) ∈ M(2n−m,m) is spanned by the vectors

(2.1) eAi = ei +

2n−m∑
k=1

aki ek+m, i = 1, . . . ,m.

Define a subset Mh(n,m) of all (2n−m)×m matrices by

(2.2)

Mh(n,m) =
{
(aij) ∈ M(2n−m,m) : a(n−m+i)j = a(n−m+j)i

+

n−m∑
k=1

(akja(n+k)i − a(n+k)jaki) for j < i ≤ m, 1 ≤ j ≤ m
}
.

The independent coordinates aij in a matrix (aij) ∈ Mh(n,m) are the ones with
j ∈ {1, . . . ,m} and i ∈ {1, . . . , n−m+ j, n+ 1, . . . , 2n−m}.

Mh(n,m) is an embedded submanifold of M(2n − m,m) having dimension
2nm−m(3m− 1)/2. We have the following local parametrization.

Lemma 2.1. The isotropic Grassmannian Gh(n,m) can be locally parametrized
by the matrices Mh(n,m).
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Proof. Let V ∈ Gh(n,m) and let {e1, . . . , e2n} be an orthonormal basis of R2n such
that V =< e1, . . . , em >, ω(ei, ei+n) = 1 for all i ∈ {1, . . . , n}, and ω(ei, ej) = 0
for all other pairs (ei, ej). It is enough to define the local coordinates only around
the m-plane V =< e1, . . . , em >, since the group U(n) of unitary 2n× 2n-matrices
acts transitively on Gh(n,m), by Lemma 2.2 of [2], and ω(gu, gv) = ω(u, v) for all
u, v ∈ R2n, g ∈ U(n). Let A ∈ M(2n−m,m) and denote the m-plane associated
to A by VA. Then VA ∈ Gh(n,m) if and only if

ω
(
ei +

2n−m∑
k=1

akiek+m, ej +

2n−m∑
k=1

akjek+m

)
= 0 for all i, j = 1, . . . ,m

and this is the case precisely when A ∈ Mh(n,m). Thus we can define coordinates
on the isotropic Grassmannian using the matrices A ∈ Mh(n,m). �

2.2. Heisenberg groups

For an introduction to Heisenberg groups, see [3]. Below we state the basic facts
needed in this paper. The Heisenberg group H

n is the unique simply connected,
connected nilpotent Lie group of step two and dimension 2n+1 with one-dimensio-
nal centre. As a manifold Hn may be identified with R2n+1. We denote points
p ∈ Hn in coordinates as

p = (z, t) = (z1, . . . , z2n, t) ∈ R
2n × R.

The group operation is given by

p ∗ p′ = (z, t) ∗ (z′, t′) = (z + z′, t+ t′ + 2ω(z, z′)),

where ω is the standard symplectic form on R2n.
The Heisenberg metric dH of Hn can be defined by

dH(p, p
′) := ‖p−1 ∗ p′‖H, where ‖p‖H := (‖z‖4 + t2)1/4.

Here ‖ · ‖ denotes the Euclidean norm on R2n. This metric is bi-Lipschitz equiva-
lent to the usual Carnot–Carathéodory metric on Hn. The metric dH induces the
Euclidean topology, but the properties of the metric space (Hn, dH) differ signifi-
cantly from those of the underlying Euclidean space. For example, the Hausdorff
dimension of (Hn, dH) is 2n + 2. Thus, when speaking of the metric properties
of Hn, we need to specify which metric we are using. We will denote the Hausdorff
measure and Hausdorff dimension with respect to the Heisenberg metric by Hs

H

and dimH. The Hausdorff measure and dimension with respect to the Euclidean
metric are denoted by Hs

E and dimE.
In this paper we consider projections onto homogeneous subgroups of Hn. A

homogeneous subgroup G of Hn is a subgroup which is closed under the intrinsic di-
latations δs(z, t) = (sz, s2t), s > 0. There are two kinds of homogeneous subgroups
of Hn. The horizontal subgroups are the ones which are contained in R2n × {0}
and the vertical subgroups are the ones which contain the t-axis {0}×R. Horizon-
tal subgroups can be identified with linear subspaces of R2n+1 which are contained
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in R2n × {0}. However, not every linear subspace of this form is a horizontal
subgroup, only those corresponding to isotropic subspaces V of R

2n are. The
restriction of the Heisenberg metric to a horizontal subgroup coincides with the
Euclidean metric and therefore it is not necessary to specify the metric used in
computing the Hausdorff measure or Hausdorff dimension of a subset of a hor-
izontal subgroup. In this case we denote the Hausdorff measure and Hausdorff
dimension simply by Hs and dim.

