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Strongly isospectral manifolds with
nonisomorphic cohomology rings

Emilio A. Lauret, Roberto J. Miatello and Juan P. Rossetti

Abstract. For any n ≥ 7, k ≥ 3, we give pairs of compact flat n-
manifolds M,M ′ with holonomy groups Zk

2 , that are strongly isospectral,
hence isospectral on p-forms for all values of p, having nonisomorphic co-
homology rings. Moreover, if n is even, M is Kähler while M ′ is not.
Furthermore, with the help of a computer program we show the existence
of large Sunada isospectral families; for instance, for n = 24 and k = 3
there is a family of eight compact flat manifolds (four of them Kähler)
having very different cohomology rings. In particular, the cardinalities of
the sets of primitive forms are different for all manifolds.

Introduction

If (M, g) is a compact Riemannian manifold and 0 ≤ p ≤ n, let specp(M) denote
the spectrum, with multiplicities, of the Hodge–Laplace operator acting on smooth
p-forms on (M, g). For each p, specp(M) is a sequence of nonnegative real numbers
tending to ∞. If specp(M) = specp(M

′), (M, g) and (M ′, g′) are said to be p-
isospectral, and just isospectral, if p = 0.

It has been known for quite some time that there exist manifolds that are
isospectral on functions but not on 1-forms (see [2], [5]). Also, C. Gordon (see [2])
has given continuous families of pairs of nonisometric nilmanifolds that are isospec-
tral on functions and not on 1-forms (here, the manifolds involved are homeomor-
phic to each other).

In the context of compact flat manifolds, it turns out to be simpler to compute
p-spectra and to determine some invariants, for instance, the Betti numbers. In
particular, there is a description of the cohomology ring as the ring of invariants
of the holonomy action (H. Hiller, [4]). In [6], p-isospectrality is studied in this
context and many new examples of p-isospectral nonhomeomorphic manifolds are
given; in particular, pairs of manifolds M,M ′ isospectral on functions such that
βj(M) < βj(M

′) for 1 ≤ j ≤ n− 1. Hence such M and M ′ cannot be isospectral
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on p-forms for any p �= 0, n and are topologically quite different from each other,
since they have different real cohomology rings.

The main goal of this paper is to construct families of compact flat manifolds
that are Sunada isospectral – hence strongly isospectral – but still their real co-
homology rings are non-isomorphic to each other (see Theorem 3.3), despite the
fact that they have the same Betti numbers. In particular, they are isospectral on
p-forms for every p but the ring structure of the cohomology rings may be very
different. The manifolds in question are obtained by using different free isometric
actions of Zk

2 on T n = Zn\Rn. Furthermore, we shall see that for n even some of
them are Kähler while the others are not.

As a first step, we show, in Theorem 2.6, a general procedure to construct pairs
of almost-conjugate diagonal representations of Zk

2 with k ≥ 3 (see Definition 2.4).
We describe diagonal representations by an r-tuple q1, q2, . . . , qr with

∑r
1 qi = n,

where qj gives the multiplicity of the j-th character χj . We also give an algorithm
that allows us to determine all families of almost-conjugate diagonal representa-
tions of Zk

2 . We implement it with the aid of computer programs for some small
values of k and n. Tables 1 and 3 show all such pairs for k = 3, n ≤ 11, and k = 4,
n ≤ 10 respectively. In Table 2 we exhibit all families of cardinality at least three
for k = 3, n ≤ 15.

Our study of the cohomology rings makes essential use of the primitive invariant
forms, i.e., those that cannot be obtained as wedge products of forms of lower
degree. In particular, we express the number of them in terms of the r-tuple
of qj ’s (see Proposition 2.3). In Theorem 1.2 we show that this number coincides
with the cardinality of a minimal generating set of the cohomology ring, hence
it is an invariant of the ring. This is used in Section 3 in the proof of the non-
isomorphism of the cohomology rings of the strongly isospectral manifolds in our
main result, Theorem 3.3.

In the last section, we exhibit many explicit examples of Sunada isospectral
families. We study in some detail a pair M,M ′ in dimension n = 8 such that M
is Kähler and M ′ is not, giving the rings of invariants of both manifolds and com-
paring several aspects of the respective ring structures (this gives more examples
answering a question in [1], see 13.6, p. 657). In Example 4.3 we show a family of
eight 24-dimensional manifolds, four of which are Kähler, showing that the num-
bers of primitive invariant forms of degree 4 are different for all eight manifolds,
hence the cohomology rings cannot be isomorphic by Corollary 1.3.

We include in Remark 2.10 and Remark 3.4 some open questions related to the
results in this paper.

1. Preliminaries

Bieberbach groups

A crystallographic group is a discrete cocompact subgroup Γ of the isometry
group I(Rn) of Rn. If Γ is torsion-free then Γ is said to be a Bieberbach group.
Such Γ acts properly discontinuously on Rn, thus MΓ = Γ\Rn is a compact flat
Riemannian manifold with fundamental group Γ. Furthermore, any such manifold
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arises in this way. Since I(Rn) ∼= O(n)� Rn, any element γ ∈ I(Rn) decomposes
uniquely as γ = BLb, with B ∈ O(n) and b ∈ Rn. The translations in Γ form a
normal maximal abelian subgroup of finite index LΛ where Λ is a lattice in Rn

which is B-stable for each BLb ∈ Γ. The restriction to Γ of the canonical projec-
tion from I(Rn) to O(n), given by BLb �→ B, is a homomorphism with kernel LΛ

and with image a finite subgroup of O(n), denoted by F in this article, called the
point group of Γ. Indeed, one has the exact sequence

0 → LΛ → Γ
r→ F → 1

where F is isomorphic to LΛ\Γ and gives the linear holonomy group of the Rie-
mannian manifold MΓ. The group F acts on Λ by an integral representation ρ
called the holonomy representation of Γ.

A Bieberbach group Γ is said to be of diagonal type if there exists an orthonor-
mal Z-basis {e1, . . . , en} of the lattice Λ such that for any element BLb ∈ Γ,
Bei = ±ei for 1 ≤ i ≤ n. These Bieberbach groups are those having the simplest
holonomy action among those with holonomy group Zk

2 . It is a useful fact that, for
groups of diagonal type, after conjugation of Γ by an isometry, it may be assumed
that Λ = Zn and, furthermore, that for any γ = BLb ∈ Γ, b lies in 1

2Z
n. Thus, any

γ ∈ Γ can be written uniquely as γ = BLb0Lλ, where the coordinates of b0 are 0
or 1/2 and λ ∈ Zn (see Lemma 1.4 of [7]).

For BLb ∈ Γ define

nB = dim(Rn)B =
∣∣{1 ≤ i ≤ n : Bei = ei

}∣∣ ,(1.1)

nB, 12
=

∣∣{1 ≤ i ≤ n : Bei = ei and b0.ei =
1
2

}∣∣.(1.2)

If 0 ≤ s ≤ n, let

cs(F ) =
∣∣{B ∈ F : nB = s

}∣∣.(1.3)

If 0 ≤ t ≤ s ≤ n, the Sunada numbers of Γ are defined by

cs,t(Γ) =
∣∣{BLb ∈ F : nB = s and nB, 12

= t
}∣∣.(1.4)

It is a well-known fact that, by the torsion-free condition, nB≥1 for anyBLb ∈Γ.
Clearly, cs(F ) =

∑
t cs,t(Γ).

F -invariants in exterior algebras

As mentioned in the introduction, the cohomology ring over Q of a compact flat
manifold MΓ with holonomy group F can be computed by using the Hochschild-
Serre spectral sequence, which gives

(1.5) H∗(MΓ,Q) ∼= Λ∗
F (Q

n) ,

the ring of F -invariants in the full exterior Q-algebra Λ∗(Qn) (see [4]). In what
follows we shall often abbreviate

Λ∗
F =

n∑
p=0

Λp
F (Q

n) and Λp
F = Λp

F (Q
n),(1.6)

for 0 ≤ p ≤ n. In particular, dim(Λp
F ) = βp is the p-th Betti number of MΓ.
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We mention, for later use, some useful facts on the ring structure of Λ∗
F :

(i)
∑n

r=p Λ
r
F is an ideal in Λ∗

F for each p.

(ii)
∑n

r=1 Λ
r
F is a maximal ideal of Λ∗

F and any η ∈ Λ∗
F �

∑n
r=1 Λ

r
F is invertible.

To check the last claim, let η = 1 + δ ∈ Λ∗
F such that δ has degree zero

component δ0 = 0. Then

(1 + δ) ∧
( n∑

i=0

(−1)i δ ∧ · · · ∧ δ︸ ︷︷ ︸
i

)
= 1

and furthermore
∑n

i=0(−1)i δ ∧ · · · ∧ δ︸ ︷︷ ︸
i

∈ Λ∗
F .

