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Spectral and stochastic properties of the
f-Laplacian, solutions of PDEs at infinity

and geometric applications

G. Pacelli Bessa, Stefano Pigola and Alberto Setti

Abstract. The aim of this paper is to suggest a new perspective to study
qualitative properties of solutions of semilinear elliptic partial differential
equations defined outside a compact set. The relevant tools in this setting
come from spectral theory and from a combination of stochastic properties
of the differential operators in question. Possible links between spectral and
stochastic properties are analyzed in detail.

1. Introduction

In this paper we will suggest a new viewpoint for studying qualitative properties of
solutions of semilinear elliptic PDEs, especially when these are defined only outside
a compact set. In order to enlarge the range of applicability of the techniques, we
decide to place our treatment in the setting of weighted Riemannian manifolds and
the corresponding drifted Laplacians.

The germ of the present investigation is contained in the very recent paper [20]
which is devoted to a systematic treatment of the Feller property of a Riemannian
manifold. In fact, using a suitable comparison theory, we will show how (weighted)
manifolds which are both stochastically complete and Feller provide a natural
framework where solutions of PDEs at infinity can be studied. The fact that
transience and stochastic completeness of the underlying manifolds have PDEs
counterparts is well understood. However, due to the nature of these stochastic
properties, so far only global solutions have been considered. The introduction of
the Feller property, in combination with stochastic completeness, will enable us to
get important information even in the case of solutions at infinity.

Manifolds which are both stochastically complete and Feller belong to a fairly
wide class containing complete Ricci solitons, complete manifolds with controlled
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Ricci tensor and Cartan–Hadamard manifolds with at most quadratic exponential
volume growth. The usefulness of the technique is visible in a wide range of
geometric applications, from submanifold theory to the Yamabe problem. It is
well known that the spectral theory of diffusion operators is affected by stochastic
properties of the corresponding diffusion process. For instance, using capacitary
arguments, it is readily seen that recurrence forces the bottom of the spectrum
of a diffusion operator to be zero. The recent works [4] and [13] have emphasized
an intriguing link between the stochastic completeness of certain specific manifolds
and the essential spectrum of the operator. We will analyze, in some detail, possible
relations between stochastic and spectral properties of weighted manifolds. On the
route we will prove a generalized and abstract version of the discreteness of the
spectrum of bounded minimal submanifolds recently obtained in [4]. The nature of
the essential spectrum also suggests that it could fit in very well in the main topic
of the paper. Indeed, by the decomposition principle, the bottom of the essential
spectrum is sensitive only to the geometry at infinity of the underlying manifold and
Barta’s classical characterization leads naturally to solutions at infinity of PDEs.

Part of the present work was presented by the third named author at the
workshop “Ricci solitons days” held in Pisa, April 4-8, 2011.

2. Notation

Throughout this paper, we shall use the symbol Mf to denote the m-dimensional
weighted manifold

Mf = (M, 〈 , 〉, dvolf ) ,
where (M, 〈 , 〉) is a Riemannian manifold, f :M → R is a selected smooth function
on M , dvol denotes the Riemannian measure of (M, 〈 , 〉) and

dvolf = e−fdvol

is the weighted measure. The f -Laplacian associated to the weighted manifoldMf

is the operator

Δf u = divf (∇u) := ef div(e−f∇u),
which is symmetric on L2(M,dvolf ).

The Bakry–Emery Ricci curvature of the weighted manifoldMf is the 2-tensor

Ricf = Ric + Hess(f).

If

Ricf = λ〈 , 〉
for some constant λ ∈ R, then the weighted manifold Mf is called a Ricci soliton.
The Ricci soliton Mf is said to be shrinking, steady, or expanding according to
whether λ > 0, λ = 0, or λ < 0, respectively.
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3. Stochastic completeness and maximum principle

We say that the weak maximum principle at infinity holds on a weighted man-
ifold Mf if for every u ∈ C2(M), with supM u = u∗ < +∞, there exists a se-
quence {xk} along which

(i) u(xk) > u∗ − 1

k
, (ii) Δf u(xk) <

1

k
.

It is now well known, [17], [18], that this principle is equivalent to the stochastic
completeness of the diffusion process associated to Δf . This means that the heat
kernel of the f -Laplacian pf (x, y, t) satisfies the conservation property∫

M

pf (x, y, t) dvolf (y) = 1,

for every x ∈ M and t > 0. The f -stochastic completeness, in turn, is implied by
the volume condition

R

log volf (BR)
/∈ L1(+∞).

For a complete weighted manifold Mf satisfying Ricf ≥ λ we have, for con-
stants A, B and C, the Qian–Wei–Wylie volume estimate [23], [27]:

(3.1) volf (BR) ≤ A+B

∫ R

R0

e−λt2+Ct dt, R >> 1.

This implies that every complete gradient Ricci soliton is f -stochastically complete,
and therefore satisfies the weak maximum principle for the f -Laplacian.

In fact, using estimates for the potential function due to Z.-H. Zhang, [28], that
will be described in Section 5.1 below, and a general result contained in [19], one
proves that on every gradient Ricci soliton, the full Omori–Yau maximum principle
holds, both for the f -Laplacian and for the ordinary Laplacian. Namely,

Theorem 3.1. Let (M, 〈 , 〉) be any gradient Ricci soliton. Then for every function
u ∈ C2(M) bounded for above, there exists a sequence {xk} such that u(xn) → u∗,
|∇u(xk)| < 1/k and Δf u(xk) < 1/k (resp. Δu(xk) < 1/k).

We point out that the case of shrinking solitons was recently obtained by M. Fer-
nández-López and E. Garćıa-Rı́o, [10].

4. The Feller property

The weak maximum principle at infinity for the f -Laplacian is a powerful tool for
deducing qualitative information about the solutions of differential inequalities of
the form

(4.1) Δf u ≥ Λ(u).

See [17].
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Accordingly, every solution u of (4.1) bounded from above on the whole mani-
fold M satisfies

Λ(u∗) ≤ 0.

This fact has many applications in geometric analysis. Our purpose now is to
investigate qualitative properties of solutions of (4.1) which are defined only in
a neighborhood of infinity. This requires the introduction of new tools that can
be developed under the validity of a further stochastic property of the underlying
manifold, namely, the Feller property.

Note that ifM is stochastically complete for Δf , then a bounded solution u > 0
of the differential inequality

Δf u ≥ λu

outside a smooth domain Ω ⊂⊂M satisfies

u(x) ≤ c · h(x) on M\Ω,
where c > 0 is a suitable constant and h > 0 is the minimal solution of the problem{

Δfh = λh in M\Ω,
h = 1 on ∂Ω,

(which is constructed by means of an exhaustion procedure).
Indeed, let c = sup∂Ω u. Then, for every ε > 0,

Δf (u− c h− ε) ≥ λ(u − c h) ≥ λ(u − c h− ε) on M \ Ω
and u − c h − ε ≤ −ε on ∂Ω . Therefore the function vε = max{0, u − c h − ε} is
bounded, nonnegative and satisfies Δfvε ≥ λvε. SinceM is stochastically complete
with respect to Δf , vε ≡ 0, that is, u ≤ ch + ε, and the conclusion follows by
letting ε→ 0.

In particular, if h(x) → 0 as x → ∞, we can deduce that the same holds for
the original function u.

According to a characterization by R. Azencott [1], it happens that the required
decay property of h is equivalent to the Feller property on M with respect to Δf ,
that is, that the heat semigroup generated by −Δf maps the space Co(M) of
continuous functions vanishing at infinity into itself, or equivalently, that for every
relatively compact open set Ω in M , the heat kernel pf of −Δf satisfies∫

Ω

pf (x, y, t) dvolf (y) → 0 as x→ +∞.

We thus obtain the following result:

Theorem 4.1. Let Mf be f -stochastically complete. If Mf is Feller, then every
bounded solution v > 0 of

Δfv ≥ λv on M\Ω
satisfies

v(x) → 0 as x→ ∞.
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On the basis of these observations, we prove the following theorem:

Theorem 4.2. Let Mf be a stochastically complete and Feller manifold for Δf .
Consider the differential inequality

(4.2) Δf u ≥ Λ(u), on M\Ω,
where Ω ⊂⊂ M and the function Λ : [0,+∞) → [0,+∞) is either continuous or
nondecreasing, and satisfies the following conditions:

(a) Λ(0) = 0; (b) Λ(t) > 0, ∀t > 0; (c) lim inf
t→0+

Λ(t)

tξ
> 0,

for some 0 ≤ ξ ≤ 1. Then, every bounded solution u > 0 of (4.2) satisfies

lim
x→∞u(x) = 0.

