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A weighted Khintchine inequality

Sergey V. Astashkin and Guillermo P. Curbera

Abstract. We prove a weighted version of the well-known Khintchine
inequality for rearrangement invariant norms.

1. Introduction and main results

The classical Khintchine inequality states, for 0 < p < ∞, that there exist con-
stants Ap, Bp > 0 such that

Ap

( ∞∑
i=1

a2i

)1/2

≤
( ∫ 1

0

∣∣∣
∞∑
i=1

airi(t)
∣∣∣p dt

)1/p

≤ Bp

( ∞∑
i=1

a2i

)1/2

,

for every (ai) ∈ �2, where (ri) are the Rademacher functions, that is, ri(t) :=
sign sin(2iπt), t ∈ [0, 1], i ∈ N.

A weighted version of the above inequality was recently proved in [18]. Namely,
let w be a weight satisfying the following conditions:

(α) for some q > p we have w ∈ Lq([0, 1]);

(β) the support of w satisfies m(supp(w)) > 2/3.

Then there exist constants C1, C2 > 0, depending on p and w, such that for every
a = (ai) ∈ �2,

(1.1) C−1
1 ‖a‖2 ≤

(∫ 1

0

∣∣∣
∞∑
i=1

airi(t)
∣∣∣p|w(t)|p dt

)1/p

≤ C2 ‖a‖2,

where ‖a‖2 :=
(∑∞

i=1 a
2
i

)1/2
.

In this paper we will consider the extension of the above inequality in two
directions. On the one hand, instead of the family of Lp-spaces we consider the in-
equality for the essentially larger family of rearrangement invariant spaces. On the
other hand, we investigate the restriction on the measure of the support of the

Mathematics Subject Classification (2010): Primary 46E35, 46E30; Secondary 47G10.
Keywords: Rademacher functions, rearrangement invariant space, Khintchine inequality, weights.



238 S.V. Astashkin and G.P. Curbera

weight. Note that some restriction on the support of the weight is needed in order
to have the lower estimate in (1.1) because there are Rademacher series with large
zero sets; see Proposition 7. In this regard the following result, due to Stechkin
and Ul’yanov, [16], on sets of uniqueness for Rademacher series is noteworthy:
if g =

∑∞
i=1 airi and m(supp(g)) < 1/2 then ai = 0 for all i ≥ 1. The constant 1/2

is sharp, since for g = r1+r2 we have m(supp(g)) = 1/2. We replace the condition
on the size of the support of w by a condition that depends on the structure of
the support. A lower estimate in the weighted Khintchine inequality for weights
having support with arbitrarily small measure is then possible.

Consider the following class of subsets of [0, 1]. By Δn
k we will denote the dyadic

intervals of order n, that is, Δn
k = [(k−1)/2n, k/2n], for n ∈ N and k = 1, 2, . . . , 2n.

We say that a measurable set E ⊂ [0, 1] belongs to the class E if there exist n ∈ N,
ε ∈ (0, 2−n−2), δ ∈ (0, 1), and γ ∈ (1/2, 1) such that the following conditions are
satisfied:

(i) there is a set I ⊂ {1, . . . , 2n}, card I > γ2n, such that, for every k ∈ I, the
set E ∩Δk

n is symmetric with respect to the midpoint of the interval Δk
n and

m(E ∩Δk
n) > δ.

(ii) there exists k0, 1 ≤ k0 ≤ 2n, such that m
(
E ∩Δn

k0
) > ε+ 3 · 2−n−2.

We will indicate this situation by writing E ∈ En
ε,δ,γ .

Let Λ(X) be the Rademacher multiplicator space of a rearrangement invari-
ant (r.i.) space X (for the definitions and discussion related to basic concepts,
see below). Moreover, for any w ∈ Λ(X) and η > 0 we write

Mη(w) :=
{
t ∈ [0, 1] : |w(t)| ≥ η ‖w‖Λ(X)

}
.

The main result of this paper is the following weighted version of the Khintchine
inequality.