Primitive F -invariant forms

From now on we assume that the subgroup F of GLn(Z) is of diagonal type,
i.e., F is a group of diagonal matrices with ±1 in the diagonal, thus F ∼= Zk

2 for
some 1 ≤ k ≤ n. If furthermore F is the point group of a Bieberbach group,
then −Idn /∈ F and k ≤ n − 1. Here and subsequently, {e1, . . . , en} denotes the
canonical basis of Rn.

Definition 1.1. Let F be a finite diagonal subgroup of GLn(Z). Given an ordered
subset I = {i1, . . . , ip} ⊂ {1, . . . , n} we set eI = ei1 ∧ . . . ∧ eip ∈ Λp

F . The form eI
is said to be primitive if it cannot be obtained as a wedge product of F -invariant
forms of degree lower than p. We denote by Pp

F the set of all primitive forms of
degree p, by Λp

F,prim the span of Pp
F , and by Pp,F the cardinality of Pp

F .

Clearly, the set of all primitive forms is a set of generators of Λ∗
F of cardi-

nality
∑n

p=0 Pp,F . We shall see that this is the minimal cardinality of any set of
generators.

We are interested in comparing the Q-algebras Λ∗
F and Λ∗

F ′ for two different
Bieberbach groups Γ and Γ′, having point groups F and F ′, respectively. The
following result will be very useful to us.

Theorem 1.2. Given F a finite diagonal subgroup of GLn(Z), let G be a set of
generators of the algebra Λ∗

F . Then #G ≥ ∑n
p=0 Pp,F and, if G is a minimal

generating set, then #G =
∑n

p=0 Pp,F .

Proof. Denote by

(1.7) Gp =
{
η =

n∑
r=p

ηr ∈ G : with ηr ∈ Λr
F , ηp �= 0

}
,

i.e., the elements in G having a nonzero component of minimal degree p.
We note that G0 is nonempty, otherwise we cannot obtain 1 as a sum of products

of elements of G. Furthermore, given a set of elements in G0, by subtraction of a
scalar multiple, we can eliminate the zero component of all but one of them. Thus,
we may replace the initial generating set G by another generating set of the same
cardinality, such that G0 = {η0} has only one element with η00 = 1.
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Now, the lowest components in Λ1
F of the elements in G1 must span all of Λ1

F ,
otherwise there is no way we can generate Λ1

F with sums of products in G. Thus, we
may select a subset S1 of G1 with β1 elements, such that the nonzero components
of minimal degree span Λ1

F . Furthermore, we can subtract a linear combination of
elements in S1 from each element in G1 � S1 to cancel the component in Λ1

F .
In this way, we may replace the original generating set G by another generating

set of the same cardinality such that card(G0) = 1 and card(G1) = P1,F . Finally,
by replacing the elements in S1 by linear combinations of them, we may further
assume that their lowest degree terms run through the set of F -invariant ej’s, that
is, through the set of all primitive forms ej ∈ Λ1

F . Here note that β1 = P1,F .
In a similar way we assume inductively that we have replaced the original

generating set G by another set of the same cardinality such that the cardinality
of Gr equals Pr,F for each r ≤ p and the lowest degree terms of the elements in Gr,
run through the set of primitive forms eJ ∈ Λr

F with |J | = r.
Now we consider the elements in Gp+1. Necessarily there must be at least

Pp+1,F of them, so that their (p+ 1)-components, together with sums of products

of elements in Gr with r ≤ p generate all of Λp+1
F . We may subtract from the

elements in Gp+1 linear combinations of wedge products of elements of smaller

degree so that their lowest order terms lie in the span of the space Pp+1
F . Actually,

we may fix a subset of cardinality Pp+1,F such that their lowest order terms are a

basis of the space Pp+1
F . Finally by a linear algebra argument, we may change this

set by one such that their lowest order terms run exactly through the invariant
forms eJ ∈ Pp+1

F .
In this way, in n steps, we obtain a new set of generators of the Q-algebra Λ∗

F

of cardinality
∑n

p=1 Pp,F ≤ card(G). Clearly if G is minimal, then
∑n

p=1 Pp,F =
card(G). This completes the proof of the theorem. �

Corollary 1.3. Let F and F ′ be finite diagonal subgroups of GLn(Z). If, as
Q-algebras, Λ∗

F
∼= Λ∗

F ′ then

(1.8)

n∑
p=1

Pp,F =

n∑
p=1

Pp,F ′ .

If as graded Q-algebras Λ∗
F
∼= Λ∗

F ′ then Pp,F = Pp,F ′ for every 0 ≤ p ≤ n.

Proof. By the previous theorem,
∑n

p=1 Pp,F is the cardinality of a minimal gen-
erating set in Λ∗

F , hence it must be invariant under isomorphisms. The second
assertion is also clear. �

2. Construction of almost-conjugate representations

This section is devoted to the construction of pairs of almost-conjugate represen-
tations which give the point groups of certain Bieberbach groups of diagonal type.
The corresponding pairs of manifolds, to be constructed in Sections 3 and 4, will
be Sunada isospectral ([3] or [8]) and they will have different cohomology rings.



616 E. A. Lauret, R. J. Miatello and J. P. Rossetti

Definition 2.1. A monomorphism ρ : Zk
2 → GLn(Z) such that Im(ρ) is a subgroup

of diagonal matrices will be called an integral diagonal representation of Zk
2 or, for

brevity, a diagonal representation of Zk
2 .

A character of Zk
2 is a homomorphism χ : Zk

2 → {±1}. The set of all such

characters is denoted by Ẑk
2
∼= Zk

2 . Sometimes, it will be convenient to identify
characters of Zk

2 with subsets of {1, . . . , k}. If f1, . . . , fk denotes the canonical
basis of Zk

2 , for I ⊂ {1, . . . , k} we set χI : Zk
2 → {±1}, the character given on basis

elements by

χ
I
(fi) =

{
−1 if i ∈ I,

1 if i /∈ I,
for 1 ≤ i ≤ k.

Thus χ
I1
χ

I2
= χ

I1�I2
for I1, I2 ⊂ {1, . . . , k}, where I1�I2 = (I1 ∪ I2) � (I1 ∩ I2)

denotes the symmetric difference of sets.
From now on it will be convenient to fix a total order ≺ on Ẑk

2 (or equivalently
on the subsets of {1, . . . , k}) with the only requirement that χ∅ = 1 is the first
element.

Any n-dimensional diagonal representations of Zk
2 can be decomposed as a sum

ρ =
∑

I qIχI
, with q

I
∈ N0 := N ∪ {0} and n =

∑
I qI , the sum running over all

subsets of {1, . . . , k}. Conversely, if r = 2k, for each choice of numbers q
I
∈ N0,

we define the diagonal representation ρ =
∑

I qIχI
such that

(2.1) ρ(f) = diag
(
χJ1

(f), . . . , χJ1
(f)︸ ︷︷ ︸

q
J1

, . . . , χJr
(f), . . . , χJr

(f)︸ ︷︷ ︸
q
Jr

)
,

for f ∈ Zk
2 , where the characters χ

Ji
are ordered by ≺.

Definition 2.2. Let ρ be a diagonal representation of Zk
2 = 〈fj : 1 ≤ j ≤ k〉.

We will denote by F the image of ρ, F = Im(ρ) ∼= Zk
2 , which is generated by

the diagonal matrices Bi := ρ(fi), 1 ≤ i ≤ k. Given a subset I = {i1, . . . , ih} ⊂
{1, . . . , k}, we set BI = Bi1 . . . Bih . For simplicity, we will often write

(2.2) Bi1...ih , qi1...ih , χi1...ih , q0, χ0 in place of BI , qI , χI
, q∅, χ∅,

respectively.

Let ρ and ρ′ be diagonal representations of Zk
2 . It is easy to check that these

representations are equivalent if and only if the groups F and F ′ are conjugate
in O(n). For example, ρ = 2χ1 + χ2 + χ12 and ρ′ = χ1 + 2χ2 + χ12 are two
equivalent diagonal representation of Z3

2.
We will need some more notation. For p ≥ 1, let

(2.3) Ap =
{{I1, . . . , Ip} : χ

I1
. . . χ

Ip
= 1 and no proper subproduct

of the χ
Ip

equals 1
}
.

For example, for k = 3, there are seven nontrivial characters, and one can check
that #A0 = #A1 = 1, #A2 = #A3 = #A4 = 7 and Ap = ∅ for any other p.
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The next proposition gives some formulas to be used in the next section to
compute the primitive elements of certain diagonal Bieberbach groups.

Proposition 2.3. Let ρ =
∑

I qIχI
be a diagonal representation of Zk

2 .

(i) The number Pp,F of primitive F -invariant forms of degree p (see Defini-
tion 1.1) is given by the following expression:

(2.4)

P0,F = 1, P1,F = q∅, P2,F =
∑
I �=∅

(
q
I

2

)
,

Pp,F =
∑

{I1,...,Ip}∈Ap

q
I1
. . . q

Ip
for 3 ≤ p ≤ k,

where Ap is as in (2.3). Moreover, Pp,F = 0 for any p > k + 1.

