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Initial boundary value problems for the

two-component shallow water systems

Kai Yan and Zhaoyang Yin

Abstract. In this paper we study initial boundary value problems of three
types of two-component shallow water systems on the half line subject to
homogeneous Dirichlet boundary conditions. We first prove local well-
possedness of the two-component Camassa–Holm system, the modified
two-component Camassa–Holm system, and the two-component Degasperis–
Procesi system in the Besov spaces. Then, we are able to specify certain
conditions on the initial data which on the one hand guarantee global
existence and on the other hand produce solutions with a finite lifespan.
Moreover, in the case of finite time singularities we are able to describe
the precise blow-up scenario for breaking waves. Finally we investigate
global weak solutions for the two-component Camassa–Holm system and
the modified two-component Camassa–Holm system on the half line, re-
spectively. Our approach is based on sharp extension results for functions
on the half line and several symmetry preserving properties of the systems
under discussion.

1. Introduction

In this paper we present a thorough study on initial boundary value problems of
three types of two-component shallow water systems on the half line.

The first type is the following integrable two-component Camassa–Holm shal-
low water system (2CH):{

mt + umx + 2uxm+ σρρx = 0, t > 0, x ∈ R,
ρt + (uρ)x = 0, t > 0, x ∈ R,

where m = u− uxx and σ = ±1. The system (2CH) was recently derived by Con-
stantin and Ivanov [16] in the context of shallow water theory. The variable u(t, x)
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describes the horizontal velocity of the fluid and the variable ρ(t, x) is connected
with the horizontal deviation of the surface from equilibrium, all measured in di-
mensionless units [16]. The case σ = 1 (σ = −1) corresponds to the situation in
which the gravitational acceleration points downwards (upwards) [16]. The case
σ = 1 was originally proposed by Chen et al. in [7] and Falqui in [32], while σ = −1
is identified with the first negative flow of the AKNS hierarchy and has peakon
and multikink solutions [7]. The extended N = 2 supersymmetric Camassa–Holm
equation was presented recently by Popowicz in [53].

For ρ ≡ 0, (2CH) becomes the Camassa–Holm equation (CH), modeling the
unidirectional propagation of shallow water waves over a flat bottom. Here u(t, x)
stands for the fluid velocity at time t in the spatial x direction, [5], [26], [45], [46].
CH is also a model for the propagation of axially symmetric waves in hyperelastic
rods [22]. It has a bi-Hamiltonian structure [33] and is completely integrable
(see [5] and [10]). There is also a geometric interpretation of CH in terms of the
geodesic flow on the diffeomorphism group of the circle [18]. Its solitary waves
are peaked [6]. They are orbitally stable and interact like solitons [2], [21]. It is
also worth pointing out that the peaked solitary waves replicate a feature that is
characteristic of waves of great height –waves of largest amplitude that are exact
solutions of the governing equations for water waves, cf. the discussion in [11], [15]
and [59].

The Cauchy problem and initial boundary value problem for CH have been
studied extensively, see [12], [13], [23], [31] and [55]. It has been shown that this
equation is locally well posed ([12], [13], [23], [55]) for initial data u0 ∈ Hs(R),
s > 3/2. Moreover, it has global strong solutions ([9], [12], [13]) and also finite
time blow-up solutions ([9], [12], [13], [14], [55]). On the other hand, it has global
weak solutions in H1(R) ([3], [4], [20], [63]). The advantage of CH in comparison
with the KdV equation lies in the fact that CH has peaked solitons and models
wave breaking [6], [14] (by wave breaking we understand that the wave remains
bounded while its slope becomes unbounded in finite time [62]).

For ρ �≡ 0, the Cauchy problems for (2CH) with σ = −1 and with σ = 1
have been studied in [28] and [16], [35], [37], [39], [40], respectively. Local well-
posedness for (2CH) with initial data in Sobolev spaces and in Besov spaces has
been established in [16], [28], and [39]. The blow-up phenomena and global ex-
istence of strong solutions to (2CH) in Sobolev spaces have been derived in [28],
[35], [39], and [40]. The analyticity of solutions to (2CH) has been obtained in [64].
Recently, the existence of global weak solutions for (2CH) with σ = 1 has been
investigated in [37].

Note that in the hydrodynamical derivation of (2CH) [16] it is required that
u(t, x) → 0 and ρ(t, x) → 1 as |x| → ∞, at any instant t. Then, setting η � ρ− 1,
we can rewrite the Cauchy problem of (2CH) with σ = 1 as follows:

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

ut − utxx + 3uux = 2uxuxx + uuxxx − ηηx − ηx, t > 0, x ∈ R,

ηt + (uη)x + ux = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
η(0, x) = η0(x), x ∈ R.
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The second type of system considered here is the following modified two-
component Camassa–Holm shallow water system (M2CH):{

mt + umx + 2uxm+ σρρ̄x = 0, t > 0, x ∈ R,
ρt + (uρ)x = 0, t > 0, x ∈ R,

with m = u − uxx, ρ = (1 − ∂2
x)(ρ̄ − ρ̄0) and σ = ±1. The system (M2CH) was

recently introduced by Holm et al. in [43]. It is written in terms of the velocity u
and the locally averaged density ρ̄ (or depth, in the shallow-water interpretation)
and ρ̄0 is taken to be constant. The system (M2CH) is defined as the geodesic mo-
tion on the semidirect product Lie group ([42], [52]) with respect to a certain metric
and is given as a set of Euler–Poincaré equations on the dual of the corresponding
Lie algebra.

For ρ ≡ 0, (M2CH) also becomes the classical Camassa–Holm equation. For
ρ �≡ 0, many papers have been devoted to the Cauchy problem for (M2CH); see,
for example, [36], [38], [56], [57], [58] and [64]. Local well-posedness and blow-
up phenomena for (M2CH) with initial data in Sobolev spaces have been studied
in [36]. The analyticity of solutions to (M2CH) has been obtained in [64]. Recently,
the existence of global weak solutions for (M2CH) has been investigated in [38],
[56], [57], and [58].

For convenience, set γ � ρ̄− ρ̄0. Then ρ = γ−γxx. We can rewrite the Cauchy
problem for (M2CH) with σ = 1 as follows:

(1.2)

⎧⎪⎪⎨
⎪⎪⎩

mt + umx + 2uxm+ ργx = 0, t > 0, x ∈ R,
ρt + (uρ)x = 0, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,
γ(0, x) = γ0(x), x ∈ R.

The third type of system considered here is the Cauchy problem for two-
component Degasperis–Procesi system (2DP),

(1.3)

⎧⎪⎪⎨
⎪⎪⎩

ut − utxx + 4uux − 3uxuxx − uuxxx + cηηx = 0, t > 0, x ∈ R,
ηt + uηx + 2uxη = 0, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,
η(0, x) = η0(x), x ∈ R,

where c takes an arbitrary value. The system (1.3) as the Hamiltonian extension
of the Degasperis–Procesi equation was first proposed in [54].

For η ≡ 0, system (1.3) becomes the classical Degasperis–Procesi equation (DP),
see [25]. It was proved formally integrable by constructing a Lax pair [24], and the
direct and inverse scattering approaches to studying it can be seen in [17]. More-
over, [24] also established that the DP equation has a bi-Hamiltonian structure
and an infinite number of conservation laws, and admits exact peakon solutions
which are analogous to the Camassa–Holm peakons. The DP equation is a model
for nonlinear shallow water dynamics [19]. The numerical stability of solitons
and peakons, the multi-soliton solutions and their peakon limits, together with
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an inverse scattering method to compute n-peakon solutions to the DP equation
have been investigated respectively in [44], [50] and [51]. Furthermore, traveling
wave solutions and the classification of all weak traveling wave solutions to the DP
equation were presented in [47] and [61].

The Cauchy problem and the initial boundary value problem for the DP equa-
tion have been studied extensively, see [31], [41], and [66]. For example, the second
author [66] established the local well-posedness of the DP equation with initial data
u0 ∈ Hs(R), s > 3/2, on the line, and derived the precise blow-up scenario and a
blow-up result. The global existence of strong solutions and global weak solutions
for the DP equation were shown in [67] and [68]. Similar to the Camassa–Holm
equation, the DP equation has not only global strong solutions [48], but also blow-
up solutions (see [29], [30], [48], and [67]). Apart from these, it has global entropy
weak solutions in L1(R) ∩BV (R) and L2(R) ∩ L4(R), see [8].

Although DP is very similar to CH in many aspects, especially in the structure
of the equation, there are some essential differences between the two equations.
One of the famous features of the DP equation is that it has not only peakon
solutions uc(t, x) = ce−|x−ct| with c > 0, [24], and periodic peakon solutions, [68],
but also shock peakons [49] and periodic shock waves, [30]. Besides, CH is a re-
expression of the geodesic flow on the diffeomorphism group [18], while the DP
equation can be regarded as a nonmetric Euler equation [27].

