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Variational estimates for paraproducts

Yen Do, Camil Muscalu and Christoph Thiele

Abstract. We generalize a family of variation norm estimates (Theo-
rem 1.1) of Lépingle with endpoint estimates of Bourgain and Pisier–Xu
to a family of variational estimates for paraproducts (Theorem 1.2), both
in the discrete and the continuous setting. This expands on work of Friz
and Victoir, our focus being on the continuous case and an expanded range
of variation exponents.

1. Introduction and main theorem

In this paper, a band limited function on Rn, n ≥ 1, with band width N has Fourier
transform supported in {2−N < |ξ| < 2N}. A collection of functions (fi)i∈Z such
that the dilates fi(2

−ix) are band limited with uniform band width is called a
continuous Littlewood–Paley family. The collection is called a discrete Littlewood–
Paley family if fi is spanned by the Haar functions associated to dyadic cubes of
side-length 21−i. It is then essentially a martingale. The following theorem is
known:

Theorem 1.1. Given 1 < p < ∞, 1 ≤ r ≤ 2, r ≤ t < ∞, and N > 0, n ≥ 1,
there is a constant C such that, for any collection (Nk)k∈N of measurable functions
on Rn and any Littlewood–Paley data fi on Rn (continuous with bandwidth N or
discrete ), the following holds:

If r < 2 or t > r, then

(1.1)
∥∥∥(∑

k

∣∣∣ ∑
Nk−1<i≤Nk

fi

∣∣∣t)1/t∥∥∥
p
≤ C ‖(fi)‖p,r .

If r = 2 and t = r, then for every λ > 0

(1.2)
∥∥∥λ(�{k :

∣∣∣ ∑
Nk−1<i≤Nk

fi

∣∣∣ > λ
})1/t∥∥∥

p
≤ C ‖(fi)‖p,r .
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Here we have set

(1.3) ‖(fi)‖p,r :=
∥∥∥(∑

i

|fi|r
)1/r∥∥∥

p
.

In the discrete case, these inequalities are special cases of known inequalities
for martingales: (1.1) is Lépingle’s inequality [6] if t > r and Pisier and Xu’s
inequality [12] if t = r. Inequality (1.2) was used by Bourgain [1] to give a proof
of Lépingle’s inequality. Inequality (1.2) for r < 2 or t > r follows from (1.1) by
Chebysheff’s inequality.

For r = 2, the continuous case of Theorem 1.1 has been observed by several
authors (see [1], [4] and [5]) in the following setting. Define for some fixed function f

(1.4) fi := φi ∗ f, φi(x) := 2niφ(2ix) ,

where φ is some band limited test function. Then (1.3) for r = 2 is the norm of
a Littlewood–Paley square function and dominated by ‖f‖p, and the domination is
an equivalence if φi is chosen appropriately. We present a proof of the continuous
case r < 2 of Theorem 1.1 in Section 2 as model for the unfortunately somewhat
technical Section 6.

We prove the following bilinear variant of Theorem 1.1:

Theorem 1.2. Given 1 < p, q < ∞, 1 ≤ r, s ≤ 2, 1/t ≤ 1/r + 1/s, N > 0,
and n ≥ 1, there is a constant C such that, for any collection (Nk) of measurable
functions on Rn and any Littlewood–Paley data fi and gj (each continuous with
bandwidth N or discrete ), the following hold:

If max(r, s) < 2 or t > rs/(r + s), then

(1.5)
∥∥∥(∑

k

∣∣∣ ∑
Nk−1<i<j≤Nk

fi gj

∣∣∣t )1/t∥∥∥
pq

p+q

≤ C ‖(fi)‖p,r‖(gj)‖q,s .

If max(r, s) = 2 and t = rs/(r + s), then

(1.6)
∥∥∥λ(�{k :

∣∣∣ ∑
Nk−1<i<j≤Nk

fi gj

∣∣∣ > λ
})1/t∥∥∥

pq
p+q

≤ C ‖(fi)‖p,r‖(gj)‖q,s .

For r = s = 2 and p = q, fi = gi, the discrete case of (1.5) is a special case of
a martingale inequality of Friz and Victoir [2]. All other instances of this theorem
appear to be new. Inequality (1.6) for max(r, s) < 2 or t > rs

r+s follows from (1.5)
by Chebysheff. Note that Theorem 1.2 has a continuous, a discrete, and a mixed
continuous and discrete case, though the last is maybe less natural.

Theorems 1.1 and 1.2 have alternative formulations, where fi and gj are not
required to be band limited. Instead, in the continuous case we replace fi and gj
on the lefthand side by φi ∗ fi and φj ∗ gj with φi as in (1.4), while in the discrete
case we use Haar projections on the lefthand side. In particular, we have
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Theorem 1.3. Let φi be as in (1.4). Given 1 < p, q < ∞, 1 ≤ r, s ≤ 2, 1/t ≤
1/r + 1/s, and n ≥ 1, there is a constant C such that, for any collection (Nk) of
measurable functions on Rn and any sequences of functions f = (fi), g = (gj) with
the normalization

(1.7) ‖(fi)‖p,r = ‖(gj)‖q,s = 1 ,

the following hold:

If max(r, s) < 2 or t > rs/(r + s), then

(1.8)
∥∥∥(∑

k

∣∣∣ ∑
Nk−1<i<j≤Nk

(φi ∗ fi) (φj ∗ gj)
∣∣∣t )1/t∥∥∥

pq
p+q

≤ C .

If max(r, s) = 2 and t = rs/(r + s), then

(1.9)
∥∥∥λ(�{k :

∣∣∣ ∑
Nk−1<i<j≤Nk

(φi ∗ fi) (φj ∗ gj)
∣∣∣ > λ

})1/t∥∥∥
pq

p+q

≤ C .

In the rest of this paper, including in the proofs of the main Theorems 1.2
and 1.3, we will restrict attention to the one-dimensional case, n = 1. Generaliza-
tion to n ≥ 1 is not difficult and requires merely notational changes.

Theorem 1.2 implies Theorem 1.3 by an application of the former to the
Littlewood–Paley family (φi ∗ fi) and by the Fefferman–Stein inequality [13] for
the Hardy–Littlewood maximal operator M :

‖(φi ∗ fi)‖p,r ≤ C ‖(Mfi)‖p,r ≤ C ‖(fi)‖p,r .