(ii) If k = 3 one has

P4,F = q1 q2 q3 q123 + q1 q2 q13 q23 + q1 q3 q12 q23(2.5)

+ q1 q12 q13 q123 + q2 q3 q12 q13 + q2 q12 q23 q123 + q3 q13 q23 q123.

(iii) Since βp = dimΛp
F for 0 ≤ p ≤ n, then

β0 = P0,F = 1, β1 = P1,F ,

β2 =
(
q∅
2

)
+ P2,F , β3 =

(
q∅
3

)
+ q∅P2,F + P3,F ,

β4 =
∑
∅�=I

(q
I
4

)
+

∑
∅�=I1≺I2

(q
I1
2

)(q
I2
2

)
+ q∅P3,F +

(
q∅
2

)
P2,F +

(
q∅
4

)
+ P4,F .

In particular, if q∅ = β1 = 0, then

(2.6) β2 = P2,F , β3 = P3,F , β4 =
∑

∅�=I1≺I2

(q
I1
2

)(q
I2
2

)
+ P4,F .

Proof. Clearly P0,F = 1. By (2.1), the group F acts by a character ψj on each
ej ∈ Rn. Hence, for any p, the indecomposable invariant forms of degree p are of the
form ei1 ∧ei2 . . .∧eip where the corresponding characters satisfy ψi1 ψi2 . . . ψip = 1
and they are primitive if and only if none of the proper subproducts of the ψij equals
one. Now, this is clearly equivalent to {I1, . . . , Ip} ∈ Ah, and consequently (2.4)
follows. Furthermore, in this situation, it is necessary that ψi1 , ψi2 . . . , ψip−1 be
linearly independent, hence p− 1 ≤ k, as claimed in (i).

We now prove (ii). By definition we have

A4 =
{{1, 2, 3, 123}, {1, 2, 13, 23}, {1, 3, 12, 23}, {1, 12, 13, 123},

{2, 3, 12, 13}, {2, 12, 23, 123}, {3, 13, 23, 123}},
where we have written i1 . . . ip in place of {i1, . . . , ip}. The asserted expression
for P4,F follows immediately from (2.4).

The expressions in (iii) can be easily obtained from (i). �
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The following notion will be useful in the construction of isospectral flat man-
ifolds.

Definition 2.4. We say that two diagonal representations ρ and ρ′ are almost-
conjugate if the subgroups F = Im(ρ) and F ′ = Im(ρ′) are almost-conjugate, that
is, if there is a bijection φ : F → F ′ that preserves the conjugacy class in O(n).

Note that since the only eigenvalues of the elements of F and F ′ are ±1, the
condition in the definition is equivalent to requiring that, for each 0 ≤ s ≤ n,

(2.7) cs(F ) = cs(F
′) ,

in the notation of (1.3).
When the bijection φ is an isomorphism, then the representations ρ and ρ′ are

actually equivalent, but in general this is not the case (this can be easily checked
in Example 4.2 by using (2.7)).

Given ρ =
∑

I qIχI
, our next goal is to perform a small perturbation of ρ by con-

structing a diagonal representation ρ′ of Zk
2 having the same set of nB’s with their

multiplicities, more precisely, ρ′ will satisfy nB′
I
= nBI for every I ⊂ {1, . . . , k}

with I �= {1}, {2}, nB′
1
= nB2 and nB′

2
= nB1 . Thus ρ and ρ′ will be almost-

conjugate. We assume first that k = 3 and ρ is a fixed diagonal representation
of Z3

2. The above equations induce a linear system of eight equations in the eight
variables q′0, q′1, . . . , q′123 that turns out to be non singular. Setting u = q′1 − q1, we
can write the solution of the system as

q′0 = q0, q′1 = q1 + u, q′13 = q13 + u, q′12 = q12,
q′3 = q3, q′2 = q2 − u, q′23 = q23 − u, q′123 = q123,

under the condition
q′1 + q′13 + 2u = q′2 + q′23.

Note that ρ′ will be a solution such that q′I ∈ N0 for all I if and only if u =
(q′2 + q′23 − q′1 − q′13)/2 ∈ Z and q1 + u, q2 − u, q13 + u, q23 − u ∈ N0.

As we shall see in Theorem 2.6, this method generalizes to any k ≥ 3 and gives
a procedure to construct pairs of almost-conjugate representations.

Definition 2.5. Given ρ =
∑

I qIχI
a diagonal representation of Zk

2 such that the
number

(2.8) u =
1

2k−2

( ∑
2∈I, 1/∈I

qI −
∑

1∈I, 2/∈I

qI

)
is an integer and furthermore q

I
− u ≥ 0 if 2 ∈ I, 1 /∈ I and q

I
+ u ≥ 0 if

1 ∈ I, 2 /∈ I, we define the flip of ρ as

(2.9) ρ′ =
∑
I

(q
I
+ uδ

I
)χ

I
, where δI :=

⎧⎪⎨⎪⎩
1 if 1 ∈ I, 2 /∈ I,

−1 if 2 ∈ I, 1 /∈ I,

0 otherwise.
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It is easy to check that ρ′ is again a diagonal representation of Zk
2 in the sense

of Definition 2.1.

Theorem 2.6. Let ρ =
∑

I qIχI
be a diagonal representation of Zk

2 . If ρ′ is the
flip of ρ then

(2.10) nB1 = nB′
2
, nB2 = nB′

1
, nBI = nB′

I
for I �= {1}, {2}.

In particular, ρ and ρ′ are almost-conjugate representations.

Proof. It suffices to verify that (2.10) holds for the flip ρ′ of ρ. We will use the
following facts. First, for each I ⊂ {1, . . . , k} we have that

(2.11) nBI =
∑

J:χ
J
(fI )=1

q
J

and nB′
I
=

∑
J:χ

J
(fI )=1

(q
J
+ uδ

J
).

Secondly, if I = {i1, . . . , is} then

(2.12) χ
J
(fI) = χ

J
(fi1) . . . χJ

(fis) = (−1)#(J∩I),

since χ
J
(fj) = −1 if and only if j ∈ J .

Now, using (2.9), (2.11) and (2.12) we have that

nB′
2
=

∑
2/∈J

(q
J
+ uδ

J
) =

∑
1/∈J, 2/∈J

(q
J
+ uδ

J
) +

∑
1∈J, 2/∈J

(q
J
+ uδ

J
)

=
∑

1/∈J, 2/∈J

q
J
+

∑
1∈J, 2/∈J

q
J
+ 2k−2u,

since there are exactly 2k−2 subsets of {1, . . . , k} containing 1 and not 2. Us-
ing (2.8) we conclude that

nB′
2
=

∑
1/∈J, 2/∈J

q
J
+

∑
1/∈J, 2∈J

q
J
=

∑
1/∈J

q
J
= nB1 .

By arguing in the same way we can check that nB′
1
= nB2 .

Now, for I ⊂ {1, . . . , k}, by (2.11) it follows that

nB′
I
− nBI =

∑
χ
J
(fI )=1

uδ
J
= u

( ∑
χ
J

(fI )=1

1∈J, 2/∈J

1−
∑

χ
J

(fI )=1

1/∈J, 2∈J

1

)
.

It is now easily seen that if I �= {1}, {2}, the sums in the right-hand side are both
equal to 2k−2. This completes the proof of the theorem. �

Remark 2.7. (i) We note that it is possible to use any pair I1, I2 of nonempty
subsets of {1, . . . , k} in place of I1 = {1}, I2 = {2}, to produce a flip. Seldom it
may be possible to apply two or more different flips to a representation, producing
families of almost-conjugate representations.

(ii) If u = 0 then ρ and its flip representation ρ′ coincide. When u �= 0,
in some rare cases the representations ρ and ρ′ may turn out to be equivalent.
To show an example, if we choose ρ = χ1 + 2χ2 + χ3 + χ12 + χ23, we obtain
ρ′ = 2χ1 + χ2 + χ3 + χ12 + χ13 which is equivalent to ρ.
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Table 1. All families Fk,n
j of almost-conjugate diagonal representations of Zk

2 of dimen-
sion n ≤ 11.