Theorem 1. Let X be an r.i. space on [0, 1] such that the Rademacher functions
generate in X a subspace isomorphic to �2. Let w ∈ Λ(X) be such that there exists
η > 0 satisfying at least one of the following conditions:

(a) αη := max
{
m
(
Mη(w) ∩

[
0, 12

])
,m

(
Mη(w) ∩

[
1
2 , 1

])}
>

1

4
;

(b) the set Mη(w) contains a set E ∈ E .
Then, for every a = (ai) ∈ �2,

(1.2) Dw ‖w‖Λ(X) ‖a‖2 ≤
∥∥∥w ·

∞∑
i=1

airi

∥∥∥
X

≤ CX ‖w‖Λ(X) ‖a‖2,

where CX depends only on X, and, in the case (a), Dw = η
4 (αη − 1/4)2, and,

in the case (b), Dw = η
32 min

{
2ε, δ

(
γ − 1/2

)} · min
{
2n−1ε, 1

4

(
γ − 1/2

)}
, where

E ∈ En
ε,δ,γ, with n ∈ N, ε ∈ (0, 2−n−2), δ ∈ (0, 1), and γ ∈ (1/2, 1).
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Corollary 2. Let X be an r.i. space on [0, 1] such that the Rademacher functions
generate in X a subspace isomorphic to �2. Let w ∈ Λ(X) be such that

αw := max
{
m
(
supp(w) ∩ [

0, 1
2

])
,m

(
supp(w) ∩ [

1
2 , 1

])}
>

1

4
.

Then, for all sufficiently small η > 0, inequality (1.2) holds with Dw = η
4 (αw− 1

4 )
2.

Regarding the concepts appearing in Theorem 1 and Corollary 2, recall that
the distribution function of a measurable function f is mf (τ) := m({t ∈ [0, 1] :
|f(t)| > τ}), where m is the Lebesgue measure on [0,1]. A rearrangement invariant
(r.i.) space X is a Banach space of classes of measurable functions on [0,1] such
that ifmg(τ) ≤ mf(τ), for all τ > 0, and f ∈ X then g ∈ X and ‖g‖X ≤ ‖f‖X . For
normalization purposes we will assume that ‖χ[0,1]‖X = 1. The class of r.i. spaces
contains many well–known families of function spaces: Lp, Orlicz, Lp,q, Lorentz,
Marcinkiewicz, Zygmund, and many others. For r.i. spaces, see [6] and [12].

Let R denote the set of all functions of the form
∑∞

i=1 airi, where the series
converges a.e., that is, (ai) ∈ �2, see Theorem V.8.2 in [19]. For an r.i. space X ,
let R(X) be the closed linear subspace of X given by R ∩ X . The Khintchine
inequality shows, for X = Lp, 1 ≤ p < ∞, that R(X) is isomorphic to �2.
If X = L∞, then R(X) = �1. A result of Rodin and Semenov characterizes
when R(X) ≈ �2. Let LN be the Orlicz space associated to the function N(t) :=
exp(t2)− 1, and let (LN )0 be the closure of L∞ in LN . Then R(X) ≈ �2, that is,

(1.3) cX‖(ai)‖2 ≤
∥∥∥

∞∑
i=1

airi

∥∥∥
X

≤ CX‖(ai)‖2,

for some constants CX , cX > 0, if and only if (LN )0 ⊂ X , [13].
If X is a r.i. space on [0, 1], the Rademacher multiplicator space Λ(X) consists

of all measurable functions f : [0, 1] → R such that f
∑∞

i=1 airi ∈ X , for every∑∞
i=1 airi ∈ R(X). It is a Banach function space on [0,1] when endowed with the

norm

(1.4) ‖f‖Λ(X) := sup
{∥∥∥f

∞∑
i=1

airi

∥∥∥
X

:

∞∑
i=1

airi ∈ X,
∥∥∥

∞∑
i=1

airi

∥∥∥
X

≤ 1
}
.

Remark 3. (a) The space Λ(X) need not be r.i. However, in many cases it is
possible to identify the largest r.i. space embedded in Λ(X) (its symmetric kernel)
denoted by Sym (X). For example, Sym (Lp) is the Zygmund space Lp(logL)1/2,
1 ≤ p < ∞. For more facts on Λ(X) and Sym (X), see [1]–[5], [10], and [11].