Conversely, the continuous case of Theorem 1.2 follows by specializing Theorem 1.3
to a continuous Littlewood–Paley family (fi) and choosing φ with large band width
such that φi ∗ fi = fi. Although we will use both formulations, Theorem 1.2 has
simpler notation while Theorem 1.3 works better with truncations of f and g and
interpolation.

Another alternative formulation arises from setting

fi :=
∑

|I|=21−i

aIφI ,

where aI are coefficients and for each dyadic interval I the function φI is an L∞

normalized band limited bump function adapted to I in the sense of [13]. In
particular it satisfies, for ε > 0,

|φI(x)| ≤ C (1 + (x− c(I))/|I|)−(1+ε) ,

which allows estimating (1.3) by

C
∥∥∥(M ∑

|I|=21−i

aI1I

)∥∥∥
p,r

≤ C
∥∥∥(∑

x∈I

|aI |r
)1/r∥∥∥

Lp(x)
.

The L∞ normalization of φI makes aI have the same normalization as the values
of the corresponding fi.
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The restriction i < j in Theorem 1.2 is analogous to the paraproduct [8] of two
functions f and g:

P (f, g) =
∑
i<j

(φi ∗ f)(φj ∗ g) .

The endpoint of Theorem 1.2 for t = ∞ is a classical maximal paraproduct in-
equality, for example in the convolutional case we have

Proposition 1.4. For 1 < p, q < ∞,

(1.10)
∥∥∥ sup

N0,N1

∣∣ ∑
N0<i<j≤N1

(φi ∗ f)(φj ∗ g)
∣∣∥∥∥

pq/(p+q)
≤ Cp,q‖f‖p ‖g‖q .

Inequality (1.1) has a trivial endpoint for r = t = 1 by the triangle inequality.
Similarly, the endpoint of (1.5) for r = 1 or s = 1 is easy and elaborated in detail
in Proposition 4.1. This endpoint is proved by reduction to Theorem 1.1. and used
as interpolation endpoint to prove part of Theorem 1.2. Note that while classical
variation norms as in (1.1) are somewhat pointless for t ≤ 1, because then the
choice of consecutive points Nk+1 = Nk + 1 is extremal, the bilinear variational
expression in (1.5) is meaningful for t > 1/2.

We make two simple observations about Theorem 1.2. The variant of (1.5)
without the paraproduct restriction i < j follows from Theorem 1.1 by Hölder’s
inequality. The high exponent case t > 2 of Theorem 1.2 has a simple proof that we
sketch in the discrete case. Let Δm denote the projection onto the Haar functions
associated to dyadic intervals of length 21−m. Then

Δm

(∑
i<j

figj

)
=

∑
i<m

figm ,

∑
Nk−1<i<j≤Nk

figj =
∑

Nk−1<m≤Nk

Δm

[∑
i<j

figj

]
−

∑
i≤Nk−1

fi
∑

Nk−1<j≤Nk

gj .

The first term on the right hand side can be estimated by (1.1) and (1.10), while
the second term can be estimated by the Hardy–Littlewood maximal theorem
and (1.1) applied to the terms involving f and g respectively.

We became interested in variational estimates for paraproducts while study-
ing Lp estimates for a variational expression of the form

(1.11)

(∑
k

∣∣∣ ∫
Nk−1<ξ<η<Nk

f̂(ξ)ĝ(η)eiπx(ξ+η) dξdη
∣∣∣r)1/r

.

This can be viewed as a bilinear analogue of the variation norm Carleson oper-
ator studied in [11] or as a variational variant of the bi-Carleson operator intro-
duced in [10]; compare also with the bi-est operator introduced in [9]. It requires
time-frequency analysis to be understood, and Theorem 1.2 provides the related
lacunary estimates.

The general type of bilinear variational estimate as in Theorem 1.2 and (1.11)
is motivated by Terry Lyons’ theory of ODE with rough driving terms, [7]. This
theory bootstraps Theorem 1.2 to the diagonal case p1 = · · · = pm of the following
multilinear generalization of Theorem 1.2
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Proposition 1.5. For 2/M < r < ∞, 1 < pm < ∞, and fm ∈ Lpm(Rn), for
m = 1, . . . ,M , we have, with 1/p =

∑
m 1/pm,

∥∥∥ sup
Nk

(∑
k

∣∣∣ ∑
Nk−1<i1<···<iM≤Nk

∏
m

(φim ∗ fm)
∣∣∣r)1/r∥∥∥

p
≤ C

∏
m

‖fm‖pm .

Some non-diagonal estimates are likely to follow from a multilinear generaliza-
tion of arguments as in this paper, though the exact elaboration of the details is
beyond the scope of this paper.

Further consequences in the case of martingales are discussed in [2]. The au-
thors would like to thank Terry Lyons for pointing out reference [2] after circulation
of an earlier draft of this paper, and to thank the anonymous referee for several
suggestions to improve the exposition.

2. Proof of Pisier and Xu’s inequality, continuous case

Recall that Pisier and Xu’s inequality is the case t = r < 2 of inequality (1.1). In
the diagonal case, p = t, inequalities (1.1) and (1.2) can be written as strong and
weak type Lp estimates (see [13] for this terminology) for mappings from functions
on the measure space R× Z to functions on the measure space R× N:∥∥∥ ∑

Nk−1(x)<i≤Nk(x)

φi ∗ fi(x)
∥∥∥
Lp(x,k)

≤ C ‖fi(x)‖Lp(x,i) ,(2.1)

∣∣∣{(x, k) : ∣∣∣ ∑
Nk−1(x)<i≤Nk(x)

φi ∗ fi(x)
∣∣∣ > λ

}∣∣∣ ≤ C λ−2‖fi(x)‖2L2(x,i) .(2.2)

Here we use a setup analogous to that in Theorem 1.3. For a proof of (2.2) we
refer to [5]. The endpoint of (2.1) for p = 1 follows from the triangle inequality.
Hence (2.1) follows by Marcinkiewicz interpolation from (2.2), which completes
the discussion of the diagonal case.