n Reps. P4,F Reps. P4,F Reps. P4,F

7 F3,7
1

[3,1,1,1,0,1,0] 3

[2,2,2,1,0,0,0] 0

8 F3,8
1

[3,2,1,1,0,1,0] 3

[2,2,2,2,0,0,0] 0
F3,8

2

[3,1,1,1,1,1,0] 7

[2,2,2,1,1,0,0] 4

F3,9
1

[4,2,1,1,0,0,1] 8

[3,3,2,1,0,0,0] 0
F3,9

3
[3,3,1,1,1,0,0] 3

[3,2,2,2,0,0,0] 0
F3,9

5
[3,1,1,1,1,1,1] 15

[2,2,2,1,1,1,0] 12
9

F3,9
2

[4,2,1,0,1,1,0] 8

[3,3,2,0,1,0,0] 0
F3,9

4

[3,2,1,1,1,1,0] 11

[2,2,2,2,1,0,0] 8

F3,10
1

[4,3,1,1,1,0,0] 3

[4,2,2,2,0,0,0] 0
F3,10

4
[4,2,1,1,1,1,0] 14

[3,3,2,1,1,0,0] 6
F3,10

7
[3,2,2,1,1,0,1] 19

[2,2,2,2,2,0,0] 16

10 F3,10
2

[4,2,2,1,0,1,0] 8

[3,3,2,0,2,0,0] 0
F3,10

5

[4,2,1,0,1,1,1] 17

[3,3,2,0,1,1,0] 9
F3,10

8

[3,2,1,1,1,1,1] 23

[2,2,2,2,1,1,0] 20

F3,10
3

[4,2,1,2,0,1,0] 8

[3,3,2,2,0,0,0] 0
F3,10

6
[3,3,1,1,1,1,0] 15

[3,2,2,2,0,1,0] 12

F3,11
1

[5,3,1,1,1,0,0] 3

[5,2,2,2,0,0,0] 0
F3,11

7

[4,3,1,2,0,1,0] 8

[3,3,2,3,0,0,0] 0
F3,11

12

[4,2,2,1,0,1,1] 26

[3,3,2,0,2,1,0] 18

F3,11
2

[5,3,1,1,0,0,1] 15

[4,4,2,1,0,0,0] 0
F3,11

8

[4,3,1,1,1,1,0] 19

[4,2,2,2,0,1,0] 16
F3,11

13

[4,2,1,1,1,1,1] 29

[3,3,2,1,1,1,0] 21

F3,11
3

[5,3,1,0,1,1,0] 15

[4,4,2,0,1,0,0] 0
F3,11

9

[4,2,2,1,0,0,2] 32

[3,3,3,1,0,0,1] 27
F3,11

14

[3,3,2,1,1,0,1] 27

[3,2,2,2,0,2,0] 24
11

F3,11
4

[5,2,2,1,0,0,1] 20

[4,3,3,1,0,0,0] 0
F3,11

10
[4,2,1,2,1,1,0] 20

[3,3,2,2,1,0,0] 12
F3,11

15
[3,3,1,1,1,1,1] 31

[3,2,2,2,0,1,1] 28

F3,11
5

[5,2,2,0,0,1,1] 20

[4,3,3,0,0,1,0] 0
F3,11

11

[4,2,2,1,1,1,0] 20

[3,3,2,1,2,0,0] 12
F3,11

16

[3,2,2,1,1,1,1] 35

[2,2,2,2,2,1,0] 32

F3,11
6

[4,3,2,1,0,1,0] 8

[3,3,3,2,0,0,0] 0
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Table 2. All families ˜Fk,n
j with more than two elements of almost-conjugate diagonal

representations of Z3
2 of dimension n ≤ 15.

n Reps. P4 Reps. P4 Reps. P4

12 F̃3,12
1

[5,3,1,1,1,1,0] 23

[5,2,2,2,0,1,0] 20

[4,4,2,1,1,0,0] 8

[4,3,3,2,0,0,0] 0

F̃3,12
2

[4,3,2,1,0,1,1] 35

[4,2,2,2,0,2,0] 32

[3,3,3,2,0,0,1] 27

F̃3,12
3

[4,2,2,1,1,0,2] 44

[3,3,3,1,1,0,1] 39

[3,3,2,0,2,2,0] 36

13 F̃3,13
1

[5,3,1,1,1,1,1] 47

[5,2,2,2,0,1,1] 44

[4,4,2,1,1,1,0] 32

[4,3,3,2,0,1,0] 24

F̃3,13
2

[4,3,2,1,1,1,1] 59

[4,2,2,2,1,2,0] 56

[3,3,3,2,1,0,1] 51

F̃3,13
3

[4,2,2,1,1,1,2] 68

[3,3,3,1,1,1,1] 63

[3,3,2,1,2,2,0] 60

F̃3,14
1

[6,3,2,1,0,1,1] 51

[6,2,2,2,0,2,0] 48

[5,4,3,1,0,1,0] 15

[4,4,4,2,0,0,0] 0

F̃3,14
3

[5,3,2,2,1,1,0] 47

[4,4,2,2,2,0,0] 32

[4,3,3,3,1,0,0] 27

F̃3,14
5

[5,3,2,1,1,1,1] 71

[5,2,2,2,1,2,0] 68

[4,4,2,1,2,1,0] 56

[4,3,3,2,0,2,0] 48

14 F̃3,14
2

[5,3,3,1,0,1,1] 63

[5,3,2,0,2,2,0] 60

[4,4,3,0,2,0,1] 48

F̃3,14
4

[5,3,2,0,1,1,2] 79

[4,4,3,0,1,1,1] 67

[4,4,2,0,2,2,0] 64

F̃3,14
6

[4,3,2,1,2,1,1] 83

[4,2,2,2,2,2,0] 80

[3,3,3,2,2,0,1] 75

F̃3,14
7

[4,2,2,2,1,2,1] 92

[3,3,3,2,1,1,1] 87

[3,3,2,2,2,2,0] 84

F̃3,15
1

[6,4,1,2,1,1,0] 44

[6,3,2,3,0,1,0] 36

[5,5,2,2,1,0,0] 20

[5,4,3,3,0,0,0] 0

F̃3,15
5

[5,4,2,2,0,1,1] 68

[5,3,2,3,0,2,0] 60

[4,4,3,3,0,0,1] 48

F̃3,15
9

[5,3,2,1,1,1,2] 111

[4,4,3,1,1,1,1] 99

[4,4,2,1,2,2,0] 96

F̃3,15
2

[6,4,2,1,1,1,0] 44

[6,3,3,2,0,1,0] 36

[5,5,2,1,2,0,0] 20

[5,4,3,0,3,0,0] 0

F̃3,15
6

[5,3,3,1,1,1,1] 95

[5,3,2,1,2,2,0] 92

[4,4,3,1,2,0,1] 80

[4,3,3,2,0,3,0] 72

F̃3,15
10

[4,3,3,2,1,1,1] 107

[4,3,2,2,2,2,0] 104

[3,3,3,3,2,1,0] 99

15

F̃3,15
3

[6,3,2,1,1,1,1] 83

[6,2,2,2,1,2,0] 80

[5,4,3,1,1,1,0] 47

[4,4,4,2,1,0,0] 32

F̃3,15
7

[5,3,2,2,1,0,2] 92

[4,4,3,2,1,0,1] 80

[4,3,3,3,0,2,0] 72

F̃3,15
11

[4,3,2,2,1,2,1] 116

[3,3,3,3,1,1,1] 111

[3,3,2,3,2,2,0] 108

F̃3,15
4

[5,4,2,1,1,2,0] 68

[5,3,3,2,0,2,0] 60

[4,4,3,0,3,1,0] 48

F̃3,15
8

[5,3,2,2,1,1,1] 95

[4,4,2,2,2,1,0] 80

[4,3,3,3,1,1,0] 75
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Table 3. All families Fk,n
j of almost-conjugate diagonal representations of Z4

2 of dimen-
sion n ≤ 9.

n Reps. P4 P5 Reps. P4 P5

7 F4,7
1

[2,1,1,1,0,0,0,1,1,0,0,0,0,0,0] 1 0
[2,1,1,1,1,0,0,0,0,0,0,0,0,1,0] 1 2

F4,8
1

[3,1,1,1,1,0,0,1,0,0,0,0,0,0,0] 3 0
[2,2,2,1,1,0,0,0,0,0,0,0,0,0,0] 0 0

F4,8
3

[2,1,1,1,1,0,0,1,0,1,0,0,0,0,0] 3 2
[2,1,1,1,1,1,0,0,0,0,0,0,0,1,0] 3 4
[2,1,1,1,0,0,0,1,1,1,0,0,0,0,0] 3 08

F4,8
2

[2,2,1,1,0,1,1,0,0,0,0,0,0,0,0] 1 0
[2,2,1,1,1,0,0,0,0,0,0,0,0,0,1] 1 4

F4,9
1

[3,2,1,1,1,0,0,1,0,0,0,0,0,0,0] 3 0
[2,2,2,1,2,0,0,0,0,0,0,0,0,0,0] 0 0

F4,9
8

[3,1,1,1,1,0,0,1,0,0,0,0,1,0,0] 7 4
[2,2,2,1,0,1,0,0,0,0,0,1,0,0,0] 4 4
[2,2,2,1,0,0,1,0,1,0,0,0,0,0,0] 4 0

