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Sharp weak type estimates

for weights in the class Ap1,p2

Alexander Reznikov

Abstract. We get sharp estimates for the distribution function of non-
negative weights that satisfy the so-called Ap1,p2 condition. For particular
choices of parameters p1, p2 this condition becomes an Ap-condition or re-
verse Hölder condition. We also get maximizers for these sharp estimates.
We use the Bellman technique and try to carefully present and motivate
our tactics. As an illustration of how these results can be used, we deduce
the following result: if a weight w is in A2 then it self-improves to a weight
that satisfies a reverse Hölder condition.

1. Introduction

1.1. Problem setting: basic definitions

Put I = [0, 1] and take p1 > p2, pi �= 0,±∞. For every nonnegative function ϕ
and any interval J ⊂ I we denote

〈ϕ〉
J
=

1

|J |

∫
J

ϕ(t) dt,

where |J | is the length of the interval J . For simplicity, when we take an average
over the whole interval I, we drop the subindex and write 〈ϕ〉.

Take a nonnegative function w. Note that by the Hölder inequality we have

(1.1) 〈wp1 〉1/p1

J
� 〈wp2 〉1/p2

J
.

Let Q > 1. We are going to consider such functions w � 0 that the following
“reverse” inequality is true:

(1.2) 〈wp1 〉1/p1

J
� Q 〈wp2〉1/p2

J
∀J ⊂ I.

If p1 > p2 > 1 then (1.2) is called the reverse Hölder inequality. If p1 = 1 and
p2 = −1/(p− 1) for a certain p > 1, then (1.2) is the famous Ap-condition.
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If w � 0 satisfies (1.2), we write

w ∈ AQ
p1,p2

.

We are interested in the following question: how big can w be? That is, for given λ,
we want to estimate the measure of the set {t ∈ I : w(t) � λ}.

1.2. Bellman setting and initial properties

History of the question. Ap weights play a key role in theory of singular
integrals on weighted spaces, which has recently experienced rapid progress. The
so-called A2, A2-A∞, and Ap-A∞ conjectures were proved in a short time period.
Moreover, the A1-A∞ theory was expanded; see, for example, [3]. In this theory
the careful study of weights, in particular their self-improvement properties, was
key.Our estimates allow to obtain such properties, as we show in Section 8. This is
why we think that sharp estimates for distribution function of Ap1,p2 weights are
interesting.

Bellman functions related to harmonic analysis appeared in the work of Burk-
holder, [1]. After that the first appearance was in the preprint of the paper by
Nazarov, Treil and Volberg, [4]. Different methods to find an exact Bellman func-
tion were developed. The reader can find them in [6], [7], [11], [8], and [9].

There are two works by V. Vasyunin, [8] and [9], which are related to the
question with which we are concerned. He gave a sharp estimate of 〈wq〉 for every
q ∈ R, with the assumption that w ∈ Ap1,p2 . After the work [8], M. Dindoš and
T. Wall, [2], found the sharp Ap-“norm” of a function in a reverse Hölder class.
V. Vasyunin used a Bellman approach and we shall follow it. However, we should
make some changes, since in Vasyunin’s work he was able to reduce the question
to solving a certain ODE. We cannot do this, and we are going to solve a PDE,
following the Monge–Ampère technique, see [11].

An important precursor for our study was the work of Vasyunin [10] on the
weak-type John–Nirenberg inequality. The preprint [10] does not contain proofs,
but the explicit Bellman functions stated there were found as solutions of the
Monge–Ampère equation on a nonconvex plane domain, just as they are here. The
function classes under consideration, the Bellman domains, the Monge–Ampère
geometry, and the optimizers in the two cases are different; nonetheless, the basic
steps in the constructions and the proofs are the same.

Finally, we mention that applications of the estimates we are giving arise in
many questions related to Calderón–Zygmund operators. In Section 8 we show
how they can be used to deduce a sharp reverse Hölder inequality for A2 weights.
Such inequalities are very useful; we refer the reader to [5] and [3].
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read. I also want to thank Carlos Pérez and the organizers of the 19th Summer St.
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Initial definitions. Denote

Ω =
{
x = (x1, x2) : xi � 0, x

1/p2

2 � x
1/p1

1 � Qx
1/p2

2

}
.

For every point x ∈ Ω we set

(1.3) B(x1, x2;λ) = sup
{
|{t : w(t) � λ}| : 〈wp1 〉 = x1, 〈wp2 〉 = x2, w ∈ AQ

p1,p2

}
.

Note that the definition of the Ω is due to inequalities (1.1) and (1.2).
We also need the following remark:

Remark 1.1. For every point x = (x1, x2) ∈ Ω there is a function w ∈ AQ
p1,p2

such that 〈wp1 〉 = x1 and 〈wp2〉 = x2.

The proof of this statement is subsumed in the proof of Lemma 2.7. This
remark shows that B is defined (not equal to −∞) on the whole domain Ω.

Remark 1.2. Obviously, if λ � 0 then B(x;λ) = 1 for every x. In the future we
consider only λ > 0.

For all Q � 1 define

ΓQ =
{
(x1, x2) : xi � 0, x

1/p1

1 = Qx
1/p2

2

}
.

Lemma 1.3. Let (vp1 , vp2) ∈ Γ1. Then

B(vp1 , vp2 ;λ) =

{
1, v � λ,

0, v < λ.

Proof. Let 〈wp1 〉 = vp1 , 〈wp2 〉 = vp2 . Then Hölder’s inequality becomes an equality
and therefore w is identically equal to v. Thus if v � λ then {t : w(t) � λ} = I
and B(vp1 , vp2 ;λ) = 1. Similarly, if v < λ then B(vp1 , vp2 ;λ) = 0. �

Now we are going to get rid of the λ using homogeneity. Take w ∈ AQ
p1,p2

with
〈wp1 〉 = x1 and 〈wp2〉 = x2. For a positive number s write w̃(t) = sw(t). Then
w̃ ∈ AQ

p1,p2
, 〈w̃p1 〉 = sp1x1 and 〈w̃p2〉 = sp2x2. Also

w(t) � λ ⇐⇒ w̃(t) � sλ.

Therefore,
B(x1, x2;λ) = B(sp1x1, s

p2x2; sλ).

Put s = 1/λ. Then we get

B(x1, x2;λ) = B(λ−p1x1, λ
−p2x2; 1),

so it suffices to find only B(x1, x2; 1) for every (x1, x2) ∈ Ω. We set

B(x1, x2) = B(x1, x2; 1).
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Lemma 1.3 says that

(1.4) B(vp1 , vp2) =

{
1, v � 1,

0, v < 1.

1.3. Structure of the paper

We describe the structure of the paper. The strategy is the following: we deduce
some heuristic properties of function B and then find a candidate function B with
these properties. We then rigorously prove that B = B.

In Subsections 1.4 and 1.5 we informally derive the main property of B, its
degenerate local concavity. This property means that we should look for solutions
of the homogeneous Monge–Ampère equation on Ω; in Subsection 1.6 a useful
theorem about such equations is stated. In Section 2 we make several technical
calculations. Further, in Section 3 we find an appropriate candidate B using the
Monge–Ampère machinery of Subsection 1.6. The reader can read [11] for more
examples.

After we find a function B that is the most natural candidate for our Bellman
function, we start proving that B = B. In Section 4 we prove that B � B, using
induction on scales.

To prove that B � B, we need to take an x, x ∈ Ω, and find a function
w ∈ AQ

p1,p2
such that (〈wp1 〉, 〈wp2 〉) = x and B(x) = |{t : w(t) � 1}|. We shall do

it in Section 6. We also emphasize that the function B and its properties somehow
carry information about attainability of the supremum (i.e., whether sup = max)
and about the maximizer.

1.4. The main property: local concavity

We give the following definition:

Definition 1.4. A function F is called locally concave in a domain Ω if for every
x ∈ Ω and for every convex neighborhood U of x such that U ⊂ Ω, the following
inequality holds:

F (μx+ (1− μ)y) � μF (x) + (1 − μ)F (y), ∀y ∈ U, ∀μ ∈ [0, 1].

In this section we will use some heuristics to derive the main property of the
Bellman function. We cannot prove this property a priori, but we will use it to
get an appropriate candidate for B.

Consider two points y = (y1, y2) ∈ Ω and z = (z1, z2) ∈ Ω and the line segment
connecting y and z: [y, z] = {μy + (1 − μ)z : μ ∈ [0, 1]} ⊂ Ω. Assume that the
supremum in (1.3) is attained on functions wy and wz respectively (we note that
we do not know whether the supremum is attained or not; we assume it is attained
for simplicity). For some μ ∈ (0, 1) take x = μy + (1 − μ)z – a point on [y, z].
Define

w(t) =

{
wy(

t
μ ), t ∈ [0, μ),

wz(
t

1−μ ), t ∈ [μ, 1].
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Then

〈wpk 〉 =
∫ μ

0

wpk
y

( t

μ

)
dt+

∫ 1

μ

wpk
z

( t

1− μ

)
dt = μyk + (1− μ)zk = xk.

To be able to compare B(x) with |{t : w(t) � 1}| we need one more thing,
namely, w ∈ AQ

p1,p2
. However, we cannot prove this. Nevertheless, if w ∈ AQ

p1,p2

then

B(x) � |{t : w(t) � 1}| = μ |{t : wy(t) � 1}|+ (1− μ) |{t : wz(t) � 1}|(1.5)

= μB(y) + (1 − μ)B(z).

Even though the above does not prove the local concavity of B, we will search for
a locally concave candidate B.

1.5. Degeneration of the Hessian

Assume that we have a smooth function B. Then B is locally concave if and only if

d2B

dx2
=

(
B′′

x1x1
B′′

x1x2

B′′
x2x1

B′′
x2x2

)
� 0.

Moreover, we want to find the best concave function. “Best” means that B must
be as small as possible (since we want to estimate something from above). This

gives us hope that the local concavity is “sharp”, i.e., that d2B
dx2 degenerates (as a

trivial example we mention that in the one variable case a straight line represents
the smallest concave function with fixed boundary values). Namely we require
that, for every point x ∈ Ω there be a direction −→m(x) along which B is a linear
function. This just means that

(1.6) det
(d2B
dx2

)
= 0.

Accordingly, we will look for a Bellman candidate satisfying condition (1.6).

1.6. On the Monge–Ampère PDE

In this subsection we state the following known result; see [7].

Theorem 1.5. Let B be a C2 function defined in Ω and assume that either
B′′

x1x1
�= 0 or B′′

x2x2
�= 0, and

det
(d2B
dx2

)
= 0.

Let
t1 = B′

x1
, t2 = B′

x2
, t0 = B − x1t1 − x2t2.

Then the functions tk are constant on each integral trajectory generated by the

kernel of the Hessian d2B
dx2 . Moreover, these integral trajectories are straight lines

given by

(1.7) dt0 + x1dt1 + x2dt2 = 0.
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2. All technical calculations

In this section we shall state and prove a number of formulas that we will need in
the future.

2.1. Initial calculations

We start with formalizing the geometry of Ω. Our first lemma is the following:

Lemma 2.1. For every Q > 1, there are two solutions γ± (0 < γ− < 1 < γ+) of
the following equation:

(2.1) Q−p2

(
1− p2

p1

)
γp2 = 1− p2

p1
Q−p2 γp2−p1 .