Let V = V ×{0} be a horizontal subgroup. Consider V⊥ = V ⊥ ×R, where V ⊥

is the orthogonal complement of V in R2n. Then V⊥ is a vertical subgroup of Hn

and it will be called the vertical subgroup associated to V . Each point p ∈ H
n can

be written uniquely as
p = PV⊥(p) ∗ PV(p),

with PV⊥(p) ∈ V⊥ and PV(p) ∈ V. This gives rise to a well-defined horizontal
projection

PV : Hn → V, (z, t) �→ PV(z, t) = (PV (z), 0),

and a vertical projection

PV⊥ : Hn → V
⊥, (z, t) �→ PV⊥(z, t) =

(
PV ⊥(z), t− 2ω(PV ⊥(z), PV (z))

)
.

Since there is a one-to-one correspondence between isotropic subspaces of R2n

and horizontal subgroups of Hn, these projections may be parametrized by the
isotropic Grassmannian Gh(n,m). For more information on the projections of the
Heisenberg group, see [1] and [2].

We denote the family of all horizontal projections onto m-dimensional sub-
groups by Fh(n,m) and the corresponding projections in the Euclidean space R2n

by F2n
h (n,m). That is,

Fh(n,m) =
{
PV : Hn → V : V ∈ Gh(n,m)

}
and

F2n
h (n,m) =

{
PV : R2n → V : V ∈ Gh(n,m)

}
.

Note that when m > 1, the family F2n
h (n,m) has dimension 2nm−m(3m− 1)/2

< m(2n−m), and therefore one cannot apply standard projection theorems (e.g.,
Marstrand’s projection theorem or the Besicovitch–Federer projection theorem) to
obtain dimension results for these projections.

3. Transversality

In this section we show that the family F2n
h (n,m) of projections is transversal for

every 0 < m ≤ n. We begin with the definition of transversality.

Definition 3.1. Let Λ ⊂ Rl be open. A family of maps {πλ : Rn → Rm}λ∈Λ is
transversal if it satisfies the following conditions for each compact set K ⊂ Rn:

(1) The mapping π : Λ×K → Rm, (λ, x) �→ πλ(x), is continuously differentiable
and twice differentiable with respect to λ.
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(2) For j = 1, 2 there exist constants Cj such that the derivatives with respect
to λ satisfy

‖Dj
λπ(λ, x)‖ ≤ Cj for all (λ, x) ∈ Λ×K.

(3) For all λ ∈ Λ and x, y ∈ K with x 	= y, define

Φx,y(λ) =
πλ(x)− πλ(y)

‖x− y‖ .

Then there exists a constant CT > 0 such that the property

‖Φx,y(λ)‖ ≤ CT

implies that

det
(
DλΦx,y(λ) (DλΦx,y(λ))

T ) ≥ C2
T .

(4) There exists a constant CL such that

‖D2
λΦx,y(λ)‖ ≤ CL

for all λ ∈ Λ and x, y ∈ K, x 	= y.

Remark 3.2. Note that in the definition of transversality the target space of the
mappings is fixed. In the case of the family F2n

h (n,m) this is not the case. However,
identifying each m-plane V with Rm we can think of the maps PV as mappings
Rn → Rm. Moreover, in the definition the maps are parametrized by Λ ⊂ Rl,
but the parameter space of F2n

h (n,m) is the manifold Gh(n,m). Transversality is
a local property and by saying that the family F2n

h (n,m) is transversal we mean
that for each V ∈ Gh(n,m) there exists a coordinate neighbourhood of V such
that Definition 3.1 holds in local coordinates.

Remark 3.3. If m = 1, the isotropic Grassmannian Gh(n, 1) and the Grassmann
manifold G(2n, 1) are the same, Gh(n, 1) = G(2n, 1). In this case the family of
isotropic projections is the same as the family of all orthogonal projections onto
1-dimensional subspaces, which is known to be transversal (see the remark after
Theorem 7.3 in [9]). Thus for the rest of this section we assume that m ≥ 2.