F4,9
2

[3,2,1,1,0,1,1,0,0,0,0,0,0,0,0] 1 0
[3,2,1,1,1,0,0,0,0,0,0,0,0,0,1] 1 6

F4,9
9

[3,1,1,1,1,1,0,0,0,0,0,0,0,1,0] 3 6
[2,2,2,1,0,0,1,1,0,0,0,0,0,0,0] 0 0

F4,9
3

[3,2,1,1,0,1,0,0,0,1,0,0,0,0,0] 3 0
[2,2,2,2,1,0,0,0,0,0,0,0,0,0,0] 0 0

F4,9
10

[3,1,1,1,0,0,0,1,1,0,0,0,1,0,0] 7 6
[2,2,2,1,0,0,1,0,0,0,0,0,0,0,1] 4 8

9 F4,9
4

[3,2,1,1,0,0,0,1,0,1,0,0,0,0,0] 2 0
[3,2,1,1,0,1,0,0,0,0,0,0,0,0,1] 2 6

F4,9
11

[2,2,1,1,1,0,0,0,0,1,1,0,0,0,0] 5 4
[2,2,1,1,1,0,0,1,0,0,0,0,1,0,0] 5 6
[2,2,1,1,0,1,1,1,0,0,0,0,0,0,0] 5 2
[2,2,1,1,0,1,1,0,0,1,0,0,0,0,0] 5 0

F4,9
5

[3,1,1,1,1,1,1,0,0,0,0,0,0,0,0] 3 0
[2,2,1,1,2,0,0,0,0,1,0,0,0,0,0] 0 0

F4,9
12

[2,2,1,1,1,0,0,0,0,0,1,0,1,0,0] 8 4
[2,2,1,1,0,1,0,1,0,1,0,0,0,0,0] 8 0

F4,9
6

[3,1,1,1,1,1,0,1,0,0,0,0,0,0,0] 7 0
[2,2,2,1,1,1,0,0,0,0,0,0,0,0,0] 4 0

F4,9
13

[2,1,1,1,1,1,1,0,0,0,0,0,0,1,0] 7 8
[2,1,1,1,1,0,1,1,0,1,0,0,0,0,0] 7 6
[2,1,1,1,1,0,0,1,1,1,0,0,0,0,0] 7 4

F4,9
7

[3,1,1,1,1,0,0,1,1,0,0,0,0,0,0] 7 4
[2,2,2,1,1,0,0,0,0,0,0,1,0,0,0] 4 4

F4,9
14

[2,1,1,1,1,1,0,1,0,0,0,0,0,1,0] 7 4
[2,1,1,1,0,0,0,1,1,1,0,0,0,1,0] 7 0

Now we will introduce an algorithm that allows us to find all families of n-
dimensional almost-conjugate representations of Zk

2 , for k and n fixed. Recall
from (2.7) that two diagonal representations ρ and ρ′ are almost-conjugate if
and only if cs(ρ) = cs(ρ

′) for all 0 ≤ s ≤ n. We will call the (n + 1)-tuple
(c0(ρ), . . . , cn(ρ)) the pattern of ρ. The algorithm can be described as follows:

Algorithm 2.8. Let k ≥ 3 and n ∈ N. This algorithm returns all n-dimensional
inequivalent diagonal representations of Zk

2 grouped into sets, where two represen-
tation are in the same set if they are almost-conjugate.

1. Initialize patterns and reps as empty lists. Note that reps will be a list of
lists of representations.

2. Run over all n-dimensional diagonal representations ρ of Zk
2 and obtain its

pattern.
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3. If the pattern of ρ is not in patterns, add it to patterns at the end and add
in reps a new entry which is a list having ρ as its only element. Otherwise,
the pattern of ρ coincides with some entry in patterns, say the jth-entry,
then look at the representations occurring in the jth-entry of reps and check
whether any of them is equivalent to ρ. If not, then add ρ to this jth-list.

Tables 1, 2 and 3 show some of the results obtained with the help of a computer.
They contain only representations ρ such that −Idn /∈ Im(ρ) and such that ρ has
no fixed vectors, (i.e., q0 = 0), since we are mostly interested in manifolds (rather
than orbifolds) having first Betti number zero. For simplicity, we abbreviate by
writing, for k = 3, 4 respectively,

[q
1
, q

2
, q

3
, q

12
, q

13
, q

23
, q

123
] =

∑
I

q
I
χ

I
,

[q
1
, q

2
, q

3
, q

4
, q

12
, q

13
, q

14
, q

23
, q

24
, q

34
, q

123
, q

124
, q

134
, q

234
, q

1234
] =

∑
I

q
I
χ

I
.

In the tables, for each representation we include the value of P4,F for primitive
forms of degree 4, when k = 3, and the values of P4,F and P5,F , when k = 4.

Table 1 shows all families of almost-conjugate representations of Z3
2 of dimen-

sion n ≤ 11. They all turn out to be pairs. On the other hand, already for n = 12,
there are 19 families, of which 16 are pairs. For reasons of space, in Table 2
we show, for n ≤ 15, all families having more than two elements, omitting the
almost-conjugate pairs. When the holonomy increases to Z4

2, the number of fami-
lies increases too. For instance, for n = 9 there are 14 families, shown in Table 3.
For n = 10 there are 32 families, one of them containing 6 representations.

Remark 2.9. (i) One can check that all pairs in Table 1 can be obtained in one
step by the ‘flip method’ (Theorem 2.6). However, this is not always the case when
k = 3, already for n = 12. Indeed, it is a simple matter to check that the first and
fourth representation [5, 3, 1, 1, 1, 1, 0] and [4, 3, 3, 2, 0, 0, 0, 0] in F̃3,12

1 cannot be
obtained in one flip. This is the example of minimal dimension with this property
for k = 3. When k = 4 the situation is very different. It is easy to check that most
of the pairs in Table 3 cannot be obtained by flipping (for instance F4,7

1 , the first
pair in the table).

(ii) Recall that Corollary 1.3 and Proposition 2.3 tell us that P4,F (respectively,
P4,F + P5,F ) is an invariant of the algebra Λ∗

F under isomorphisms when k = 3
(respectively, k = 4). We note that in all examples in the tables these numbers are
different, showing different rings of invariants.

Remark 2.10. Open question. The above tables show many examples of fam-
ilies of inequivalent almost-conjugate representations such that the corresponding
rings of F -invariants are non isomorphic. We expect that always, given any pair of
inequivalent almost-conjugate representations, the rings of F -invariants in the ex-
terior algebra are not isomorphic. This happens to be true in all examples obtained
computationally so far.
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3. Main results

Our next goal will be to use the results in the previous sections (Corollary 1.3
and Theorem 2.6) to construct many pairs of Sunada isospectral flat manifolds of
diagonal type having very different cohomology rings.

We shall make use of the following result.

Theorem 3.1 (Proposition 3.5 of [7], [10]). Let Γ and Γ′ be Bieberbach groups of
diagonal type. Then MΓ and MΓ′ are Sunada isospectral if and only if cs,t(Γ) =
cs,t(Γ

′) for every s and t (see (1.4)). In this case, they are p-isospectral for all p.

In particular, if Γ and Γ′ are two Bieberbach groups of diagonal type such
that the flat manifolds MΓ and MΓ′ are Sunada isospectral, then their associated
holonomy representations ρΓ and ρΓ′ are almost-conjugate. However, the equality
in (2.7) does not suffice to imply the equality between the Sunada numbers cs,t(Γ)
and cs,t(Γ

′) (see (1.4)). An example of this type can be obtained by taking the
two 3-dimensional non orientable diagonal flat manifolds with holonomy group Z2

2

called respectively the first and second amphidicosm. Indeed, they have the same
integral representation (χ0+χ1+χ2), they are not homeomorphic, and they cannot
be isospectral for any flat metric on each (see [9]). In higher dimensions there are
many other examples, for instance the two different Hantzsche–Wendt manifolds
in dimension n = 5 (see [8]).

Lemma 3.2. Let ρ =
∑

I qIχI
be a diagonal representation of Zk

2 , and let MΓ be
a compact flat manifold with holonomy representation ρ. Then MΓ is orientable if
and only if, for every 1 ≤ j ≤ k,

(3.1)
∑
I:j∈I

q
I
is even.

Moreover, if q
I
is even for every I ⊂ {1, . . . , k}, then MΓ has an invariant

Kähler structure. Similarly, if q
I
∈ 4Z for every I ⊂ {1, . . . , k}, then MΓ has an

invariant hyperkähler structure.

Proof. The first assertion follows from the fact that det(Bj) = (−1)
∑

I:j∈I q
I for

each j.
Regarding the second assertion, if every q

I
is even, then we may define a com-

plex structure J on Rn (n = 2m) by setting J(e2i−1) = −e2i, J(e2i) = e2i−1 for
each 1 ≤ i ≤ m. By (2.1), this complex structure commutes with the action of the
point group, hence it pushes down to a complex Kähler structure on MΓ.

If furthermore each q
I
is divisible by 4, then we can define an additional complex

structure J ′ on Rn by setting J ′(e4i−3) = e4i−1, J
′(e4i−2) = −e4i, J ′(e4i−1) =

−e4i−3, J
′(e4i) = e4i−2 for 1 ≤ i ≤ m/2. Again this complex structure J ′ com-

mutes with the holonomy action and anticommutes with J . Therefore the pair J, J ′

defines a hyperkähler structure on MΓ. �

We are now in a position to prove the main result in this paper.
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Theorem 3.3. For any k ≥ 3 and any n ≥ 3 · 2k−2 + 1, there exist explicit pairs
Γ,Γ′ of Bieberbach groups of diagonal type of dimension n with F ∼= F ′ ∼= Zk

2 such
that MΓ and MΓ′ are Sunada (hence strongly) isospectral and their cohomology
rings H∗(MΓ) and H

∗(MΓ′) are not isomorphic as graded Q-algebras.
Furthermore, if k = 3, 4, 5, the cohomology rings are not isomorphic as Q-

algebras.
Finally, if n is even, MΓ is Kähler and MΓ′ is not.