For η �≡ 0, local well-posedness for system (1.3) in Besov spaces and blow-up
phenomenon in Sobolev spaces have been researched in [65].

However, initial boundary value problems for the above three types of two-
component systems on the half line have not been investigated so far. The aim of
this paper is to find a general approach to investigate them. Our method strongly
depends on sharp results on the odd extension of functions and the conservation
of symmetry of the systems, by which we can convert initial boundary value prob-
lems on the half line into Cauchy problems on the whole line. Then, applying
known results for Cauchy problems for the systems (1.1)–(1.3), we obtain local
well-posedness results, blow-up and global existence results for strong solutions,
and global weak solutions on the half line, which cover and improve the previous
results for the classical CH and DP equations on the half line.

Our paper is organized as follows. In Section 2, we derive sharp extension
results, which are crucial for our approach. In Section 3, by using the conservation
of symmetry enjoyed by (2CH), we study initial boundary value problems of (2CH)
on the half line. In Sections 4 and 5, we investigate initial boundary value problems
of (M2CH) and (2DP) on the half line by the same method, respectively.

Notation. In the following, we denote by ∗ the spatial convolution. Given a
Banach space X , we denote its norm by ‖ · ‖X . If s is a real number then we use
the notation s = [s]− + {s}+, where [s]− is an integer and 0 < {s}+ ≤ 1.

Acknowledgments. The authors thank the referees for their valuable comments
and suggestions.
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2. Some crucial lemmas

In this section, we present some key lemmas which will be crucial for our purposes.
We here consider the case of the half line (0,∞).

Definition 2.1. Let 1 < p < ∞ and −∞ < s < ∞. Let I = R, I = R+ or let I be
an open interval of R, where R+ � [0,∞). The Besov space Bs

p,p(I), the restriction
of Bs

p,p(R) (cf. [60]) to I, is defined as:

Bs
p,p(I) � {f ∈ D′(I) : ∃ g ∈ Bs

p,p(R), such that g|I = f},
equipped with the norm

||f ||Bs
p,p(I)

� inf
g∈Bs

p,p(R), g|I=f
||g||Bs

p,p(R)
.

In particular, for 0 < s not an integer, we have the following equivalent definition
of Bs

p,p(I) (see [1]):

Bs
p,p(I) � {u ∈ Wm,p(I) : ||u||Bs

p,p(I)
< ∞}

with

||u||Bs
p,p(I)

� ||u||Wm,p(I) +
( ∫

I

∫
I

|u(m)(x) − u(m)(y)|p
|x− y|1+σp

dx dy
)1/p

,

where s = m+ σ, m ∈ N and σ ∈ (0, 1).

Definition 2.2. Let p, s and I be as in the statement of Definition 2.1. The
Banach space Xs,p(I) is defined as follows:

Xs,p(I) �
{

W s,p(I), if s ∈ N,
Bs

p,p(I), if 0 < s not an integer, or s < 0.

Lemma 2.3. Assume that 1 < p < ∞. We have:

(1) If s ∈ [0, 1/p], then C∞
0 (R+) is dense in Xs,p(R+).

(2) If s ∈ (1/p,∞), then C∞
0 (R+) is dense in Xs,p

0 (R+), where

Xs,p
0 (R+) �

{
f(x) ∈ W s

p (R+) : f
(r)(0) = 0, r = 0, . . . , [s− 1

p ]
−
}
.

The proof of Lemma 2.3 is given on pages 219–220 of [60].

Lemma 2.4. Assume that 1 < p < ∞ and 0 < s < 1 with s �= 1/p. If f(x) ∈
C∞

0 (R+), then∫ ∞

0

|f(x)|p
xps

dx ≤ C(p, s)

∫ ∞

0

∫ ∞

0

|f(x)− f(y)|p
|x− y|1+ps

dx dy,

where C(p, s) � 2p−1
(
1 + (p− 1)p−1( 2

|1−ps| )
p
)
.
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Lemma 2.4 can be deduced from the conclusion on page 261 of [60] and Hardy’s
inequality, see page 262 of [60]. However, in order to obtain the exact constant in
the above inequality and to show that s = 1/p is a critical point for our problems,
we give the complete proof.

Proof of Lemma 2.4. For 0 < x < ∞, we set

g(x) � f(x)− 1

x

∫ x

0

f(y) dy =
1

x

∫ x

0

(f(x)− f(y)) dy.

By f(x) ∈ C∞
0 (R+), we have

lim
x→0

g(x) = lim
x→∞ g(x) = 0.

Noting that(
g(x)−

∫ ∞

x

g(y)

y
dy − f(x)

)′
= f ′(x) − f(x)

x
+

1

x2

∫ x

0

f(y)dy +
g(x)

x
− f ′(x) = 0,

one can infer that

(2.1) f(x) = g(x)−
∫ ∞

x

g(y)

y
dy.

Hence,

(2.2) |f(x)|p ≤ 2p−1
(
|g(x)|p + ∣∣ ∫ ∞

x

g(y)

y
dy

∣∣p).
Case (1): 0 < ps < 1. Thanks to Hölder’s inequality, we have∣∣∣ ∫ ∞

x

g(y)

y
dy

∣∣∣p ≤
(∫ ∞

x

y
1+ps−2p

2p q dy
)p/q

·
∫ ∞

x

|g(y)|py−(1+ps)/2 dy

=
( 2p

(1− ps)q

)p/q

x(ps−1)/2

∫ ∞

x

|g(y)|py−(1+ps)/2 dy,

where 1/q = 1− 1/p.

The above inequality together with Fubini’s theorem implies∫ ∞

0

x−ps
∣∣∣ ∫ ∞

x

g(y)

y
dy

∣∣∣pdx
≤

( 2p

(1− ps)q

)p/q
∫ ∞

0

x−(1+ps)/2
(∫ ∞

x

|g(y)|p y−(1+ps)/2 dy
)
dx

=
( 2p

(1− ps)q

)p/q
∫ ∞

0

|g(y)|p y−(1+ps)/2
(∫ y

0

x−(1+ps)/2 dx
)
dy

=
( 2p

(1− ps)q

)p/q 2

1− ps

∫ ∞

0

|g(y)|p y−ps dy

= (p− 1)p−1
( 2

1− ps

)p
∫ ∞

0

|g(x)|p
xps

dx.
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Case (2): ps > 1. In view of (2.1), we have
∫∞
0 g(y)/y dy = g(0) = 0. Thanks to

Hölder’s inequality, we deduce

∣∣∣ ∫ ∞

x

g(y)

y
dy

∣∣∣p =
∣∣∣ ∫ x

0

g(y)

y
dy

∣∣∣p ≤
(∫ x

0

y
1+ps−2p

2p q dy
)p/q

∫ x

0

|g(y)|p y−(1+ps)/2 dy

=
( 2p

(ps− 1)q

)p/q

x(ps−1)/2

∫ x

0

|g(y)|p y−(1+ps)/2 dy,

where 1/q = 1− 1/p.

By using Fubini’s theorem again, we obtain∫ ∞

0

x−ps
∣∣∣ ∫ ∞

x

g(y)

y
dy

∣∣∣p dx
≤

( 2p

(ps− 1)q

)p/q
∫ ∞

0

x−(1+ps)/2
( ∫ x

0

|g(y)|p y−(1+ps)/2 dy
)
dx

=
( 2p

(ps− 1)q

)p/q
∫ ∞

0

|g(y)|p y−(1+ps)/2
(∫ ∞

y

x−(1+ps)/2 dx
)
dy

= (p− 1)p−1
( 2

ps− 1

)p
∫ ∞

0

|g(x)|p
xps

dx.

Consequently, for s ∈ (0, 1) with s �= 1/p, we get

(2.3)

∫ ∞

0

x−ps
∣∣∣ ∫ ∞

x

g(y)

y
dy

∣∣∣p dx ≤ (p− 1)p−1
( 2

|ps− 1|
)p

∫ ∞

0

|g(x)|p
xps

dx.