Transversal projection families have many useful properties. For instance, the
Hausdorff dimensions of sets and measures are preserved under almost all projec-
tions. The theory of transversal mappings was extensively studied by Peres and
Schlag in [9]. A recent result for transversal projection families that we will use in
this paper is the Besicovitch–Federer projection theorem. See [5] for the proof.

Theorem 3.4. Let E ⊂ Rn be Hm-measurable with Hm(E) < ∞. Assume that
Λ ⊂ Rl is open and {πλ : Rn → Rm}λ∈Λ is a transversal family of maps. Then E
is purely m-unrectifiable if and only if Hm(πλ(E)) = 0 for Ll-almost all λ ∈ Λ.
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Fix 0 < m ≤ n. To show that the transversality condition holds locally, we fix
an m-plane V ∈ Gh(n,m), take a coordinate system around V , and show that the
transversality conditions hold in this coordinate neighbourhood.

Define a family of projections π : Mh(n,m)× R2n → Rm by

π(A, x) = πA(x) =
((

eA1
∣∣ x), . . . , (eAm∣∣ x))

=
(
x1 +

2n−m∑
k=1

ak1xk+m, . . . , xm +

2n−m∑
k=1

akmxk+m

)
.

The projection πA is not quite the same as the orthogonal projection PVA onto
the m-plane VA corresponding to the matrix A, since the basis {eA1 , . . . , eAm} of VA

is not orthonormal, but we will see that for A close to 0 the projections are suffi-
ciently close.

Define the mapping Φ :
{
(A, x, y) ∈ Mh(n,m)×R2n ×R2n : x 	= y

} → Rm by

Φ(A, x, y) = Φx,y(A) =
πA(x) − πA(y)

‖x− y‖ .

Writing b = ‖x− y‖−1(x− y) ∈ S2n−1 and using the linearity of the projection πA

we see that

Φx,y(A) =
πA(x)− πA(y)

‖x− y‖ =
πA(x− y)

‖x− y‖ = πA

( x− y

‖x− y‖
)
= πA(b) =: Φb(A).

We will show that, for the family defined above, there holds

(3.1) det
(
DAΦx,y(0)(DAΦx,y(0))

T
) ≥ 1

2
(1− ‖Φx,y(0)‖2)m,

for every x, y ∈ R2n with x 	= y.
Before we prove this inequality, we show that it implies that the family

F2n
h (n,m) is locally transversal. The family clearly satisfies the conditions (1), (2),

and (4) in Definition 3.1, so we need to show that the condition (3) is also satisfied.
We examine the problem in the local coordinates (U,ϕ) defined above and show
that there exists a neighbourhood of 0 in which the transversality condition (3)
holds. Let {vA1 , . . . , vAm} be the orthonormal basis obtained by applying the Gram–
Schmidt algorithm to the basis {eA1 , . . . , eAm}. Then, at A = 0, we have, for every
b ∈ S2n−1,

(3.2)
(
v0i |b

)
=

(
e0i |b

)
and

(3.3) ∂αβ
∣∣
A=0

(
vAi |b

)
= ∂αβ

∣∣
A=0

(
eAi |b

)
,

for all i, β = 1, . . . ,m, and α ∈ {1, . . . , n−m+β, n+1, . . . , 2n−m}, where ∂αβ de-
notes the partial derivative with respect to the entry aαβ in the matrix A = (aαβ).
Equation (3.2) is clear and the equation (3.3) follows from the fact that the Gram–
Schmidt algorithm produces second order terms whose derivatives vanish at A = 0.
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Defining ΦF :
{
(A, x, y) ∈ Mh(n,m)× R2n × R2n : x 	= y

} → Rm by

ΦF (A, x, y) = ΦF
x,y(VA) =

PVA(x) − PVA(y)

‖x− y‖ ,

equations (3.2) and (3.3) imply that at A = 0,

ΦF
x,y(V0) = Φx,y(0)

and

det
(
DAΦx,y(0)(DAΦx,y(0))

T
)
= det

(
DAΦ

F
x,y(V0)(DAΦ

F
x,y(V0))

T
)

for every x, y ∈ R2n such that x 	= y. We also use the notation Φ̃F (A, b) =

Φ̃F
b (VA) = PVA(b) for b ∈ S2n−1. Note that Φ̃F(A, (x− y)/‖x− y‖) = ΦF(A, x, y).