Proof. Let us consider the case where f is not continuous. The other case is easier.
By assumption, there exists 0 < ε < 1/2 and c > 0 such that

Λ(t) ≥ c tξ on (0, 2ε).

Since tξ ≥ t on (0, 1], and Λ is nondecreasing, then

Λ(u(x)) ≥ Λε(u(x)) =

{
c u, if u(x) < ε

c ε, if u(x) ≥ ε.

On the other hand, since u > 0 is bounded, if we set u∗ = supM\Ω u, then

c ε ≥ c ε

u∗
u∗ ≥ c ε

u∗
u.

It follows that
Δf u ≥ Λε(u) ≥ λu,

where
λ = cmin

{
1,

ε

u∗
}
> 0.

Using the Feller property we now conclude that u(x) → 0, as x→ ∞. �

5. Estimates for the f -Laplacian of the distance function and
comparison results

By comparison arguments and radialization techniques, many of the properties of
solutions of differential in(equalities) involving the f -Laplacian, and in particu-
lar, the stochastic properties of Δf may be deduced by imposing suitable bounds
on Δfr where r(x) denotes the distance function from a reference point o ∈ M .
We are going to collect some results along these lines concerning stochastic com-
pleteness, the Feller property, the Omori–Yau maximum principle and the compact
support principle. Items (i) and (ii) in the next theorem are weighted versions of
parts (c) and (d) of Corollary 15.2 in [12].
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Theorem 5.1. Let Mf be a weighted Riemannian manifold, and let r(x) be the
distance from a fixed point o ∈M . Let also g be a C2 odd function on R satisfying
g(0) = 0, g′(0) = 1 and g(t) > 0 for all t > 0.

(i) Assume that there exist R0 ≥ 0 and a constant n > 1 such that for every x
within the cut locus of o with r(x) > R0 we have

(5.1) Δf r(x) ≤ (n− 1)
g′

g
(r(x)) with

∫ r

0 g(t)
n−1dt

g(r)n−1
∈ L1(+∞).

Then Mf is stochastically complete.

(ii) Assume that o is a pole and that there exist R0 ≥ 0 and a constant n > 1
such that, for r(x) > R0, we have

(5.2) Δf r(x) ≥ (n− 1)
g′

g
(r(x)) with

∫ r

0
g(t)n−1dt

g((r)n−1
∈ L1(+∞).

Then Mf is not stochastically complete.

(iii) Assume that o is a pole and that there exist R0 ≥ 0 and a constant n > 1
such that for r(x) > R0 we have

(5.3) Δf r(x) ≥ (n− 1)
g′

g
(r(x)),

and that either

(5.4)
1

gn−1(r)
∈ L1(+∞)

or

(5.5) (a)
1

gn−1(r)
/∈ L1(+∞) and (b)

∫ +∞
r gn−1(t)dt

gn−1(r)
/∈ L1(+∞).

Then Mf is Feller.

(iv) Assume there exist R0 ≥ 0 and a constant n > 1 such that if x is within
the cut locus of o with r(x) > R0 we have

(5.6) Δfr(x) ≤ (n− 1)
g′

g
(r(x))

and that g does not satisfy the conditions in (iii). Then Mf is not Feller.

Proof. We outline the proof, which follows the lines of arguments valid for the
ordinary Laplacian. To prove (i) and (ii), let α(r) be the function defined by

α(r) =

∫ r

0

∫ t

0
g(s)n−1ds

g(t)n−1
dt ,
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and note that

α′(r) > 0, α′′(r) + (n− 1)
g′

g
α′(r) = 1.

Let also v(x) = α(r(x)), so that v is C2 within the cut locus of o and there

Δfv(x) = α′′(r(x)) + Δf r(x)α
′(r(x)).

Now, in case (ii), v is C2 and bounded from above on M , and since α′ > 0 it does
not attain a maximum. Thus, if R is large enough that (5.2) holds in Bc

R and
γ < u∗ is sufficiently close to u∗ that Ωγ = {x : u(x) > γ} ⊂ Bc

R, then, in Ωγ

Δfv ≥ α′′(r(x)) + (n− 1)
g′

g
α′(r(x)) = 1,

so that v violates the weak maximum principle at infinity. Therefore Mf is not
stochastically complete.

To prove (i), let u be C2 and bounded from above on M . We claim that
for every γ < u∗, infΩγ Δfu ≤ 0 which clearly implies that the weak maximum
principle at infinity holds for Δf and Mf is stochastically complete.

Note that in the present situation v tends to infinity as r(x) → ∞ and satisfies

Δfv ≤ α′′ + (n− 1)
g′

g
α′ ≤ 1

for x within the cut locus of o and such that r(x) > R0.
Assume, aiming at a contradiction, that there exists γ < u∗ such that

inf
Ωc

Δfu ≥ 2c > 0.

Clearly u does not attain its supremum, and, by taking γ close enough to u∗, we
may arrange that (5.1) holds on Ωγ . Let xo ∈ Ωγ and choose 0 < δ < c small
enough that the function ũ = u− γ − δv is positive at xo. Since ũ < 0 on Ωγ , and
tends to −∞ as r(x) → +∞, it attains a positive maximum at x ∈ Ωγ , and using
the Calabi trick we may assume that r(x) is smooth at x̄. Then, at x̄,

Δf ũ(x̄) = Δfu(x̄)− δΔfv(x̄) ≥ 2c− δ ≥ c > 0,

which yields the required contradiction.
We now come to the Feller property. In case (iii), the conditions satisfied by g

imply that the model manifold Mn
g defined as Rn endowed with the metric

〈 , 〉 = dr2 + g(r)2dθ2,

is Feller (with respect to the ordinary Laplacian), and, according to Theorem 4.4
and Lemma 5.1 in [20], the radial minimal solution β of the exterior boundary
value problem

(5.7)

⎧⎨
⎩β

′′ + (n− 1)
g′

g
β′ = λβ,

β(R0) = 1,
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tends to 0 as r tends to infinity and satisfies h′(r) < 0. As above, let us define
v(x) = β(r(x)), so that v(x) → 0 as r(x) → ∞ and

Δfv = β′′ +Δfr β
′ ≤ β′′ + (n− 1)

g′

g
β′ = λv.

For every R > R0, let hR be the solution of the exterior boundary value problem{
ΔfhR = λhR,

hR(R0) = 1, hR(R) = 1,

and note that by the comparison principle hR < v in BR \ BR0 . As R → +∞, hR
tends to the minimal solution h of the problem

(5.8)

{
Δfh = λh,

h(R0) = 1.

Since clearly 0 < h < v in M \ BR0 , h tends to 0 as r(x) tends to ∞ and Mf is
Feller.

Finally, assume that (5.6) holds and that g does not satisfy the conditions
in (iii). Note that in particular, g−n+1 ∈ L1(+∞) while gn−1 ∈ L1(+∞), and
according to (i) Mf is stochastically complete. By Theorem 4.4 of [20], the model
manifold Mn

g is not Feller, and therefore the minimal radial solution β of the exte-
rior problem (5.7) does not tend to zero as r → +∞. Since β′ ≤ 1 by Corollary 5.1
of [20], it follows that the function v(x) = β(r(x)) is a bounded solution of

Δfv ≥ λv

which satisfies v = 1 on R0 and which does not tend to zero at infinity. It follows
from the discussion preceding Theorem 4.1 that the minimal solution of the exterior
problem (5.8) satisfies v ≤ c h, for some constant c > 0, so that h does not tend to
zero at infinity and Mf is not Feller. �

Remark 5.2. In the case that n is an integer, the differential inequalities satis-
fied by Δfr can be interpreted as comparison with the Laplacian of the distance
function of the model Mn

g . It is also interesting to observe that in the case of the
Feller property the inequalities assumed for Δfr go in the opposite direction than
those assumed in the case of stochastic completeness.