Combining (2.2) and (2.3), and taking advantage of Hölder’s inequality and Fu-
bini’s theorem again, we obtain∫ ∞

0

|f(x)|p
xps

dx ≤ 2p−1

∫ ∞

0

|g(x)|p
xps

dx+ 2p−1

∫ ∞

0

x−ps
∣∣ ∫ ∞

x

g(y)

y
dy

∣∣p dx
≤ 2p−1

(
1 + (p− 1)p−1

( 2

|1− ps|
)p)∫ ∞

0

|g(x)|p
xps

dx

≤ C(p, s)

∫ ∞

0

x−ps−1
( ∫ x

0

|f(x)− f(y)|p dy
)
dx

= C(p, s)

∫ ∞

0

∫ ∞

y

x−ps−1|f(x)− f(y)|p dx dy

= C(p, s)

∫ ∞

0

∫ ∞

0

(x+ y)−ps−1|f(x+ y)− f(y)|p dx dy

≤ C(p, s)

∫ ∞

0

∫ ∞

0

x−ps−1|f(x+ y)− f(y)|p dx dy

≤ C(p, s)

∫ ∞

0

∫ ∞

0

|f(x) − f(y)|p
|x− y|1+ps

dx dy.

This completes the proof of the lemma. �
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Lemma 2.5. Let 1 < p < ∞, 0 ≤ s ≤ 1 with s �= 1/p. Assume that v ∈ Xs,p(R+)
if 0 ≤ s < 1/p or that v ∈ Xs,p(R+) with v(0) = 0 if 1/p < s ≤ 1. Furthermore let

ṽ(x) =

{
v(x), if x ≥ 0,
−v(−x), if x < 0.

Then ṽ(x) ∈ Xs,p(R).

Proof. It is obvious that the lemma holds true for s = 0.
For s = 1, we have v(x) ∈ W 1,p

0 (R+). If v ∈ C1(R+)∩W 1,p
0 (R+), then one can

readily obtain that

lim
x→0−

ṽ(x) − ṽ(0)

x− 0
= lim

x→0−

−v(−x)

x
= lim

x→0+

v(x)

x
= v′(0+) = lim

x→0+

ṽ(x) − ṽ(0)

x− 0
,

which implies ṽ ∈ C1(R) ∩ W 1,p(R). Since C1(R+) ∩ W 1,p
0 (R+) is dense in

W 1,p
0 (R+), it follows that the lemma is true for s = 1.

Next, we prove that the lemma is true for 0 < s < 1, with s �= 1/p. For
v ∈ C∞

0 (R+), by the definition of ṽ, Lemma 2.4 and the fact that |v(x) + v(y)|p ≤
2p−1 (|v(x)|p + |v(y)|p), we have∫

R

∫
R

|ṽ(x) − ṽ(y)|p
|x− y|1+ps

dx dy

= 2

∫ ∞

0

∫ ∞

0

|v(x) − v(y)|p
|x− y|1+ps

dx dy + 2

∫ ∞

0

∫ ∞

0

|v(x) + v(y)|p
|x+ y|1+ps

dx dy

≤ 2

∫ ∞

0

∫ ∞

0

|v(x) − v(y)|p
|x− y|1+ps

dx dy + 2p
∫ ∞

0

∫ ∞

0

|v(x)|p + |v(y)|p
|x+ y|1+ps

dx dy

= 2

∫ ∞

0

∫ ∞

0

|v(x) − v(y)|p
|x− y|1+ps

dx dy +
2p+1

ps

∫ ∞

0

|v(x)|p
|x|ps dx dy

≤
(
2 +

2p+1

ps
C(p, s)

)∫ ∞

0

∫ ∞

0

|v(x) − v(y)|p
|x− y|1+ps

dx dy,

which together with Definition 2.1 and 2.2 yields ṽ ∈ W p,s(R), provided that
v ∈ C∞

0 (R+). In view of Lemma 2.3 and the assumption of this lemma, one can
get the desired result. Therefore, we the proof of the lemma is complete. �

Remark 2.6. For the limit case p = ∞, we have

(1) if v ∈ L∞(R+), then ṽ ∈ L∞(R).

(2) if v ∈ W 1,∞(R+) with v(0) = 0, then ṽ ∈ W 1,∞(R).

Noting that C1(R+) ∩W 1,∞(R+) is not dense in W 1,∞(R+), we cannot prove
Remark 2.6 (2) in the same way as in the proof of Lemma 2.5. To this end, we
first need the following proposition:
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Proposition 2.7. Assume that g ∈ L∞(R). If we set

h(x) �
∫ x

0

g(t) dt, ∀x ∈ R,

then h(x) ∈ C(R) and∫
R

h(x)ϕ′(x) dx = −
∫
R

g(x)ϕ(x) dx, ∀ϕ ∈ C1
c (R).

That is, the weak derivative of h, denoted by h′, is g.

Proof. It is obvious that h(x) ∈ C(R).

Next, we prove that h′ = g. By Fubini’s theorem, we have, for ϕ ∈ C1
c (R),∫

R

h(x)ϕ′(x) dx =

∫
R

(∫ x

0

g(t)dt
)
ϕ′(x) dx

= −
∫ 0

−∞

( ∫ 0

x

g(t) dt
)
ϕ′(x) dx +

∫ ∞

0

(∫ x

0

g(t), dt
)
ϕ′(x) dx

= −
∫ 0

−∞
g(t)

( ∫ t

−∞
ϕ′(x) dx

)
dt+

∫ ∞

0

g(t)
( ∫ ∞

t

ϕ′(x) dx
)
dt

= −
∫ 0

−∞
g(t)ϕ(t) dt −

∫ ∞

0

g(t)ϕ(t) dt

= −
∫
R

g(x)ϕ(x) dx,

which implies the desired result. �

Proof of Remark 2.6. It is obvious that (1) is true. For (2), by the assumption
v ∈ W 1,∞(R+), we have ṽ ∈ L∞(R). Now it suffices to show that ṽ is weakly
differentiable and ṽ′ ∈ L∞(R). Indeed, set

v�(x) �
{

v′(x), if x > 0,
v′(−x), if x < 0.

Hence, v�(x) ∈ L∞(R). Noting that ṽ(0) = v(0) = 0 and using the definition of v�,
we can readily get

ṽ(x) =

∫ x

0

v�(t) dt, ∀x ∈ R.

Then Proposition 2.7 implies ṽ′ = v� ∈ L∞(R). Therefore, the proof of the remark
is complete. �

Lemma 2.8. Let 1 < p < ∞ and 0 ≤ s ≤ 1. Assume that v ∈ Xs,p(R+).
Furthermore, let

v̂(x) =

{
v(x), if x ≥ 0,
v(−x), if x < 0.

Then v̂(x) ∈ Xs,p(R).
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Proof. It is obvious that the lemma is true for s = 0.

For s = 1, we have v ∈ W 1,p(R+). If v ∈ C1(R+) ∩ W 1,p(R+), then we
get v ∈ C0,1

loc (R+). Hence, v̂ ∈ C0,1
loc (R). Note that a locally uniformly Lipschitz

continuous function is weakly differentiable, cf. [34]. We have

(v̂)′(x) = ṽ′(x) =
{

v′(x), if x ≥ 0,
−v′(−x), if x < 0.

A straightforward calculation yields

‖v̂(x)‖pW 1,p(R) = 2 ‖v(x)‖pW 1,p(R+).

Noting that C1(R+) ∩W 1,p(R+) is dense in W 1,p(R+), one can infer that v̂(x) ∈
W 1,p(R).

Next, we prove that the lemma holds true for 0 < s < 1. By the definition of v̂
and the fact |x+ y| ≥ |x− y| for x, y ≥ 0, one deduce that∫

R

∫
R

|v̂(x) − v̂(y)|p
|x− y|1+ps

dx dy

= 2

∫ ∞

0

∫ ∞

0

|v(x) − v(y)|p
|x− y|1+ps

dx dy + 2

∫ ∞

0

∫ ∞

0

|v(x) − v(y)|p
|x+ y|1+ps

dx dy

≤ 4

∫ ∞

0

∫ ∞

0

|v(x) − v(y)|p
|x− y|1+ps

dx dy.

By Lemma 2.3, we obtain the desired result. This completes the proof of the
lemma. �

Remark 2.9. For the limit case p = ∞, in view of the definition of v̂, one can easily
get v̂ ∈ L∞(R) or v̂ ∈ W 1,∞(R) provided that v ∈ L∞(R+) or v ∈ W 1,∞(R+).

Lemma 2.10. Assume that 1 < p < ∞ and σ ∈ [0, 1]. If u ∈ Wm,p(I), with
m ∈ N+, then u ∈ Xm+σ,p(I) if and only if u(m) ∈ Xσ,p(I).

Proof. This is a direct consequence of Definitions 2.1 and 2.2. �

Lemma 2.11. Let 1 < p < ∞ and 1/p < s < 2+ 1/p. Assume that v ∈ Xs,p(R+)
with v(0) = 0. Furthermore, let

ṽ(x) =

{
v(x), if x ≥ 0,
−v(−x), if x < 0.

Then ṽ(x) ∈ Xs,p(R).

Proof. For 1/p < s ≤ 1, the lemma is a consequence of Lemma 2.5.