Proof. Put

f(t) =
(
1− p2

p1

)
tp2 +

p2
p1

tp2−p1 .

We want to prove that there are two values of t such that f(t) = Qp2 . Obviously,

f ′(t) = p2
p1 − p2

p1
tp2−1 +

p2
p1

(p2 − p1) t
p2−p1−1 =

p2
p1

(p1 − p2) t
p2−p1−1 (tp1 − 1).

Observe that

sign
( tp1 − 1

p1

)
= sign(t− 1),

so
sign(f ′(t)) = sign(p2(t− 1)).

Now we consider two cases.

Case 1: p2 > 0. Then f(0) = ∞, f(∞) = ∞ and f(1) = 1. Moreover, when
t ∈ [0, 1], f(t) decreases from ∞ to 1; when t ∈ [1,∞], f(t) increases from 1 to ∞.
The observation that Qp2 > 1 finishes the proof for this case.

t

0 γ+γ−

Qp2

Figure 1: The function f(t) for p2 > 0.
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t0 γ− γ+

Qp2

Figure 2: The function f(t) for p2 < 0.

Case 2: p2 < 0. Then f(0) = −∞, f(∞) = 0 and f(1) = 1. Moreover, when
t ∈ [0, 1], f(t) increases from −∞ to 1; when t ∈ [1,∞], f(t) decreases from 1 to 0.
The observation that Qp2 < 1 finishes the proof. �

Lemma 2.2. For every point (vp1 , vp2) ∈ Γ1 there are two tangent lines to ΓQ,
�+(v) and �−(v), such that (vp1 , vp2) ∈ �±(v). These tangent lines are defined by
the equations

(2.2) x2 =
p2
p1

Q−p2 ap2−p1

± (x1 − vp1) + vp2 ,

where a± = γ±v.

Proof. Let (vp1 , vp2) ∈ Γ1. Then(
ap1

± , Q−p2 ap2

±
)
∈ ΓQ.

Let �±(v) be the lines given by

x2 =
p2
p1

Q−p2 ap2−p1

± (x1 − vp1) + vp2 .

First of all, (vp1 , vp2) ∈ �±(v). Second,(
ap1

± , Q−p2 ap2

±
)
∈ �±(v).

To prove this, we use the definition of γ±:

Q−p2

(
1− p2

p1

)
γp2

± = 1− p2
p1

Q−p2 γp2−p1

± ,

whence
Q−p2

(
1− p2

p1

)
ap2

± = vp2 − p2
p1

Q−p2 ap2−p1

± vp1 .
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Therefore,

Q−p2 ap2

± =
p2
p1

Q−p2 ap2−p1

± (ap1

± − vp1) + vp2 ,

which exactly means that

(ap1

± , Q−p2 ap2

± ) ∈ �±(v).

Also the slope of �±(v) is equal to the derivative of the function x2 = Q−p2x
p2/p1

1

at the point (ap1

± , Q−p2ap2

± ), which finishes the proof. �

Remark 2.3. If p1 > 0, then γp1

+ > 1 and we get ap1

+ /vp1 > 1, so ap1

+ > vp1 . Thus,
for every point x = (x1, x2) on the segment of �+(v) with the endpoints (vp1 , vp2)
and (ap1

+ , Q−p2ap2

+ ), we have vp1 � x1 � ap1

+ .
If p1 < 0 then, for the same reason, ap1

+ � x1 � vp1 .

Corollary 2.4. Take a point (1, 1) and the corresponding tangents �± = �±(1).
They intersect Γ1 one more time at the points (vp1

± , vp2

± ). These points are defined
by the following equations:

v− =
γ−
γ+

and v+ =
γ+
γ−

.

This corollary is obvious: �± and �∓(v±) are the same lines, namely, these are
the lines passing through the points (1, 1) and (vp1

± , vp2

± ) and tangent to ΓQ at
(γp1

± , Q−p2γp2

± ).

Lemma 2.5. Take x = (x1, x2) ∈ Ω, x �∈ ΓQ. Then there are two lines tangent
to ΓQ that pass through x.

The proof of this lemma is the same as the proof of Lemma 2.2. We need the
following observation:

Lemma 2.6. The number γ+ defined above satisfies

1−Q−p2 γp2−p1

+ > 0.

Proof. Since

Q−p2

(
1− p2

p1

)
γp2

± = 1− p2
p1

Q−p2 γp2−p1

± ,

we get

Q−p2

(
1− p2

p1

)
γp2

+ = 1 +
(
1− p2

p1

)
Q−p2 γp2−p1

+ −Q−p2 γp2−p1

+

so, using γ+ > 1, we get

1−Q−p2 γp2−p1

+ =
p1 − p2

p1
Q−p2 γp2

+ (1− γ−p1

+ ) > 0.

�



Sharp weak type estimates for weights in the class Ap1,p2 441

Our next lemma is the following observation about weights:

Lemma 2.7. Suppose we have two positive numbers u and v such that the line
segment that connects the points (up1 , up2) ∈ Γ1 and (vp1 , vp2) ∈ Γ1 lies in Ω.
Suppose also that μ ∈ [0, 1]. Define

w(t) =

{
u, t ∈ [0, μ),

v, t ∈ [μ, 1].

Then w ∈ AQ
p1,p2

.

Proof. We take an interval J ⊂ I. If J ⊂ [0, μ] or J ⊂ [μ, 1] then

〈wp1 〉1/p1

J
〈wp2 〉−1/p2

J
= 1 < Q.

If J = [α, β], α < μ < β then

〈wpk 〉
J
=

upk(μ− α) + vpk(β − μ)

β − α
.

This means that the point x = (〈wp1 〉
J
, 〈wp2 〉

J
) is a convex combination of the

points (up1 , up2) and (vp1 , vp2), so x ∈ Ω. Thus, x
1/p1

1 x
−1/p2

2 � Q, and, therefore,
w ∈ AQ

p1,p2
. �

Remark 2.8. In particular, if J = I, then we get that 〈wpk〉 = μupk +(1−μ)vpk .

2.2. Splitting of Ω: formulas

Now we want to split Ω into different subdomains. We mention that our subdo-
mains will be open, while Ω is closed. However, the reader will see that this detail
is technical and will not affect our investigation. We write precise formulas and
then explain their geometrical meaning using figures.

Case 1. p1 > p2 > 0

ΩI =
{
x ∈ Ω, x2 > Q−p2

p2
p1

γp2−p1

+ (x1 − 1) + 1
}
∪
{
x ∈ Ω, x1 > γp1

+

}
,

ΩII =
{
x ∈ Ω, x2 < Q−p2

p2
p1

γp2−p1

+ (x1 − 1) + 1,

x2 < Q−p2
p2
p1

γp2−p1

− (x1 − 1) + 1, γp1

− < x1 < γp1

+

}
,

ΩIII =
{
x ∈ Ω, x2 > Q−p2

p2
p1

γp2−p1

− (x1 − 1) + 1
}
,

ΩIV =
{
x ∈ Ω, x2 < Q−p2

p2
p1

γp2−p1

− (x1 − 1) + 1, 0 < x1 < γp1

−
}
.
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ΩI

ΩII

ΩIV

ΩIII

(1,1)

(γp1
− , Q−p2γp2

− )
(vp1− , vp2− )

Figure 3: The domain Ω when p1 > p2 > 0.

Case 2. p1 > 0 > p2

ΩI =
{
x ∈ Ω, x2 < Q−p2

p2
p1

γp2−p1

+ (x1 − 1) + 1
}
∪
{
x ∈ Ω, x1 > γp1

+

}
,

ΩII =
{
x ∈ Ω, x2 > Q−p2

p2
p1

γp2−p1

+ (x1 − 1) + 1,

x2 > Q−p2
p2
p1

γp2−p1

− (x1 − 1) + 1, γp1

− < x1 < γp1

+

}
,

ΩIII =
{
x ∈ Ω, x2 < Q−p2

p2
p1

γp2−p1

− (x1 − 1) + 1
}
,

ΩIV =
{
x ∈ Ω, x2 > Q−p2

p2
p1

γp2−p1

− (x1 − 1) + 1, 0 < x1 < γp1

−
}
.

ΩI

ΩIV

ΩIII ΩII

(vp1− , vp2− )

(1, 1)

(γp1
− , Q−p2γp2

− ))

Figure 4: The domain Ω when p1 > 0 > p2.
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Case 3. 0 > p1 > p2

ΩI =
{
x ∈ Ω, x2 < Q−p2

p2
p1

γp2−p1

+ (x1 − 1) + 1
}
∪
{
x ∈ Ω, x1 < γp1

+

}
ΩII =

{
x ∈ Ω, x2 > Q−p2

p2
p1

γp2−p1

+ (x1 − 1) + 1,

x2 > Q−p2
p2
p1

γp2−p1

− (x1 − 1) + 1, γp1

+ < x1 < γp1

−
}
,

ΩIII =
{
x ∈ Ω, x2 < Q−p2

p2
p1

γp2−p1

− (x1 − 1) + 1
}
,

ΩIV =
{
x ∈ Ω, x2 > Q−p2

p2
p1

γp2−p1

− (x1 − 1) + 1, x1 > γp1

−
}
.

ΩI

ΩIV

ΩIII

ΩII

(1, 1)

(vp1− , vp2− )

(γp1
− , Q−p2γp2

− )

Figure 5: The domain Ω when 0 > p1 > p2.

2.2.1. Motivation. We shall try to motivate why we chose these subdomains.
The reason we chose this splitting of Ω is that we can readily determine the

Bellman function B for some of the subdomains, namely ΩI and ΩIII. Let us
explain. For each (vp1 , vp2) ∈ Γ1, the set of test functions over which the supremum
in the definition of B is taken consists of a single constant function, w(vp1 ,vp2) = v.
Take two points y, z ∈ {(vp1 , vp2) : v > 1}, such that the line segment [y, z] lies
entirely in Ω, and any point x on [y, z]. We can obtain a test function wx for x
simply by concatenating the two constant functions wy and wz , as was done in
Section 1.4 (by Lemma 2.7, this concatenation is in AQ

p1,p2
). Then wx is pointwise

at least 1, which means that B(x) = 1. Observe that by our definition ΩI is
precisely the set of all points x that can be obtained in this way.

We again emphasize that our intentions were to connect x with two points y
and z on the boundary Γ1 that have pointwise big test-functions wy and wz. Let
us call these y and z good points.
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Take now ΩIII. Here we cannot put x on a line which connects two good points.
However, we can connect x with the point (1, 1), which is good, and with another
point on Γ. This point is not good, but our test-function wx, obtained as above,
will be pointwise big enough due to the contribution of w(1,1). That is why we
separate out this domain. We give the full details in Section 6.3.

Now we are left with ΩII and ΩIV, and we do not subdivide them further.

2.3. On the dependence of v on x

In this section we introduce a certain function v as a function of x. We study its
properties that will be important later. Here is the definition.

If x ∈ ΩIII we take v �= 1 to be the solution of the following equation:

vp2(1− x1)− vp1(1 − x2) = x2 − x1.

The geometrical meaning of this is as follows. We take the line segment that
connects the point x and the point (1, 1). We continue this line until it intersects Γ1

a second time. The point of intersection is exactly (vp1 , vp2). Note that for this v
we have sign(x1 − vp1) = sign(p1).