In the case of the ordinary Laplacian, upper and lower estimates for Δr may
be obtained via the Laplacian comparison theorem imposing lower bounds on the
Ricci curvature, or upper bounds on the sectional curvature, respectively. In the
case of the f -Laplacian, there does not seem to be an analogue of the sectional
curvature whose control allows to obtain lower estimates for Δfr. As for upper
estimates, the most effective way to obtain upper bounds for Δfr is to impose
lower bounds on the modified Bakry–Emery Ricci tensor

Ricα = Ric + Hessf − 1

α
df ⊗ df
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with α > 0, but in view of applications to Ricci solitons it is important to try
and obtain estimates for Δfr assuming a lower bound on the Bakry–Emery Ricci
tensor Ricf corresponding to α = +∞, together with some control on the weight f
or its gradient.

Indeed, as Theorem 2.1 of Quian’s [23] shows, in the more general case of
operators of the form Δ+X with a drift which is not necessarily a gradient, that
upper bounds for Δf r follow from imposing lower bounds on Ricf and a control
on the drift term X . More precisely we have:

Theorem 5.3. Let Mf be a weighted manifold, let o be a reference point in M
and let r(x) = d(x, 0) be the Riemannian distance from o.

(i) Assume that
Ricf ≥ −k2

for some constant k ≥ 0. Then there exists a constant C depending only on M ,
on ∇f and on o such that

Δfr(x) ≤ C +
m− 1

r(x)
+ k2 · r(x) on M \ cut(o).

(ii) Assume that {
Ricf (x) ≥ −k21(r(x)),
|∇f |(x) ≤ k2(r(x)),

where ki(r) are continuous nondecreasing functions satisfying ki(r) → +∞ as
r → +∞. Then

Δfr(x) ≤ m
g′(r(x))
g(r(x)

on M \ cut(o),

where g : [0,+∞) → [0,+∞) is the solution of the initial value problem

(5.9)

⎧⎨
⎩g

′′(r) − k1(r)
2 + k2(r)

2

m
g(r) = 0,

g(0) = 0, g′(0) = 1.

(iii) Assume that there are nonnegative constants k and C such that{
Ricf ≥ −k,
|∇f | ≤ C(d(x, o) + 1) ∀x ∈M.

For every p ∈M , and every x ∈M \ ({p} ∪ cut(p)), if ρ(x) = d(x, p), then

Δfρ(x) ≤ m− 1

ρ
+

1

3
(k + 2C) ρ+ C (1 + d(o, p)).

Applying Theorem 5.1 we obtain a version for Δf of Theorems 1.5 and 1.6 of
Qian ([23]) on the stochastic completeness of Laplacians with drift. We point out
that the proof we present is entirely deterministic.
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Theorem 5.4. Let Mf be a complete weighted Riemannian manifold, and assume
that either

(5.10) Ricf ≥ −k2 for some constant k ≥ 0,

or

(5.11)

{
Ricf (x) ≥ −k21(r(x)),
|∇f |(x) ≤ k2(r(x)),

where ki(r) are continuous nondecreasing functions satisfying ki(r) → +∞ as
r → +∞ and

(5.12)
1√

k21(t) + k22(t)
∈ L1(+∞).

Then Mf is stochastically complete for Δf .

Proof. If (5.10) holds, then Δfr satisfies the estimate (i) in Theorem 5.3, and it is
easily seen that this implies (5.1) with n = m and

g(r) = r exp
[ 1

m− 1

(
Cr +

k

2
r2
)]
,

and it is clear that g(r) satisfies the nonintegrability in (5.1), and Mf is then
stochastically complete by Theorem 5.1 (i).

Assuming that (5.11) and (5.12) hold, then Δfr(x) satisfies the estimate in
Theorem 5.3 (ii) with g a solution of (5.9). This implies that ψ = g′/g satisfies
the Riccati equation

ψ′ + ψ2 = k2, with k(r)2 =
k1(r)

2 + k2(r)
2

m
,

and ψ(r) = 1/r + O(1) as r → 0. Thus ψ′ < 0 whenever ψ > k and since k(r)
is increasing and tends to +∞ as r → +∞, standard arguments show that there
exists ro such that ψ(ro) = k(ro) and ψ(r) ≤ k(r) for all r ≥ ro.

This in turn implies that there exists R sufficiently large and a constant C > 0
such that ∫ r

0
g(t)mdt

g(r)m
≥ C

k(r)
if r ≥ R.

Indeed, g(r) → +∞ as r → +∞ and, using L’Hôpital’s rule, and the fact that k is
nondecreasing we have

lim inf
r→∞

k(r)
∫ r

0
g(t)mdt

g(r)m
≥ lim inf

r→∞
k(r)g(r)

mg′(r)
≥ 1

m
.

By (5.12), 1/k(r) ∈ L1(+∞) and, again by Theorem 5.1 (i), Mf is stochastically
complete. �
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We stress that, in order to deduce the validity of the Feller property using
Theorem 5.1 (iii), one needs a control from below on Δfr, while lower bounds
on Ricf typically produce upper bounds on Δfr.

Using a probabilistic technique which extends to the Laplacian with a drift
term a previous result of P. Hsu ([14]) for Δ, and which essentially consists in
genuine estimates on hitting time probabilities, Qian (see Theorem 1.7 of [23])
proves the following theorem. Note that, again, Qian’s result actually applies to
the more general operators of the form L = Δ+X .

Theorem 5.5. Let Mf be a complete weighted manifold and assume that for some
o ∈ M the conclusion of Theorem 5.3 (iii) holds, namely, there exist constants k
and C > such that, for every p ∈M , if ρ(x) = d(x, p) denotes the distance from p,
we have

Δfρ(x) ≤ m− 1

ρ
+

1

3
(k + 2C) ρ+ C (1 + d(o, p)).

Then Mf is Feller with respect to Δf . In particular, if Ricf and ∇f satisfy the
estimates in Theorem 5.3 (iii), then Mf is Feller with respect to Δf .

We next describe a result which extends a condition on the validity of the full
Omori–Yau maximum principle for the operator Δf proved in [19]. The argument
we use is an adaptation of a recent elegant proof of the Omori–Yau maximum
principle due to A. Borbély, [5] and [6]. We are grateful to A. Borbély for sending
us a copy of [6].

Theorem 5.6. Let Mf be a complete weighted manifold and assume that there
exists a nonnegative C2 function γ satisfying the following conditions:

γ(x) → +∞ as x→ ∞;(5.13)

∃A > 0 such that |∇γ| ≤ A off a compact set;(5.14)

∃B > 0 such that Δfγ ≤ BG (γ) off a compact set,(5.15)

where G is a smooth function on [0,+∞) satisfying

(5.16) (i) G(0) > 0 (ii) G′(t) ≥ 0 on [0,+∞) (iii) G(t)−1 /∈ L1(+∞).

Then the Omori–Yau maximum principle holds for Δf . The same conclusion holds
if γ(r) = r(x) is the distance from a reference point o and we assume that (5.15)
holds in the complement of the cut locus of o (while of course (5.13) and (5.14)
are automatically satisfied).

Proof. We outline the proof, which follows Borbely’s argument closely. Let u be
a C2 function such that u∗ = supM u < +∞. We want to show that there exists a
sequence {xn} such that u(xn) → u∗, limn |∇u(xn)| = 0 and lim supn Δfu(xn) ≤ 0.
We may assume that u does not attain its supremum, for otherwise the conclusion
is obvious. Define

F (t) = exp
{∫ t

0

G(s)−1ds
}
,
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so that F is nondecreasing and limt→+∞ F (t) = +∞. For every t, let

Ωt = {x : γ(x) > t}.
Since γ is proper, there exists to such that the inequalities (5.14) and (5.15) hold in
the set Ωto . Let ε < min{1, u∗ − supΩc

to
u}, and define hλ(x) = λF (γ(x)) + u∗ − ε.

Since F ≥ 1, if λ > ε then hλ > u∗ > u on M. Let λo = inf{λ : hλ(x) >
u(x)∀x ∈ M}, and note that since u < u∗ on M then λo > 0, and, by continuity,
hλo(x) ≥ u(x) for every x in M .