For 1 ≤ s ≤ 2, we have s− 1 ∈ [0, 1] and

ṽ′(x) = v̂′(x) =
{

v′(x), if x ≥ 0,
v′(−x), if x < 0.
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In view of Lemma 2.10, one has v′(x) ∈ Xs−1,p(R+). It follows from Lemma 2.8

that ṽ′(x) = v̂′(x) ∈ Xs−1,p(R). Noting that ṽ(x)∈W 1,p(R) and using Lemma 2.10
again, we have ṽ(x) ∈ Xs,p(R) for 1 ≤ s ≤ 2.

For 2 ≤ s < 2 + 1/p, we have s− 2 ∈ [0, 1/p) and

ṽ′′(x) = ṽ′′(x) =
{

v′′(x), if x ≥ 0,
−v′′(−x), if x < 0.

In view of Lemma 2.10, one has v′′(x) ∈ Xs−2,p(R+). It follows from Lemma 2.5

that ṽ′′(x) = ṽ′′(x)∈Xs−2,p(R). Noting that ṽ(x)∈W 2,p(R) and using Lemma 2.10
again, we have ṽ(x) ∈ Xs,p(R) for 2 ≤ s < 2 + 1/p. This completes the proof of
the lemma. �

Remark 2.12. For s ≥ 2+ 1/p, under the assumptions of Lemma 2.11, generally
one cannot deduce ṽ ∈ Xs,p(R).

In order to obtain ṽ ∈ Xs,p(R), one has to add additional conditions. For this
we let k ∈ N, and for 2k + 1/p < s < 2k + 2 + 1/p we set

Y s,p
k (R+) = {v ∈ Xs,p(R+) : v

(2k)(0) = v(2k−2)(0) = · · · = v(0) = 0}.
We now have the following generalized result:

Lemma 2.13. For k ∈ N and 2k + 1/p < s < 2k + 2 + 1/p, assume that v ∈
Y s,p
k (R+). Furthermore, let

ṽ(x) =

{
v(x), if x ≥ 0,
−v(−x), if x < 0.

Then ṽ(x) ∈ Xs,p(R).

Proof. By following the lines of the proof of Lemma 2.11, one can easily prove the
lemma by induction with respect to the index k. For the sake of brevity, we omit
the details here. �

Lemma 2.14. Let 1 < p < ∞ and 0 ≤ s < 1 + 1/p. Assume that v ∈ Xs,p(R+).
Furthermore, let

v̂(x) =

{
v(x), if x ≥ 0,
v(−x), if x < 0.

Then v̂(x) ∈ Xs,p(R).

Proof. For s ∈ [0, 1], the lemma is a direct consequence of Lemma 2.8.

For 1 < s < 1 + 1/p, we have v ∈ B1+σ
p,p (R+) with σ ∈ (0, 1/p). Thus, v ∈

W 1,p(R+). Thanks to Lemma 2.8, we have v̂ ∈ W 1,p(R) and

v̂′(x) = ṽ′(x) =
{

v′(x), if x ≥ 0,
−v′(−x), if x < 0.

By Lemma 2.10, we only need to show that v̂′(x) ∈ Bσ
p,p(R) with σ ∈ (0, 1/p).

Indeed, this can be deduced from the fact v′(x) ∈ Bσ
p,p(R+) and Lemma 2.5.

Therefore, the proof of the lemma is complete. �
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Remark 2.15. For s ≥ 1+ 1/p, under the assumptions of Lemma 2.14, generally
one cannot deduce v̂ ∈ Xs,p(R).

In order to obtain v̂ ∈ Xs,p(R), one has to add additional conditions. For this
we let k ∈ N+, and for 2k − 1 + 1/p < s < 2k + 1 + 1/p we set

Zs,p
k (R+) = {v ∈ Xs,p(R+) : v

(2k−1)(0) = v(2k−3)(0) = · · · = v′(0) = 0}.

We now have the following generalized lemma:

Lemma 2.16. For k ∈ N+ and 2k − 1 + 1/p < s < 2k + 1 + 1/p, assume that
v ∈ Zs,p

k (R+). Furthermore, let

v̂(x) =

{
v(x), if x ≥ 0,
v(−x), if x < 0.

Then v̂(x) ∈ Xs,p(R).

Proof. By following the lines of the proof of Lemma 2.14, one can easily prove the
lemma by induction with respect to the index k. We omit the details. �

For later applications of the above lemmas, we need the following new spaces:

Definition 2.17. (1) Let 1 < p < ∞, −∞ < s < ∞, T > 0 and I = R or I = R+,
where R+ � [0,∞). The spaces V s,p(I) and Es,p

T (I) are defined as follows:

V s,p(I) �
{

Hs(I), if s ∈ N,

Bs
p,p(I), if 0 < s not an integer, or s < 0,

Es,p
T (I) � C([0, T );V s,p(I)) ∩C1([0, T );V s−1,p(I)).

In particular, V s,2(I) = Hs(I) and

Es,2
T (I) � C([0, T );Hs(I)) ∩ C1([0, T );Hs−1(I)).

(2) For k ∈ N and 2k + 1/p < s < 2k + 2 + 1/p, we set

Ds,p
k (R+) � {v ∈ V s,p(R+) : v

(2k)(0) = v(2k−2)(0) = · · · = v(0) = 0}.

(3) For k ∈ N+ and 2k − 1 + 1/p < s < 2k + 1 + 1/p, we set

Rs,p
k (R+) � {v ∈ V s,p(R+) : v

(2k−1)(0) = v(2k−3)(0) = · · · = v′(0) = 0}.

Remark 2.18. Obviously, the extension of Lemmas 2.5, 2.8, 2.11, and 2.14 also
hold true for the space V s,p, a special case of Xs,p. And the generalized exten-
sions of Lemmas 2.13 and 2.16 can be also applied to the spaces Ds,p

k and Rs,p
k ,

respectively.
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3. IBVP for two-component Camassa–Holm shallow water
system

In this section, we investigate initial boundary value problems of the two-component
Camassa–Holm shallow water system on the half line.

Let us now consider the following initial boundary value problem for (2CH) on
the half line:

(3.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut − utxx + 3uux = 2uxuxx + uuxxx − ηηx − ηx, t > 0, x ∈ R+,
ηt + (uη)x + ux = 0, t > 0, x ∈ R+,
u(0, x) = u0(x), x ∈ R+,
η(0, x) = η0(x), x ∈ R+,
u(t, 0) = 0, t ≥ 0.

We first present the following local well-posedness result for the system (3.1).

Theorem 3.1. Let 1 < p < ∞ and max(3/2, 1 + 1/p, 2 − 1/p) < s < 2 + 1/p.
Assume that (u0, η0) ∈ V s,p(R+)×V s−1,p(R+) satisfies the compatibility condition
u0(0) = 0. Then there exists a maximal T = T (u0, η0) > 0 such that the sys-
tem (3.1) has a unique solution (u(t, x), η(t, x)) ∈ Es,p

T (R+)× Es−1,p
T (R+). More-

over, the solution depends continuously on the initial data, i.e., the mapping

(u0, η0) �→ (u, η) : V s,p(R+)× V s−1,p(R+) → Es,p
T (R+)× Es−1,p

T (R+)

is continuous. Furthermore, the maximal T is independent of s in the following
sense: if (u, η) ∈ Es,2

T (R+) × Es−1,2
T (R+) is the solution to the system (3.1), and

if (u0, η0) ∈ Hs′(R+) × Hs′−1(R+) with 3/2 < s ≤ s′ < 5/2 satisfies u0(0) = 0,

then (u, η) ∈ Es′,2
T (R+)× Es′−1,2

T (R+) with the same T .

Proof. We first convert (3.1) into the Cauchy problem for (2CH) on the line. For
this, we extend the initial data u0(x) and η0(x) defined on the half line into the
odd and even functions on the line defined, respectively, by

(3.2) ũ0(x) =

{
u0(x), if x ≥ 0,
−u0(−x), if x < 0,

and

(3.3) η̂0(x) =

{
η0(x), if x ≥ 0,
η0(−x), if x < 0.

By the assumption of the theorem, in view of Lemmas 2.11 and Lemma 2.14,
one obtain

(ũ0(x), η̂0(x)) ∈ V s,p(R)× V s−1,p(R)

with max(3/2, 1 + 1/p, 2− 1/p) < s < 2 + 1/p.