Starting from this diagonal case, we shall lower and raise the exponent p by
Calderón–Zygmund decomposition and sharp function techniques respectively. For
the sub-diagonal case, p < t, fix r and employ Marcinkiewicz interpolation for
lr-valued functions. The interpolation endpoints are the diagonal case p = r and
the weak type bound

(2.3)
∣∣∣{x :

(∑
k

∣∣∣ ∑
Nk−1<i≤Nk

φi ∗ fi(x)
∣∣∣r)1/r

> λ
}∣∣∣ ≤ C

λ

∥∥∥(∑
i

|fi|r
)1/r∥∥∥

1

at L1. The latter follows via a Calderón–Zygmund decomposition of the vector
function f = (fi) at level λ. Let

E =
{
x : M

((∑
i

|fi|r
)1/r)

> λ
}
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and let I be the collection of maximal dyadic intervals contained in the set E.
Split f as

f = g + b = g +
∑
I

bI ,

where on each interval I the function g is constant equal to the average of f on I,
and each bI is f − g restricted to I. It suffices to prove (2.3) separately with f
replaced by g and b on the lefthand side. However,

‖φi ∗ bi,I‖L1((3I)c) ≤ C λ |I| min(2i|I|, (2i|I|)−ε)

by smoothness (|I| < 2−i) and decay (|I| > 2−i) estimates for φi. Hence, by
embedding l1 into lr,∥∥∥(∑

k

∣∣∣ ∑
Nk−1<i≤Nk

φi∗
∑
I

bi,I

∣∣∣r)1/r∥∥∥
L1((

⋃
3I)c)

≤ C
∑
I

∑
i

‖φi ∗ bi,I‖L1((3I)c) ≤ C λ|E| ≤ C ‖f‖1,r .

Then (2.3) for b follows from Chebysheff’s inequality. On the other hand,

‖g‖rr,r ≤ Cλr−1‖g‖1,r ≤ C λr−1 ‖f‖1,r
and (2.3) for g follows from the known diagonal estimate and Chebysheff’s inequal-
ity. This completes the proof of the sub-diagonal case.

For the super-diagonal case, p > r, consider the sharp function

(Tf)�(x) = sup
x∈I

inf
c

1

|I|
∫
I

|Tf(y)− c| dy ,(2.4)

Tf(x) = sup
(Nk)

(∑
k

∣∣∣ ∑
Nk−1<i≤Nk

φi ∗ fi(x)
∣∣∣r)1/r

.

Here the supremum is over all sequences (Nk). The L
p norms of Tf and (Tf)� are

comparable, [13], hence it suffices to estimate pointwise

(2.5) (Tf)�(x) ≤ CMr

((∑
i

|fi|r
)1/r)

(x) ,

where

Mrh(x) :=
(
sup
x∈I

1

|I|
∫
I

|h(y)|r dy
)1/r

.

Fix an interval I and let f̃i be a constant function on R whose value equals the
average of φi ∗ fi on I if 2−i > |I| and equals zero if 2−i ≤ |I|. Instead of taking
the infimum in c, we evaluate the definition of the sharp function (Tf)� with

c = sup
(Nk)

(∑
k

∣∣∣ ∑
Nk−1<i≤Nk

f̃i

∣∣∣r)1/r

.
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By the general norm inequality
∣∣‖a‖ − ‖b‖∣∣ ≤ ‖a− b‖ we have

∣∣∣ sup
(Nk)

(∑
k

∣∣∣ ∑
Nk−1<i≤Nk

φi ∗ fi(y)
∣∣∣r)1/r

− c
∣∣∣

≤ sup
(Nk)

(∑
k

∣∣∣ ∑
Nk−1<i≤Nk

φi ∗ fi(y)− f̃i(y)
∣∣∣r)1/r

.

We write

φi ∗ fi − f̃i = h
[1]
i + h

[2]
i + h

[3]
i .

where

h
[2]
i = h

[3]
i = 0

for 2−i > |I|, while for 2−i ≤ |I| we have h
[1]
i = 0 and

h
[2]
i = φi ∗ (fi13I) , h

[3]
i = φi ∗ (fi1(3I)c) .

Estimating the three summands separately, we have for h[1], using the embedding
of l1 into lr, and the smoothness of φi ∗ fi,

1

|I|
∫
I

sup
(Nk)

(∑
k

∣∣∣ ∑
Nk−1<i≤Nk

h
[1]
i (y)

∣∣∣r)1/r

dy

≤ 1

|I|
∫
I

∑
2−i>|I|

|h[1]
i (y)| dy ≤ C

∑
2−i>|I|

(2i|I|)Mfi(x) .

This is dominated by the right hand side of (2.5). By the diagonal estimate, we
have

1

|I|
∫
I

sup
(Nk)

(∑
k

∣∣∣ ∑
Nk−1<i≤Nk

h
[2]
i (y)

∣∣∣r)1/r

dy ≤ C|I|−1/r
∥∥(∑

i

|fi13I |r
)1/r∥∥

r
,

which is again bounded by the right hand side of (2.5). Finally, we have, by the
decay estimates for φi and the embedding of l1 into lr,

1

|I|
∫
I

sup
(Nk)

( ∑
Nk−1<i≤Nk

|h[3]
i (y)|r

)1/r

dy

≤ 1

|I|
∫
I

∑
2−i≤|I|

|h[3]
i (y)| dy ≤ C

∑
2−i≤|I|

(2i|I|)−εMfi(x) ,

which is again bounded by the right hand side of (2.5). This concludes the proof
of the super-diagonal case.
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3. Reduction of Theorem 1.2 to the case t = rs/(r + s)

If max(r, s) < 2 we simply observe that (1.5) is monotone in t to reduce to the
case t = rs/(r + s). If max(r, s) = 2 we need to show that the relatively weaker
estimate (1.6) for some t implies the relatively stronger estimate (1.5) for t0 > t.
This will be a bilinear variant of the argument used by Bourgain [1].

We apply Marcinkiewicz interpolation in the following form:

Proposition 3.1. Let f , g denote measurable functions on measure spaces X,Y
with values in Banach spaces F and G respectively. Suppose we have a bi-quasi-
sublinear operation (f, g) → T (f, g) producing some measurable function T (f, g)
on a measure space Z. Here we mean quasi-sublinear in each argument, that is,

T (f + f̃ , g) ≤ C(T (f, g) + T (f̃ , g)) ,

T (f, g + g̃) ≤ C(T (f, g) + T (f, g̃)) .

Assume we have for all λ > 0 the weak type estimates

λ|{z : |T (f, g)(z)| > λ}|1/p+1/q ≤ C ‖f‖p‖g‖q
for all corners (p, q) of an axis parallel rectangle whose interior contains the point
(p0, q0), then we have the strong type estimate

‖T (f, g)‖p0q0/(p0+q0) ≤ C̃‖f‖p0‖g‖q0 .