Next, take a point (vp1 , vp2) on the boundary of ΩIV and the tangent line �+(v).
Such tangent lines foliate all ΩIV, and they do not intersect. Therefore, for every
x ∈ ΩIV we can find exactly one such �+(v). Notice that sign(x1− vp1) = sign(p1).

Take this �+(v):

x2 = Q−p2
p2
p1

γp2−p1

+ vp2−p1 (x1 − vp1) + vp2 .

Fix x2 and consider v as a function of x1. We would like to determine the sign
of v′x1

.

Definition 2.9. Take v(x) to be a solution of the equations

{
vp2(1− x1)− vp1(1− x2) = x2 − x1, x ∈ ΩIII,

x2 = Q−p2 p2

p1
γp2−p1

+ vp2−p1(x1 − vp1) + vp2 , x ∈ ΩIV,

and such that sign(x1 − vp1) = sign(p1).

Our goal is the following lemma:

Lemma 2.10. For every x the following is true:

sign(v′x1
) = − sign(p1) and sign(v′x2

) = sign(p2).

We split the proof into two cases.

Case 1: x ∈ ΩIV. In the following lemma we determine the signs of v′x1
and v′x2

for x ∈ ΩIV.
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Lemma 2.11. Take x ∈ ΩIV. We define

A = Q−p2 γp2−p1

+ , Π =
Ax1

vp1+1
− x2

vp2+1
.

Then

v′x1
=

1

p1Π

A

vp1
, v′x2

= − 1

p2Π

1

vp2
.

Moreover, we always have Π < 0 and therefore

sign(v′x1
) = − sign(p1) and sign(v′x2

) = sign(p2).

Proof. Using the definition of A, rewrite the equation for v in the following form:

x2 =
p2
p1

Avp2−p1(x1 − vp1) + vp2 =
p2
p1

Avp2−p1x1 −
p2
p1

Avp2 + vp2 .

Hence,
x2

vp2
=

p2
p1

A
x1

vp1
−
(p2
p1

A− 1
)
.

Now, taking the partial derivative ∂/∂x1,

−p2
x2

vp2+1
v′x1

=
p2
p1

A
( 1

vp1
− p1x1

vp1+1
v′x1

)
,

and therefore,

v′x1

( Ax1

vp1+1
− x2

vp2+1

)
=

A

p1vp1
.

One can get the result for v′x2
similarly. From the equation

x2

vp2
=

p2
p1

A
x1

vp1
−
(p2
p1

A− 1
)
.

we get that
Ax1

vp1
− x2

vp2
=

Ax1

vp1

(
1− p2

p1

)
+
(p2
p1

A− 1
)
.

From (2.1) we see that

1− p2
p1

A = Q−p2

(
1− p2

p1

)
γp2

+ ,

so

Ax1

vp1
− x2

vp2
=

(
1− p2

p1

)(Q−p2 γp2−p1

+ x1

vp1
−Q−p2 γp2

+

)
(2.3)

= Q−p2 γp2

+

(
1− p2

p1

)( x1

(γ+v)p1
− 1

)
.

Observe that γ+v = a+ and from Remark 2.3 we know that sign(x1 − ap1

+ ) =
− sign(p1). Therefore, the equation

p1Π =
p1
v

(Ax1

vp1
− x2

vp2

)
=

1

v
Q−p2 γp2

+ (p1 − p2)
( x1

ap1

+

− 1
)

finishes the proof. �
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Remark 2.12. One can draw a picture, take a point x, move it a little bit to the
right and observe that vp1 has decreased. It exactly means that v acts as claimed
in the lemma. We give a picture for the case p1 > p2 > 0. We encourage the
reader to draw similar pictures for the other cases.

(x1 + ε, x2)

(x1, x2)

(vp1(x1, x2), v
p2 (x1, x2))

(vp1(x1 + ε, x2), v
p2(x1 + ε, x2))

Figure 6: The illustration for sign(v′x1
).

Case 2: x ∈ ΩIII. We would like to do the same thing as before – study the sign
of v′x1

. Note that it is obvious from the picture that v′x1
behaves in the same way

as before, but we shall prove it analytically.

Lemma 2.13. Let v be as above and let x ∈ ΩIII. Then sign v′x1 = − signp1 and
sign(v′x2

) = sign(p2).

Proof. We have

x1 − 1 =
vp1 − 1

vp2 − 1
(x2 − 1).

Therefore, 1 = (x2 − 1)h′(v) v′x1
, where

h(v) =
vp1 − 1

vp2 − 1
.

Differentiating, we get

h′(v) =
p1v

p1−1(vp2 − 1)− p2v
p2−1(vp1 − 1)

(vp2 − 1)2

=
vp1+p2−1

(vp2 − 1)2
(p1 − p2 + p2v

−p1 − p1v
−p2) =

vp1+p2−1

(vp2 − 1)2
h1(v),

where
h1(v) = p1 − p2 + p2v

−p1 − p1v
−p2 .
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Thus,
sign(v′x1

) = sign(x2 − 1) sign(h1(v)).

Clearly, sign(x2 − 1) = − sign(p2), and we only need to find sign(h1(v)). Since

h′
1(v) = −p2p1v

−p1−1 + p1p2v
−p2−1 = p1p2v

−p2−1(1− vp2−p1),

we have sign(h′
1) = − sign(p1p2). Note that h1(1) = 0, whence sign(h1(v)) =

sign(p1p2). Therefore, sign(v
′
x1
) = − sign(p1).

The result for sign(v′x2
) can be obtained similarly. �

2.4. On the local concavity and derivatives in the sense of distributions.

In this part we are going to discuss the following question. Assume B is not
smooth, but still locally concave. How to express this in the sense of derivatives?

The answer is easy: we must demand d2B
dx2 � 0 in the sense of distributions. More

precisely, the following theorem is true:

Theorem 2.14. The function B is locally concave in Ω if and only if for every
smooth function ϕ � 0 with a compact support in the interior of Ω, and for every
Δ1,Δ2 ∈ R the following inequality holds:∫

B(x)
[
ϕ′′
x1x1

Δ2
1 + 2ϕ′′

x1x2
Δ1Δ2 + ϕ′′

x2x2
Δ2

2

]
dx � 0.

Our next step is the following: we take one of the integrals above, for example∫
B(x)ϕ′′

x1x1
(x)dx, and perform an integration by parts. While doing this, we

assume B is continuous. Although B′
x1

may not be, B′
x1

is piecewise differentiable.
Our motivation is the following: we are going to find a Bellman candidate B

that is twice differentiable in the interiors of ΩI, ΩII, ΩIII and ΩIV and continuous
at every point of �±. However, the first derivatives of B may not be continuous
on �±, and we want to catch the influence of their jumps on the integral above.

We state the following lemma, where F plays the role of a derivative of B:

Lemma 2.15. Let

F (x1, x2) =

{
f1(x1, x2), x2 � kx1 +m,

f2(x1, x2), x2 < kx1 +m.

Let ϕ be a smooth function with compact support. By (f, ϕ) we denote the action of
the functional f on the function ϕ. Then, considering Fx1 and Fx2 as distributions,
we get

(Fx1 , ϕ) =

∫∫
Fx1ϕ dx1 dx2

+ k

∫
R

(
f2(x1, kx1 +m)− f1(x1, kx1 +m)

)
ϕ(x1, kx1 +m) dx1,

(Fx2 , ϕ) =

∫∫
Fx2ϕ dx1 dx2

+

∫
R

(
f1(x1, kx1 +m)− f2(x1, kx1 +m)

)
ϕ(x1, kx1 +m)dx1.
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The proof of this lemma is simply integration by parts and we omit it. The
following is an immediate corollary of Lemma 2.15.

Remark 2.16. Take F as above and assume f1(x1, kx1 +m) is a constant f1 and
f2(x1, kx1 +m) is a constant f2. Then

(Fx1 , ϕ) =

∫
Fx1ϕdx+ k(f2 − f1)

∫
ϕ(x1, kx1 +m) dx1;

(Fx2 , ϕ) =

∫
Fx2ϕdx+ (f1 − f2)

∫
ϕ(x1, kx1 +m) dx1.

Finally, define Φ±(ϕ) =
∫
ϕ(x1, Q

−p2 p2

p1
γp2−p1

± (x1 − 1) + 1)dx1. We simply

integrate ϕ over �±. Note that if ϕ � 0 then Φ±(ϕ) � 0.

The second derivatives of B will consist of two parts: the “classical” deriva-
tive and the functionals Φ±. The second part corresponds to the “jump” of first
derivatives.

To simplify our calculations we shall state a technical lemma. It says that
to check that the “jump” matrix is nonpositive it is sufficient to check that the
derivative is nonpositive only for one direction that is not parallel to �±.

Lemma 2.17. Let B be as above, i.e. det d2B
dx2 = 0, B is a C2 function in the

interiors of ΩI–ΩIV, and the first derivatives of B are constant on each �±. To
check that the Hessian of B is a nonpositive distribution it is sufficient to check
that in interiors of ΩI–ΩIV the Hessian is nonpositive and that B′′

x2x2
� 0 as a

distribution.

We omit the proof of this lemma. The reader can find details in [7].

2.5. On the approximation of AQ
p1,p2

-weights with bounded weights

In this subsection we are going to prove two results about the approximation
of AQ

p1,p2
-weights. The motivation is the following: if we have an integral of a

function over a finite interval, it may be convenient to approximate the function
by its bounded cut-offs, because to bounded functions we can apply the Lebesgue
dominated convergence theorem.

We have the following lemma:

Lemma 2.18. Assume w ∈ AQ
p1,p2

. Take

wa(t) =

{
w(t), w(t) � a,

a, w(t) > a.

Then wa ∈ AQ
p1,p2

. The same is true for the function

wa(t) =

{
a, w(t) � a,

w(t), w(t) > a.
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Remark 2.19. Note that

wa � w � wa.

Remark 2.20. Note that it is sufficient to prove the lemma only for wa. The result
for wa will follow immediately, since instead of w, p1, and p2 we can consider w−1,
−p2, and −p1.

Proof. First, we fix an interval J ⊂ [0, 1] and write J1 = {t ∈ J : w(t) � a} and
J2 = {t ∈ J : w(t) > a}. Define also

zi = 〈wp1〉
Ji
, yi = 〈wp2 〉

Ji
, αi =

|Ji|
|J | .

Then we want to prove

〈wp1〉1/p1

J
〈wp2 〉−1/p2

J
− 〈wp1

a 〉1/p1

J
〈wp2

a 〉−1/p2

J
(2.4)

= (α1z1+α2z2)
1/p1(α1y1+α2y2)

−1/p2−(α1z1+α2a
p1)1/p1(α1y1+α2a

p2)−1/p2

� 0 .

By Hölder’s inequality, we get z
1/p1

i � y
1/p2

i . Therefore, if we denote y
1/p2

2

by u, then z
1/p1

2 = su for a number s � 1 and the left-hand side of (2.4), which we
need to estimate, can be written as the following function of s and u:

ϕ(s, u) = (α1z1 + α2s
p1up1)1/p1(α1y1 + α2u

p2)−1/p2

− (α1z1 + α2a
p1)1/p1(α1y1 + α2a

p2)−1/p2 .