We now can convert (3.1) into the following system on the line:

(3.4)

⎧⎪⎪⎨
⎪⎪⎩

ũt − ũtxx + 3ũũx = 2ũxũxx + ũũxxx − η̂η̂x − η̂x, t > 0, x ∈ R,
η̂t + (ũη̂)x + ũx = 0, t > 0, x ∈ R,
ũ(0, x) = ũ0(x) (odd), x ∈ R,
η̂(0, x) = η̂0(x) (even), x ∈ R.
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Note that if the Green’s function p(x) � 1
2e

−|x|, x ∈ R, then (1 − ∂2
x)

−1f = p ∗ f
for all f ∈ L2(R). Using this identity, we can rewrite (3.4) as the quasilinear
hyperbolic evolution equations

(3.5)

⎧⎪⎪⎨
⎪⎪⎩

ũt + ũũx + ∂xp ∗
(
ũ2 + 1

2 ũ
2
x + 1

2 η̂
2 + η̂

)
= 0, t > 0, x ∈ R,

η̂t + (ũη̂)x + ũx = 0, t > 0, x ∈ R,
ũ(0, x) = ũ0(x) (odd), x ∈ R,
η̂(0, x) = η̂0(x) (even), x ∈ R.

Applying the local well-posedness result for the Cauchy problem for (2CH) on
the line obtained in [39], we conclude that there exists a maximal existence time
T = T (ũ0, η̂0) > 0 such that the system (3.5) has a unique solution

(ũ(t, x), η̂(t, x)) ∈ Es,p
T (R)× Es−1,p

T (R),

and the solution depends continuously on the initial data, i.e., the mapping

(ũ0, η̂0) �→ (ũ, η̂) : V s,p(R)× V s−1,p(R) → Es,p
T (R)× Es−1,p

T (R)

is continuous.
Moreover, the maximal T is independent of s in the following sense: if the

solution (ũ, η̂) to system (3.5) belongs to Es,2
T (R) × Es−1,2

T (R) and if (ũ0, η̂0) ∈
V s′,2(R)× V s′−1,2(R) with 3/2 < s ≤ s′ < 5/2, then

(ũ, η̂) ∈ Es′,2
T (R)× Es′−1,2

T (R)

with the same T .
In addition, note that the system (3.4) is invariant under the transformation

(ũ(t, x), η̂(t, x)) → (−ũ(t,−x), η̂(t,−x)) .

Since ũ0(x) is odd and η̂0(x) is even, it follows that ũ(t, x) is odd and η̂(t, x) is
even for any t ∈ [0, T ). In particular, we have ũ(t, 0) ≡ 0 for all t ∈ [0, T ).

Set

(u(t, x), η(t, x)) � (ũ(t, x), η̂(t, x)) , restricted to (t, x) ∈ [0, T )× R+.

Hence,
(u(t, x), η(t, x)) ∈ Es,p

T (R+)× Es−1,p
T (R+)

is a solution to (3.1).
On the other hand, if (v(t, x), γ(t, x)) is also a solution to (3.1) with the same

initial data (u0(x), η0(x)), set

(3.6) ṽ(t, x) =

{
v(t, x), if x ≥ 0,
−v(t,−x), if x < 0,

and

(3.7) γ̂(t, x) =

{
γ(t, x), if x ≥ 0,
γ(t,−x), if x < 0.
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Then (ṽ(t, x), γ̂(t, x)) is also a solution to (3.5). By the uniqueness for the sys-
tem (3.5), we conclude that

(u(t, x), η(t, x)) = (v(t, x), γ(t, x)).

It is obvious that the continuity of (ũ0, η̂0) �→ (ũ, η̂) implies that of (u0, η0) �→
(u, η) as well. �

Remark 3.2. Assume that (u0, η0) ∈ V s,p(R+) × V s−1,p(R+) with 1 < p < ∞
and s ≥ 2 + 1/p satisfies the compatibility condition u0(0) = 0. If we fix some
r ∈ (max(3/2, 1 + 1/p, 2 − 1/p), 2 + 1/p), then Theorem 3.1 implies that there
exists a maximal T = T (u0, η0) > 0 and a unique solution (u(t, x), η(t, x)) ∈
Er,p

T (R+)×Er−1,p
T (R+) to the system (3.1). However, one generally cannot deduce

that (u, η) ∈ Es,p
T (R+)× Es−1,p

T (R+).

In order to study more regular solutions, we may consider the following initial
boundary value problem for k ∈ N+:

(3.8)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − utxx + 3uux = 2uxuxx + uuxxx − ηηx − ηx, t > 0, x ∈ R+,
ηt + (uη)x + ux = 0, t > 0, x ∈ R+,
u(0, x) = u0(x), x ∈ R+,
η(0, x) = η0(x), x ∈ R+,

u(2k)(t, 0) = u(2k−2)(t, 0) = · · · = u(t, 0) = 0, t ≥ 0,
η(2k−1)(t, 0) = η(2k−3)(t, 0) = · · · = η′(t, 0) = 0, t ≥ 0.

We next present the following local well-posedness result.

Theorem 3.3. Let k ∈ N+, 1 < p < ∞, and 2k + 1/p < s < 2k + 2 + 1/p.
Assume that (u0, η0) ∈ Ds,p

k (R+) × Rs−1,p
k (R+). Then there exists a maximal

T = T (u0, η0) > 0 such that the system (3.8) has a unique solution (u(t, x), η(t, x))
in the space

C
(
[0, T );Ds,p

k (R+)×Rs−1,p
k (R+)

) ∩ C1
(
[0, T );Ds−1,p

k (R+)×Rs−2,p
k (R+)

)
.

Moreover, the solution depends continuously on the initial data, i.e., the mapping
(u0, η0) �→ (u, η) : Ds,p

k (R+)×Rs−1,p
k (R+) −→

C
(
[0, T );Ds,p

k (R+)×Rs−1,p
k (R+)

) ∩ C1
(
[0, T );Ds−1,p

k (R+)×Rs−2,p
k (R+)

)
is continuous. Furthermore, the maximal T is independent of s in the following
sense: if the solution (u, η) to (3.8) belongs to

C
(
[0, T );Ds,2

k (R+)×Rs−1,2
k (R+)

) ∩ C1
(
[0, T );Ds−1,2

k (R+)×Rs−2,2
k (R+)

)
,

and if (u0, η0) ∈ Ds′,2
k (R+)×Rs′−1,2

k (R+) with 2k+1/2 < s ≤ s′ < 2k+5/2, then
(u, η) belongs to

C
(
[0, T );Ds′,2

k (R+)×Rs′−1,2
k (R+)

) ∩ C1
(
[0, T );Ds′−1,2

k (R+)×Rs′−2,2
k (R+)

)
with the same T .
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Proof. Arguing as in Theorem 3.1, we first extend the initial data u0(x) and η0(x)
defined on the half line into the odd and even functions on the line ũ0(x) and η̂0(x),
defined in (3.2) and (3.3), respectively.

Since (u0, η0) ∈ Ds,p
k (R+)×Rs−1,p

k (R+), it follows from Lemmas 2.13 and 2.16
that

(ũ0(x), η̂0(x)) ∈ V s,p(R)× V s−1,p(R).

The conclusions follow now as in Theorem 3.1. �

Remark 3.4. From Lemmas 2.13 and 2.16, and Theorems 3.1 and 3.3, we see
that s = 2k + 1/p with k ∈ N+ are the critical points for the problem (3.8).

Now we are in a position to present a precise blow-up scenario for strong solu-
tions to the system (3.1).

Theorem 3.5. Let (u0, η0)∈
(
Hs(R+) ∩H1

0 (R+)
)×Hs−1(R+) with 3/2 < s < 5/2,

and let (u(t, x), η(t, x)) be the corresponding unique solution to (3.1). Then the so-
lution (u, η) blows up in finite time T < +∞ if and only if

lim inf
t↑T

{
inf

x∈R+

ux(t, x)
}
= −∞.

Proof. As before, we first extend the initial data u0(x) and η0(x) defined on the
half line into the odd and even functions on the line ũ0(x) and η̂0(x), defined
in (3.2) and (3.3), respectively. By Theorem 3.1, we obtain that (3.5) has a unique
strong solution (ũ(t, x), η̂(t, x)) with the initial data (ũ0(x), η̂0(x)). Moreover,
(u(t, x), η(t, x)) � (ũ(t, x), η̂(t, x)) restricted to [0, T ) × R+ is the unique strong
solution to (3.1) with the initial data (u0(x), η0(x)).

From [40], we know that the solution (ũ(t, x), η̂(t, x)) to the system (3.5) blows
up in finite time T if and only if

lim inf
t↑T

{
inf
x∈R

ũx(t, x)
}
= −∞.

Since ũ(t, ·) is odd, it follows that ũx(t, ·) is even. Thus, we have

(3.9) lim inf
t↑T

{
inf
x∈R

ũx(t, x)
}
= lim inf

t↑T
{

inf
x∈R+

ux(t, x)
}
,

which implies the desired result. �

Next, we state two blow-up results and one global existence result for (3.1).