The proof of this proposition follows the standard Marcinkiewicz argument,
in the multilinear setting described in Janson [3]. One splits both functions f
and g according to small and large values (according to some level λ that is later
integrated on) and estimates the four resulting terms of T (f, g) using the assumed
estimates. While Janson requires sublinearity in each argument, the adaption to
quasi-sublinearity is not difficult since we split T (f, g) only into four terms for each
level λ.

Fix p, q, r, s, t as in the theorem and let t0 > t. We shall work in the setting
of Theorem 1.3 and deduce (1.8) for t0 from (1.9) for t. By Proposition (3.1)
with F = lr(Z) and G = ls(Z) it suffices to show that for any λ > 0 and for any
f = (fi), g = (gj) with normalization (1.7) we have

(3.1)
∣∣∣{x :

(∑
k

F (k)t0
)1/t0

> λ
}∣∣∣ ≤ Cλ− pq

p+q ,

where
F (k) =

∣∣∣ ∑
Nk−1<i<j≤Nk

(φi ∗ fi)(φj ∗ gj)
∣∣∣ .

Indeed, since the problem is invariant under dilation of the x axis by powers of 2,
it suffices to prove (3.1) for λ = 1. Let

E =
{
x : sup

k
F (k) > 1

}
.
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Then, by (1.9) for the exponent t and with u = pq/(p+ q), we have

|E| ≤
∫

|{k : F (k) > 1}|ut ≤ C .

Considering level sets of F (k), for x 	∈ E we have∑
k

F (k)t0 ≤ C
∑
n≤0

2nt0 |{k : F (k) > 2n}| .

By Hölder together with a geometric sum if u/t > 1 and by monotonicity of lv(Z)
in v if u/t ≤ 1 we obtain

(∑
k

F (k)t0
)u/t

≤ C
∑
n≤0

2n(1−ε)ut0/t
∣∣{k : F (k) > 2n}∣∣u/t

for some small ε > 0. Using Chebysheff we have

∣∣∣{x 	∈ E :
∑
k

F (k)t0 > 1
}∣∣∣ ≤ ∫

R\E

(∑
k

F (k)t0
)u/t

≤ C
∑
n≤0

2n(1−ε)ut0/t

∫ ∣∣{k : F (k) > 2n}∣∣u/t ≤ C
∑
n≤0

2n(1−ε)ut0/t2−nu .

In the last inequality we have applied (1.9). The righthand side is summable for
sufficiently small ε, since t0 > t. This proves (3.1) and completes the reduction to
the case t = rs/(r + s) for Theorem 1.3. Adaptations to the discrete and mixed
cases are not difficult. We shall assume t = rs/(r + s) throughout the rest of this
paper.

4. The endpoint at r = 1 or s = 1

If r = s = 1, hence t = 1/2, we have the following trivial observation for 0 < p, q ≤
∞, which holds for arbitrary sequences (fi) and (gj):∥∥∥(∑

k

∣∣ ∑
Nk−1<i<j≤Nk

fi gj
∣∣1/2)2∥∥∥

pq/(p+q)
(4.1)

≤
∥∥∥(∑

k

( ∑
Nk−1<i≤Nk

|fi|
)1/2( ∑

Nk−1<j≤Nk

|gj|
)1/2)2∥∥∥

pq/p+q

≤
∥∥∥(∑

i

|fi|
)(∑

j

|gj |
)∥∥∥

pq/(p+q)
≤ ‖(fi)‖p,1‖(gj)‖q,1 .

Consider just one of r, s equal to 1. By symmetry of the argument below we may
assume r = 1. We then have the following result:
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Proposition 4.1. Let 0 < p ≤ ∞ and 1 < q < ∞ and assume t = s/(1 + s).
Let Nk by measurable functions, (fi) any sequence of measurable functions and
let (gj) be a Littlewood–Paley family.

If 1 < s < 2, then

(4.2)
∥∥∥(∑

k

∣∣ ∑
Nk−1<i<j≤Nk

fi gj
∣∣t)1/t∥∥∥

pq
p+q

≤ C ‖(fi)‖p,1‖(gj)‖q,s .

If s = 2, then

(4.3)
∥∥∥λ(�{k :

∣∣∣ ∑
Nk−1<i<j≤Nk

fi gj

∣∣∣ > λ
})1/t∥∥∥

pq
p+q

≤ C ‖(fi)‖p,1‖(gj)‖q,s .

Inequality (4.2) follows quickly from Theorem 1.1. Note that∣∣∣ ∑
Nk−1<i<j≤Nk

fi gj

∣∣∣ ≤ ( ∑
Nk−1<i≤Nk

|fi|
)(

sup
Nk−1<i≤Nk

∣∣ ∑
i<j≤Nk

gj
∣∣) .

Then estimate the lefthand side of (4.2) with Hölder’s inequality by

‖(fi)‖p,1
∥∥∥(∑

k

sup
Nk−1<i≤Nk

∣∣ ∑
i<j≤Nk

gj
∣∣s)1/s∥∥∥

q
.

Introducing for each x a new sequence which consists of the sequence Nk(x) in-
terlaced with extremal choices of i where applicable, we can estimate the second
factor by Theorem 1.1 and conclude (4.2).

It remains to prove (4.3). It will suffice to prove the analogue inequality with gj
replaced by φj ∗ gj on the lefthand side and gj not necessarily bandlimited as in
Theorem 1.3. We will use Proposition 3.1. Since the quantity

(4.4) λ
(
�
{
k :

∣∣∣ ∑
Nk−1<i<j≤Nk

(fi) (φj ∗ gj)
∣∣∣ > λ

})1/t

is not quasi subadditive, we shall replace it by an equivalent quasi subadditive
quantity. For λ > 0 define ρλ(x) = min(|x|, λ) and note that ρλ(x − y) defines a
metric distance between x and y. Hence the operation Tλ with

(4.5) Tλ(f, g) = λ−1
(∑

k

ρλ
( ∑
Nk−1<i<j≤Nk

(fi)(φj ∗ gj)
)2t)1/t

is quasi subadditive. It dominates (4.4) and hence it suffices to show (here r = 1)∥∥Tλ(f, g)
∥∥

pq
p+q

≤ C‖f‖p,r‖g‖q,s .

By Proposition 3.1, it suffices to prove

(4.6)
∣∣{x : Tλ(f, g) > μ}∣∣ ≤ Cμ− pq

p+q ‖f‖p,r‖g‖q,s
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with C independent of λ and μ. Switching back to expression (4.4) we will prove

∣∣∣{λ∣∣∣{k :
∣∣ ∑
Nk−1<i<j≤Nk

(fi)(φj ∗ gj)}
∣∣ > λ}

∣∣∣1/t > μ
}∣∣∣(4.7)

≤ C μ− pq
p+q (‖f‖p,r‖g‖q,s)

pq
p+q .