Since
∂ϕ

∂s
= α2 s

p1−1 up1 (α1z1 + α2s
p1up1)1/p1−1 � 0 ,

the function ϕ is increasing in s and therefore ϕ(s, u) � ϕ(1, u), i.e., it has its
minimal value when w(t) is equal to u on J2 identically.

Now we have u = w(t)|J2 > a and since ϕ(1, a) = 0, the desired inequality will
be proved after checking that ∂ϕ

∂u (1, u) � 0. We write

∂ϕ

∂u
(1, u) =α2u

−1(α1z1 + α2u
p1)1/p1−1(α1y1 + α2u

p2)−1/p2−1

·
[
up1(α1y1 + α2u

p2)− up2(α1z1 + α2u
p1)

]
=α1α2u

−1(α1z1 + α2u
p1)1/p1−1(α1y1 + α2u

p2)−1/p2−1[up1y1 − up2z1],

and this is what we need because up1y1 − up2z1 � 0. Indeed, since u � w(t) and
p1 � p2, we have up1−p2 � w(t)p1−p2 , whence up1wp2 � up2wp1 . Therefore,

up1y1 − up2z1 = 〈up1wp2 − up2wp1 〉
J1

� 0 ,

which completes the proof. �
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3. Searching for B

3.1. Domain ΩI

This case was briefly discussed in Section 2.2.1.

Lemma 3.1. For every point x = (x1, x2) ∈ ΩI there are two numbers u � 1 and
v � 1 such that x lies on the line segment that connects (up1 , up2) and (vp1 , vp2),
and this line segment lies in ΩI.

This lemma is a simple geometrical observation. We refer the reader to Fig-
ures 1–3.

Lemma 3.2. For every x ∈ ΩI, we have B(x) = 1.

Proof of Lemma 3.2. Take a point x ∈ ΩI and the numbers u and v from Lemma 3.1.
Then for some μ ∈ [0, 1] we have xk = μupk + (1 − μ)vpk . Let

w(t) =

{
u, t ∈ [0, μ),

v, t ∈ [μ, 1].

By Lemma 2.7, w ∈ AQ
p1,p2

. Further,

〈wpk〉 = μupk + (1− μ)vpk = xk.

We have u, v � 1, thus |{w(t) � 1}| = 1. Since 〈wpk 〉 = xk, and w ∈ AQ
p1,p2

, we get

B(x) � |{w(t) � 1}| = 1.

On the other hand, by definition, B(x) � 1. Therefore, B(x) = 1. �

3.2. Domain ΩIII

In this section we find B in ΩIII. We discussed our plan in Section 2.2.1, and now
we are going to give the full details. As was said in Section 1.6, we need to find
lines on which B is linear. These lines will simply be the lines connecting the point
(1, 1) with points on Γ. Our setting is the following: we fix a point (vp1 , vp2) ∈ Γ
and consider the line with the equation

vp2(1− x1)− vp1(1 − x2) = x2 − x1.

Clearly, this line contains the points (1, 1) and (vp1 , vp2). We assume that B is
linear on our line. Using that B(1, 1) = 1 and B(vp1 , vp2) = 0, we get

B(x) =
x1 − vp1

1− vp1
=

x2 − vp2

1− vp2
.
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3.3. Domain ΩII

To find B in ΩII, we use the following simple observation. The boundary of ΩII

has three parts: the parts of �± and a part of ΓQ. Since our candidate for B is
linear on the mentioned parts of �±, it is natural to assume B to be linear in the
whole of ΩII, namely, B(x) = ax1 + bx2 + c.

We would like to explain the word “natural”. In the paper [7] this is called an
optimality principle of building Monge–Ampère foliations. The rough idea behind
it is that the smallest concave function is linear; and since we have two linear
boundaries of ΩII, on which B is linear, we have a hope that we can extend B to
a linear function in the whole ΩII.

We now show how to find a, b and c. We want B to be continuous on �± and,
therefore, we want B(1, 1) = 1, B(vp1

− , vp2

− ) = 0 and B(vp1

+ , vp2

+ ) = 1. This gives us
three equations: ⎧⎪⎨

⎪⎩
a+ b+ c = 1,

a vp1

− + b vp2

− + c = 0,

a vp1

+ + b vp2

+ + c = 1.

Solving this linear system (and using v+ = 1/v−) one gets

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a =
vp1

−
(1− vp1

− )(vp1

− − vp2

− )
,

b =
vp2

−
(vp2

− − 1)(vp1

− − vp2

− )
,

c = 1− 1

(vp1

− − 1)(vp2

− − 1)
.

3.4. Domain ΩIV

Now we shall find B in ΩIV. We guess that if x ∈ ΩIV then B is linear on the
tangent from x to ΓQ, which corresponds to γ+.

Let us give an explanation. Past experience building Bellman functions, see [6],
[7], [9], and [8], shows that in a lot of cases the Bellman foliation consists exactly
of these tangent lines (this is called tangency principle in [7]). Since we do not
have any other guesses, we should check this one.

We remind the reader what our guess means. For every point x there is a
unique point (vp1 , vp2) ∈ Γ1, such that x lies on the line through this point that is
tangent to ΓQ at ((γ+v)

p1 , (γ+v
Q )p2). Namely, the equation of this tangent is

x2 = Q−p2
p2
p1

γp2−p1

+ vp2−p1 (x1 − vp1) + vp2 .

We know that on this line t0, t1, and t2 are supposed to be constants. This means
that they depend only on v. Therefore, we divide the equation

dt0 + x1dt1 + x2dt2 = 0
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by dv and get:

(3.1) t′0(v) + x1t
′
1(v) + x2t

′
2(v) = 0,

when
x2 = Q−p2

p2
p1

γp2−p1

+ vp2−p1 (x1 − vp1) + vp2 .

Now we substitute x2 from this equation into (3.1) and use that for a fixed v
equation (3.1) is true for all x1 between vp1 and (γ+v)

p1 . Therefore, the coefficient
of x1 must be equal to zero, which yields

(3.2) t′1 +Q−p2
p2
p1

γp2−p1

+ vp2−p1 t′2 = 0.

Since B(vp1 , vp2) = 0, we get

t0 + vp1t1 + vp2t2 = 0, dt0 + vp1dt1 + vp2dt2 = 0,

so
dt0 + vp1dt1 + p1v

p1−1t1dv + vp2dt2 + p2v
p2−1t2dv = 0

or

(3.3) p1 t1 v
p1−1 + p2 t2 v

p2−1 = 0,

thus
t′2 = −p1

p2
vp1−p2−1 (t′1 v + (p1 − p2) t1).

Combining the last equation with (3.2) we obtain

t′1 (1−Q−p2 γp2−p1

+ ) =
p1 − p2

v
t1 Q

−p2 γp2−p1

+ ,

so

t1 = C v

(p1−p2)Q−p2γ
p2−p1
+

1−Q−p2γ
p2−p1
+ = C v

p1

γ
p1
+

−1 .

From (3.3) we get

t2 = −p1
p2

C v

p1−p2

1−Q−p2γ
p2−p1
+ ,

and from t0 + vp1t1 + vp2t2 = 0 we get

t0 =
(p1
p2

− 1
)
C v

p1−p2Q−p2γ
p2−p1
+

1−Q−p2γ
p2−p1
+ =

p1 − p2
p1

C v

p1γ
p1
+

γ
p1
+

−1 .

We shall find C such thatB is continuous in ΩIII∩ΩIV. As before, A = Q−p2 γp2−p1

+ .
On the line

x2 = A
p2
p1

vp2−p1

− x1 + vp2

−
(
1− p2

p1
A
)
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we have

B(x1, x2) = C
[p1 − p2

p2
v

p1−p2A
1−A

− + x1 v
(p1−p2)A

1−A

− −A
p2
p1

vp2−p1

− x1
p1
p2

v
p1−p2
1−A

−

− p1 − p2A

p1
vp2

−
p1
p2

v
p1−p2
1−A

−
]

= C(1 −A)
[
x1 v

(p1−p2)A
1−A

− − v
p1−p2A

1−A

−
]
.

However, on this line

B(x1, x2) =
x1 − vp1

−
1− vp1

−
,

so

C =
1

1−A

v
− (p1−p2)A

1−A

−
1− vp1

−
.

3.5. The formula for B

Now we state the unified formula for B.
(3.4)

B(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x ∈ ΩI,
v
p1
−

(1−v
p1
− )(v

p1
− −v

p2
− )

x1 +
v
p2
−

(v
p2
− −1)(v

p1
− −v

p2
− )

x2 + 1− 1
(v

p1
− −1)(v

p2
− −1)

, x ∈ ΩII,

x1 − vp1

1− vp1
, x ∈ ΩIII,

1
1−A

v
− (p1−p2)A

1−A
−
1−v

p1
−

v
p1−p2
1−A

(
p1−p2

p2
vp2 + x1v

p2−p1 − p1

p2
x2

)
, x ∈ ΩIV,

where v is defined as the solution of equation{
vp2(1− x1)− vp1(1− x2) = x2 − x1, x ∈ ΩIII,

x2 = Q−p2 p2

p1
γp2−p1

+ vp2−p1(x1 − vp1) + vp2 , x ∈ ΩIV,

that has the property that sign(x1 − vp1) = sign(p1).

4. The estimate from above: B � B
To state the main theorem of this section we need to introduce some notation.
Recall that in the definition of B there was a fixed number Q > 1. In fact, we
could write

BQ(x1, x2) = sup
{
|{t : w(t) � 1}| : 〈wp1 〉 = x1, 〈wp2〉 = x2, w ∈ AQ

p1,p2

}
,

and to denote our Bellman candidate BQ. We had dropped the index Q for sim-
plicity, but now we need it.
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We now take a number Q1 > Q and take the corresponding Bellman candi-
date BQ1 , as defined in (3.4) (but for Q1 instead of Q). The function BQ1 is defined
on the domain ΩQ1 , which contains ΩQ.

The main result of this section is the following theorem:

Theorem 4.1. For every point x ∈ ΩQ and for every Q1 > Q we have that
BQ1(x) � BQ(x).

It is easy to check that BQ1 is continuous in Q1, which immediately gives the
following corollary:

Corollary 4.2. For every point x ∈ ΩQ we have that B(x) � B(x).

To prove the Theorem 4.1 we need the following two lemmata. The lengthy
proof of the first one is postponed until Section 5. The proof of the second one
can be found in [9].

Lemma 4.3. The function BQ is locally concave.

Lemma 4.4. Fix Q1 > Q > 1. Then for every w ∈ AQ
p1,p2

there are two in-

tervals I+ and I− such that I = I− ∪ I+ and if x± =
(
〈wp1〉I± , 〈wp2 〉I±

)
then

[x−, x+] ⊂ ΩQ1 . Also the parameters α± can be taken separated from 0 and 1
uniformly with respect to w.

Proof of Theorem 4.1. We want to prove that for any function w ∈ AQ
p1,p2

(I) and
x = (〈wp1 〉, 〈wp2 〉) it is true that

(4.1) BQ1(x) � |{w � 1}|.