We claim that there exists xε such that hλo(xε) = u(xε). Note that since
hλo > u∗ − ε > supΩc

to
u, xε necessarily lies in Ωto .

To prove the claim, we will show that if hλ > u onM for some λ > 0 then there
exists λ′ < λ such that hλ′ > u on M . Indeed, since F (γ) → +∞ as γ → +∞,
and γ is proper, there exists t1 > to such that hλ > u∗ + 1 in Ωt1 . Since Ωc

t1 is
compact, and hλ(x) > u(x) on M , we may choose λ′ < λ sufficiently close to λ so
that hλ′ > u on Ωc

t1 , and hλ′ > u∗ on ∂Ωt1 . Since F is increasing, hλ′ > u∗ in Ωt1

and therefore hλ′ > u on M , as required.

Next we claim that hλo is smooth at xε. This is clear if γ is C2 on M , while
if γ(x) = r(x) is the Riemannian distance function, the proof in Borbely’s paper,
which only uses the fact that u− hλo attains a maximum at xε, and properties of
the function r(x), applies without changes.

Thus, since u(xε) = hλo(xε) = λoF (γ(xε)) + u∗ − ε < u∗ = supu we have

u(xε) > u∗ − ε and λo F (γ(xε)) < ε.

Also, since u− hλo attains a maximum at xε,

(i) ∇u(xε) = λo F
′(γ(xε))∇γ(xε)

(ii) Δfu(xε) ≤ Δfhλo(xε) = λo
[
F ′′(γ(xε)) |∇γ(xε)|2 + F ′(γ(xε))Δfγ(xε)

]
.

Easy computations show that F ′ = F/G and F ′′ ≤ F/G2 so that (i) above
and (5.14) yield ∣∣∇u(xε)∣∣ ≤ Aλo

F (γ(xε))

G(γ(xε))
<

A

G(0)
ε,

while using (ii) and (5.15) we get

Δfu(xε) ≤ λoF (γ(xε))
[ 1

G2(γ(xε))
+

Δfu(xε)

G(γ(xε))

]
≤ (1 +B)λoF (xε) < (1 +B)ε.

�

We conclude this section with a brief discussion about the compact support
principle for the operator Δf (see [21] and [22], where more general quasilinear
elliptic operators in divergence form are considered).

A function u is said to be a semiclassical solution of the differential inequality

(5.17) Δfu ≥ λ(u)
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in a domain Ω if u ∈ C1(Ω) and u satisfies the inequality in weak sense, that is∫
Ω

[〈∇f,∇φ〉 + λ(u)φ
] ≤ 0

for every nonnegative φ ∈ C1
c (Ω).

The compact support principle is said to hold for the differential inequal-
ity (5.17) if, whenever Ω is an exterior domain, namely Ω ⊃ M \ BR(o) for some
R > 0, and u ≥ 0 is a semiclassical solution of (5.17) in Ω with the property that
u(x) → 0 as r(x) → +∞ that u vanishes identically outside a compact set.

We are grateful to M. Rigoli for pointing that the validity of the compact
support principle depends essentially on the properties of the operator and of
the function λ, and that the effect of the geometry is once again encoded by the
behavior of Δfr(x).

Indeed, the proof of Theorem 1.1 in [22], may be adapted with minor changes
to obtain the following:

Theorem 5.7. Let Mf be a complete weighted manifold, and let λ be a continuous
function on [0,+∞) which vanishes in 0 and is nondecreasing and strictly positive

on some interval (0, δ), δ > 0. Set Λ(t) =
∫ t

0
λ(s)ds. If

(5.18)
1√
Λ(s)

∈ L1(0+),

and there exists C > 0 such that the differential inequality

(5.19) Δfr(x) ≥ −C2 > −∞

holds weakly on M , then the compact support principle holds for the differential
inequality (5.17).

As an immediate consequence, as noted in [22], if (5.18) holds, Δf = Δ,
and M is a Cartan–Hadamard manifold, then the compact support principle holds
for (5.17).

5.1. Feller property for Ricci solitons

In this section we are going to prove that Ricci solitons are Feller with respect to
the weighted Laplacian Δf and with respect to the ordinary Laplacian Δ.

The fact that for every gradient Ricci soliton the weighted Laplacian Δf is Feller
is then a consequence of the results of the previous section and of the following
estimates for the gradient of the potential function which have been obtained by
Zhang, [28] (see also H.-D. Cao and D. Zhou, [9]). These in turn depend on lower
estimates for the scalar curvature of Ricci solitons obtained by Zhang, and by a
different method in [18]. We are going to briefly describe the latter approach. We
recall from [18] the following a-priori estimate for weak solutions of semilinear
elliptic inequalities under volume assumptions (see also Theorem B in [16]).
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Theorem 5.8. Let (M, 〈 , 〉, e−fdvol) be a complete, weighted manifold. Let a(x),
b(x) ∈ C0(M), set a−(x) = max{−a(x), 0} and assume that

sup
M

a−(x) < +∞ and b(x) ≥ 1

Q(r(x))
on M ,

for some positive, nondecreasing function Q(t) such that Q(t) = o(t2), as t→ +∞.
Assume furthermore that, for some H > 0,

a−(x)
b(x)

≤ H on M .

Let u ∈ Lip loc(M) be a nonnegative weak solution of

(5.20) Δf u ≥ a(x)u + b(x)uσ,

on (M, e−fdvol), with σ > 1. If

(5.21) lim inf
r→+∞

Q(r) log volf (Br)

r2
< +∞,

then
u(x) ≤ H

1
σ−1 on M .

Using the volume estimate (3.1) we deduce the validity of the next:

Corollary 5.9. Let (M, 〈 , 〉,∇f) be a complete Ricci soliton. Then the scalar
curvature S of M satisfies the lower estimate

(5.22) S(x) ≥
{
0 if λ ≥ 0,

mλ if λ < 0.

Proof. Indeed,
ΔfS = λS − |Ric|2.

and since |Ric|2 ≥ S2/2, (Cauchy–Schwarz inequality), we have that the function
S−(x) = min{0,−S(x)} is a weak solution of the differential inequality

ΔfS− ≥ λS− +
1

m
S2
−.

On the other hand, by (3.1), the condition (5.21) above is satisfied, and with an
application of Theorem 5.8 with a(x) = λ and b(x) = 1/m shows that

S− ≤ mλ−

and the conclusion follows. �

Using these estimates in the basic equation

(5.23) S + |∇f |2 − 2λf = C

and integrating it along minimizing geodesics one obtains the estimates for the
potential function and its gradient described in [28] and [9].
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Lemma 5.10. Let (M, 〈 , 〉,∇f) be a complete Ricci soliton. Then there exist
positive constants a and b depending only on the soliton such that

(5.24) |∇f | ≤ b+ |λ| d(x, o) and |f(x)| ≤ a+ b d(x, o) +
|λ|
2
d(x, o)2.

Using these results we deduce the following:

Proposition 5.11. Let (M, 〈 , 〉,∇f) be a complete Ricci soliton. Then Δf and Δ
are both stochastically complete and Feller.

Proof. Since Ricf = Ric + Hessf = λg by definition, and

|∇f | ≤ C1 + |λ| d(x, o)
by the lemma above, the conditions of Theorem 5.5 are satisfied and the statement
concerning the f -Laplacian Δf follows.

In fact, as mentioned above, the above conditions imply that, if p ∈ M and
ρ(x) = d(x, p) then Δfρ satisfies the estimate

Δfρ ≤ m− 1

ρ
+ C1ρ+ C2(1 + d(o, p)).

On the other hand

|〈∇f,∇ρ〉| ≤ |∇f | ≤ b+ |λ| d(o, x)) ≤ b+ |λ| (d(+, p) + ρ(x))

so that

Δρ = Δfρ+ 〈∇f,∇ρ〉 ≤ m− 1

ρ
+ (C1 + |λ|) ρ+ (C2 + b + |λ|) (1 + d(o, p))

and, again by Theorem 5.5 the Laplacian Δ is Feller. �

The estimates for the potential function described above allow us to prove
Theorem 3.1.