Proof. We fix k ≥ 3 and n > 3 · 2k−2. Set

(3.2) ρ = 2k−2χ
1
+

∑
2∈I, 1/∈I

2χ
I
+ qχ

3
,

where q = n − 3 · 2k−2. One can check that ρ is faithful since it contains the
characters χ1 , χ2 , χ23 , . . . , χ2k

. For this ρ, equation (2.8) gives

u =
1

2k−2

(
2 · 2k−2 − 2k−2

)
= 1,

since there are 2k−2 subsets I ⊂ {1, . . . , k} such that 2 ∈ I and 1 /∈ I. Now
Theorem 2.6 implies that ρ and its flip representation

(3.3) ρ′ = 2k−2χ
1
+

∑
1∈I, 2/∈I

χ
I
+

∑
2∈I, 1/∈I

χ
I
+ qχ

3

are almost-conjugate.
Our next goal is to construct Bieberbach groups Γ and Γ′ with diagonal holon-

omy representations ρ and ρ′ respectively, in such a way that MΓ and MΓ′ are
Sunada isospectral manifolds. For I ⊂ {1, . . . , k}, we denote by q

I
and q′

I
the

coefficients of ρ and ρ′ respectively, and by BI and B′
I , the n×n diagonal matrices

given by (2.1). We pick

b1 = 1
2el1 , where l1 =

∑
I≺{2}

q
I
+ 1,(3.4)

b2 = 1
2 (el2 + el̃2), where l2 =

∑
I≺{2,3}

qI + 1, l̃2 =
∑

I≺{3}
qI + 1,(3.5)

bm = 1
2elm , where lm =

∑
I≺{1}

q
I
+m− 2 and 3 ≤ m ≤ k.(3.6)

Now it is convenient to fix bI ∈ {0, 12}n, as the only vector so that (bI)j ≡
∑

i∈I(bi)j
mod Z,, for each I and for every j. We define b′I for each I in the same way as bI ,
replacing q

I
by q′

I
.

For each I ⊂ {1, . . . , k}, let γI = BILbI and γ′I = B′
ILb′I . Finally consider

Γ = 〈γ
I
: I ⊂ {1, . . . , k}, LZn〉,

Γ′ = 〈γ′
I
: I ⊂ {1, . . . , k}, LZn〉.
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To prove that Γ is a Bieberbach group, by Proposition 1.1(ii) of [7], it is sufficient
to check the following condition:

(3.7) for each I �= ∅, (bI)j = 1
2 for at least one j in the space fixed by BI .

In Table 4 we show (in column notation) part of the matrices B1, . . . , Bk to-
gether with the vectors b1, . . . , bk. We include only the rows l1, l2, l̃2, l3, . . . , lk, as
defined in (3.4), (3.5) and (3.6), since these are the only rows having a non zero
component for at least one bi, 1 ≤ i ≤ k.

Table 4. The column notation for Γ.

Character
set

Coor-
dinate B1 B2 B3 B4 . . . Bk

χ
1

l3 −1 1 1 1
2

1 . . . 1

χ
1

l4 −1 1 1 1 1
2

. . . 1
...

...
...

...
...

...
. . .

...
χ

1
lk −1 1 1 1 . . . 1 1

2

χ2 l1 1 1
2

−1 1 1 . . . 1

χ23 l2 1 −1 1
2

−1 1 . . . 1

χ3 l̃2 1 1 1
2

−1 1 . . . 1

Thus, Table 4 shows that the condition (3.7) holds for any subset I having only
one element. Now assume that I ⊂ {1, . . . , k} and |I| > 1. If 1 /∈ I, then it is
clear that at least one of the coordinates l3, . . . , lk of bI (which are in the fixed
space of BI) equals 1/2. Similarly, if 1 ∈ I and 2 /∈ I, then (bI)l1 = 1/2 and
BI(el1) = el1 ; if 1 ∈ I, 2 ∈ I and 3 ∈ I, then (bI)l2 = 1/2 and BI(el2) = el2 ;
if 1 ∈ I, 2 ∈ I and 3 /∈ I, then (bI)l̃2 = 1/2 and BI(el̃2) = el̃2 . Thus, we have
constructed Bieberbach groups Γ and Γ′ with point groups F and F ′.

In order to check the Sunada isospectrality of MΓ and MΓ′ , we will use (1.1),
(1.2), (1.4) and Theorem 3.1. Since ρ and ρ′ come from a flip, it is clear that (2.10)
holds. Furthermore,

nB1,
1
2
= nB2,

1
2
= nB′

1,
1
2
= nB′

2,
1
2
= 1 and nBI ,

1
2
= nB′

I ,
1
2

for every I �= {1}, {2}. Hence the Sunada numbers cs,t(Γ) and cs,t(Γ
′) coincide for

every 0 ≤ t ≤ s ≤ n. We note that the first Betti number vanishes since it follows
immediately from Proposition 2.3 that q

0
= 0 .

If n is even, it follows immediately from Lemma 3.2 that MΓ has an invariant
Kähler structure since q

I
is even for all I. On the other hand, in the case of Γ′ we

have that

P2
F ′ =

{
ei ∧ ej : l3 ≤ i < j < l3 + 2k−2

} ∪ {
ei ∧ ej : l̃2 ≤ i < j < l̃2 + q

}
.

Note that P2
F ′ involves only those ei such that i ∈ [[l3, l3+2k−2−1]]∪ [[l̃2, l̃2+q−1]]

and these sets do not fill all of the interval [[1, n]]. For instance, they do not
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include the index l2. This readily implies that the wedge product of n/2 times the

subspace Λ2
F ′ cannot involve el2 hence

∧n/2
1 Λ2

F ′ = 0 since Λn
F ′ is one-dimensional.

This implies that MΓ′ cannot admit a Kähler structure.

It remains only to prove the cohomology rings are not isomorphic as Q-algebras
for 3 ≤ k ≤ 5. For this, we will prove some inequalities between the number of
primitive polynomials of degree p. For simplicity, throughout this proof we write Pp

and P ′
p in place of Pp,F and Pp,F ′ . Let us first prove that P ′

4 > P4. From (2.4)
we have P4 =

∑
q
I1
. . . q

I4
where we sum over all {I1, . . . , I4} ∈ A4 (see (2.3)).

It is not difficult to see that if {I1, . . . , I4} ∈ A4 with qI1 . . . qI4 > 0, then the

indices Ij must occur in (3.2) and cannot equal {1} nor {3}. Then Ij = {2} ∪ Ĩj
with Ĩj ⊂ {3, . . . , k} for every j = 1, 2, 3, 4, thus q

Ij
= 2. Hence P4 is 24 times

the number of choices of four different subsets Ĩ1, . . . , Ĩ4 ⊂ {3, . . . , k} such that

χ
Ĩ1
. . . χ

Ĩ4
= 1. Now, there are 2k−2 choices for Ĩ1, 2

k−2−1 choices for Ĩ2, 2
k−2−2

for Ĩ3 and Ĩ1 is determined. This counting argument shows that

(3.8) P4 = 24
2k−2(2k−2 − 1)(2k−2 − 2)

4!
.

Similarly, P ′
4 =

∑
q′
I1
. . . q′

I4
where we add over all elements in A4. Now,

counting some primitive elements will show that P ′
4 > P4. For any Ĩ1, Ĩ2, Ĩ3 ⊂

{3, . . . , k} with Ĩ1 �= Ĩ2, we take

I1 = {2} ∪ Ĩ1, I2 = {2} ∪ Ĩ2, I3 = {1} ∪ Ĩ3, I4 = I1�I2�I3,

where I�J := (I ∪ J) \ (I ∩ J). One checks that {I1, . . . , I4} ∈ A4. There are(
2k−2

2

)
choices for the pair Ĩ1, Ĩ2. For Ĩ3 there are 2k−2 choices, but when we

consider Ĩ4 we have to divide them by two. Now, we have to take into account the
multiplicities q′

Ii
, which are all one except q′

1
= 2k−2 + 1. Hence

(3.9) P ′
4 ≥

(
2k−2

2

)(
q′
1
+

2k−2 − 2

2!

)
=

2k−2(2k−2 − 1)

2
2k−3 3.

Combining (3.8) and (3.9) we conclude that

P ′
4 − P4 ≥ 2k−2(2k−2 − 1)

(2k−33

2
− 24(2k−2 − 2)

4!

)
> 0.