(b) For the case X = Lp, 1 ≤ p < ∞, the condition w ∈ Λ(Lp) in Theorem 1 is
much weaker than the condition in the above cited result of Veraar, [18]: w ∈ Lq

for some q > p. To see this take into account that Lq ⊆ Lp(logL)1/2 ⊆ Λ(Lp).
(c) Note that all sets satisfying the condition m(supp(w)) > 2/3, which is used

in [18], and even the weaker one m(supp(w)) > 1/2, satisfy also condition (a)
of Theorem 1. Condition (b) in Theorem 1 on a weight w depends not so much on
the size of the support of w as on its structure, showing that the lower estimate
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in the weighted Khintchine inequality can hold for weights having support with
arbitrarily small measure. It is instructive to emphasize that either of the condi-
tions (a) and (b) guarantees that for every Rademacher zero set F (this means that
there is a Rademacher sum g =

∑∞
i=1 airi vanishing on F ) we have supp(g)\F �= ∅

(regarding Rademacher zero sets see also the appendix).

2. Proofs

The proof of the upper bound in Theorem 1 follows directly from the definition of
the Rademacher multiplicator space. Indeed, since by hypothesis we have (1.3),
from (1.4) it follows that

sup
a∈�2,a �=0

∥∥w ·∑∞
i=1 airi

∥∥
X(∑∞

i=1 a
2
i

)1/2 ≤ CX · sup
a∈�2,a �=0

∥∥w ·∑∞
i=1 airi

∥∥
X∥∥∑∞

i=1 airi
∥∥
X

= CX ‖w‖Λ(X).

Note that the definition of the Rademacher multiplicator space Λ(X) also shows
that this upper bound is (up to a constant) optimal.

To prove the lower bound we will need the following assertion.

Proposition 4. Let E ⊂ [0, 1] be a measurable set.

(a) Suppose that E satisfies

α := max
{
m
(
E ∩ [

0, 1
2

])
,m

(
E ∩ [

1
2 , 1

])}
>

1

4
.

Then for 0 < B ≤ 1
2 (α− 1/4) and for every a = (ai) ∈ �2 we have

m
({

t ∈ E :
∣∣∣

∞∑
i=1

airi(t)
∣∣∣ ≥ B‖a‖2

})
>

1

2

(
α− 1

4

)
.

(b) Suppose that E ∈ E. Then, for every a = (ai) ∈ �2, we have

m
({

t ∈ E :
∣∣∣

∞∑
i=1

airi(t)
∣∣∣ ≥ B‖a‖2

})
>

1

4
min

{
2ε, δ

(
γ − 1

2

)}
,

for 0 < B ≤ Bn,ε,γ := min
(
2n−1ε, 1

4 (γ − 1/2)
)
, where E ∈ En

ε,δ,γ, for n ∈ N,

ε ∈ (0, 2−n−2), δ ∈ (0, 1), and γ ∈ (1/2, 1).

Proof. We will apply two well-known results. First, the Paley–Zygmund inequality
(see, for instance, Lemma V.8.26 in [19] or Lemma 1 in [7]) will be used in the
following form: for any A > B ≥ 0 and for arbitrary nonnegative random variable f
with Ef ≥ A and Ef2 = 1 we have

m(f ≥ B) ≥ (A−B)2.
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Moreover, by [17], the best constant A1 in the Khintchine inequality for p = 1 is
equal to 1/

√
2. Therefore, for every a = (ai) ∈ �2

∫ 1

0

∣∣∣
∞∑
i=1

airi(t)
∣∣∣ dt ≥ 1√

2
‖a‖2,

and we can apply Paley–Zygmund’s inequality to the function f :=
∣∣∑∞

i=1 airi
∣∣/‖a‖2

with A = 1/
√
2. Then, for any B with 0 ≤ B < 1/

√
2, we have

(2.1) m
({

t ∈ [0, 1] :
∣∣∣

∞∑
i=1

airi(t)
∣∣∣ ≥ B‖a‖2

})
≥

( 1√
2
−B

)2

.