Proof of Theorem 3.1. Both statements follow by applying Theorem 5.6 with the
choice γ(x) = r(x)2 and using the estimates for ∇f described above together with
Qian’s estimates for Δfr and Δr as in the proof of Proposition 5.11. �

5.2. Applications of the Feller property to geometry and PDEs

As alluded to at the beginning of Section 4, and formalized in Theorem 4.2, using
the Feller property on a stochastically complete manifold enables one to extend the
investigation of qualitative properties of solution of PDEs to the case where these
are defined only in a neighborhood at infinity. In this section, we will illustrate the
use of this viewpoint in a number of different geometric and analytic settings. We
stress that the needed stochastic completeness assumptions are satisfied for a very
rich family of examples. For instance, according to Proposition 5.11, a natural and
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important framework is given by Ricci solitons. In the non-weighted setting, we
have the class of complete manifolds such that Ric ≥ −G(r), where G(r) > 0 is
a smooth increasing function satisfying 1/

√
G ∈ L1(+∞); [14]. Another admis-

sible category for the application of Theorem 4.2 is given by Cartan–Hadamard
manifolds with at most quadratic exponential volume growth. Actually, the (ra-
dial) sectional curvature assumption can be considerably relaxed as explained in
Theorem 5.9 of [20].

5.2.1. Isometric immersions. Recall that if a Riemannian manifold (M, 〈 , 〉)
is stochastically complete, then the mean curvature H of a bounded isometric
immersion f :M → BR(0) ⊂ R

n must satisfy

sup
M

|H|R ≥ 1.

In particular, a stochastically complete minimal submanifold in Euclidean space is
necessarily unbounded. The next result show that this can be extended to the case
where we have an isometric immersion of an end E of M with respect to a given
compact subset K of M . We observe that the concepts of stochastic completeness
and the Feller property can be localized on one end E simply requiring that its
double D(E) be stochastically complete or Feller, respectively. It is then easy to
verify that the maximum principle at infinity holds for every function f : E → R

which is bounded from above and does not attain its supremum on ∂E. It is easily
verified that M is stochastically complete if and only if so are all ends.

Similarly, the end E is Feller if and only if for one (and therefore for all)
relatively compact domain with smooth boundary Ω ⊃ K, the minimal positive
solution of the boundary value problem{

Δh = λh in M \ Ω,
h = 1 on ∂Ω,

tends to zero as x → ∞ within the given end. Again, it is easy to see that an
end E satisfies this condition if and only if its double is Feller (see Section 7 of [20]
for details).

We are now ready to state our result. We are grateful to R. Haslhofer and T.
Ilmanen for helpful comments related to the formulation of the theorem.

Theorem 5.12. Let (M, 〈 , 〉) be a Riemannian manifold and let E be an end of M
with respect to a compact set K. Assume that E is stochastically complete and
Feller, and that there exists a bounded isometric immersion f :M → BR(0) ⊂ R

n.
Then the mean curvature of f satisfies

sup
E

|H|R ≥ 1.

Proof. Assume, aiming at a contradiction, that

(5.25) sup
E

|H|R < 1.
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Straightforward computations show that u = |f |2 ≥ 0 satisfies

Δu ≥ c on E,

where we have set
c = 2m

(
1− sup

E
|H|R

)
> 0,

and m = dim(M). If follows that Δu ≥ λu on E with λ = c/R.

Now, let Ω be a bi-collared relatively compact neighborhood of ∂E in D(E).
We use the same letters f and u to denote the obvious extensions of f and u to D.
We clearly have f(D(E) \ Ω) ⊂ BR(0) and

Δu ≥ λu on D(E) \ Ω.

An application of Theorem 4.2 shows that u(x) → 0, that is, f(x) → 0 as x→ +∞
in M . On the other hand, since strict inequality holds in (5.25), for R′ > R
sufficiently close to R we have supE |H|R′ < 1, and clearly f(E) ⊂ BR′ (0′) provided
|0′ − 0| < R′ −R. Thus repeating the argument with u′(x) = |f(x)− 0′|2 we have

Δu′ ≥ c

with the same value c, and then u′(x) → 0, i.e., f(x) → 0′ = 0, as x → ∞. This
yields the required contradiction and the theorem is proved. �

5.2.2. Conformal deformations. Given a Riemannian m-manifold (M, 〈 , 〉),
m ≥ 3, consider the conformally related metric 〈 , 〉 = v4/(m−2)〈 , 〉, where v > 0 is
a smooth function. The conformal factor v obeys the Yamabe equation

c−1
m Δv − Sv = −S vm+2

m−2 ,

where S and S denote the scalar curvatures of 〈 , 〉 and 〈 , 〉, respectively. Assume
that M is stochastically complete and that

sup
M

S(x) ≤ S∗ and inf
M
S(x) ≥ S∗,

for some constants S∗ ≥ 0 and S∗ > 0. An application of the weak minimum
principle at infinity to the Yamabe equation shows that

(S∗

S∗

)(m−2)/4

≥ v∗ = inf
M
v.

In particular, if S(x) ≤ 0 on M , then v∗ = 0. Actually, since the infimum of v
cannot be attained,

inf
M\Ω

v = 0,

for every Ω ⊂⊂M . Clearly, to reach these conclusions the scalar curvature bound
must hold on M .
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Theorem 5.13. Let (M, 〈 , 〉) be a stochastically complete, Feller m-manifold,
m ≥ 6, with scalar curvature satisfying

sup
M\Ω

S(x) ≤ 0,

for some compact domain Ω ⊂M . Let 〈 , 〉 = v4/(m−2)〈 , 〉 be a conformally related
metric such that

inf
M
v = v∗ > 0.

If the scalar curvature of (M, 〈 , 〉) satisfies
inf
M\Ω

S(x) = S∗ > 0,

then
v(x) → +∞ as x→ ∞.

With respect to the assumption that S is nonnegative at infinity, one may
wonder if it could be made nonnegative everywhere onM with a conformal change
of metric. Note, however, this in general would require control of the positive
part S+ of S in the set Ω, which moreover may depend on the metric itself in a
rather implicit way (see, e.g., Proposition 1.2 in [24]).

Proof. Just note that the positive, bounded function u(x) = v(x)−1 satisfies

c−1
m Δu ≥ −Su+ S u

m−6
m−2 ≥ S u

m−6
m−2 .

Since

0 ≤ m− 6

m− 2
< 1,

Theorem 4.2 yields
u(x) → 0 as x→ ∞. �

As an immediate consequence, we obtain the following non-existence result. Note
that this applies, for instance, to an expanding, gradient Ricci soliton M . Indeed,
in this case, the scalar curvature assumption is compatible with the restriction
infM S ≤ 0 imposed by the soliton structure.

Corollary 5.14. On a stochastically complete and Feller m-manifold (M, 〈 , 〉)
with m ≥ 6 and

sup
M\Ω

S(x) ≤ 0

there is no conformal change 〈 , 〉 = v4/(m−2)〈 , 〉 such that

0 < v∗ ≤ v(x) ≤ v∗ < +∞
and

inf
M\Ω

S(x) = S∗ > 0.
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5.2.3. Compact support property of bounded solutions of PDEs. Let us
recall that a certain PDE satisfies the compact support principle if a solution, in
the exterior of a compact set, which is nonnegative and decays at infinity, must
have compact support. We are going to analyze some situations where the decay
assumption can be relaxed. This has applications to the Yamabe problem.

Theorem 5.15. Let (M, 〈 , 〉) be a geodesically and stochastically complete Cartan–
Hadamard manifold. Let u > 0 be a bounded solution of

(5.26) Δu ≥ λ(u) on M\Ω

for a domain Ω ⊂⊂ M and for a nondecreasing function λ : [0,+∞) → [0,+∞)
satisfying the following conditions:

(5.27) a) λ(0) = 0; b) λ(t) > 0, ∀t > 0; c) lim inf
t→0+

λ(t)

tξ
> 0,

for some 0 ≤ ξ < 1. Then u has compact support.

Proof. Recall that a Cartan–Hadamard manifold is Feller (see [1] and [20]). By
Theorem 4.2, we know that u(x) → 0, as x→ ∞. The conclusion now follows from
the compact support principle, which is valid under the stated assumptions on M
and λ (see Theorem 1.1 of [22], and Theorem 5.7 above). �

The above theorem can be applied to obtain nonexistence results. For instance,
combining Theorem 5.15 and Corollary 5.14 we get:

Corollary 5.16. Let (M, 〈 , 〉) be a stochastically complete Cartan–Hadamard m-
manifold with m ≥ 6. Then the metric of M cannot be conformally deformed
to a new metric, 〈 , 〉 = v2〈 , 〉, with v∗ > 0 and scalar curvature S satisfying
lim infx→∞ S > 0.