Now we shall prove that P ′
5 > P5 for k > 3. Consider {I1, . . . , I5} ∈ A5 with

q
I1
. . . q

I5
> 0. We note that Ij �= {1} for every j = 1, . . . , 5, since the number 1 has

to occur an even number of times. Moreover, the index {3} occurs once. Then, by

reordering if necessary, we can write I5 = {3} and Ij = {2}∪Ĩj with Ĩj ⊂ {3, . . . , k}
for 1 ≤ j ≤ 4. Thus q

I5
= q and q

Ij
= 2 for j = 1, . . . , 4.

Hence P5 equals 24q times the number of possible choices of four different
subsets Ĩ1, . . . , Ĩ4 ⊂ {3, . . . , k} such that χ

Ĩ1
. . . χ

Ĩ4
= χ3 and where no subproduct
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of two of them equals χ0 nor χ3. Again, by a similar counting argument, we get

P5 = 24 q
2k−2(2k−2 − 2)(2k−2 − 4)

4!
·

We can now proceed similarly as in the proof of (3.9) fixing I5 = {3} and defining
I4 = I1�I2�I3�I5, obtaining

P ′
5 ≥ q

2k−2(2k−2 − 2)

2

(
q′
1
+

2k−2 − 2

2!

)
.

Consequently we obtain that P ′
5 > P5 if k > 3, as asserted.

We now prove that Pk+1 = 0. Suppose there is a set A = {I1, . . . , Ik+1} ∈ Ak+1

such that q
I1
. . . q

Ik+1
> 0. Note that any subset of {χ

I1
, . . . , χ

Ik+1
} having k

elements is linearly independent in Ẑk
2 . By the construction of ρ, {1} �∈ A. When

k + 1 is even, it is clear that also {3} �∈ A, thus every Ij ∈ A is the union of {2}
and a subset of {3, . . . , k}. This contradicts the linear independence mentioned
above. Similarly, when k + 1 is odd, it follows that {3} ∈ A. The remaining k
elements Ij ∈ A are such that 2 ∈ Ij and 1 �∈ Ij , therefore they cannot be linearly
independent, a contradiction.

We now show that P ′
k+1 > 0. When k + 1 is even, it is clear that the product

of χ1 , χ13 , χ14 , . . . , χ1k
, χ2 , χ23...k

equals χ0 while no subproduct of them equals χ0 ,
thus the set of the corresponding indices belongs to Ak+1. When k+1 is odd, the
same is true, with χ

3
in place of χ

13
. Since all the corresponding coefficients q′

I

in ρ′ are positive, the assertion follows.

The inequality P4 < P ′
4 suffices to show that Λ∗

F and Λ∗
F ′ are not isomorphic

as graded algebras over Q. To prove that the cohomology rings are not isomorphic
as Q-algebras, it is sufficient, by Corollary 1.3, to show that

∑n
p=1 Pp <

∑n
p=1 P

′
p.

We know by Proposition 2.3 that P0 = P ′
0 = 1, P1 = P ′

1 = 0 and Pp = P ′
p = 0

for p > k + 1. Furthermore, for p = 2, 3, Pp = dim(Λp
F ) = βp(MΓ) and P ′

p =
dim(Λp

F ′) = βp(MΓ′) since q
0
= 0. Also βp(MΓ) = βp(MΓ′) for all p since Γ and Γ

are Sunada isospectral, hence P2 = P ′
2 and P3 = P ′

3. Finally, since we have proven
that P4 + P5 + P6 < P ′

4 + P ′
5 + P ′

6 when 3 ≤ k ≤ 5, it follows that Λ∗
F and Λ∗

F ′ are
not isomorphic as Q-algebras. This completes the proof of the theorem. �

Remark 3.4. Some open questions. (i) We expect that the cohomology rings
of the manifolds constructed in the theorem are not isomorphic for every value of k,
not just for 3 ≤ k ≤ 5. By similar arguments, we can still show non isomorphism
also for some values of k > 5 but the argument becomes much more involved. We
feel it would of interest to find an elegant proof valid for general k.

(ii) Actually, it should be possible to construct by similar methods strongly
isospectral families of arbitrarily large cardinality having pairwise non-isomorphic
cohomology rings (provided k, and hence n, are allowed to grow).
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4. Some explicit families

In this last section we exhibit several strongly isospectral families in low dimen-
sions, showing different features in their (non isomorphic) cohomology rings.

Example 4.1. Here we will define Γ and Γ′ two Bieberbach groups of dimension
n = 7 with holonomy groups Z4

2. Their holonomy representations are those of
minimal dimension obtained for k = 4 by means of Algorithm 2.8 (the pair F4,7

1

in Table 3), namely

ρ = 2χ
1
+ χ

2
+ χ

3
+ χ

4
+ χ

23
+ χ

24
,

ρ′ = 2χ1 + χ2 + χ3 + χ4 + χ12 + χ234 .

The corresponding Bieberbach groups have generators BiLbi (1 ≤ i ≤ 4) which in
column notation are given by:

Γ :

B1 B2 B3 B4

−1 1 1 1
2

1

−1 1 1 1
1 1

2
−1 1 1

1 1 1
2

−1 1

1 1
2

1 1
2

1 1
2

−1

1 −1 −1 1 1
2

1 −1 1 −1

Γ′ :

B1 B2 B3 B4

−1 1 1 1
2

1

−1 1 1 1
1 1

2
−1 1 1

1 1 1
2

−1 1

1 1
2

1 1
2

1 1
2

−1

−1 −1 1 1 1
2

1 −1 −1 −1

By comparison of the Sunada numbers we see that the corresponding manifolds
are Sunada isospectral. Indeed one checks that, in both cases, the non-vanishing
Sunada numbers are c5,1 = c3,1 = c1,1 = 1, c5,2 = c4,2 = c4,1 = c3,1 = 2, c2,1 = 4.

The rings of invariants are given in Table 5. They are not isomorphic by
Corollary 1.3, since the total number of primitive elements equals 5 for F and 7
for F ′. Note that Λ2

F ∧ Λ3
F = Λ5

F while Λ2
F ′ ∧ Λ3

F ′ = 0.

Table 5. Invariants for F and F ′. Here we write 12 in place of e1 ∧ e2 and so on.
Primitive elements are in bold.

p Λp
F Pp,F Pp,F ′ Λp

F ′ βp

0 span{1} 1 1 span{1} 1
1 0 0 0 0 0
2 span{ 12 } 1 1 span{ 12} 1
3 span{ 346, 357 } 2 2 span{ 136, 236 } 2
4 span{ 4567 } 1 1 span{ 3457} 1
5 span{ 12346, 12357 } 0 2 span{ 14567, 24567 } 2
6 span{ 124567 } 0 0 span{ 123457 } 1
7 0 0 0 0 0
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Example 4.2. We now assume that Γ and Γ′ are as defined in the proof of
Theorem 3.3 with k = 3 and n = 8 (q = 2). The corresponding pair of diagonal
representations coincides with the pair F3,8

1 in Table 1. They are

ρ = 2χ
1
+ 2χ

2
+ 2χ

23
+ 2χ

3
,

ρ′ = 3χ
1
+ χ

13
+ χ

2
+ χ

23
+ 2χ

3
.

In column notation:

Γ :

B1 B2 B3

−1 1 1 1
2−1 1 1

1 1
2

−1 1

1 −1 1
1 −1 1

2
−1

1 −1 −1
1 1 1

2
−1

1 1 −1

Γ′ :

B1 B2 B3

−1 1 1 1
2−1 1 1

−1 1 1
−1 1 −1
1 1

2
−1 1

1 −1 1
2

−1

1 1 1
2

−1

1 1 −1

Then MΓ and MΓ′ are Sunada isospectral, H∗(MΓ) �∼= H∗(MΓ′) as abstract
rings and furthermore MΓ is Kähler, while MΓ′ is not.

We now study in more detail the properties of these manifolds by direct com-
putation, i.e., without appeal to Theorem 3.3. First, it is not hard to see that
the F (resp.F ′)-invariant forms are as given in Table 6.

Using Table 6, it is easy to see that

Λ2
F ′ ∧ Λ2

F ′ = span{ 1278, 1378, 2378 }

and P4
F ′ = { 1456, 2456, 3456 }, thus P4,F ′ = 3. Furthermore,

Λ2
F ′ ∧ Λ2

F ′ ∧ Λ2
F ′ = 0.

This clearly implies that MΓ′ cannot admit a Kähler structure.
Now we look at MΓ. We have

Λ2
F ∧ Λ2

F = Λ4
F , Λ2

F ∧ Λ2
F ∧ Λ2

F = Λ6
F ,

Λ2
F ∧ Λ2

F ∧ Λ2
F ∧ Λ2

F = Λ8
F = span{ 12345678 }.

It is clear that the cohomology rings are not isomorphic as graded rings. On the
other hand, since Λ2

F ∧Λ2
F = Λ4

F , this says that P4,F = 0, showing that Λ∗
F and Λ∗

F ′

cannot be isomorphic as algebras, by Corollary 1.3 since we have just seen that
P4,F ′ = 3.