The functions ΦF and Φ̃F are smooth, so definingM1
h(n,m) = Mh(n,m)∩B(0, 1),

we may choose a Lipschitz constant L1 ≥ 1 for Φ̃F and a Lipschitz constant L2 ≥ 1
for

(A, b) �→ det
(
DAΦ̃

F
b (VA)(DAΦ̃

F
b (VA))

T
)

on M1
h(n,m)× S2n−1.

Let

0 < CT ≤ 2−(m+2)/2 and ε = min
{CT

L1
,
(1− 4C2

T )
m

4L2

}
.

If (A, b) ∈ (Mh(n,m) ∩B(0, ε)
)× S2n−1 is such that

‖Φ̃F
b (VA)‖ ≤ CT ,

we have, by (3.2),

‖Φb(0)‖ = ‖Φ̃F
b (V0)‖ ≤ L1ε+ CT ≤ 2CT

and, by (3.1) and (3.3),

det
(
DAΦ̃

F
b (V0)(DAΦ̃

F
b (V0))

T
)
= det

(
DAΦb(0)(DAΦb(0))

T
)

≥ 1

2

(
1− ‖Φb(0)‖2

)m ≥ 1

2
(1 − 4C2

T )
m.

This implies that

det
(
DAΦ̃

F
b (VA)(DAΦ̃

F
b (VA))

T
) ≥ 1

2
(1− 4C2

T )
m − L2ε ≥ 1

4
(1 − 4C2

T )
m ≥ C2

T ,

by the choice of CT and ε. We have shown that, assuming inequality (3.1), ev-
ery plane V ∈ Gh(n,m) has a coordinate neighbourhood on which the family
F2n

h (n,m) satisfies the transversality condition. Next we prove the inequality (3.1).
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Recalling (2.2), we see that for A ∈ Mh(n,m) the jth component function of
the projection πA has the form

πj
A(x) = xj +

2n−m∑
k=1

akj xm+k

= xj +

n−m+j∑
k=1

akj xm+k +

2n−m∑
k=n+1

akj xm+k

+

m∑
k=j+1

(
a(n−m+j)k +

n−m∑
l=1

(
alja(l+n)k − alka(l+n)j

))
xn+k.

The partial derivatives with respect to the entries in the matrix A are

∂αβπ
j
A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xm+α +

m∑
k=j+1

a(α+n)k xn+k, for β = j, 1 ≤ α ≤ n−m,

xm+α,
for β = j,

n−m+ 1 ≤ α ≤ n−m+ j,

xm+α −
m∑

k=j+1

a(α−n)k xn+k, for β = j, n+ 1 ≤ α ≤ 2n−m,

− a(α+n)j xn+β , for β > j, 1 ≤ α ≤ n−m,

xn+β , for β > j, α = n−m+ j,

a(α−n)j xn+β , for β > j, n+ 1 ≤ α ≤ 2n−m,

0, elsewhere.

From this we may compute the matrix BA,x=DAπA(x) (DAπA(x))
T at A = 0. The

matrix DAπA(x) is an m × (2nm − m(3m − 1)/2)-matrix. The rows correspond
to the component functions of the mapping πA and the columns correspond to
all possible pairs (α, β). When A = 0, the entries of the jth row of the matrix
DAπA(x) are

xm+α, for β = j, α ∈ {1, . . . , n−m+ j, n+ 1, . . . , 2n−m},
xn+β , for α = n−m+ j, β ∈ {j + 1, . . . ,m},
0, elsewhere.

From this we see that the coordinates xm+1, . . . , x2n appear on each row exactly
once and the other entries are zero. Thus all the diagonal entries of the matrix B0,x

are [B0,x]ii = Σ2n−m
k=1 x2

m+k for every i = 1, . . . ,m.

The entries xm+1, . . . , x2n appear on different positions on different rows. If
i < j, there is a nonzero entry in both rows i and j of the same column if and only
if α = n − m + i and β = j. The entry of the ith row is xn+β = xn+j and the
entry of the jth row is xm+α = xn+i. This implies that the off-diagonal entries of
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the matrix B0,x are [B0,x]ij = xn+ixn+j for every i, j = 1, . . . ,m, i 	= j.

[
B0,x

]
ij
=

⎧⎪⎪⎨
⎪⎪⎩

2n−m∑
k=1

x2
m+k =: Δx, for i = j

xn+i xn+j for i 	= j.