Observe that, for the conclusion of Theorem 5.15 to hold it suffices that M be
stochastically complete and Feller, and that the compact support principle holds
for solutions of (5.26). Theorem 5.15 can be therefore generalized as follows:

Theorem 5.17. Let (M, 〈 , 〉) be a complete Riemannian manifold with a pole o
and set r(x) = d(x, o). Assume that

Ric ≥ −K(r(x)),

where K > 0 is an increasing function satisfying

1√
K

/∈ L1(+∞).

Assume also that

Sec rad ≤ G(r(x)),
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where G is a smooth even function such that the unique solution g of the Cauchy
problem {

g′′ +Gg = 0,

g(0) = 0, g′(0) = 1.

satisfies

inf
g′

g
(t) > −∞.

If u ≥ 0 is a bounded solution of

Δu ≥ λ(u) on M\Ω,

where λ satisfies (5.27), then u has compact support.

In a similar view, using the comparison results established in Theorem 5.1 we
obtain the following:

Theorem 5.18. Let Mf be a geodesically complete, stochastically complete, and
weighted manifold with a pole o, and let r(x) be the Riemannian distance from o.
Suppose that there exists an integer n and an even function g : R → [0,+∞) such
that g(0) = 0, g′(0) = 1, and g(r) > 0 for r > 0 such that

Δf r(x) ≥ (n− 1)
g′

g
(r(x)) for r(x) >> 1.

Suppose moreover

inf
g′

g
(t) > −∞

and that either

(5.28)
1

gn−1(r)
∈ L1(+∞)

or

(5.29) (i)
1

gn−1(r)
/∈ L1(+∞) and (ii)

∫ +∞
r gn−1(t)dt

gn−1(r)
/∈ L1(+∞).

If u > 0 is a bounded solution of

Δfu ≥ λ(u) on M\Ω,

where λ satisfies (5.27), then u has compact support.

Proof. Indeed, since g satisfies the conditions (5.28) or (5.29), it follows from The-
orem 5.1 (iii) that Mf is Feller. On the other hand, by Theorem 5.7 the compact
support principle holds for solutions of (5.26). Therefore the conclusion follows as
in Theorem 5.15. �
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6. Spectral theory of weighted Laplacians

6.1. Basic theory

In this section we collect some results on the spectral properties of the f -Laplacian.
Generally the proofs may be obtained by adapting those valid for the ordinary
Laplacian, and therefore they mostly will be omitted.

The first basic observation is that the f -Laplacian is associated to the f -Diriclet
form

(6.1) Qf(u) =

∫
M

|∇u|2 dvolf ,

originally defined on C∞
c (M). The form Qf is closable and its closure induces a

nonnegative self-adjoint operator on L2(dvolf ), still denoted −Δf . The same proof
valid for the usual Laplacian can be adapted to show that −Δf is essentially self-
adjoint on C∞

c (M). It is also useful to note that under the unitary transformation
T (u) = e−f/2u of L2(dvol) onto L2(dvolf ), the operator Δf is unitarily equivalent
to the Schrödinger operator

Δ +
(1
2
Δf − 1

4
|∇u|2

)
.

More generally, if Ω is any open set inM , we will denote by −ΔΩ
f the Friedrichs

extension of the operator −Δf originally defined on C∞
c (Ω). Its domain is given by

Dom(−ΔΩ
f ) =

{
u ∈ H1

0 (Ω, dvolf ) : (Δf )distu ∈ L2(Ω, dvolf )
}
.

The operator −ΔΩ
f is a positive operator, its spectrum is a subset of [0,+∞), and

the bottom of its spectrum admits the usual variational characterization

λ1(−ΔΩ
f ) = inf

∫
Ω |∇u|2 dvolf∫
Ω
|u|2 dvolf ,

where the infimum is taken over u ∈ C∞
c (Ω), or equivalently, in H1

0 (Ω).

Also, σ(−ΔΩ
f ) can be decomposed into the disjoint union σd(−ΔΩ

f )∪σess(−ΔΩ
f ),

where σd(−ΔΩ
f ) is the set of isolated eigenvalues of finite multiplicity, called the

discrete spectrum, and its complement σess(−ΔΩ
f ), called the essential spectrum,

is the set of eigenvalues of infinite multiplicity and of accumulation points of the
spectrum.

Adapting the arguments valid for the ordinary Laplacian (or using the above
mentioned unitary equivalence with a Schrödinger operator, see [26]) one shows
that the following decomposition principle holds:

Theorem 6.1. For every relatively compact domain Ω,

σess
(−ΔM

f

)
= σess

(−Δ
M\Ω
f

)
.

In particular,

inf σess
(−ΔM

f

)
= sup

Ω⊂⊂M
λ1

(−Δ
M\Ω
f

)
.
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Similarly, one may generalize a result of R. Brooks, [7], [8], to obtain the
following upper bound for the infimum of the essential spectrum in terms of the
weighted volume growth of the manifold (see [26]).

Theorem 6.2. Let Mf be a complete weighted manifold.

(a) If volf (M) = +∞, then

lim sup
R→+∞

log volf (BR)

R
≥ inf σess(−ΔM

f ) ≥ λ1(−ΔM
f ) ≥ 0.

(b) If volf (M) < +∞, then

lim sup
R→+∞

− log(volf (M)− volf (BR))

R
≥ inf σess(−ΔM

f ) ≥ λ1(−ΔM
f ) ≥ 0.

The following Barta-type lower estimate for λ1(−ΔΩ
f ) is a weighted version of

a result in [3]. Its proof is obtained following exactly the arguments in [3] using a
weighted version of the divergence theorem.

Theorem 6.3. Let Mf be a weighted manifold and let Ω ⊂M be a domain. Then,
for every vector field X on Ω,

λ1(−ΔΩ
f ) ≥ inf

Ω

{
divf (X)− |X |2}.

Equality holds if Ω is a compact domain with smooth boundary.

A classical consequence is given by the next corollary:

Corollary 6.4. LetMf be a weighted manifold and let Ω ⊂M be a domain. Then,
for every domain Ω and for every 0 < u ∈ C2(Ω),

λ1(−ΔΩ
f ) ≥ inf

Ω

(
− Δf u

u

)
.

In particular, recalling Theorem 6.1, we deduce:

Corollary 6.5. Let Mf be a weighted manifold. Then, for every domain Ω ⊂⊂M
and for every 0 < u ∈ C2(M\Ω), there holds

inf σess(−ΔM
f ) ≥ inf

M\Ω

(
− Δf u

u

)
.

The following version of the classical Cheng eigenvalue comparison was pointed
out in [25].

Theorem 6.6. Assume that the complete weighted manifold Mf satisfies

Ricf ≥ −α and |∇f | ≤ β1/2

for some α, β ≥ 0. Then

λ1
(−ΔBR

f

) ≤ λ1
(−ΔB

m+1
R

)
,

where B
m+1
R is the ball of radius R > 0 in the (m + 1)-dimensional spaceform

M
m+1((α+ β)/m) of constant curvature (α+ β)/m.
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6.2. Essential spectrum and stochastic properties

The purpose of this section is to find possible connections between the structure
of the spectrum of the Laplacian and the stochastic properties of noncompact
Riemannian manifold, namely, stochastic (in)completeness and the Feller property.
The starting point is the (proof of the) following recent result, [4], which answers
in the affirmative a question raised by S.T. Yau.