Then, taking the supremum of the right-hand side, we get what we need. Assume
w ∈ AQ

p1,p2
.We take a splitting of our interval I by the rule from Lemma 4.4; then

we split I± according to the same rule and continue the splitting process. ByDn we
denote the set of intervals of the n-th generation. Thus D0 = {I}, D1 = {I−, I+},
and so on. For every interval J ∈ Dn we let

xJ = (〈wp1 〉
J
, 〈wp2 〉

J
).

Since BQ1 is locally concave, we get

BQ1(x) � |I−|BQ1(x
I−

) + |I+|BQ1(x
I+

)

�
∑

J∈Dn

|J |BQ1(x
J ) =

∫ 1

0

BQ1(x
n(t)) dt,(4.2)

where xn(t) is a step function defined in the following way: for each J ∈ Dn let
xn(t) = xJ , t ∈ J .

Since we assume that wpi ∈ L1,loc, we get

xn(t) → (wp1(t), wp2 (t)) a.e.
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Moreover, in Section 6 it will be proved that for every x ∈ Ω there exists a func-
tion w ∈ AQ

p1,p2
such that B(x) = |{w � 1}|. The same can be shown for Q1 instead

of Q, so we get BQ1(x) � 1. Therefore, by the Lebesgue dominated convergence
theorem, we can pass to the limit in (4.2). Then we get

BQ1(x) �
∫ 1

0

BQ1(w
p1 (t), wp2 (t)) dt.

However, for every t we have (wp1 (t), wp2 (t)) ∈ Γ1, where we know BQ1 by
Lemma 1.3. Therefore,

BQ1(x) � |{t : w(t) � 1}|,
which is what we need. �

5. Proof of concavity

This section is devoted to the proof of Lemma 4.3. We recall its statement.

Lemma. The following inequality holds in the sense of distributions:

d2B

dx2
� 0.

We break the proof of this lemma into parts. Following Section 2.4, first we
check that in interiors of ΩI–ΩIV the Hessian of B is nonpositive.

Then we study the jumps ofB′
x2

across the boundaries between the subdomains.

We warn the reader that this section is rather technical.

5.1. Domains ΩI and ΩII

Here B is fully linear and, therefore, d2B
dx2 = 0.

5.2. Domain ΩIII

As we know, here

(5.1) B(x) =
x2 − vp2

1− vp2
=

x2 − 1

1− vp2
+ 1.

Recall that vp2(1− x1)− vp1(1 − x2) = x2 − x1, so

(p2 v
p2−1(1− x1)− p1 v

p1−1(1− x2)) v
′
x1

− vp2 = −1,

or

v′x1
= v

vp2 − 1

Υ
,

where
Υ = Υ(v) = p2 v

p2(1− x1)− p1 v
p1(1− x2).
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Put

f(v) =
vp2

vp2 − 1
= 1 +

1

vp2 − 1
.

Differentiating (5.1), we get

B′
x1

= (x2 − 1) · p2 v
p2−1

(1− vp2)2
v′x1

= p2(x2 − 1) · vp2−1

(1− vp2)2
· v(v

p2 − 1)

Υ
(5.2)

= p2(x2 − 1) · vp2

vp2 − 1
· 1

Υ
= p2(x2 − 1)

f(v)

Υ
.

Observe that

f ′
x1
(v) = −p2 ·

vp2−1

(vp2 − 1)2
· v′x1

= −p2 ·
f(v)

Υ
.

Therefore,

B′′
x1x1

= p2(x2 − 1)
[
−p2

f(v)

Υ2
−
(p22v

p2−1(1− x1)−p21v
p1−1(1− x2))v

′
x1
−p2v

p2

Υ2
f(v)

]
=

p2(1− x2)f(v)

Υ2

[
p2−p2v

p2+(p22v
p2−1(1− x1)− p21v

p1−1(1 − x2))
v(vp2 − 1)

Υ

]
= −p2(x2 − 1)f(v)

Υ2
(vp2 − 1)

[p22vp2(1− x1)− p21v
p1(1 − x2)

p2vp2(1− x1)− p1vp1(1 − x2)
− p2

]

= −p2(x2 − 1)f(v)(vp2 − 1)

Υ2
· p2p1v

p1(1 − x2)− p21v
p1(1− x2)

Υ

= −p1p2(x2 − 1)f(v)(vp2 − 1)vp1(1− x2)(p2 − p1)

Υ3

=
(x2 − 1)2(p2 − p1)v

p1+p2

Υ2
· p1p2

Υ
.

Now we calculate B′′
x2x2

. We use that the expression (5.1) can be rewritten as

B(x) =
x1 − vp1

1− vp1
=

x1 − 1

1− vp1
+ 1.

By a straightforward calculation we get

B′′
x2x2

=
(x1 − 1)2(p2 − p1)v

p1+p2

Υ2

p1p2
Υ

.

Using that det d2B
dx2 = 0, we immediately get

B′′
x1x2

= ± (1− x1)(1− x2)v
p1+p2(p2 − p1)

Υ2

p1p2
Υ

,

and the sign is not important.
Finally,

∑
i,j

B′′
xixj

ΔiΔj =
vp1+p2(p2 − p1)

Υ2

p1p2
Υ

(
(1− x1)Δ1 ± (1− x2)Δ2

)2
.
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Recall that

Υ = v
vp2 − 1

v′x1

,

so

∑
i,j

B′′
xixj

ΔiΔj =
vp1+p2(p2 − p1)

Υ2

1

v

p1p2v
′
x1

vp2 − 1
((1 − x1)Δ1 ± (1 − x2)Δ2)

2
(5.3)

=
vp1+p2(p2 − p1)

Υ2

1

v

p2
vp2 − 1

p1v
′
x1

((1 − x1)Δ1 ± (1− x2)Δ2)
2
.

Observe that sign(vp2 −1) = − sign(p2), sign v
′
x1

= − sign p1 and p2−p1 < 0. This
gives ∑

i,j

B′′
xixj

ΔiΔj � 0.

5.3. Domain ΩIV

From Section 3.4 we know that

B′
x1

= t1 =
1

1−A

v−α
−

1− vp1

−
v

(p1−p2)A
1−A .

(We do not need to write the full expression for α.) Moreover, put V− =
v−α
−

1−v
p1
−
.

Then we get

B′′
x1x1

=
(p1 − p2)A

(1−A)2
V− v

(p1−p2)A

1−A −1 v′x1
.

Similarly,

B′
x2

= t2 = −p1
p2

1

1−A
V− v

p1−p2
1−A ,

B′′
x2x2

= −p1
p2

p1 − p2
(1−A)2

V− v
p1−p2
1−A −1 v′x2

,

B′′
x1x2

= B′′
x2x1

= −p1
p2

p1 − p2
(1−A)2

V− v
p1−p2
1−A −1 v′x1

.

As we know from Lemma 2.11,

v′x1
=

1

p1Π

A

vp1
, v′x2

= − 1

p2 Π

1

vp2
.

We have

sign(B′′
x1x1

) = sign(1− vp1

− ) sign(v′x1
) = −1.

Similarly sign(B′′
x2x2

) = −1, and since det(d
2B
dx2 ) = 0, we get that d2B

dx2 � 0.
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5.4. Boundary

Now we proceed to the “jumps” of the first derivatives of B across the splitting
lines �±. We recall that in ΩII we have

B(x) = ax1 + bx2 + c,

where

b =
vp2

−
(vp2

− − 1)(vp1

− − vp2

− )
.

We also recall the functionals Φ± from Section 2.4 that act on smooth compactly
supported functions ϕ as follows:

Φ±(ϕ) =
∫

ϕ
(
x1, Q

−p2
p2
p1

γp2−p1

± (x1 − 1) + 1
)
dx1.

5.4.1. Boundary ΩI ∩ΩII. Observe that if p2 > 0 then

B′
x2

=

{
0, x2 > Q−p2 p2

p1
γp2−p1

+ (x1 − 1) + 1,

b, x2 < Q−p2 p2

p1
γp2−p1

+ (x1 − 1) + 1;

and if p2 < 0 then

B′
x2

=

{
b, x2 > Q−p2 p2

p1
γp2−p1

+ (x1 − 1) + 1,

0, x2 < Q−p2 p2

p1
γp2−p1

+ (x1 − 1) + 1.

Therefore, in the sense of distributions,

B′′
x2x2

= − sign(p2) bΦ+.

Notice that Φ+ is a nonnegative functional, and therefore the sign of B′′
x2x2

is
determined by the sign of − sign(p2) b. Since

b =
vp2

−
(vp2

− − 1)(vp1

− − vp2

− )
,

and

sign(vp2

− − 1) = − sign(p2),(5.4)

vp1

− − vp2

− = vp1

− (1− vp2−p1

− ) < 0,(5.5)

we get sign(b) = sign(p2), so
B′′

x2x2
� 0.

5.4.2. Boundary ΩII ∩ ΩIII. Our plan is the following. First we calculate B′
x2

on the line x2−1
v
p2
− −1

= x1−1
v
p1
− −1

, i.e., on �−. Then we proceed to the jumps in the

derivatives.
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Using (5.1) and the inequalities sign(1−vp1

− ) = sign(p1) and 1−Q−p2γp2−p1

+ > 0,
we get

B′
x2
(�−) = −p1

p2
· 1

1−Q−p2 γp2−p1

+

vp1−p2

−
1− vp1

−
,

and
sign(B′

x2
(�−)) = − signp2.

As before, we observe that if p2 > 0 then

B′
x2

=

{
B′

x2
(�−), x2 � Q−p2 p2

p1
γp2−p1

− (x1 − 1) + 1,

b, x2 � Q−p2 p2

p1
γp2−p1

− (x1 − 1) + 1;

and if p2 < 0 then

B′
x2

=

{
b, x2 � Q−p2 p2

p1
γp2−p1

− (x1 − 1) + 1,

B′
x2
(�−), x2 � Q−p2 p2

p1
γp2−p1

− (x1 − 1) + 1.

Therefore,

(B′′
x2x2

, ϕ) = sign(p2)(B
′
x2
(�−)− b)Φ−(ϕ) +

∫
B′′

x2x2
ϕdx.

Moreover,

sign(B′
x2
(�−)) = − sign(p2) and sign(b) = sign(p2),

so
sign(p2)(B

′
x2
(�−)− b) � 0.

This completes the consideration of the boundary ΩII ∩ΩIII.

5.4.3. Boundary ΩIII ∩ ΩIV. This is the best boundary since here all the
derivatives of B are continuous. We check this by a straightforward calculation.
We remark that due to Lemma 2.17, it is sufficient to check the continuity of only
one derivative, namely, B′

x2
.

We already know the values of B′
x2

when we approach �− from ΩIII. Observe
that in ΩIV

B(x) =
1

1−A

v
− (p1−p2)A

1−A

−
1− vp1

−
v

p1−p2
1−A

(p1 − p2
p2

vp2 + x1v
p2−p1 − p1

p2
x2

)
.

Also we know that the solution of the Monge–Ampère equation satisfies the fol-
lowing: B′

x2
= t2. Thus, using that A = Q−p2 γp2−p1

− , we get

t2 = −p1
p2

1

1−A

v
− (p1−p2)A

1−A

−
1− vp1

−
v

p1−p2
1−A ,

so

t2(v−) = −p1
p2

1

1−A

vp1−p2

−
1− vp1

−
= Bx2(�−),

which finishes the consideration of the boundary ΩIII ∩ΩIV.
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6. The estimate from below: B � B. Constructing opti-
mizers

In this section we construct an optimizer for each point x ∈ Ω. Namely, for each
point x ∈ Ω we find a function w = wx with the following properties:

1) 〈wp1〉 = x1, 〈wp2 〉 = x2;

2) w ∈ AQ
p1,p2

;

3) |{t : w(t) � 1}| = B(x).