We first prove (a). Assume, for example, that α = m(E ∩ [0, 1/2]). Define
QB := {t ∈ [0, 1/2] : |∑∞

i=1 airi(t)| ≥ B‖a‖2}. Due to elementary properties of the
Rademacher functions, the set {t ∈ [0, 1] : |∑∞

i=1 airi(t)| ≥ B‖a‖2} is symmetric
with respect to the point 1/2 and thus from (2.1) it follows that

m(QB) ≥ 1

2

( 1√
2
−B

)2

.

Hence, provided that 0 < B ≤ 1
2 (α − 1/4) we have

m(E ∩QB) ≥ m(E ∩ [0, 1/2])+m(QB)− 1

2
≥ α+

1

2

( 1√
2
−B

)2

− 1

2
>

1

2

(
α− 1

4

)
,

and the inequality in case (a) is proved. Similar estimates establish the result when
α = m(E ∩ [1/2, 1]).

Now, we proceed with the proof of (b). Assume that E ∈ En
ε,δ,γ , for some

n ∈ N, ε > 0, δ ∈ (0, 1), and γ ∈ (1/2, 1). Let g =
∑∞

i=1 airi be an arbitrary
Rademacher series, where a = (ai) ∈ �2, and let QE,B := {t ∈ E : |g(t)| ≥ B‖a‖2}.

First, we suppose that

(2.2)

n∑
i=1

a2i ≤
∞∑

i=n+1

a2i .

By hypothesis, there exists k0, 1 ≤ k0 ≤ 2n, such that m(E ∩ Δn
k0
) > ε + 3 ·

2−n−2. Since the function
∑n

i=1 airi is constant on the interval Δn
k0
, say a0, then,

using (2.2), we obtain that

m(QE,B) ≥ m
{
t ∈ E : |g(t)| ≥

√
2B

( ∞∑
i=n+1

a2i

)1/2}

≥ m
{
t ∈ E ∩Δn

k0
:
∣∣∣a0 +

∞∑
i=n+1

airi(t)
∣∣∣ ≥ √

2B
( ∞∑

i=n+1

a2i

)1/2}
.

Therefore, we can choose a set F ⊂ [0, 1] with m(F ) = 2nm(E ∩Δn
k0
) > 3/4 and

such that

(2.3) m(QE,B) ≥ 2−n m
({

t ∈ F :
∣∣∣a0 +

∞∑
i=n+1

airi(t)
∣∣∣ ≥ √

2B
( ∞∑

i=n+1

a2i

)1/2})
.
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At the same time, from (2.1) it follows that

m
({

t ∈ [0, 1] :
∣∣∣

∞∑
i=n+1

airi(t)
∣∣∣ ≥ √

2B
( ∞∑

i=n+1

a2i

)1/2})
≥

( 1√
2
−
√
2B

)2

.

Combining this inequality with elementary symmetry properties of the Rademacher
functions, we obtain that

m
({

t ∈ [0, 1] :
∣∣∣a0 +

∞∑
i=n+1

airi(t)
∣∣∣ ≥ √

2B
( ∞∑

i=n+1

a2i

)1/2})
≥ 1

2

( 1√
2
−
√
2B

)2

.

Therefore, arguing in the same way as in the proof of (a), we obtain that

m
({

t ∈ F :
∣∣∣a0 +

∞∑
i=n+1

airi(t)
∣∣∣ ≥ √

2B
( ∞∑

i=n+1

a2i

)1/2})

≥ m(F ) +
1

2

( 1√
2
−
√
2B

)2

− 1 ≥ m(F )− 3

4
−B.

Since

m(F )− 3

4
= 2n

(
m(E ∩Δn

k0
)− 3 · 2−n−2

)
> 2nε,

and, by hypotheses B < 2n−1ε, from the previous inequality it follows that

m
({

t ∈ F :
∣∣∣a0 +

∞∑
i=n+1

airi(t)
∣∣∣ ≥ √

2B
( ∞∑

i=n+1

a2i

)1/2})
≥ 2n−1ε.

Hence, using (2.3), we obtain, provided 0 < B < 2n−1ε, that

(2.4) m(QE,B) ≥ ε

2
.