We argue that this is sufficient to conclude (4.6). Consider for fixed x the level
sets of the function

F (k) =
∣∣∣ ∑
Nk−1<i<j≤Nk

(fi)(φj ∗ gj)
∣∣∣ ,

i.e., the sets of k for which 2nλ ≤ F (k) < 2(n+1)λ for n ≤ 0. Using geometric
decay of 2nε for some small ε > 0, we obtain

Tλ(f, g) ≤ C
∑
n≤0

2(2−ε)nλ|{k : F (k) > 2nλ}|1/t .

Then we can estimate

|{x : Tλ(f, g) > μ}| ≤
∑
n≤0

∣∣∣{x : 2(2−ε)nλ|{k : F (k) > 2nλ}|1/t > c2nεμ
}∣∣∣

≤ C
∑
n≤0

(2(2ε−1)nμ)−
pq

p+q (‖f‖p,r‖g‖q,s)
pq

p+q .

Taking ε < 1/2 we obtain (4.6).

Now we prove (4.7). By dilating the x-axis, we may assume that the righthand
side of (4.7) is C. By multiplying f , g, λ, and μ by appropriate constants we may
assume the normalization (1.7), and by the previous also μ = 1. We write∣∣∣{k :

∣∣ ∑
Nk−1<i<j≤Nk

(fi)(φj ∗ gj)
∣∣ > λ

}∣∣∣ ≤ ∣∣∣{k :
∑

Nk−1<i<Nk

|fi| > λt
}∣∣∣

+
∣∣∣{k : sup

Nk−1<i<Nk

∣∣ ∑
i<j≤Nk

φj ∗ gj
∣∣ > λt/s

}∣∣∣ .
Therefore the lefthand side of (4.7) has the upper bound∣∣∣{x : λ

∣∣{k :
∑

Nk−1<i<Nk

|fi| > λt}∣∣1/t > c
}∣∣∣

+
∣∣∣{x : λ

∣∣∣{k : sup
Nk−1<i<Nk

|
∑

i<j≤Nk

φj ∗ gj | > λt/s}
∣∣∣1/t > c

}∣∣∣ .
Using Chebysheff twice, the first term can be estimated by∣∣∣{x :

∑
i

|fi| > ct
}∣∣∣ ≤ C ‖(fi)‖pp,1 .



868 Y. Do, C. Muscalu and C. Thiele

The second term can be estimated by

C
∥∥∥λt/s

∣∣∣{k : sup
Nk−1<i<Nk

∣∣ ∑
i<j≤Nk

φj ∗ gj
∣∣ > λt/s

}∣∣∣1/s∥∥∥q
q
≤ C‖g‖qq,s

by Theorem 1.1, applied for a sequence Nk interlaced with elements i. This
proves (4.7) and completes the proof of Proposition 4.1.

5. The diagonal case of Theorem 1.2 and L2 theory

The goal of this section is to prove Theorems 1.2 and 1.3 for one pair of expo-
nents (p, q) and for any given triple (r, s, t) with t = rs/(r + s). In Section 6, we
will raise and lower (p, q) using a bilinear variant of the argument in Section 2, and
thereby complete the proof of Theorem 1.2. As in the previous section, the de-
sired estimates are technically easier under some diagonality assumptions on (p, q).
We will assume throughout this section that p = r and q = s and in particular
t = pq/(p+q), which allow us to turn (1.9) into a weak type formulation analogous
to (2.2), namely the estimate

(5.1)

∫
�
{
k :

∣∣ ∑
Nk−1<i<j≤Nk

(φi ∗ fi) (φj ∗ gj)
∣∣ > λ

}
dx ≤ Cλ−t

(the formulation is as in Theorem 1.3), with the normalization assumption (1.7).

Note that for r = 1 or s = 1 we have already proven (5.1) in the previous
section for many values of (p, q). By interpolation, it suffices to prove (5.1) for
r = s = 2. Proposition 3.1, applied to the square with corners (2, 2), (2, 1), (1, 2)
and (1, 1), will prove the diagonal case of (1.8), hence (5.1), in the open interior of
the square. Note that we apply Proposition 3.1 with F,G = C and X,Y = R×Z.

On the edges of the square we only need to prove the weak type estimate (5.1),
which requires not Marcinkiewicz interpolation, rather simple interpolation by one
time truncation of f or g, and application of the endpoint estimates.

The rest of this section will be concerned with proving the case r = s = p =
q = 2 and t = 1 of (5.1).

5.1. Discrete case, stopping times

As the first step, we assume here that (Nk) is a stopping time, which means that
if I is the dyadic interval of length 2−Nk(x) containing x, then for all y ∈ I we have
Nk(x) = Nk(y). Such an interval I is called a tree top and we can form the tree T
(or stopping time region) consisting of all dyadic intervals contained in I but not
contained in any smaller tree top.

For x in a tree top I of length |I| = 2−Nk−1(x) we can write

(5.2)
∑

Nk−1<i<j≤Nk

fi(x)gj(x) =
∑
i<j

ΔiΠT f(x)ΔjΠT g(x) ,

where f =
∑

i fi, g =
∑

j gj and ΠT denotes the projection onto the space spanned
by the Haar functions associated to dyadic intervals in the tree T . Here we have
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used that Δif(x) equals the evaluation of the projection of f onto a single Haar
function depending on i and x and for a stopping time (Nk) this Haar function
corresponds to an interval in the tree T if and only if Nk−1 < i ≤ Nk.

In the case of stopping times, we prove strong type (1.5) directly, which of
course implies weak type (5.1). Inserting (5.2) on the lefthand side of (1.5) and
interchanging the order of sum and integration we obtain∑

T∈T

∥∥∥∑
i<j

(ΔiΠT f)(ΔjΠT g)
∥∥∥ .

By the paraproduct estimate (1.10) this is bounded by a constant times∑
T∈T

‖ΠT f‖2 ‖ΠT g‖2 .

Applying Cauchy–Schwarz to the sum in T , and using orthogonality of the projec-
tions ΠT , this implies (1.5).