The complex structure on R8 given by Je2j−1 = −e2j, Je2j = e2j−1, if j =
1, 2, 3, 4, commutes with the holonomy action of F , hence it induces a Kähler
complex structure on MΓ with Kähler form Ω = 12+ 34+ 56+ 78. Note also that
1
24Ω ∧Ω ∧ Ω ∧ Ω = 12345678.
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Table 6. Invariants for F and F ′. Here we write 12 in place of e1 ∧ e2 and so on.
Primitive elements are in bold.

p Λp
F Pp,F Pp,F ′ Λp

F ′ βp

0 span{1} 1 1 span{1} 1
1 0 0 0 0 0
2 span{ 12, 34, 56, 78 } 4 4 span{ 12, 13, 23, 78 } 4

3 span

⎧⎨⎩357, 367, 457
467, 358, 368

458, 468

⎫⎬⎭ 8 8 span

⎧⎨⎩147, 247, 347
567, 148, 248

348, 568

⎫⎬⎭ 8

4 span

{
1234, 1256, 1278
3456, 3478, 5678

}
0 3 span

{
1456, 2456, 3456
1278, 1378, 2378

}
6

5 span

⎧⎪⎪⎨⎪⎪⎩
12357, 12358
12367, 12368
12457, 12458
12467, 12468

⎫⎪⎪⎬⎪⎪⎭ 0 0 span

⎧⎪⎪⎨⎪⎪⎩
12347, 12348
12567, 12568
13567, 13568
23567, 23568

⎫⎪⎪⎬⎪⎪⎭ 8

6 span

{
123456, 123478
125678, 345678

}
0 0 span

{
123456, 145678
245678, 345678

}
4

7 0 0 0 0 0
8 span{ 12345678 } 0 0 span{ 12345678 } 1

Since MΓ is Kähler there is a natural action of SL(2,C) on H∗(MΓ)C ∼=
Λ∗(Cn)F which gives the Lefschetz decomposition of H∗(MΓ)C. We have the
operators L, L∗ given by L(X) = Ω ∧ X , L∗(X) = cp ∗ L ∗ (X) on Λp(MΓ),
with cp a constant. A form η is such that L∗η = 0 generates an SL(2,C)-module of
dimension n− p+1. The decomposition into irreducible submodules is as follows:

(4.1) H∗(MΓ)C ∼= π5 ⊕ 3π3 ⊕ 8π2 ⊕ 2π1.

To check this we note that 1 generates the irreducible submodule of dimension 5:
span{ 1, Ω, Ω∧Ω, Ω∧Ω∧Ω, Ω∧Ω∧Ω∧Ω }. Furthermore 12−34, 12−56 and 12−78
are 2-forms annihilated by L∗ and each one generates an irreducible submodule of
dimension 3. For instance, in the case of 12− 34 we have:

Ω ∧ (12− 34) = 1256 + 1278− 3456− 3478 ,

Ω ∧ Ω ∧ (12− 34) = 2 (125678− 345678) .

Thus Ω ∧ Ω ∧ Ω ∧ (12− 34) = 0, hence the SL(2,C)-module generated by 12− 34
has dimension 3.

Similarly, a basis for the 4-forms annihilated by L∗ is 1234+5678−1256−3478,
1234 + 5678− 3456− 1278. These 4-forms generate a trivial module.

Furthermore, we recall that the dimension of the space of the p-forms in
Ker(L∗), with p ≤ n is βp

0 = βp − βp−2, see [11], which is a topological invari-
ant. This implies that β1

0 = 1 β2
0 = 4− 1 = 3, β3

0 = 8− 0 = 8, β4
0 = 6− 4 = 2 and
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furthermore βp
0 = βn−p

0 for all p. We see that all vectors in Ker(L∗) of the same
degree p ≤ 4 generate an irreducible module of dimension 4− p+ 1.

We note that the doubled manifolds MdΓ, MdΓ′ are both isospectral Kähler
manifolds of dimension 16, but their cohomology rings are still not isomorphic.
Furthermore, MdΓ is hyperkähler but MdΓ′ is not.

Example 4.3. As a final example, we will consider a family of eight compact
flat manifolds of dimension 24 with point group isomorphic to Z3

2. This family
was also found by using the algorithm explained at the end of Section 2. The
coefficients q(j)

I
of the representations ρj for 1 ≤ j ≤ 8, are given as follows:

(4.2)

q0 q1 q2 q3 q12 q13 q23 q123
ρ1 0 10 6 3 2 1 1 1
ρ2 0 10 6 2 2 2 2 0
ρ3 0 10 5 4 3 0 1 1
ρ4 0 10 4 4 4 0 2 0
ρ5 0 9 7 4 2 1 1 0
ρ6 0 9 6 5 3 0 1 0
ρ7 0 8 8 4 2 2 0 0
ρ8 0 8 6 6 4 0 0 0

.

We will denote by Fj the point group given by Definition 2.2 of ρj .
Now we will show that, as in Theorem 3.3, for each of the given diagonal

representations ρj of Z
3
2 one can find 24-dimensional vectors b

(j)
i with coordinates in

{ 1
2 , 0} (1 ≤ i ≤ 3, 1 ≤ j ≤ 8) such that the resulting groups Γj = 〈B(j)

i L
b
(j)
i

, LZn〉
are Bieberbach groups. Indeed, one can show that these choices can be made in
many different ways.

To choose the vectors b
(j)
i , it is convenient to fix the following order in Ẑ3

2:

χ0 ≺ χ1 ≺ χ2 ≺ χ3 ≺ χ12 ≺ χ13 ≺ χ23 ≺ χ123.

We choose the vectors b
(j)
I for every 1 ≤ j ≤ 8, in such a way that the first row

in each character set is as

(4.3)

Character
set B1 B2 B3 B12 B13 B23 B123

χ
1

−1 1 1 1
2

−1 −1 1
2

1 1
2

−1 1
2

χ
2

1 −1 1 1
2

−1 1 1
2

−1 1
2

−1 1
2

χ3 1 1
2

1 1
2

−1 1 −1 1
2

−1 1
2

−1

χ
12

−1 1
2

−1 1 1 1
2

−1 1
2

−1 1 1
2

χ
13

−1 1 −1 −1 1 −1 1
χ23 1 −1 −1 −1 −1 1 1
χ

123
−1 −1 −1 1 1 1 −1

and the other rows contain no 1/2.

The coefficients q
(j)
1 , q

(j)
2 , q

(j)
3 and q

(j)
12 are positive for all j, which implies that

the condition in (3.7) is verified for Γj = 〈B(j)
i L

b
(j)
i

, LZn〉. Thus, Γj is a Bieberbach

group for every 1 ≤ j ≤ 8.
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We claim that these compact flat manifolds MΓj are Sunada isospectral. In-
deed, using (4.2) and (4.3), it is not hard to check that the numbers nBI ’s are

(4.4)

nB1 nB2 nB3 nB12 nB13 nB23 nB123

ρ1 10 14 18 6 8 12 4
ρ2 10 14 18 4 8 12 6
ρ3 10 14 18 6 8 12 4
ρ4 10 14 18 8 6 12 4
ρ5 12 14 18 6 8 10 4
ρ6 12 14 18 8 6 10 4
ρ7 12 14 18 6 10 8 4
ρ8 12 14 18 10 6 8 4

.

This tells us that the patterns (c0(ρj), . . . , c24(ρj)) (see Section 2) coincide for any
1 ≤ j ≤ 8. The numbers ci(ρj) which are nonzero are c4 = c6 = c8 = c10 = c12 =

c14 = c18 = 1. Moreover, by our choices of the vectors b
(j)
I , the non-vanishing

Sunada numbers for all Γj are c4,1 = c6,1 = c8,1 = c10,2 = c12,2 = c14,1 = c18,2 = 1.

To compare the cohomology rings we consider the algebra Λ∗
Fj

of Fj -invariants

for each j. Proposition 2.3 (i) tells us that P0,Fj = 1, P1,Fj = 0 and Pp,Fj = 0 for

every p ≥ 5 and every j, since q
(j)
0 = 0 and k = 3. Furthermore P2,Fj = β2(MΓj ),

P3,Fj = β3(MΓj ). By strong isospectrality all manifolds have the same Betti
numbers, hence they have the same P2 and P3. They are given by

P2 = P2,F8 =
(
8
2

)
+
(
6
2

)
+
(
6
2

)
+
(
4
2

)
= 64, P3 = P3,F8 = q

(8)
1 q

(8)
2 q

(8)
12 = 192.

By Corollary 1.3, we only need to show that the values of P4,Fj are all different
to prove that the algebras Λ∗

Fj
are pairwise non isomorphic. Now, by comput-

ing P4,Fj by means of (ii) in Proposition 2.3, we obtain

j 1 2 3 4 5 6 7 8
P4,Fj 371 368 335 320 191 135 128 0

,

hence our assertion follows.
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Córdoba, Argentina.

E-mail: miatello@famaf.unc.edu.ar

Juan Pablo Rossetti: FaMAF-CIEM, Universidad Nacional de Córdoba, 5000-Cór-
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