The existence of the optimizer means that B(x) � |{t : wx(t) � 1}| = B(x), which,
coupled with the estimate B(x) � B(x), will complete the process of finding the
Bellman function B.

As usual, we break our proof into four parts, each pertaining to a specific
subdomain of Ω.

6.1. Domain ΩI

In Subsection 3.1 we have already proved that for every point x ∈ ΩI there is a
suitable function w such that |{t : w(t) � 1}| = 1.

6.2. Domain ΩII

We proceed with the idea from Subsection 2.2.1. Take x ∈ ΩII and a segment
[x−, x+] ⊂ ΩII such that x ∈ [x−, x+] and x± ∈ �±. We write

(6.1) x = λx+ + (1− λ)x−

for some λ ∈ [0, 1]. We also can write that

x±
i = μ± + (1− μ±)v

pi

±

for some μ± ∈ [0, 1]. We know that we can choose the following function as
optimizers for x±:

w−(t) =

{
v−, t ∈ [0, 1− μ−),
1, t ∈ [1− μ−, 1];

w+(t) =

{
1, t ∈ [0, μ+),

v+, t ∈ [μ+, 1].

The functions w± are defined in this mirror-like fashion (the constant 1 is assigned
to the right part of [0, 1] for w− and to the left part of [0, 1] for w+), because
we are about to glue them in the proportion dictated by (6.1). Also, we want to
glue them in a way that will minimize the Ap1,p2-characteristic of the resulting
compound test function for x. More specifically:

w(t) =

⎧⎪⎨
⎪⎩
v−, t ∈ [0, (1− λ)(1 − μ−)],
1, t ∈ ((1− λ)(1 − μ−), 1− λ+ λμ+],

v+, t ∈ (1− λ+ λμ+, 1].
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Note that

〈wpi 〉 = vpi

− (1− λ)(1 − μ−) + 1− λ+ λμ+ − (1− λ)(6.2)

+ (1− λ)μ− + vpi

+ (λ− λμ+)

= (1− λ)(μ− + (1− μ−)v
pi

− ) + λ(μ+ + (1− μ+)v
pi

+ ) = xi.

Now our goal is to prove that for every [α, β] ⊂ [0, 1] we have

〈wp1 〉1/p1

[α,β]
〈wp2 〉−1/p2

[α,β]
� Q,

and that B(x) = |{t : w(t) � 1}|. This follows from the next two lemmas and the
fact that we have chosen x± so that the segment [x−, x+] lies inside the domain Ω.

Lemma 6.1. The point (〈wp1 〉
[α,β]

, 〈wp2〉
[α,β]

) is a convex combination of x−, x+

and (1, 1) or lies on �±.

Lemma 6.2. B(x) = |{t : w(t) � 1}|.

Proof of Lemma 6.1. The proof of this lemma is similar to the proof of Lemma 2.7.

It is easy to see that the only interesting case is α < (1 − λ)(1 − μ−) and
β > 1−λ+λμ+. In the other cases we have a convex combination of v− and (1, 1)
or a convex combination of v+ and (1, 1), which were treated in Lemma 2.7. If
α < (1− λ)(1 − μ−) and β > 1− λ+ λμ+ then

〈wpi 〉
[α,β]

=
1

β − α

[
vpi

− ((1 − λ)(1 − μ−)− α) + (λμ+ + (1− λ)μ−)

+ vpi

+ (β − 1 + λ− λμ+)
]

=
1

β − α

[ ((1 − λ)(1 − μ−)− α)

1− μ−
· x−

i +
β − 1 + λ− λμ+

1− μ+
· x+

i

+
(
α

μ−
1− μ−

+ (1 − β)
μ+

1− μ+

)
· 1

]
.

Note that the sum of all coefficients is equal to one, so we have a convex combina-
tion of x± and (1, 1). �

Proof of Lemma 6.2. Since B is linear in clos(ΩII) we get

B(x) = λB(x+) + (1 − λ)B(x−)(6.3)

= λ(1 − μ+)B(vp1

+ , vp2

+ ) + λμ+B(1, 1) + (1− λ)μ−B(1, 1)

+ (1− λ)(1 − μ−)B(vp1

− , vp2

− )

= λ(1 − μ+) + λμ+ + (1− λ)μ− = λ+ (1 − λ)μ−.
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On the other hand,

|{w � 1}| = 1− (1− λ)(1 − μ−) = λ+ μ− − λμ−,

which finishes the proof. �

6.3. Domain ΩIII

Take a point x ∈ ΩIII and connect it with the point (1, 1). Take a number v < 1,
such that the point (vp1 , vp2) lies on the line segment that connects (1, 1) and x.
Then there is a number μ ∈ [0, 1] such that x1 = μ + (1 − μ)vp1 , and x2 =
μ+ (1− μ)vp2 . Define

w(t) =

{
1, t ∈ [0, μ),

v, t ∈ [μ, 1].

By Lemma 2.7, w ∈ AQ
p1,p2

; moreover, it is easy to see that 〈wpk 〉 = xk (this follows
from the definition of μ).

Moreover, since v < 1, we get

B(x) � |{t : w(t) � 1}| = μ =
x1 − vp1

1− vp1
= B(x).

6.4. Domain ΩIV

Our plan is the following: first we consider x ∈ ΓQ; after we build a suitable func-
tion w for every such x, it will be easy to construct an optimizer for every x ∈ ΩIV.

6.4.1. The case x ∈ ΓQ. Take x ∈ ΓQ ∩ ΩIV. We have

x1 = γp1

+ vp1 and x2 = Q−p2γp2

+ vp2

for some v < 1. To introduce w we need some notation. First, choose ν such that

1

1− νp1
= γp1

+ .

Take now

a =
( v

v−

)1/ν

.

We also recall that
v− =

γ−
γ+

.

Now define

(6.4) w(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, t ∈ [0,

γ
p1
− −v

p1
−

1−v
p1
−

· a),

v−, t ∈ [
γ
p1
− −v

p1
−

1−v
p1
−

· a, a),
v−

(
a
t

)ν
, t ∈ [a, 1].

We check that w has the desired properties.
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Lemma 6.3. 〈wpk〉 = xk.

Lemma 6.4. w ∈ AQ
p1,p2

.

Lemma 6.5. |{w � 1}| = B(x).

We prove Lemma 6.4 in Section 7. Let us prove Lemmas 6.3 and 6.5.

Proof of Lemma 6.3. For k = 1 we make a direct calculation:

〈wp1〉 =
γp1

− − vp1

−
1− vp1

−
a+ vp1

−
1− γp1

−
1− vp1

−
a+ vp1

− aνp1
1

1− νp1
(1− a1−νp1)

= γp1

− a+ vp1

− aνp1
1

1− νp1
− vp1

− a
1

1− νp1

= γp1

− a+ vp1 γp1

+ − vp1

− γp1

+ a = γp1

− a+ x1 − γp1

− a = x1.

For k = 2 we need the following:

(6.5)
1

1− νp2
= Q−p2 γp2

+ .

To prove it take equation (2.1):

Q−p2

(
1− p2

p1

)
γp2

+ = 1− p2
p1

Q−p2 γp2−p1

+ .

Multiplying this by Qp2γ−p2

+ we get:

1− p2
p1

= Qp2 γ−p2

+ − p2
p1

γ−p1

+ = Qp2 γ−p2

+ − p2
p1

(1− νp1),

so
Qp2 γ−p2

+ = 1− p2
p1

+
p2
p1

− νp2 = 1− νp2,

which is what we need.
Observe also that the points (1, 1), (γp1

− , Q−p2γp2

− ) and (vp1

− , vp2

− ) lie on the
line �−. Therefore, we have the following equation:

γp1

− − vp1

−
1− vp1

−
=

Q−p2 γp2

− − vp2

−
1− vp2

−
.

The calculation for 〈wp2 〉 is almost identical to the one for 〈wp1 〉, and we omit it. �

Equation (6.5) is very useful for us, so we want to put it as a separate lemma.

Lemma 6.6. In our notation, we have

1

1− νp1
= γp1

+ and
1

1− νp2
= Q−p2γp2

+ .

Consequently,

xk =
vpk

1− νpk
.
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Proof of Lemma 6.5. Since w is a decreasing function and v− < 1, we get

|{w � 1}| =
γp1

− − vp1

−
1− vp1

−
· a.

Let us compute B(x). This will be a direct calculation. Specifically, substituting
xk = vpk

1−νpk
into the fourth line of (3.4), we get

B(x) =
1

1−A

v
− (p1−p2)A

1−A

−
1− vp1

−
v

p1−p2
1−A

(p1 − p2
p2

vp2+
1

1− νp1
vp2− p1

p2

1

1− νp2
vp2

)

=
1

1−A

v
− (p1−p2)A

1−A

−
1− vp1

−
v

p1−p2A

1−A

(p1
p2

− 1 +
1

1− νp1
− p1

p2

1

1− νp2

)

=
1

1−A

v
− (p1−p2)A

1−A

−
1− vp1

−
v

p1−p2A
1−A

( νp1
1− νp1

− p1
p2

νp2
1− νp2

)

=
1

1−A

v
− (p1−p2)A

1−A

−
1− vp1

−
v

p1−p2A
1−A

( νp1
1− νp1

− νp1
1− νp2

)

=
1

1−A

v
− (p1−p2)A

1−A

−
1− vp1

−
v

p1−p2A
1−A ν p1

νp1 − νp2
(1− νp1)(1− νp2)

.

(6.6)

Recall that A = Q−p2 γp2−p1

+ , so

1−A = 1− γ−p1

+ Q−p2 γp2

+ = 1− 1− νp1
1− νp2

=
νp1 − νp2
1− νp2

.

Therefore,

B(x) =
v
− (p1−p2)A

1−A

−
1− vp1

−
v

p1−p2A
1−A ν p1

1

(1− νp1)
.

Moreover, observe that

v
− (p1−p2)A

1−A

− = v
− p1−p2A

1−A

− vp1

− ,

so

B(x) =
aν·

p1−p2A
1−A

1− vp1

−
vp1

−
ν p1

1− νp1
=

aν·
p1−p2A

1−A

1− vp1

−

γp1

−
γp1

+

ν p1 γ
p1

+ =
ν p1 γ

p1

−
1 − vp1

−
aν

p1−p2A
1−A .

Furthermore,

p1 − p2A = p1 − p2
1− νp1
1− νp2

=
p1 − p2
1− νp2

,

thus
p1 − p2A

1−A
=

1

ν
.
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Using this we get

B(x) =
νp1 · γp1

−
1− vp1

−
a =

γp1

− + (νp1 − 1)γp1

−
1− vp1

−
a =

γp1

− − γ−p1

+ γp1

−
1− vp1

−
a =

γp1

− − vp1

−
1− vp1

−
a,

and that is exactly what we need. �

6.4.2. The case of arbitrary x ∈ ΩIV. We now take an x ∈ ΩIV and the point
(vp1 , vp2) ∈ Γ such that x ∈ �+(v). Let y = (γp1

+ vp1 , Q−p2γp2

+ vp2). Let wy be the
function defined as in (6.4). Note that there is a number λ ∈ [0, 1] such that

x1 = (1− λ)vp1 + λ vp1 γp1

+ ,

x2 = (1− λ)vp2 + λQ−p2 vp2 γp2

+ .