Theorem 6.7. Let M be a geodesically complete manifold which admits a proper
minimal immersion f : M → BR(0) into an open ball BR(0) ⊂ R

N . Then the
essential spectrum is empty, σess(−ΔM ) = ∅.
Proof. According to the decomposition principle,

inf σess(−ΔM ) = sup
Ωj cpt
Ωj↗M

λ1
(−ΔM\Ωj

)
,

where, by the Barta theorem,

λ1
(−ΔM\Ωj

) ≥ sup inf
M\Ωj

(
− Δv

v

)
,

the supremum being taken with respect to all smooth (say C2) functions v > 0
on M\Ωj. In particular, choosing

Ωj =
{
x ∈M : |f |2 ≤ R2 − 1

j

}
⊂⊂M

and
v(x) = R2 − |f |2 > 0

gives

inf σess
(
ΔM

) ≥ λ1
(
ΔM\Ωj

) ≥ 2m

1/j
→ +∞, as j → +∞. �

Remark 6.8. In the assumptions of Theorem 6.7, M is stochastically incomplete.
Indeed

u(x) = |f |2
is bounded and satisfies

Δu = 2m,

thus proving that u violates the weak maximum principle at infinity (u is a
“woymp” violating function, in the terminology of [2]). By the characterization of
stochastic completeness via the maximum principle, it follows that M is stochas-
tically incomplete, as claimed. Moreover, 0 ≤ u(x) < supM u = R2 < +∞ and
Ωδ = {x ∈M : −∞ < u(x) ≤ R2 − δ} defines a compact exhaustion of M , that is,
u :M → [0, R2) is a proper function. We are going to prove that these ingredients
suffice to conclude the discreteness of the spectrum, thus establishing an abstract
and generalized version of the main Theorem 6.7.
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Definition 6.9. Say that a function u : M → (−∞, u∗), u∗ < +∞, is a bounded
exhaustion function if, for every δ > 0, the set

Ωδ =
{
x ∈M : −∞ < u(x) ≤ u∗ − δ

}
is compact and Ωδ ↗ M as δ → 0. Note that, in case that M is noncompact,
necessarily u∗ = supM u.

Definition 6.10. Let Mf be a weighted manifold. A woymp violating function
for the f -Laplacian is a C2 function u : M → R satisfying supM u = u∗ < +∞
such that, for any sequence {xk} along which u(xk) → u∗, there holds

lim sup
k→+∞

Δf u(xk) > 0.

Theorem 6.11. Let Mf be a (f -stochastically incomplete) noncompact weighted
manifold. If Mf supports a woymp violating exhaustion function then

σess(−ΔM
f ) = ∅.

Proof. Let u :M → (−∞, u∗), u∗ = supM u < +∞, be a woymp violating exhaus-
tion function. Arguing exactly as above, we consider the sets

Ωj =
{
x ∈M : u(x) ≤ u∗ − 1/j

} ↗M

and v(x) = u∗ − u(x) > 0. Note that, since u is woymp violating,

inf
M\Ωj

Δf u = cj > 0,

where, by the obvious monotonicity property of the infimum, the sequence cj is
increasing. Therefore,

inf σess
(−ΔM

f

) ≥ λ1
(−Δ

M\Ωj

f

)
≥ inf

M\Ωj

(
− Δfv

v

)
≥ jcj → +∞ as j → +∞.

�

At this point, a natural question is to what extent the existence of a woymp
violating exhaustion function characterizes the spectrum of the Laplacian of the
underlying manifold. Beside proper bounded submanifolds with controlled mean
curvature, are there natural examples of manifolds supporting woymp violating ex-
haustion functions? Which geometric conditions ensure that such functions exist?
Some examples will help us to isolate some important aspects.

Example 6.12. Let Mm
g ≈ R

m be a complete, noncompact model manifold en-
dowed with the metric

〈 , 〉 = dr2 + g(r)2dθ2,
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where the smooth function g : [0,+∞) → [0,+∞) satisfies⎧⎪⎨
⎪⎩

g(r) > 0, r > 0,

g(2k)(0) = 0, k ∈ N,

g′(0) = 1.

According to a well-known characterization, Mm
g is stochastically incomplete if

and only if

(6.2)

∫ +∞

0

∫ t

0
gm−1

gm−1(t)
= u∗ < +∞.

Indeed, the function,

u(x) =

∫ r(x)

0

∫ t

0
gm−1

gm−1(t)
dt :Mm

g → [0, u∗),

satisfies
Δu = 1,

and it is bounded if and only (6.2) holds, in which case u is in fact a woymp
violating exhaustion function, and σess

(−ΔMm
g
)
= ∅.

Thus a model is stochastically incomplete if and only if it admits a woymp
violating exhaustion function. In particular, for a stochastically incomplete model,
the condition that σess(−ΔMm

g ) = ∅ is equivalent with the existence of a woymp
violating exhaustion.

Example 6.13. In general it is not true that the stochastic incompleteness of a
manifold is equivalent to the discreteness of the spectrum of its Laplacian. In-
deed, condition the σess(−ΔM ) = ∅ is invariant under bilipschitz diffeomorphisms
whereas, according to a result by T. Lyons, [15], stochastic (in)completeness is
not. More concretely, consider the Riemannian product N =Mm

g ×R where Mm
g

is stochastically incomplete model. Then, N is stochastically incomplete but the
essential spectrum of the Laplacian ΔN = ΔM + d2/dt2 is nonempty. Note that
a natural voymp violating function on N is given by v(x, t) = u(x) where u(x)
is defined in the previous example. Clearly, v : N → [0, u∗) is not an exhaustion
function. This shows that the assumptions of Theorem 6.11 are necessary.

One may also investigate whether the condition that the bottom of the spectrum
of exterior balls grows at a specified rate, namely

(6.3) λ1
(−ΔM\BR

) ≥ f(R),

where f(R) is a monotone nondecreasing function and diverges as R → +∞, forces
stochastic incompleteness. However, without additional global assumptions even
this implication fails. To see this, we begin by observing that, by standard argu-

ments, if (M, 〈 , 〉) has a pole o and |Δr| ≥ c > 0 onM\Ω, then λ1(−ΔM\Ω) ≥ c2/4.
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Indeed, by continuity Δr has constant sign in every connected component ofM \Ω.
For every v ∈ C∞

c (M \ Ω) with support in one of such connected components
we have∫

v2 ≤ 1

c

∫
|Δr|v2 = ±2

c

∫
v〈∇v,∇r〉 ≤ 2

c

(∫
v2
)1/2( ∫

|∇v|2
)1/2

,

and

(6.4)
c2

4

∫
v2 ≤

∫
|∇v|2.

Note that it follows from the decomposition principle, that if |Δr| → +∞ as
x→ ∞, then σess(−ΔM ) = ∅.

Now, given a function f as above, assume that g satisfies

g(r) = exp
(
− 2

∫ r

1

√
f(t) dt

)

for sufficiently large r. Then the model Mm
g has the property that

Δr ≤ −2
√
f(R) in the complement of BR,

and (6.3) follows. On the other hand, since g(r) is decreasing, vol(BR) grows at
most linearly, and Mm

g is necessarily stochastically complete.

We note in passing that this shows that the assumption that M be a Cartan–
Hadamard manifold plays a fundamental role in Problem 10 of Grigor’yan’s sur-
vey [12].

Example 6.14. In general, a stochastically incomplete manifold with discrete
spectrum may support woymp violating functions both exhaustion and not. In-
deed, take N =M ×M where M supports a positive woymp violating exhaustion
function u : M → [0, u∗) (for instance, M is one of the bounded minimal surfaces
of R3 of Mart́ın–Morales). Then σess(−ΔM ) = ∅. Moreover, v(x, y) = u(x) + u(y)
is woymp violating and exhaustion whereas w(x, y) = u(x) is woymp violating but
not exhaustion. As a consequence, for a stochastically incomplete manifold M ,
the condition σess(−ΔM ) = ∅ could imply at most that there exists one woymp
violating exhaustion function.

In a similar manner, since both σess and the Feller property are only sensitive
to the properties of the manifold off a compact set, it is also natural to investigate
to what extent they are related. However, we are going to see that, without further
assumptions, there is no link between the Feller property and the discreteness of
the spectrum.

Example 6.15. For simplicity, we restrict ourselves to the case of the ordinary
Laplacian Δ, even though much of the ensuing discussion could be generalized to
the f -Laplacian.
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As noted in the proof of Theorem 5.18, the model manifold Mm
g is Feller if and

only if either
1

gm−1(r)
∈ L1(+∞)

or

(i)
1

gm−1(r)
/∈ L1(+∞) and (ii)

∫ +∞
r gm−1(t)dt

gm−1(r)
/∈ L1(+∞).