Theorem 3.6. Let (u0, η0)∈(Hs(R+)∩H1
0 (R+))×Hs−1(R+) with 3/2 < s < 5/2.

Assume that the initial data (u0(x), η0(x)) satisfies

u′
0(x0) < −(||u0||2H1(R+) + ||η0||2L2(R+)

)1/2
and η0(x0) = −1,

with the point x0 ∈ R+ defined by u′
0(x0) � infx∈R+ u′

0(x). Then the corresponding
solution (u, η) to (3.1) blows up in finite time T0, with

0 < T0 ≤ − 2

(1− δ)u′
0(x0)

,

where δ ∈ (0, 1) is such that −√
δ u′

0(x0) = (||u0||2H1(R+) + ||η0||2L2(R+))
1/2.
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Proof. As mentioned earlier, let ũ0(x) and η̂0(x) be defined as in (3.2) and (3.3).
Since ũ0(x) is odd, ũ

′
0(x) is even. By the assumption of the theorem and the fact

||ũ0||2H1(R) + ||η̂0||2L2(R) = 2(||u0||2H1(R+) + ||η0||2L2(R+)),

we can find some x1 ∈ R defined by

ũ′
0(x1) � inf

x∈R

ũ′
0(x) = inf

x∈R+

u′
0(x) = u′

0(x0),

which satisfies

ũ′
0(x1) < − 1√

2

(||ũ0||2H1(R) + ||η̂0||2L2(R)

)1/2
and η̂0(x1) = −1.

From [39], we get that the solution (ũ, η̂) to (3.5) with initial data (ũ0(x), η̂0(x))
blows up in finite time T0 with

0 < T0 ≤ − 2

(1− δ)ũ′
0(x1)

,

where δ ∈ (0, 1) is such that

−
√
δ ũ′

0(x1) =
1√
2

(||ũ0||2H1(R) + ||η̂0||2L2(R)

)1/2
.

This implies the desired result. �

Theorem 3.7. Let (u0, η0)∈(Hs(R+)∩H1
0 (R+))×Hs−1(R+), with 3/2 < s < 5/2.

Assume that the initial data (u0, η0) satisfies u
′
0(0) < 0 and η0(0) = −1. Then the

corresponding solution to the system (3.1) blows up in finite time.

Proof. Let ũ0(x) and η̂0(x) be defined as in (3.2) and (3.3). Then the assumption
of the theorem ensures

ũ′
0(0) < 0 and η̂0(0) = −1.

From [39], we know that the corresponding solution (ũ, η̂) to (3.5) blows up in
finite time.

Since ũ(t, ·) is odd, in view of Theorem 3.5, it follows that the solution (u, η)
to (3.1) with the initial data (u0(x), η0(x)) blows up in finite time. �

Theorem 3.8. Let (u0, η0)∈(Hs(R+)∩H1
0 (R+))×Hs−1(R+), with 3/2 < s < 5/2,

and let T > 0 be the maximal existence time of the solution (u, η) to system (3.1)
with initial data (u0, η0). If

inf
x∈R+

(η0(x) + 1) > 0,

then T = ∞, i.e., the solution (u, η) exists globally in time.



928 K. Yan and Z. Yin

Proof. Let ũ0(x) and η̂0(x) be defined as in (3.2) and (3.3). By the assumption of
the theorem, since η̂0(x) is even, we infer that

inf
x∈R

(η̂0(x) + 1) > 0.

From [40], we conclude that T = ∞. �

Remark 3.9. Let k ∈ N+ and 2k + 1/2 < s < 2k + 5/2. Assume that (u0, η0) ∈
Ds,2

k (R+)×Rs−1,2
k (R+). Then Theorems 3.5–3.8 also hold true for the correspond-

ing solution (u, η) to the system (3.8).

We conclude this section with the existence of global weak solutions to (3.1).

Definition 3.10. Let (u0, η0) ∈ H1
0 (R+)× L2(R+). If

(u, η) ∈ L∞ (
(0,∞);H1

0 (R+)× L2(R+)
)

solves (3.1) and (u(t, ·), η(t, ·)) converges to (u0(·), η0(·)), in the sense of distribu-
tions, as t tends to 0+, and moreover

||(u, η)||L∞((0,∞);H1
0 (R+)×L2(R+)) ≤ ||(u0, η0)||H1

0 (R+)×L2(R+),

then (u, η) is called a global admissible weak solution of (3.1).

Theorem 3.11. Let (u0, η0) ∈
(
H1

0 (R+) ∩W 1,∞(R+)
)× (

L2(R+) ∩ L∞(R+)
)
. If

there exists some α > −1 such that η0(x) ≥ α for all x ∈ R+, then (3.1) has a
global admissible weak solution

(u, η) ∈ C
(
R+;H

1
0 (R+)× L2(R+)

) ∩ L∞ (
R+;H

1
0 (R+)× L2(R+)

)
.

Moreover, E(t) � ||(u(t, ·), η(t, ·))||2H1(R+)×L2(R+) is a conservation law. Further-
more,

(u, η) ∈ L∞
loc

(
R+;W

1,∞(R+)× L∞(R+)
)
.

Proof. Let ũ0(x) and η̂0(x) be defined as in (3.2) and (3.3). By the assumption of
the theorem, in view of Lemmas 2.5 and 2.8, and Remarks 2.6 and 2.9, we obtain

(ũ0(x), η̂0(x)) ∈
(
H1(R) ∩W 1,∞(R)

)× (
L2(R) ∩ L∞(R)

)
and

η̂0(x) ≥ α, ∀x ∈ R.

From [37], we get that (3.5) has a global admissible weak solution

(ũ, η̂) ∈ C
(
R+;H

1(R)× L2(R)
) ∩ L∞ (

R+;H
1(R)× L2(R)

)
.

Moreover, E�(t) � ||(ũ(t, ·), η̂(t, ·))||2H1(R)×L2(R) is a conservation law. Further-
more,

(ũ, η̂) ∈ L∞
loc

(
R+;W

1,∞(R)× L∞(R)
)
.

Set

(u(t, x), η(t, x)) � (ũ(t, x), η̂(t, x)) , restricted to (t, x) ∈ R+ × R+.

Thus, (u, η) is a global admissible weak solution to (3.1), which together with the
fact E�(t) = 2E(t) yield the desired result. �
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4. IBVP for the modified two-component Camassa–Holm shal-
low water system

In this section, we use the same method as in Sections 2 and 3 to deal with initial
boundary value problems for the modified two-component Camassa–Holm shallow
water system on the half line (0,∞).

Consider the initial boundary value problem for (M2CH) on the half line

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mt + umx + 2uxm+ ργx = 0, t > 0, x ∈ R+,
ρt + (uρ)x = 0, t > 0, x ∈ R+,
u(0, x) = u0(x), x ∈ R+,
γ(0, x) = γ0(x), x ∈ R+,
u(t, 0) = 0, t ≥ 0,
γ(t, 0) = 0, t ≥ 0,

with m = u− uxx, ρ = γ − γxx.

We first present the following local well-posedness result for (4.1).

Theorem 4.1. Assume that (u0, γ0) ∈ Hs(R+) × Hs(R+) with 3/2 < s < 5/2
satisfies the compatibility condition u0(0) = γ0(0) = 0. Then there exists a max-
imal T = T (u0, γ0) > 0 such that (4.1) has a unique solution (u(t, x), γ(t, x)) ∈
Es,2

T (R+)× Es,2
T (R+).

Moreover, the solution depends continuously on the initial data, i.e., the map-
ping

(u0, γ0) �→ (u, γ) : Hs(R+)×Hs(R+) → Es,2
T (R+)× Es,2

T (R+)

is continuous. Furthermore, the maximal T is independent of s in the following
sense: if (u, γ) ∈ Es,2

T (R+) × Es,2
T (R+) is the solution to (4.1), and if (u0, γ0) ∈

Hs′(R+) × Hs′(R+) with 3/2 < s ≤ s′ < 5/2 satisfies u0(0) = γ0(0) = 0, then

(u, γ) ∈ Es′,2
T (R+)× Es′,2

T (R+) with the same T .