Consider now the case when inequality (2.2) does not hold. Then

(2.5) m(QE,B) ≥ m
{
t ∈ E : |g(t)| ≥

√
2B

( n∑
i=1

a2i

)1/2}
.

By hypothesis, if I :=
{
k = 1, 2, . . . , 2n : m

(
E ∩Δn

k ) > δ
}
, then

(2.6) card I > γ2n.

Again, by (2.1), for some I ′ ⊆ {1, 2, . . . , 2n}, we have that

m
({

t ∈ [0, 1] :
∣∣∣

n∑
i=1

airi(t)
∣∣∣ ≥ √

2B
( n∑

i=1

a2i

)1/2})

=
∑
i∈I′

m(Δn
i ) = card I ′ · 2−n ≥

( 1√
2
−
√
2B

)2

,
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whence

card I ′ ≥ 2n
( 1√

2
−
√
2B

)2

.

It is easy to check that the condition 0 < B ≤ 1
4 (γ − 1

2 ) guarantees that

( 1√
2
−
√
2B

)2

+ γ − 1 >
1

2

(
γ − 1

2

)
,

Therefore, by (2.6),

card (I ′ ∩ I) ≥ card (I ′) + card (I)− 2n > 2n
(( 1√

2
−
√
2B

)2

+ γ − 1
)

> 2n−1
(
γ − 1

2

)
.(2.7)

By hypothesis, for every k ∈ I, the set E ∩ Δn
k is symmetric with respect to

the midpoint of the interval Δn
k . Therefore, if t ∈ E ∩ Δn

k , where k ∈ I ∩ I ′ is
fixed, then the symmetric point t′ also belongs to the set E ∩ Δn

k . Note that
the sum

∑n
i=1 airi is constant on the interval E ∩ Δn

k , having, say, value b, and

|b| ≥ √
2B

(∑n
i=1 a

2
i

)1/2
. On the other hand, since ri(t

′) = −ri(t), if i > n, we
have that g(t) = b + c and g(t′) = b − c for some constant c. Obviously, then at
least one of the inequalities

|g(t)| ≥
√
2B

( n∑
i=1

a2i

)1/2

, |g(t′)| ≥
√
2B

( n∑
i=1

a2i

)1/2

holds. Thus, if 0 < B ≤ 1
4 (γ − 1/2), by (2.5) and (2.7), we obtain that

m(QE,B) ≥
∑

k∈I∩I′
m
{
t ∈ E ∩Δn

k : |g(t)| ≥
√
2B

( n∑
i=1

a2i

)1/2}

≥ 1

2

∑
k∈I∩I′

m
{
t ∈ E ∩Δn

k :
∣∣∣

n∑
i=1

airi(t)
∣∣∣ ≥ √

2B
( n∑

i=1

a2i

)1/2}

≥ δ · 2−n−1card (I ∩ I ′) >
δ

4

(
γ − 1

2

)
.

Combining the last estimate with the inequality (2.4), we obtain the result. �

Corollary 5. Let E ⊆ [0, 1] be a measurable set such that at least one of the
following conditions holds:

(a) α := max
{
m
(
E ∩ [

0, 1
2

])
,m

(
E ∩ [

1
2 , 1

])}
>

1

4
;

(b) E ∈ E.
Then, for every a = (ai) ∈ �2, we have that

∥∥∥
∞∑
i=1

airiχE

∥∥∥
1
≥ dE ‖a‖2,
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where, in the case (a), we have dE = 1
4 (α − 1/4)2, and, in the case (b), we have

dE = 1
32 min

{
2ε, δ(γ − 1/2)

}
Bn,ε,γ, where E ∈ En

ε,δ,γ, for n ∈ N, ε ∈ (0, 2−n−2),
δ ∈ (0, 1), and γ ∈ (1/2, 1).