5.2. Discrete case, arbitrary (Nk)

We will prove the weak type estimate (5.1) for arbitrary (Nk) by comparing the set
of λ jumps for (Nk) to the set of λ/4 jumps of an adapted stopping time (Ñk). Fix
measurable functions Nk, discrete Littlewood–Paley families fi and gj, and λ > 0.

For each x choose Ñ0(x) sufficiently close to −∞ that the maximal paraproduct
restricted to i < j < Ñ0(x) is pointwise bounded by λ/4, and the tree tops for Ñ0

partition the real axis. Define Ñk(x) recursively as the first time past Ñk−1(x)
such that one of the following two conditions is satisfied:∣∣∣ ∑

Ñk−1(x)<i<j≤Ñk(x)

fi(x)gj(x)
∣∣∣ ≥ λ/4 ,

sup
Ñk−1(x)<m<Ñk(x)

∣∣∣ ∑
Ñk−1(x)<i≤m

fi(x)
∣∣∣ ∣∣∣ ∑

m<j≤Ñk(x)

gj(x)
∣∣∣ ≥ λ/4 .

If no such Ñk(x) exists, we set Ñk(x) = Ñk−1(x) + 1. The established estimate
for stopping times gives good control for the first kind of jumps. The integral over
the number of the second kind of jumps is controlled by∫

�
{
k : sup

Nk−1(x)<m<Nk(x)

∣∣∣ ∑
Nk−1(x)<i≤m

(Δif(x))
∣∣∣ ≥ cλ1/2

}
dx

+

∫
�
{
k : sup

Nk−1(x)<m<Nk(x)

∣∣∣ ∑
m<j≤Nk(x)

(Δjg(x))
∣∣∣ ≥ cλ1/2

}
dx ,

where each term can be controlled via (1.2) by Cλ.
It remains to show that for every instance∣∣∣ ∑

Nk−1(x)<i<j≤Nk(x)

fi(x)gj(x)
∣∣∣ > λ
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there is a k̃ satisfying

(5.3) Nk−1(x) < Ñk̃(x) ≤ Nk(x) .

Assume no such k̃ exists. Then, by the choice of Ñ0, one must have Ñ0(x) ≤
Nk−1(x). Let k̃ be the largest index such that Ñk̃−1(x) ≤ Nk−1(x). Then Ñk̃(x) >
Nk(x) and we have∣∣∣ ∑
Nk−1(x)<i<j≤Nk(x)

fi(x)gj(x)
∣∣∣ ≤ ∣∣∣ ∑

Ñk̃−1(x)<i<j≤Nk(x)

fi(x)gj(x)
∣∣∣

+
∣∣∣ ∑
Ñk̃−1(x)<i<j≤Nk−1(x)

fi(x)gj(x)
∣∣∣

+
∣∣∣ ∑
Ñk̃−1(x)<i≤Nk−1(x)

fi(x)
∑

Nk−1(x)<j≤Nk(x)

gj(x)
∣∣∣ .

Each term on the right hand side is less than λ/4 by the choice of Ñk̃, while the
lefthand side is larger than λ. This contradiction proves (5.3).

5.3. Mixed and continuous case

We compare the discrete case with the mixed and continuous case of (5.1) using
an inequality by Jones, Seeger and Wright ([5]), namely that the square function

Sf(x) =
(∑

i

|Eif − ϕi ∗ f |2
)1/2

is bounded in L2, where

Ei =
∑
j≤i

Δj ,

and ϕ̂i is supported in |ξ| ≤ 2N and is constant, equal to 1, on |ξ| ≤ 2N−1.
We write the telescopic sum∑

Nk−1<i<j≤Nk

(Δif)(Δjg) =
∑

Nk−1<j≤Nk

(Ej−1f − ENk−1
f)(Δjg)

and compare with ∑
Nk−1<j≤Nk

(f ∗ ϕj−1 − f ∗ ϕNk−1
)(Δjg) .

The difference can be estimated using another telescopic sum by∣∣∣ ∑
Nk−1<j≤Nk

(Ej−1f − f ∗ ϕj−1)(Δjg)
∣∣∣(5.4)

+
∣∣∣(ENk−1

f − f ∗ ϕNk−1
)(ENk

g − ENk−1
g)
∣∣∣ .
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Considering the first term, we estimate

λ �
{
k :

∣∣∣ ∑
Nk−1<i<j≤Nk

(Ej−1f − f ∗ ϕj−1)(Δjg)
∣∣∣ > λ

}

≤
∑
j

|(Ej−1f − f ∗ ϕj−1)(Δjg)| ≤
(∑

j

|Ejf − f ∗ ϕj |2
)1/2(∑

j

|Δjg|2
)1/2

.

The Lpq/(p+q) norm of the righthand side can be estimated using Hölder’s inequal-
ity and the classical square function estimate together with the square function
estimate of Jones, Seeger and Wright. Turning to the second term in (5.4) we have

λ �
{
k : |(ENk−1

f − f ∗ ϕNk−1
)(ENk

g − ENk−1
g)| > λ

}
≤ λ �

{
k : |ENk−1

f − f ∗ ϕNk−1
| > λ1/2

}
+ λ �

{
k : |ENk

g − ENk−1
g| > λ1/2

}
.

Then we estimate the first term by the square function of Jones–Seeger–Wright and
the second term using Theorem 1.1. This proves (5.1) for the mixed convolutional
and discrete case.

Using a very similar argument, one can obtain (5.1) for the mixed discrete
(in f) and convolutional (in g) cases, and by combination one can obtain the pure
convolutional case.

6. Completion of the proof of Theorem 1.2

For each pair (r, s) and t = rs/(r + s), the previous section proves Theorem 1.2
for the specific pair (p, q) = (r, s). Beginning with this pair, we will lower and
raise the exponents p and q by Calderón–Zygmund decomposition and sharp func-
tion techniques respectively, as in Section 2. This will complete the proof of the
theorem.

We will consider operators S(f, g) in two different cases:

1. The quasi-bi-sublinear case,

S(f, g) =
(∑

k

∣∣ ∑
Nk−1<i<j≤Nk

(φi ∗ fi)(φj ∗ gj)
∣∣t)1/t

for t < 1. This case is needed to prove (1.8) for max(r, s) < 2.

2. The equivalent-to-quasi-bi-sublinear case

S(f, g) = λ
(
�
{
k :

∣∣ ∑
Nk−1<i<j≤Nk

fi gj
∣∣ > λ

})1/t

for arbitrary λ and t≤1. This case is needed to prove (1.9) when max(r, s)=2.