Proof. As before, we first convert (4.1) into the Cauchy problem for (M2CH) on
the line. For this, we extend the initial data (u0(x), γ0(x)) defined on the half line
into odd functions defined on the line. That is (3.2) and

(4.2) γ̃0(x) �
{

γ0(x), if x ≥ 0,
−γ0(−x), if x < 0,

By the assumption of the theorem and Lemma 2.11, one obtains

(ũ0(x), γ̃0(x)) ∈ Hs(R)×Hs(R)

with 3/2 < s < 5/2.
Similar to the proof of Theorem 3.1, by using the Green’s function, we can

convert (4.1) into the following system on the whole line:

(4.3)

⎧⎪⎪⎨
⎪⎪⎩

ũt + ũũx + ∂xp ∗
(
ũ2 + 1

2 ũ
2
x + 1

2 γ̃
2 − 1

2 γ̃
2
x

)
= 0, t > 0, x ∈ R,

γ̃t + ũγ̃x + p ∗ ((ũxγ̃x)x + ũxγ̃) = 0, t > 0, x ∈ R,
ũ(0, x) = ũ0(x) (odd), x ∈ R,
γ̃(0, x) = γ̃0(x) (odd), x ∈ R.
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Applying the local well-posedness result for the Cauchy problem for (M2CH) on
the line obtained in [36], we conclude that there exists a maximal existence time
T = T (ũ0, γ̃0) > 0 such that the system (4.3) has a unique solution

(ũ(t, x), γ̃(t, x)) ∈ Es,2
T (R)× Es−1,2

T (R),

and the solution depends continuously on the initial data, i.e., the mapping

(ũ0, γ̃0) �→ (ũ, γ̃) : Hs(R)×Hs(R) → Es,2
T (R)× Es−1,2

T (R)

is continuous. Moreover, the maximal T is independent of s in the following
sense: if the solution (ũ, γ̃) to system (4.3) belongs to Es,2

T (R)×Es−1,2
T (R), and if

(ũ0, γ̃0) ∈ Hs′(R)×Hs′(R) with 3/2 < s ≤ s′ < 5/2, then

(ũ, γ̃) ∈ Es′,2
T (R)× Es′−1,2

T (R)

with the same T . In addition, note that (4.3) is invariant under the transformation

(ũ(t, x), γ̃(t, x)) → (−ũ(t,−x),−γ̃(t,−x)) .

Since ũ0(x) and γ̃0(x) are odd, it follows that ũ(t, x) and γ̃(t, x) are odd for any
t ∈ [0, T ). In particular, we have ũ(t, 0) = γ̃(t, 0) ≡ 0 for all t ∈ [0, T ).

Set

(u(t, x), γ(t, x)) � (ũ(t, x), γ̃(t, x)) , restricted to (t, x) ∈ [0, T )× R+.

Hence,
(u(t, x), γ(t, x)) ∈ Es,2

T (R+)× Es−1,2
T (R+)

is a solution to (4.1).
On the other hand, if (v(t, x), ρ(t, x)) is also a solution to (4.1) with the same

initial data (u0(x), γ0(x)), set

ρ̃(t, x) =

{
ρ(t, x), if x ≥ 0,
−ρ(t,−x), if x < 0,.

This together with 3.6 yield (ṽ(t, x), ρ̃(t, x)) is also a solution of (4.3). By the
uniqueness for the system (4.3), we conclude that

(u(t, x), γ(t, x)) = (v(t, x), ρ(t, x)).

It is obvious that the continuity of (ũ0, γ̃0) �→ (ũ, γ̃) implies that of (u0, γ0) �→
(u, γ) as well. �

In order to obtain higher regularity of of the solutions, we consider the following
initial boundary value problem:

(4.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mt + umx + 2uxm+ ργx = 0, t > 0, x ∈ R+,
ρt + (uρ)x = 0, t > 0, x ∈ R+,
u(0, x) = u0(x), x ∈ R+,
γ(0, x) = γ0(x), x ∈ R+,
u(2k)(t, 0) = u(2k−2)(t, 0) = · · · = u(t, 0) = 0, t ≥ 0,

γ(2k)(t, 0) = γ(2k−2)(t, 0) = · · · = γ(t, 0) = 0, t ≥ 0,

with m = u− uxx, ρ = γ − γxx.
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Similar to Theorem 3.3, we have the following result:

Theorem 4.2. Let k ∈ N+ and 2k + 1/2 < s < 2k + 5/2. Assume that (u0, γ0) ∈
Ds,2

k (R+) × Ds,2
k (R+). Then there exists a maximal T = T (u0, γ0) > 0 such

that (4.4) has a unique solution (u(t, x), γ(t, x)) in the space

C
(
[0, T );Ds,2

k (R+)×Ds,2
k (R+)

) ∩ C1
(
[0, T );Ds−1,2

k (R+)×Ds−1,2
k (R+)

)
.

Moreover, the solution depends continuously on the initial data, i.e., the mapping
(u0, γ0) �→ (u, γ) : Ds,2

k (R+)×Ds,2
k (R+) −→

C
(
[0, T );Ds,2

k (R+)×Ds,2
k (R+)

) ∩ C1
(
[0, T );Ds−1,2

k (R+)×Ds−1,2
k (R+)

)
.

is continuous. Furthermore, the maximal T is independent of s in the following
sense: if the solution (u, γ) to (4.4) belongs to

C
(
[0, T );Ds,2

k (R+)×Ds,2
k (R+)

) ∩ C1
(
[0, T );Ds−1,2

k (R+)×Ds−1,2
k (R+)

)
,

and if (u0, γ0) ∈ Ds′,2
k (R+) ×Ds′,2

k (R+) with 2k + 1/2 < s ≤ s′ < 2k + 5/2, then
(u, γ) belongs to

C
(
[0, T );Ds′,2

k (R+)×Ds′,2
k (R+)

) ∩ C1
(
[0, T );Ds′−1,2

k (R+)×Ds′−1,2
k (R+)

)
with the same T .

Remark 4.3. From Lemma 2.13 and Theorems 4.1 and 4.2, we see that the critical
points for the problem (4.4) are s = 2k + 1/2, with k ∈ N+.

Now we are in a position to present a precise blow-up scenario for strong solu-
tions to (4.1).

Theorem 4.4. Let (u0, γ0) ∈ (Hs(R+) ∩ H1
0 (R+)) × (Hs(R+) ∩ H1

0 (R+)), with
3/2 < s < 5/2, and denote by T the maximal existence time of the solution
(u(t, x), γ(t, x)) of (4.1) with initial data (u0, γ0). Then T is finite if and only if

lim inf
t↑T

{
inf

x∈R+

ux(t, x)
}
= −∞.

Proof. As before, we first extend the initial data (u0(x), γ0(x)) defined on the half
line into the odd functions on the line (ũ0(x), γ̃0(x)) defined in (3.2) and (4.2),
respectively. By Theorem 4.1, we obtain that (4.3) has a unique strong solution
(ũ(t, x), γ̃(t, x)) with the initial data (ũ0(x), γ̃0(x)). Moreover, (u(t, x), γ(t, x)) �
(ũ(t, x), γ̃(t, x)) restricted to [0, T )× R+ is the unique strong solution to the sys-
tem (4.1) with the initial data (u0(x), γ0(x)).

From [36], we know that the solution (ũ(t, x), γ̃(t, x)) to (4.3) blows up in finite
time T < +∞ if and only if

lim inf
t↑T

{
inf
x∈R

ũx(t, x)
}
= −∞.

Since ũ(t, ·) is odd, it follows that (3.9) is true, which implies the desired result. �
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Next, as we did in Section 3, by using blow-up results for (1.2) established
previously in [36], one can easily obtain the following blow-up theorem.

Theorem 4.5. Let (u0, γ0) ∈ (Hs(R+) ∩ H1
0 (R+)) × (Hs(R+) ∩ H1

0 (R+)), with
3/2 < s < 5/2, and denote by T the maximal existence time of the solution
(u(t, x), γ(t, x)) to (4.1) with the initial data (u0, γ0). If there exists some x0 ∈ R+

such that
u′
0(x0) <

√
2 (||u0||2H1(R+) + ||γ0||2H1(R+))

1/2,

or if
u′
0(0) < (||u0||2H1(R+) + ||γ0||2H1(R+))

1/2,

then T is finite.

Remark 4.6. Let k ∈ N+ and 2k + 1/2 < s < 2k + 5/2. Assume that (u0, γ0) ∈
Ds,2

k (R+) × Ds,2
k (R+). Then Theorems 4.4 and 4.5 also hold true for the corre-

sponding solution (u, γ) to (4.4).

We conclude this section with the existence of global weak solutions to (4.1).

Definition 4.7. By a solution to (4.1) on [t1, t2] we mean a pair of Hölder continu-
ous functions (u(t, x), γ(t, x)) defined on [t1, t2]×R+ with the following properties:
at each fixed time t,

(u(t, ·), γ(t, ·)) ∈ H1
0 (R+)×

(
H1

0 (R+) ∩W 1,∞(R+)
)
.

Moreover, the maps u(t, ·) and γ(t, ·) are both Lipschitz continuous from [t1, t2] to
L2(R+), and satisfy (4.1) in the L2(R+) sense. Furthermore, if the energy

E(t) � ||u(t, ·)||2H1(R+) + ||γ(t, ·)||2H1(R+)

is a nonincreasing function of t, then (u, γ) is called a dissipative solution to (4.1).
If E(t) is a conservation law, we call (u, γ) a conservative solution to (4.1).