Using an inductive argument one can see that the determinant of this matrix is

detB0,x = Δm
x +

m∑
i=2

(−1)i−1(i− 1)Δm−i
x

∑
α∈Λ(m,i)

x2
α(1) · · ·x2

α(i),

where

Λ(m, i) =
{
α = (α(1), . . . , α(i)) : α(k) ∈ {n+ 1, . . . , n+m}∀k, α(1) < . . . < α(i)

}
is the set of all strictly increasing sequences of length i consisting of integers from
the interval [n+ 1, n+m].

Let b ∈ S2n−1. Note that the entry Δb on the diagonal of the matrix B0,b is
precisely ‖PV ⊥

0
(b)‖2 = 1− ‖Φb(0)‖2. We will show that

(3.4) detB0,b ≥ Δm
b −Δm−2

b

∑
α∈Λ(m,2)

b2α(1) b
2
α(2) ≥

1

2
Δm

b .

The second inequality is easy:

1

2
Δm

b −Δm−2
b

∑
α∈Λ(m,2)

b2α(1) b
2
α(2) ≥

1

2
Δm−2

b

(( m∑
i=1

b2n+i

)2

−
∑

α∈Λ(m,2)

2b2α(1)b
2
α(2)

)

=
1

2
Δm−2

b

m∑
i=1

b4n+i ≥ 0.

If m = 2, the first inequality holds clearly as an equality. If m = 3, the
first inequality is also clear since one only removes one positive term from the
determinant. Thus we may assume that m ≥ 4. It is enough to show that for any
i ∈ {3, . . . ,m− 1} there holds

(i− 1)Δm−i
b

∑
α∈Λ(m,i)

b2α(1) · · · b2α(i) ≥ iΔm−i−1
b

∑
α∈Λ(m,i+1)

b2α(1) · · · b2α(i+1).

Using the fact that Δb ≥
∑n+m

j=n+1 b
2
j , we see that the above inequality holds if

(i− 1)
∑

α∈Λ(m,i)

b2α(1) · · · b2α(i)
( n+m∑

j=n+1

b2j

)
≥ i

∑
α∈Λ(m,i+1)

b2α(1) · · · b2α(i+1).
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Now

(i − 1)
∑

α∈Λ(m,i)

b2α(1) · · · b2α(i)
( n+m∑

j=n+1

b2j

)
− i

∑
α∈Λ(m,i+1)

b2α(1) · · · b2α(i+1)

= (i− 1)
∑

α∈Λ(m,i)

b2α(1) · · · b2α(i)
( α(i)∑

j=n+1

b2j

)

−
∑

α∈Λ(m−1,i)

b2α(1) · · · b2α(i)
( n+m∑

k=α(i)+1

b2k

)

= (i− 1)

n+m∑
k=n+i

k∑
j=n+1

∑
α∈Λ(k−1,i−1)

b2α(1) · · · b2α(i−1)b
2
jb

2
k

−
n+m−1∑
j=n+i

n+m∑
k=j+1

∑
α∈Λ(j−1,i−1)

b2α(1) · · · b2α(i−1)b
2
kb

2
j

≥
n+m∑

k=n+i+1

b2k

( k∑
j=n+1

∑
α∈Λ(k−1,i−1)

b2α(1) · · · b2α(i−1)b
2
j

−
k−1∑

j=n+i

∑
α∈Λ(j−1,i−1)

b2α(1) · · · b2α(i−1)b
2
j

)

≥ 0,

which proves the first inequality in (3.4). This shows that the inequality (3.1) is
valid and finishes the proof that the family F2n

h (n,m) is transversal.

4. Applications

Transversality together with Theorem 3.4 implies that the Besicovitch–Federer
projection theorem holds for isotropic projections.

Theorem 4.1. Let E ⊂ R
2n be Hm-measurable with Hm(E) < ∞. Then E is

purely m-unrectifiable if and only if Hm(PV (E)) = 0 for μn,m-almost all V ∈
Gh(n,m).

The α-energy Iα(μ) of a measure μ on Rn is defined by

Iα(μ) =

∫ ∫
|x− y|−α dμy dμx.

and the Sobolev dimension of a finite measure μ on R
n is defined by

dimS μ = sup
{
α ∈ R :

∫
(1 + |x|)α−n|μ̂(x)|2dx < ∞

}
,

where μ̂ is the Fourier transform of the measure μ.
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Transversality immediately yields also the following result concerning the di-
mension of projected measures. See Theorem 7.3 in [9] for more information.