The desired estimate now becomes an Lpq/(p+q) estimate for S(f, g). We will
discuss the more difficult second case in more detail; the other case is similar,
but easier.
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In this section we focus on the continuous case. The mixed or discrete case
follows from essentially the same arguments, with possible simplifications at some
places. We shall make no further comment on the mixed and discrete case.

Lowering exponents

Fix (r, s) and first consider case (2). We work in the setting of Theorem 1.3.
Assuming that (1.9) holds for specific exponents (p0, q0), we prove (1.9) for all p, q
with 1 < p < p0, 1 < q < q0. More precisely, passing from S(f, g) to the quasi
bi-sublinear operation

Tλ(f, g) = λ−1
(∑

k

ρλ
( ∑
Nk−1<i<j≤Nk

(φi ∗ fi)(φj ∗ gj)
)2t)1/t

similarly as in Section 4 it suffices to prove

‖Tλ(f, g)‖ pq
p+q

≤ C‖f‖p,r‖g‖q,s .

By Proposition 3.1 it suffices to prove for all 1 ≤ p ≤ p0, 1 ≤ q ≤ q0 and all μ > 0
the weak type bound

|{x : Tλ(f, g) ≥ μ}| ≤ Cμ−pq/(p+q)‖f‖p,r‖g‖q,s .

As in Section 4 it suffices to prove∣∣∣{λ∣∣{k : |
∑

Nk−1<i<j≤Nk

(φi ∗ fi)(φj ∗ gj)}| > λ}∣∣1/t > μ}
∣∣∣ ≤ Cμ−pq/(p+q)‖f‖p,r‖g‖q,s .

By the symmetry of the argument, it suffices to fix q = q0 and vary p. By simple
interpolation it suffices to consider the extremal cases. The endpoint p = p0 is true
by assumption, so we may assume p = 1. As in Section 4 we may assume (1.7)
and μ = 1.

Split f = (fi) into a Calderón–Zygmund decomposition at level 1 as in Sec-
tion 2. The good function is in Lp0 and we can apply the known estimate and
Chebysheff. The bad function satisfies, outside the expanded bad set, the estimate

(6.1)
∥∥∥∑

i

∣∣φi ∗ bi
∣∣ ∥∥∥

L1((
⋃

3I)c)
≤ C ‖f‖1,r .

Applying Proposition 4.1 to the sequences ((φi ∗ b1)1(
⋃

3I)c) and (gj) we get the
desired estimate for the bad function. This completes the proof of the weak type
estimate for p = 1.

In case (1) we proceed similarly, except we work directly with the quasi-
sublinear expression

Tλ(f, g) =
(∑

k

∣∣ ∑
Nk−1<i<j≤Nk

(φi ∗ fi)(φj ∗ gj))
∣∣t)1/t

.
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Raising the exponents in case (2)

In conjunction with the previous subsection, it suffices to prove (1.9) for every
p > r and q > s satisfying the “diagonal” condition

(6.2)
p

r
=

q

s
,

which includes pairs with arbitrarily large p and q. Consider the function

Tλ(f, g)(x) = sup
(Nk)

(∑
k

ρλ
( ∑
Nk−1<i<j≤Nk

(φi ∗ fi)(x) (φj ∗ gj)(x)
)2t) 1

2t

.

Similarly as before, (1.9) follows from bounds

‖λ−1Tλ(f, g)
2‖pq/(p+q) ≤ C

under the normalization assumption (1.7). These are L2pq/(p+q) bounds for Tλ(f, g)
which we can prove by the corresponding bound for the sharp function Tλ(f, g)

�.
The desired estimate now follows from bounds

λ−1(Tλ(f, g)
�)2 ≤ CMr((

∑
i

|fi|r)1/r) Ms((
∑
j

|gj|s)1/s)

+ C sup
x∈I

(λ1/2

|I|
∫
I

sup
Nk

∣∣∣{k :
∣∣ ∑
Nk−1<i,j≤Nk

(φi ∗ fi)(φj ∗ gj − g̃j,I)
∣∣ > λ

}∣∣∣ 1
2t
)2

(6.3)

pointwise at every x. Here we have defined the function g̃j,I with respect to the
interval I as in Section 2.

We will first show how to estimate the righthand side of (6.3). The first term
satisfies the desired Lpq/(p+q) bound by Hölder and the maximal theorem. We
estimate the second term pointwise by a constant times

M1/2

(
sup
Nk

λ
∣∣∣{k :

∣∣ ∑
Nk−1<i≤Nk

φi ∗ fi
∣∣ > λt/r

}∣∣∣1/t)

+ sup
I

( 1

|I|
∫
I

sup
Nk

λ1/2
∣∣∣{k :

∣∣ ∑
Nk−1<j≤Nk

φj ∗ gj − g̃j,I
∣∣ > λt/s

}∣∣∣1/(2t))2

.

Since pq/(p+ q) > 1/2, we can estimate the Lpq/(p+q) norm of the first term using
the maximal theorem adapted to M1/2, by

C
∥∥∥ sup

Nk

λ
∣∣∣{k :

∣∣ ∑
Nk−1<i≤Nk

φi ∗ fi
∣∣ > λt/r

}∣∣∣1/t∥∥∥
pq

p+q

.

Observe that rpq
t(p+q) = p, thanks to (6.2). So by (1.2), with λt/r in place of λ, we

can estimate the last display by

C
∥∥(∑

i

|fi|r)1/r
∥∥r/t
p

= C .
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To estimate the gj-term, we decompose as in Section 2,

φj ∗ gj − g̃j,I = k
[1]
j + k

[2]
j + k

[3]
j .

To estimate the contribution of k
[2]
j , we will use a weak type variant of the

argument in Section 2. First, by adapting the sequence Nk, one can bound this
contribution by

sup
I

1

|I|2
∥∥∥ sup

Nk

λt/s
∣∣∣{k :

∣∣ ∑
Nk−1<j≤Nk

φj ∗ (gj13I)
∣∣ > λt/s

}∣∣∣1/s∥∥∥s/t
Ls/(2t)(I)

,

and since t ≥ 1/2 we can use Hölder to increase Ls/(2t)(I) to Ls(I),

≤ sup
I

1

|I|1/t
∥∥∥ sup

Nk

λt/s
∣∣∣{k :

∣∣ ∑
Nk−1<j≤Nk

φj ∗ (gj13I)
∣∣ > λt/s

}∣∣∣1/s∥∥∥s/t
Ls(I)

.