Remark 6. Proposition 4 should be compared with the following inequality from
the work of Burkholder (Theorem 1 in [7]): there exist universal constants ξ1 > 0
and ξ2 > 0 such that for every set E ⊂ [0, 1] with m(E) > 0 there existsN := N(E)
such that

m
({

t ∈ E :
∣∣∣

∞∑
i=N

airi(t)
∣∣∣ ≥ ξ2

( ∞∑
i=N

a2i

)1/2})
≥ ξ1 ·m(E),

for any (ai) ∈ �2. Of course, because of existing Rademacher zero sets (see Re-
mark 3(c)), the latter inequality does not hold with N = 1 for all measurable
E ⊂ [0, 1]. Nevertheless, Proposition 4 shows that there are some sets (including
sets with arbitrarily small measure) for which an analogous estimate is obtained
for the Rademacher series starting at N = 1. For issues regarding the local version
of the Khintchine inequality, see [5], [9], [14], and [15].

Now, we prove the lower estimate in Theorem 1, for example, in the case when
the condition (a) is satisfied. Let η > 0 be such that

αη := max
{
m
(
Mη(w) ∩

[
0, 12

])
,m

(
Mη(w) ∩

[
1
2 , 1

])}
>

1

4
.

Since for an r.i. spaceX on [0, 1] with ‖χ[0,1]‖X = 1 we have ‖x‖1 ≤ ‖x‖X (x ∈ X),
from Corollary 5 we deduce that

∥∥∥w ·
∞∑
i=1

airi

∥∥∥
X

≥
∥∥∥wχMη(w) ·

∞∑
i=1

airi

∥∥∥
X

≥ η‖w‖Λ(X)

∥∥∥χMη(w) ·
∞∑
i=1

airi

∥∥∥
1
≥ η

4
(αη − 1

4
)2‖w‖Λ(X)‖a‖2,

and the proof of the lower estimate in (1.2) is complete. In the case when the con-
dition (b) holds this estimate can be proved by completely analogous arguments.

The proof of Corollary 2 follows from the equality supp(w) = ∪η>0Mη(w) and
the steps of the proof of Proposition 4(a).

3. Appendix: Rademacher zero sets with measure 1/2

Proposition 7. Let g =
∑∞

k=1 akrk. If

m ({t ∈ [0, 1] : g(t) = 0}) = 1

2
,

then there exist 1 ≤ m < n and a ∈ R such that g = a(rn + rm) or g = a(rn − rm).
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Proof. Since infinite Rademacher series are almost everywhere non-null (by The-
orem 4 in [16], see also Corollary 1 in [7], and Corollary in [8]), there is an n ∈ N

such that g =
∑n

k=1 akrk. Let bk := −ak/an if 1 ≤ k < n. By considering
h = rn −∑m

k=1 bkrk, where bm �= 0 and 1 ≤ m < n, from our hypothesis it follows
that there exists a set E ⊂ [0, 1] with m(E) = 1/2 such that

(3.1) rn(t) =

m∑
k=1

bkrk(t) (t ∈ E).

We have E = ∪i∈IΔ
n
i for some set I ⊂ {1, 2, . . . , 2n}. For any i ∈ I there is

ji ∈ {1, 2, . . . , 2m} such that Δn
i ⊂ Δm

ji . Since the sum from the right side of
equality (3.1) is constant on the interval Δm

ji
, it is equal to +1 or −1 on Δm

ji
,

depending on the value of rn on the interval Δn
i . Therefore, on half of Δm

ji
we have

rn(t) =
∑m

k=1 bkrk(t) and on the other half −rn(t) =
∑m

k=1 bkrk(t). Since m(E) =
1/2, it follows that {ji : i ∈ I} = {1, 2, . . . , 2m}. Consequently |∑m

k=1 bkrk(t)| = 1,
for all t ∈ [0, 1], and, by Corollary 3 in [16], we have

m
({

t ∈ [0, 1] :
m∑

k=1

bkrk(t) = 1
})

= m
({

t ∈ [0, 1] :
m∑

k=1

bkrk(t) = −1
})

=
1

2
.

Moreover, assuming that
∑m

k=1 bkrk(t) = 1 if t ∈ Δm
i for some 1 ≤ i < 2m,

we see that on the next interval Δm
i+1 only the function rm(t) changes its value.

Hence,
∑m

k=1 bkrk(t) = −1 if t ∈ Δm
i+1. Therefore, the sum

∑m
k=1 bkrk(t) takes on

the intervals Δm
i alternately the values ±1. Thus, this sum coincides either with

rm or with −rm, and the proof is complete. �
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