Theorem 4.2. Let 0 < m ≤ n and suppose that μ is a finite positive measure
on R2n with finite α-energy for some α > 0. If σ ∈ (0, α], then

dim
{
V ∈ Gh(n,m) : dimS μV < σ

} ≤ 2nm− m(3m− 1)

2
+ σ −max{α,m},

where dimS is the Sobolev dimension of a measure and μV is the projection of the
measure μ onto the m-plane V , that is, μV (A) = μ(P−1

V (A)) for all A ⊂ V .

It follows from the definition of Sobolev dimension that if 0 < dimS μ ≤ n, then
dimS μ = sup{α : Iα(μ) < ∞}. In particular, if a Borel set E ⊂ Rn supports a
probability measure μ with dimS(μ) ≤ n, then dimE ≥ dimS μ. If dimS μ > n,
then μ is absolutely continuous. These facts together with Theorem 4.2 imply the
following result on the dimension of exceptional sets.

Theorem 4.3. Let n and m be integers such that 0 < m ≤ n and let E ⊂ R
2n be

a Borel set with dimE = s.

(1) If s ≤ m, then

dim
{
V ∈ Gh(n,m) : dimPV (E) < s

} ≤ 2nm− m(3m+ 1)

2
+ s

= dimGh(n,m)− (m− s).

(2) If s > m, then

dim
{
V ∈ Gh(n,m) : Hm(PV (E)) = 0

} ≤ 2nm− 3m(m− 1)

2
− s

= dimGh(n,m)− (s−m).

Proof. Assume first that s > m. Then by Frostman’s lemma we can take α > m
and a probability measure μ supported on E such that Iα(μ) < ∞. Now Theo-
rem 4.2 implies that

dim
{
V ∈Gh(n,m) : μV is not absolutely continuous

}
≤ dim

{
V ∈ Gh(n,m) : dimS μV ≤ m

} ≤ 2nm− 3m(m− 1)

2
− α.

It follows that

dim
{
V ∈ Gh(n,m) : Hm(PV (E)) = 0

} ≤ 2nm− 3m(m− 1)

2
− α.

Letting α ↗ s implies the claim. The first claim is proven similarly. �
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In Theorem 1.2 of [2] it is shown that almost all isotropic projections onto
m-planes preserve the Hausdorff dimension for sets whose dimension is at most m.
For sets with dimension greater than m almost all projections have positive Hm

measure. The proof in [2] uses energy estimates and Frostman’s lemma. Theo-
rem 4.3 strengthens this theorem by providing dimension estimates for the sets of
exceptional parameters.

The behaviour of dimensions of sets and measures under subfamilies of orthog-
onal projections has been studied recently by E. Järvenpää, M. Järvenpää, and
T. Keleti in [6] and D. Oberlin in [8]. Their results, however, do not give anything
new in our setting because the family we are studying is transversal.

Theorems 4.1 and 4.3 yield corresponding results for the horizontal projections
in the Heisenberg group. We denote by π : Hn → R2n, π(z, t) = z, the projection
onto the first 2n coordinates.

Corollary 4.4. Let E ⊂ Hn be a Borel set with Hm
E (π(E)) < ∞. Then

Hm(PV(E)) = 0 for μn,m-almost all V ∈ Gh(n,m) if and only if E ⊂ A × R,
where A ⊂ R2n is purely m-unrectifiable in the Euclidean sense.

Corollary 4.5. Let n and m be integers such that 0 < m ≤ n and let E ⊂ Hn be
a Borel set with dimH E = s.

(1) If s ≤ m+ 2, then

dim
{
V ∈ Gh(n,m) : dimPV(E) < s− 2

} ≤ 2nm− m(3m+ 1)

2
+ s− 2

= dimGh(n,m)− (m− s+ 2).

(2) If s > m+ 2, then

dim
{
V ∈ Gh(n,m) : Hm(PV(E)) = 0

} ≤ 2nm− 3m(m− 1)

2
− s+ 2

= dimGh(n,m)− (s−m− 2).

Proof. Since PV = PV ◦ π, we have, by [2] (see the proof of Theorem 1.1 therein),
that dimE π(E) ≥ dimH E − 2 = s − 2. The rest of the proof is the same as for
Theorem 4.3. �
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