Define now

w(t) =

{
wy

(
t
λ

)
, t ∈ [0, λ],

v, t ∈ (λ, 1].

Let wλ
y (t) = wy

(
t
λ

)
. This function is defined when t � λ, but when t is close to λ,

it is a power function, so we can extend it to the interval [0, 1], keeping it in AQ
p1,p2

.

So we assume now that our wλ
y (t) is defined for t ∈ [0, 1]. We note that

w(t) =

{
wλ

y (t), wy

(
t
λ

)
� v,

v, wy

(
t
λ

)
� v.

Therefore, by Lemma 2.18, w ∈ AQ
p1,p2

.

Moreover, since B is linear on �+(v) and since v < 1, we get

B(x) = (1− λ)B(vp1 , vp2) + λB(y) = λB(y) = λ|{wy(t) � 1}| = |{w(t) � 1}|,

which finishes our proof.

7. Calculating the Ap1,p2-characteristic of the test function

In this section we prove that the Ap1,p2 -characteristic of the weight w, defined
in (6.4), is bounded by Q. For convenience we recall some notation from the
previous section. We fix a point x = (x1, x2) = (γp1

+ vp1 , Q−p2γp2

+ vp2) ∈ ΓQ. First
we take a number ν such that

1

1− νp1
= γp1

+ .

We know that
1

1− νp2
= Q−p2 γp2

+ .



466 A. Reznikov

Consequently,

xk =
vpk

1− νpk
.

We recall that
v− =

γ−
γ+

.

and take

a =
( v

v−

)1/ν

.

Now we define

w(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, t ∈ [0,

γ
p1
− −v

p1
−

1−v
p1
−

· a),

v−, t ∈ [
γ
p1
− −v

p1
−

1−v
p1
−

· a, a),
v− ·

(
a
t

)ν
, t ∈ [a, 1].

Let

u(t) = v−
(a
t

)ν

, t ∈ [0, 1].

Our first lemma is the following:

Lemma 7.1. u ∈ AQ
p1,p2

.

This lemma was proved in [9], but we repeat the proof.

Proof. We take an interval J = [α, β] and write

〈up1〉1/p1

J
〈up2〉−1/p2

J
=

(
x1 ·

β1−νp1 − α1−νp1

β − α

)1/p1
(
x2 ·

β1−νp2 − α1−νp2

β − α

)−1/p2

= Q
(β1−νp1 − α1−νp1

β − α

)1/p1
(β1−νp2 − α1−νp2

β − α

)−1/p2

.(7.1)

To prove that the left-hand side is not greater than Q we now have to prove the
following estimate for every α and β, such that 0 � α � β � 1:

(β1−νp1 − α1−νp1

β − α

)1/p1
(β1−νp2 − α1−νp2

β − α

)−1/p2

� 1.

Let s = α/β. Then the left-hand side of this inequality is equal to

g(s, ν) :=
(1− s1−νp1

1− s

)1/p1
(1− s1−νp2

1− s

)−1/p2

,

where 0 � s � 1. Then

∂g

∂ν
= something positive · log(s) · (1− sνp1−νp2) � 0,

and therefore
g(s, ν) � g(s, 0) = 1. �
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Let

uv−(t) =

{
v−, t ∈ [0, a],

v− · (a/t)ν , t ∈ [a, 1].

From Lemma 2.18 we know that uv− ∈ AQ
p1,p2

. Recall that to prove that the initial

function w is also in AQ
p1,p2

, we have to prove that for every interval J ⊂ [0, 1]

〈wp1〉1/p1

J
〈wp2 〉−1/p2

J
� Q.

But from Lemmas 7.1 and 2.7 we already know this for many intervals J . The
only intervals that remain to be investigated are those of the form J = [α, β] with

α <
γ
p1
− −v

p1
−

1−v
p1
−

· a, β > a. This will be our last step.

Lemma 7.2. If J = [α, β] and α <
γ
p1
− −v

p1
−

1−v
p1
−

· a, β > a, then

〈wp1〉1/p1

J
〈wp2 〉−1/p2

J
� Q.

Proof. We have,

(7.2) 〈wp1 〉
J
=

1

β − α

[(γp1

− − vp1

−
1− vp1

−
· a− α

)
+ vp1

− a
1− γp1

−
1− vp1

−
+

+
vp1

1− νp1

(
β1−νp1 − a1−νp1

)]
.

Note that

x1 = 〈wp1 〉 =
γp1

− − vp1

−
1− vp1

−
a+ vp1

− a
1− γp1

−
1− vp1

−
+

vp1

1− νp1

(
1− a1−νp1

)
,

and

x1 =
vp1

1− νp1
.

Therefore,

〈wp1〉
J
=

x1β
1−νp1 − α

β − α
,

and, similarly,

〈wp2〉
J
=

x2β
1−νp2 − α

β − α
.

Therefore,

〈wp1 〉1/p1

J
〈wp2〉−1/p2

J
=

(x1 β
1−νp1 − α

β − α

)1/p1
(x2 β

1−νp2 − α

β − α

)−1/p2

.

Let

F (α, β) =
(x1 β

1−νp1 − α

β − α

)1/p1
(x2 β

1−νp2 − α

β − α

)−1/p2
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be the right-hand side of the last expression. First, we introduce new variables:

t =
x1

βνp1
, and s =

α

β
.

Define

G(s, t) = F (α, β) =
( t− s

1− s

)1/p1
(Q−p2 t

p2
p1 − s

1− s

)−1/p2

.

We prove the following lemma:

Lemma 7.3. G does not attain its maximum in the interior of its domain.

Remark 7.4. We avoid writing the domain of G explicitly. However, its domain
has some obvious properties. For example, 0 � s < 1 and

( t− s

1− s

)
=

x1 β
1−νp1 − α

β − α
= 〈wp1〉

J
> 0,

thus t > s.

Proof of Lemma 7.3. G is a smooth function, so if it has a maximum in the interior
of its domain, then at this point both G′

t and G′
s are equal to zero. Let

M =
t− s

1− s
and N =

Q−p2 t
p2
p1 − s

1− s
.

Then

M ′
t =

1

1− s
and N ′

t =
p2
p1

Q−p2 t
p2
p1

−1 1

1− s
.

Therefore, G′
t = 0 if and only if

N −M Q−p2 t
p2
p1

−1 = 0,

which yields (
Q−p2 t

p2
p1 − s

)
− (t− s)Q−p2 t

p2
p1

−1
= 0.

and, therefore,

s (Q−p2 t
p2
p1

−1 − 1) = 0.

Since in the interior of the domain s > 0, we get Q−p2 t
p2
p1

−1
= 1. Note that

then t �= 1.
Now let us compute the partial derivative with respect to s, assuming that the

last equality holds. We have

M ′
s =

t− 1

(s− 1)2
and N ′

s =
Q−p2 t

p2
p1 − 1

(s− 1)2
= M ′

s.

Since t �= 1, we have

G′
s =

1

p1
M1/p1−1 N−1/p2 M ′

s −
1

p2
M1/p1 N−1/p2−1 N ′

s.
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If G′
s = 0, then

N

p1
− M

p2
= 0 and

1

p1

Q−p2 t
p2
p1 − s

1− s
− 1

p2

t− s

1− s
= 0.

and so,

t− s = 0 =⇒ t = s,

which contradicts Remark 7.4. This finishes the proof. �

Note that our change of variables is obviously an open map. Therefore, the
interior of the domain of F maps onto the interior of the domain of G and thus F
does not attain its maximum in the interior of its domain.

Let us study F on the boundary of its domain.

Case α = 0. Here everything is obvious, because, independently of β, F (0, β) = Q.

Case β = a. Here everything is also easy, since the third line of the definition of w
(see equation (6.4)) is not involved and, therefore, we have a combination of (1, 1)
and (vp1

− , vp2

− ).

Case α =
γ
p1
− −v

p1
−

1−v
p1
−

a. This case is already done, since here the first part of w is not

involved, and we get a cut-off of the function u from Lemma 7.1.

Case β = 1. This case is more complicated and needs to be studied in detail.
Here we have

〈wp1 〉1/p1

J
〈wp2〉−1/p2

J
=

(x1 − α

1− α

)1/p1
(x2 − α

1− α

)−1/p2

,

where

0 � α <
γp1

− − vp1

−
1− vp1

−
a.

We define

H(x1, α) =
(x1 − α

1− α

)1/p1
(x2 − α

1− α

)−1/p2

.

Recall that x2 = Q−p2 x
p2/p1

1 . We need the following observation:

Lemma 7.5. The following is true:

sign(H ′
x1
) = sign(p1).

Supposing for a moment that we have proved this lemma, we show how to finish
the proof of Lemma 7.2. We note that x1 � γp1

− if p1 > 0 and x1 � γp1

− if p1 < 0.
Therefore,

H(x1, α) � H(γp1

− , α).
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We would like to estimate the right-hand side. To this end, assume that x1 = γp1

−
and x2 = Q−p2γp2

− . Let

q(t) =

⎧⎨
⎩
1, t ∈ [0,

γ
p1
− −v

p1
−

1−v
p1
−

),

v−, t ∈ [
γ
p1
− −v

p1
−

1−v
p1
−

, 1].

Note that 〈qp1〉 = γp1

− = x1, 〈qp2〉 = Q−p2 γp2

− = x2 and for every α � γ
p1
− −v

p1
−

1−v
p1
−

we have 〈qpk〉
[α,1]

= xk−α
1−α . Since the whole line segment connecting (1, 1) and

(vp1

− , vp2

− ) lies in Ω, we have

(x1 − α

1− α

)1/p1
(x2 − α

1− α

)−1/p2

� Q

for every α � γ
p1
− −v

p1
−

1−v
p1
−

.

However, to estimate H we need to consider α � γ
p1
− −v

p1
−

1−v
p1
−

a, which is stronger

than the previous inequality, since a � 1. Therefore,

H(γp1

− , α) � Q. �

There remains to prove Lemma 7.5.

Proof of Lemma 7.5. Recall that

x2 = Q−p2 x
p2/p1

1 .

Therefore,
dx2

dx1
=

p2
p1

x2

x1
.

Letting M = x1−α
1−α and N = x2−α

1−α , we get:

∂H

∂x1
=

1

p1
M1/p1−1 N−1/p2 − 1

p2
M1/p1 N−1/p2−1 p2x2

p1x1

= M1/p1−1 N−1/p2−1
( 1

p1

x2 − α

1− α
− 1

p2

x1 − α

1− α

p2
p1

x2

x1

)
= M1/p1−1 N−1/p2−1 α

1− α

1

x1

x2 − x1

p1
.

All we need to prove now is that x2 − x1 � 0. Notice that x2 � x1 if and only if

Q−p2 � x
(p1−p2)/p1

1 , which is true if and only if

p1 Q
p1p2

p2−p1 � p1x1.