Theorem 4.8. Assume that (u0, γ0) ∈ H1
0 (R+) ×

(
H1

0 (R+) ∩W 1,∞(R+)
)
. Then

the system (4.1) has a solution, defined for any given time interval [0, T ], in the
sense of Definition 4.7. That is, (4.1) has a global dissipative solution and a global
conservative solution.

Proof. Let ũ0(x) and γ̃0(x) be defined as in (3.2) and (4.2). By the assumption of
the theorem, in view of Lemma 2.5 and Remark 2.6, we obtain that

(ũ0(x), γ̃0(x)) ∈ H1(R)× (
H1(R) ∩W 1,∞(R)

)
From [56] and [57], we get that (4.3) has a global dissipative solution and a global
conservative solution, defined on R+ × R.

Set

(u(t, x), γ(t, x)) � (ũ(t, x), γ̃(t, x)) , restricted to (t, x) ∈ R+ × R+.

This together with the fact that

||ũ(t, ·)||2H1(R) + ||γ̃(t, ·)||2H1(R) = 2
(||u(t, ·)||2H1(R+) + ||γ(t, ·)||2H1(R+)

)
yields the desired result. �
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5. IBVP for two-component Degasperis–Procesi system

In this section, we use the method established in Sections 2–4 to deal with initial
boundary value problems for the two-component Degasperis–Procesi system on the
half line (0,∞).

Consider following the initial boundary value problems for (2DP) on the half
line:

(5.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut − utxx + 4uux − 3uxuxx − uuxxx + cηηx = 0, t > 0, x ∈ R+,

ηt + uηx + 2uxη = 0, t > 0, x ∈ R+,
u(0, x) = u0(x), x ∈ R+,
η(0, x) = η0(x), x ∈ R+,
u(t, 0) = 0, t ≥ 0.

We first present the following local well-posedness result for (5.1).

Theorem 5.1. Let 1 < p < ∞ and max(3/2, 1 + 1/p, 2 − 1/p) < s < 2 + 1/p.
Assume that (u0, η0) ∈ V s,p(R+)×V s−1,p(R+) satisfies the compatibility condition
u0(0) = 0. Then there exists a maximal T = T (u0, η0) > 0 such that (5.1) has a
unique solution (u(t, x), η(t, x)) ∈ Es,p

T (R+)×Es−1,p
T (R+). Moreover, the solution

depends continuously on the initial data, i.e., the mapping

(u0, η0) �→ (u, η) : V s,p(R+)× V s−1,p(R+) → Es,p
T (R+)× Es−1,p

T (R+)

is continuous. Furthermore, the maximal T is independent of s in the following
sense: if (u, η) ∈ Es,2

T (R+)×Es−1,2
T (R+) is the solution to (5.1), and if (u0, η0) ∈

Hs′(R+) ×Hs′−1(R+) with 3/2 < s ≤ s′ < 5/2 satisfies u0(0) = 0, then (u, η) ∈
Es′,2

T (R+)× Es′−1,2
T (R+) with the same T .

Proof. As in the proof of Theorem 3.1, let ũ0(x) and η̂0(x) be defined as in (3.2)
and (3.3). Then

(ũ0(x), η̂0(x)) ∈ V s,p(R)× V s−1,p(R)

with max(3/2, 1 + 1/p, 2− 1/p) < s < 2 + 1/p.

By using the Green’s function, we can also convert (5.1) into the following
system on the whole line:

(5.2)

⎧⎪⎪⎨
⎪⎪⎩

ũt + ũũx + ∂xp ∗ (3/2ũ2 + c
2 η̂

2) = 0, t > 0, x ∈ R,
η̂t + ũη̂x + 2ũxη = 0, t > 0, x ∈ R,
ũ(0, x) = ũ0(x) (odd), x ∈ R,
η̂(0, x) = η̂0(x) (even), x ∈ R.

Applying the local well-posedness result for the Cauchy problem for (2DP) on the
line established previously in [65], and following the lines of the proof of Theo-
rem 3.1, we can easily prove the theorem. �
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In order to obtain solutions with higher regularity, let us consider the following
initial boundary value problem:

(5.3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − utxx + 4uux − 3uxuxx − uuxxx + cηηx = 0, t > 0, x ∈ R+,
ηt + uηx + 2uxη = 0, t > 0, x ∈ R+,
u(0, x) = u0(x), x ∈ R+,
η(0, x) = η0(x), x ∈ R+,
u(2k)(t, 0) = u(2k−2)(t, 0) = · · · = u(t, 0) = 0, t ≥ 0,

η(2k−1)(t, 0) = η(2k−3)(t, 0) = · · · = η′(t, 0) = 0, t ≥ 0.

We have the following result, similar to Theorem 3.3:

Theorem 5.2. Let k ∈ N+, 1 < p < ∞ and 2k + 1/p < s < 2k + 2 + 1/p.
Assume that (u0, η0) ∈ Ds,p

k (R+) × Rs−1,p
k (R+). Then there exists a maximal

T = T (u0, η0) > 0 such that (5.3) has a unique solution (u(t, x), η(t, x)) in the
space

C
(
[0, T );Ds,p

k (R+)×Rs−1,p
k (R+)

) ∩ C1
(
[0, T );Ds−1,p

k (R+)×Rs−2,p
k (R+)

)
.

Moreover, the solution depends continuously on the initial data, i.e., the mapping
(u0, η0) �→ (u, η) : Ds,p

k (R+)×Rs−1,p
k (R+) −→

C
(
[0, T );Ds,p

k (R+)×Rs−1,p
k (R+)

) ∩ C1
(
[0, T );Ds−1,p

k (R+)×Rs−2,p
k (R+)

)
is continuous. Furthermore, the maximal T is independent of s in the following
sense: if the solution (u, η) to (5.3) belongs to

C
(
[0, T );Ds,2

k (R+)×Rs−1,2
k (R+)

) ∩ C1
(
[0, T );Ds−1,2

k (R+)×Rs−2,2
k (R+)

)
,

and if (u0, η0) ∈ Ds′,2
k (R+)×Rs′−1,2

k (R+) with 2k+1/2 < s ≤ s′ < 2k+5/2, then
(u, η) belongs to

C
(
[0, T );Ds′,2

k (R+)×Rs′−1,2
k (R+)

) ∩ C1
(
[0, T );Ds′−1,2

k (R+)×Rs′−2,2
k (R+)

)
with the same T .

Remark 5.3. From Lemmas 2.13 and 2.16, and Theorems 5.1 and 5.2, we see
that s = 2k + 1/p, with k ∈ N+, are the critical points for the problem (5.3).

Next, similar to Section 3 and by using the previous blow-up results of (1.3)
in [65], one can easily obtain the following results about (5.1).

Theorem 5.4. Let (u0, η0)∈(Hs(R+)∩H1
0 (R+))×Hs−1(R+) with 3/2 < s < 5/2,

and let (u(t, x), η(t, x)) be the corresponding unique solution of (5.1). Then the
solution (u, η) blows up in finite time T < +∞ if and only if

lim inf
t↑T

{
inf

x∈R+

ux(t, x)
}
= −∞.
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Theorem 5.5. Let (u0, η0)∈(Hs(R+)∩H1
0 (R+))×Hs−1(R+), with 3/2 < s < 5/2.

Assume that c ≥ 0, u′
0(0) < 0 and η0(0) = 0. Then the corresponding solu-

tion (u, η) of (5.1) blows up in finite time T , with 0 < T ≤ −1/u′
0(0).

Remark 5.6. Let k ∈ N+ and 2k + 1/2 < s < 2k + 5/2. Assume that (u0, η0) ∈
Ds,2

k (R+)× Rs−1,2
k (R+). Then Theorems 5.4 and 5.5 also hold true for the corre-

sponding solution (u, η) to (5.3).
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623–641.

[39] Gui, G. and Liu, Y.: On the Cauchy problem for the two-component Camassa–
Holm system. Math. Z. 268 (2011), 45–66.

[40] Gui, G. and Liu, Y.: On the global existence and wave-breaking criteria for the
two-component Camassa–Holm system. J. Funct. Anal. 258 (2010), 4251–4278.

[41] Henry, D.: Infinite propagation speed for the Degasperis–Procesi equation. J. Math.
Anal. Appl. 311 (2005), 755–759.

[42] Holm, D., Marsden, J. and Ratiu, T.: The Euler–Poincaré equations and semidi-
rect products with applications to continuum theories. Adv. Math. 137 (1998), 1–81.
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