Recalling that Δr = (m− 1)g′/g, we deduce from the discussion in Example 6.13
that, if g(r) = e−rα for r >> 1, then Mm

g has discrete spectrum for every α > 1,
and it is Feller for α ≤ 2 and non-Feller for α > 2. Note that all these manifolds
have finite volume, and so are automatically stochastically complete, showing that
even in the case of models there is no equivalence between discreteness of the
spectrum, and stochastic incompleteness.

It follows that if M is the connected sum of Rm with a non-Feller model Mm
g ,

then M is non-Feller. Since the essential spectrum of Rm is the entire interval
[0,+∞) an easy argument based on characteristic sequences supported in the end
of M isometric to an exterior domain of Rm shows that σess(−ΔM ) = [0,+∞),
and M is therefore a non-Feller manifold with non-empty essential spectrum. Of
course, Rm itself is a trivial example of a Feller manifold with non-empty essential
spectrum.

Example 6.16. As seen in Example 6.12, a stochastically incomplete model has
discrete spectrum. Since such model has necessarily infinite volume, it is Feller by
the characterization of the previous example. Small modifications of the arguments
described above show that even for non-Feller, stochastically incomplete manifolds
there is in general no connection with the discreteness of the spectrum.

Recall that one may extend the definition of stochastic (in)completeness to
an end of a manifold, by requiring that the double of the end be stochastically
complete (incomplete). Then it follows easily from the weak maximum principle
that a manifold is stochastically incomplete if and only if so is at least one of
its ends.

The connected sum M =Mm
g1#M

m
g2 of a stochastically incomplete model Mm

g1
with a non-Feller modelMm

g2 with discrete spectrum, as described in Example 6.15,
provides an example of a stochastically incomplete, non-Feller manifold with empty
essential spectrum, σess(−ΔM ) = ∅.

On the other hand, the connected sum M = Mm
g1#M

m
g2#R

m is stochastically

incomplete, non-Feller, and σess(−ΔM ) = [0,+∞).
Note that all these examples have more than one end, and the case of manifolds

with only one end remains open.

6.3. Spectrum and semilinear PDEs

In this section we use very easy spectral considerations to deduce information on
nonnegative solutions of the differential inequality

(6.5) Δf u ≤ au− buσ,
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in the exterior of a compact set for some constants a ≥ 0, b > 0 and σ > 1.
By the strong minimum principle, u > 0 unless it is identically zero in each con-
nected component of every point where it vanishes. If u satisfied the inequality
on all of Mf , and the weighted manifold was stochastically complete with respect
to the f -Laplacian, then a direct application of the weak maximum principle at
infinity would imply that either infM u = 0 or

inf
M
u ≤

(a
b

)1/(σ−1)

.

For instance, when applied to the scalar curvature S(x) of a complete, shrinking
Ricci soliton, this procedure gives the estimate

0 ≤ inf
M
S ≤ mλ,

where λ denotes the soliton constant and m = dimM . Indeed, it is well known
that S satisfies

(6.6)
1

2
ΔfS = λS − |Ric|2 ≤ λS − S2

m
.

In the spirit of the previous sections, we are going to extend these considerations
outside a compact set. This time, however, we use spectral assumptions instead of
stochastic properties.

Proposition 6.17. Let u > 0 be a solution of (6.5) in a neighborhood at infinity,
for some constants a ∈ R, b > 0 and σ > 1. Then, for every domain Ω ⊂⊂M ,

(6.7) inf
M\Ω

u ≤
(a+ inf σess

(−ΔM
f

)
b

)1/(σ−1)

.

Remark 6.18. In particular, if inf σess(−ΔM
f ) = 0, we recover the conclusion

above outside every large compact set. According to Brooks’ estimates [7], this
happens under suitable volume growth assumptions. If infM\Ω u = (a/b)1/(σ−1),

then Δfu ≤ 0 onM \Ω and therefore by the comparison principle u > (b/a)1/(σ−1)

in the interior of M \Ω. We then conclude that infM\Ω u = (a/b)1/(σ−1) for every
Ω′ ⊇ Ω, so that the infimum is attained at infinity.

Conversely, if infM\Ω u > (a/b)1(σ−1), we deduce a gap in the essential spectrum
and, therefore, a volume growth estimate. In particular, this is the case when
a < 0. From another point of view, when a < 0 or when b < 0 the estimate may
be interpreted as a non-existence result.

Proof. This is a trivial application of Corollary 6.5. Indeed

inf σess(−ΔM
f ) ≥ inf

M\Ω

(
− Δf u

u

)
≥ −a+ b inf

M\Ω
uσ−1. �
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Returning to the scalar curvature S(x) of a gradient shrinker Mf with soliton
constant λ > 0, recall that S ≥ 0, the equality holding at some point if and only if

Mf = R
m
f and f(x) = A|x|2 + 〈B, x〉+ c.

Assume S > 0, for otherwise there is nothing to prove. Then, for every R > 0, we
obtain the estimates

(6.8) inf
M\BR

|Ric|2
S

− λ ≤ inf σess(−ΔM
f )

and

(6.9) inf
M\BR

S −mλ ≤ m inf σess(−ΔM
f ).

In the case of an expanding Ricci soliton, we have mλ ≤ infM S ≤ 0. Assume
that infM\BRo

S(x) ≥ 0 for some Ro ≥ 0, so that we must have either infM S =
infBRo

S < 0 or infM S = 0 and the infimum is not attained. Exactly as before,
the estimates (6.8) and (6.9) hold for every R ≥ Ro and from the latter we deduce
in particular that inf σess(−ΔM

f ) > 0 provided S > 0 outside a compact set.

To conclude this section, we remark that Proposition 6.17 follows essentially
from a suitable application of Barta’s theorem. Further use of this result, but in a
slightly different direction, yields a different kind of information on the solutions
at infinity of (6.5).

Proposition 6.19. Let Mf be a complete, m-dimensional weighted manifold sat-
isfying

Ricf ≥ −μ and |∇f | ≤ β1/2

for some constants μ > 0, β ≥ 0. Then, there exists a constant c = c(m,μ, β) > 0
such that the following holds. If u is a solution of (6.5) outside a compact set K,
for some constants a ≥ 0, b > 0 and σ > 1, then, for every BR(x) ∈M \K,

(a
b
+
c

b

1 +R2

R2

)1/(σ−1)

≥ inf
BR(x)

u.

In particular, for any fixed R > 0,

lim sup
x→∞

{
inf

BR(x)
u
}
< +∞.

Proof. Obviously, the only interesting case is

inf
BR(x)

u > 0.

Then,

λ1
(−Δ

BR(x)
f

) ≥ inf
BR(x)

(
− Δf u

u

)
≥ −a+ b inf

BR(x)
uσ−1.
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On the other hand, by Theorem 6.6,

λ1
(−Δ

BR(x)
f

) ≤ λ1
(−ΔB

m+1
R

) ≤ c1(μ, β,m)
(
1 +

1

R2

)

with B
m+1
R ⊂ H

m+1((β + μ)/m). Combining these two inequalities completes the
proof. �

The above result does not apply as stated to expanding Ricci solitons, since in
this case |∇f | cannot be bounded unless the soliton is trivial (see [18]). However,
by Zhang’s estimates, |∇f | grows at most linearly in the distance from a reference
point (and indeed, it was very recently shown by O. Munteanu and J.P. Wang
that its growth is in fact essentially linear).

Assuming that |∇f | ≤ Co r(x) in the above argument, it follows that for every
fixed R and every x such that r(x) ≥ 2R

λ1
(−Δ

BR(x)
f

) ≤ c1
(
μ+ C2(R+ r(x))2

)(
1 +

1

R2

)
for some constant C depending only on m, and we conclude that if u is as in the
statement of Proposition 6.19 then there exists a constant c2 depending on m, μ,
σ, Co and R such that

infBR u

r(x)2
≤ c2.

This in particular holds for expanding Ricci solitons and can be compared with
Zhang’s estimate

|S(x)|
r(x)2

≤ d (m,λ) .

Note that the latter follows applying the estimates of the potential function to the
basic equation (5.23), and is therefore specific to the much more rigid geometry
imposed by the soliton structure.
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