Recall that
Q−p2

(
1− p2

p1

)
γp2 = 1− p2

p1
Q−p2 γp2−p1 .
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We have the following chain:

Q
p1p2

p2−p1 � γp1

− ⇐⇒ Qp2 p1 � γp2−p1

− p1 ⇐⇒ p1 Q
−p2 γp2−p1

− � p1(7.3)

⇐⇒ p1
p1
p2

(
1−Q−p2

(
1− p2

p1

)
γp2

−
)
� p1

⇐⇒ p1

(p1
p2

− 1
)
� p1

p2
(p1 − p2)Q

−p2 γp2

−

⇐⇒ p1
p2

� p1
p2

Q−p2 γp2

− ⇐⇒ p1
Qp2 − γp2

−
p2

� 0.

Since Q > γ− we get that

Q
p1p2

p2−p1 � γp1

− ⇐⇒ p1 � 0.

Therefore,

p1 Q
p1p2

p2−p1 � p1 γ
p1

− .

Since we know that p1 γ
p1

− � p1 x1, this finishes our proof. �

8. Illustration: the A2 case and the reverse Hölder property

This section has two goals. The first one is to write the answer for the Bellman
function in the particular case of p1 = 1 and p2 = −1. This case is interesting
because it corresponds to the A2 condition, which plays a major role in the theory
of singular integral operators. It is also interesting because here we can write an
explicit answer in terms of the A2-characteristic of the weight, avoiding all implicit
functions.

The second goal of this section is to prove the following statement:

Theorem 8.1. Suppose w ∈ A2 and [w]2 = supI〈w〉I 〈w
−1〉

I
= Q. Then there

exists a constant α0 > 0, depending only on Q, such that for every α, 0 < α < α0,
the following inequality holds:

〈w1+α〉 � C〈w〉1+α,

where C = C(α) is a constant that does not depend on w.

We refer one more time to the paper [2], where the opposite question was
considered: a reverse Hölder weight self-improves to an Ap weight.

We should say that this result is known. It was proved, for example, in [9] with
a sharp constant C. Our result, compared to Vasyunin’s, does not give the sharp
constant C, but gives the sharp estimate for α0. We notice that in the bounds for
singular integral operators the sharp dependence of the self-improvement bound α
on the characteristic of the weight is the important thing.

Again, we note that we give the proof as an application of our sharp estimate
for a distribution function of A2 weights.
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Let us start by calculating the function B (see (3.4)) in our particular case. We
remind the reader that in our case

B(x1, x2) = sup
{
|{t : w(t) � 1}| : 〈w〉 = x1, 〈w−1〉 = x2, w ∈ AQ

2

}
.

We start with calculating the constants γ±. We have the equation

Q (1 + 1)
1

γ
= 1 +Q

1

γ2
,

which has two solutions

γ+ = Q+
√
Q2 −Q and γ− = Q−

√
Q2 −Q.

Therefore,

v− =
γ−
γ+

=
Q−

√
Q2 −Q

Q+
√
Q2 −Q

.

We know that in ΩI our function B equals 1. Let us calculate the numbers a, b
and c for ΩII. We have

1− v− =
2
√
Q2 −Q

Q+
√
Q2 −Q

,(8.1)

v−1
− − 1 =

2
√
Q2 −Q

Q−
√
Q2 −Q

,(8.2)

v− − v−1
− = −4

√
Q2 −Q.(8.3)

Furthermore,

a =
v−

(1− v−)(v− − v−1
− )

= −Q−
√
Q2 −Q

8(Q2 −Q)
,(8.4)

b =
v−1
−

(v−1
− − 1)(v− − v−1

− )
= −Q+

√
Q2 −Q

8(Q2 −Q)
,(8.5)

c = 1− 1

(v− − 1)(v−1
− − 1)

= 1 +
1

4(Q− 1)
.(8.6)

We proceed to the domain ΩIII. Let us find the parameter v in terms of x1

and x2. We have the equation

1

v
(1− x1)− v(1 − x2) = x2 − x1.

This is a quadratic equation and its roots are

v = 1 and v =
1− x1

x2 − 1
.
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Therefore, in ΩIII we have

B(x) =
x1x2 − 1

x1 + x2 − 2
.

In the domain ΩIV we need to do more work. First of all, we should again find
our v. Our equation (again quadratic) is the following:

x2 = −Qγ−2
+ v−2 (x1 − v) +

1

v
,

which reduces to

x2 v
2 − v

(
1 +

Q

γ2
+

)
+

Q

γ2
+

x1 = 0.

The roots of this equation are

v =
(1 +Q/γ2

+)±
√(

1 +Q/γ2
+

)2 − 4
(
Q/γ2

+

)
x1 x2

2x2
.

We should take the bigger value of v. This is obvious from the following picture.
The interested reader can check this algebraically.

(x1, x2)

(vp1, vp2)

(1, 1)

Figure 7: The foliation for the case p1 = 1 and p2 = −1.

So, we put

v =
(1 +Q/γ2

+) +

√(
1 +Q/γ2

+

)2 − 4
(
Q/γ2

+

)
x1 x2

2x2
.

Using
Q

γ2
+

= Q
γ−
γ+

1

γ−γ+
= v−,
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we get

(8.7) v =
1 + v− +

√
(1 + v−)2 − 4v−x1x2

2x2
.

Recall that

A =
Q

γ2
+

= v−.

Therefore, we get a simple answer for B in ΩIV:

B(x) =
1

1− v−

v
− 2v−

1−v−
−
1− v−

v
2

1−v−
(
x2 +

x1

v2
− 2

v

)

=
1

1− v−

v
− 2v−

1−v−
−
1− v−

v
2

1−v− −2 (
v2x2 + x1 − 2v

)
.

Since

v2x2 = v − v−(x1 − v),

we get

B(x) =
v
− 2v−

1−v−
−
1− v−

v
2v−

1−v− (x1 − v).

Finally,

x1 − v =
2x1x2 −

(
1 + v− +

√
(1 + v−)2 − 4 v− x1 x2

)
2x2

.

We know that x1x2 � Q, so

x1 − v � 2Q− 1− v− −
√
(1 + v−)2 − 4Qv−

2x2
.

The right-hand side is equal to
√
Q2 −Q/x2, so we get

x1 − v �
√
Q2 −Q

x2
.

Note that this estimate is in some sense sharp. We cannot guarantee that if our w
has the A2-characteristic equal to Q then it is attained on the initial interval. But
there are a lot of functions for which this is the case, for example, the one from
Section 6.

We get the following estimate for B(x), when x ∈ ΩIV:

B(x) � v
− 2v−

1−v−
−
1− v−

v
2v−

1−v−

√
Q2 −Q

x2
.
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Moreover, since x1x2 ∈ [1, Q], and using (8.7), we get

v � 1

x2
.

Therefore,

B(x) � C(Q)x
− Q√

Q2−Q

2 .

We also note that if x1x2 = Q then

C(Q) =
γ

2v−
1−v−
+

1− v−

√
Q2 −Q.

Altogether we have the following compound formula for B:

B(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x ∈ ΩI,

−Q−
√
Q2 −Q

8(Q2 −Q)
x1 −

Q +
√
Q2 −Q

8(Q2 −Q)
x2 + 1 +

1

4(Q− 1)
, x ∈ ΩII,

x1x2 − 1

x1 + x2 − 2
, x ∈ ΩIII,

v
− 2v−

1−v−
−
1− v−

v
2v−

1−v− (x1 − v), x ∈ ΩIV,

as well as the corresponding estimate:

B(x) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, x ∈ ΩI ∪ΩII,

Q− 1

x1 + x2 − 2
, x ∈ ΩIII,

C(Q)x
− Q√

Q2−Q

2 , x ∈ ΩIV.

Now we proceed to the reverse Hölder property, i.e., Theorem 8.1. With-
out loss of generality we consider only the case when the function w satisfies
〈w〉〈w−1〉 = Q. This simplifies things a little since then the point (〈tw〉, 〈t−1w−1〉)
is on the curve ΓQ and thus never in ΩIII.

Next, we use that

〈w1+α〉 = (1 + α)

∫ ∞

0

sα Fw(s) ds,

where
Fw(s) = |{t : w(t) � s}|.

We know that
Fw(s) � B(x1, x2; s) = B

(x1

s
, x2 s

)
,
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thus

〈w1+α〉 � (1 + α)

∫ ∞

0

sα B
(x1

s
, x2 s

)
ds.

We consider the point S = (x1/s, x1s). Note that

S ∈

⎧⎪⎨
⎪⎩
ΩI, s < x1/γ+,

ΩII, s ∈ (x1/γ+, x1/γ−),
ΩIV, s > x1/γ−.

Thus,

〈w1+α〉 � (1 + α)

∫ ∞

0

sα B
(x1

s
, x2 s

)
ds �

� C
(∫ x1/γ−

0

sα ds+

∫ ∞

x1/γ−
sα x

− Q√
Q2−Q

2 s
− Q√

Q2−Q ds
)
.

Note that the right-hand side gives us an estimate of the form Cx1+α
1 = C〈w〉1+α

as long as the second integral converges at ∞. It does when

α− Q√
Q2 −Q

< −1,

or, equivalently,

α < α0
def
=

√
Q

Q− 1
− 1.

This finishes our proof.

9. Some final remarks

In this section we comment on some cases that we did not consider.

First of all, we did not consider the cases pk = 0,±∞. However, in these cases
our method works in the same way. In the case p = 0 the expression 〈wp〉1/p

J
has to

be replaced by exp〈logw〉
J
. It has to be replaced by supJ w in the case p = +∞,

and by infJ w in the case p = −∞. The answer for B in these cases will be, for
example, obtained by passing to the limit when pk → 0,±∞. Another way to get
the answer in these cases is to find a system of differential equations, similar to
our Monge–Ampère equation. For details the reader can see [9].

We also note that for the A∞ case, i.e., when p1 = 1 and p2 = 0, one can
get an answer solving the Monge–Ampère equation. The correct variables will be
x1 = 〈w〉 and x2 = 〈logw〉 with the relation

x1 exp(−x2) ∈ [1, Q].
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With the same splitting of the domain as before, the answer is the following:

B(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x ∈ ΩI,

− v−
(v− − 1)2

x1 +
1

log(v−)
1

v− − 1
x2 +

(
1 +

v−
(v− − 1)2

)
, x ∈ ΩII,

x1 − v

1− v
, x ∈ ΩIII,

γ+
γ+ − 1

1

1− v−
· (x1 − x2v − v(1− log(v))) , x ∈ ΩIV.

where the function v is defined by an implicit formula:{
x2 (1 − v) = (1− x1) log(v), x ∈ ΩIII,

v x2 = 1
γ+

(x1 − v) + v log(v), x ∈ ΩIV.

We can further modify our setting by considering another Bellman function
where we calculate

sup (|{w > 1}|, . . .) .
The answer will be the same at every point except (1, 1), where our new function
will be zero. Also we will not have an extremal function for every point; instead,
we need to build extremal sequences.

Moreover, since
|{w � 1}| = 1− |{w > 1}|,

we get that
sup (|{w � 1}|, . . .) = 1− inf (|{w > 1}|, . . .) .

Using our technique, one can easily calculate the right-hand side. The function for
inf can be calculated in the same way as B with one difference: it must be convex
rather than concave.
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