The point is that now we can use the diagonal case of (1.2) (with λt/s in place
of λ). This gives the following estimate for the preceding expression:

≤ C sup
I

1

|I|1/t
∥∥∥(∑

j

|gj13I |s
)1/s∥∥∥s/t

Ls
≤ C

(
M

(∑
j

|gj |s
))1/t

.

Since pq
t(p+q) = q

s > 1, we can estimate the Lpq/(p+q) norm of the last display

using the maximal theorem, by

≤ C
∥∥∥∑

j

|gj|s
∥∥∥1/t
q/s

= C‖g‖s/tq,s = C .

The arguments for estimating the contributions of k
[3]
j and k

[1]
j will be similar

to each other, and below we will only show details for the latter.

The contribution of k
[1]
j is estimated using decay in j as in Section 2, by

≤ sup
I

( 1

|I|
∫
I

(
sup
Nk

∑
k

|
∑

Nk−1<j≤Nk

k
[1]
j |s)1/(2t))2

≤ C sup
I

( 1

|I|
∫
I

(∑
j

|k[1]j |)s/(2t))2

≤ C sup
I

( 1

|I|
∫
I

(
sup
j

Mgj
)s/(2t))2

≤ CM1/2

(
(sup

j
Mgj)

s/t
)
(x)

which satisfies the desired Lpq/(p+q) bound by the maximal theorem and (6.2).
This concludes the bound of the righthand side of (6.3).

It remains to prove the bound (6.3) for the sharp function. Fix an interval I
and define constant functions f̃ and g̃ as in Section 2. We will use the constant

c := sup
(Nk)

(∑
k

∣∣∣ ∑
Nk−1<i<j≤Nk

f̃i g̃j

∣∣∣2t) 1
2t
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for the sharp function estimate. By metric properties we obtain

(6.4) |Tλ(f, g)− c| ≤ Tλ(f − f̃ , g − g̃) + Tλ(f − f̃ , g̃) + Tλ(f̃ , g − g̃) .

Focusing on the first term in (6.4), we estimate the average

λ−1
( 1

|I|
∫
I

Tλ(f − f̃ , g − g̃)(x) dx
)2

using the equivalent estimate with

1

|I|2
∥∥∥ sup

Nk

λ
∣∣∣{k :

∣∣ ∑
Nk−1<i<j≤Nk

(φi ∗ fi − f̃i)(φj ∗ gj − g̃j)
∣∣ > λ

}∣∣∣1/t∥∥∥
L1/2(I)

.

We will show that the contribution of Tλ(f − f̃ , g − g̃) is bounded by the product
of two maximal functions on the righthand side of (6.3). We split as in Section 2

φi ∗ fi − f̃i = h
[1]
i + h

[2]
i + h

[3]
i ,

φj ∗ gj − g̃j = k
[1]
j + k

[2]
j + k

[3]
j .

The estimate for the term involving h[2] and k[2] follows from Hölder (to increase
L1/2 to Lt) and the known estimate for the diagonal case (p, q) = (r, s). For all
other estimates we can use the 1-variation bound of the error terms as in Section 2
in conjunction with the endpoint estimates of Proposition 4.1. The key idea is to
incorporate the restriction to the interval I into the error terms before applying this
Proposition, because we want to preserve locality for future estimates by maximal
functions. For instance, to estimate the combination (h[2], k[3]) we first equivalently

replace k
[3]
j by k

[3]
j 1I , then increase L1/2 to Lr/(r+1) and decrease t to r

r+1 , then
estimate using Proposition 4.1, by

≤ C
1

|I|(r+1)/r
‖(fi13I)‖r,r ‖(k[3]j 1I)‖1,1 ≤ CMr

((∑
i

|fi|r
)1/r)

sup
j

Mgj .

Turning to the second term in (6.4), note that by support of g̃j we may restrict

attention to j < − log2 |I|. Thanks to the constraint i < j, only the term h
[1]
i in the

splitting of the function φi ∗ fi− f̃i then appears in the summation. While g̃j itself

does not have geometric decay in j, the geometric decay of h
[1]
i in i is sufficient

to obtain geometric summability in both i and j thanks to the constraint i < j.
Specifically, using t ≥ 1/2 and Hölder,

λ−1 1

|I|2
(∫

I

Tλ(h
[1], g̃)

)2

≤
( 1

|I|
∫
I

( ∑
i<j<− log2 |I|

|h[1]
i ||g̃j |

)1/2 )2

≤ C
( 1

|I|
∫
I

( ∑
i<j<− log2 |I|

(2i|I|) inf
y∈I

Mfi(y) inf
y∈I

Mgj(y)
)1/2 )2

≤ C sup
i

Mfi(x) sup
j

Mgj(x) .
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This proves the desired estimate for the second term. Combining the first and
second terms in (6.4) we also obtain bounds for the variant of the second term
with g̃ replaced by g.

Turning to the last term in (6.4), we may also replace f̃ with f . To apply the
same argument as for the second term, we need to replace the constraint i < j
by i ≥ j, which can be done via triangle inequality and estimates on the uncon-
strained expression

1

|I|2
∥∥∥ sup

Nk

λ
∣∣∣{k :

∣∣ ∑
Nk−1<i,j≤Nk

(φi ∗ fi)(φj ∗ gj − g̃j)
∣∣ > λ

}∣∣∣1/t∥∥∥
L1/2(I)

.

This term can be estimated by the second term on the righthand side of (6.3).
This completes the proof of the pointwise bound for the sharp function.

Raising exponents in case (1)

The argument in this section is similar to and simpler than last section and we
will only comment on the necessary changes. Consider a pair (p, q) such that

r < p < ∞, s < q < ∞. To show the desired L
pq

p+q bound for

S(f, g) =
(
sup
Nk

∑
k

∣∣ ∑
Nk−1<i<j≤Nk

(φi ∗ fi)(φj ∗ gj)
∣∣t)1/t

we will show the corresponding bound for T (f, g)�, where T (f, g) = S(f, g)1/2.
Below we will show the pointwise bound:

T (f, g)� ≤C
(
Mr

((∑
i

|fi|r
)1/r)

Ms

((∑
j

|gj |s
)1/s))1/2

(6.5)

+ C
(
M(‖φi ∗ fi‖V r) Ms

((∑
j

|gj |s
)1/s))1/2

.

Using this inequality, the desired L
2pq
p+q bound for T (f, g)� follows by Hölder’s

inequality, the maximal theorem and Theorem 1.1.

Below we show (6.5). Fix any interval I and define f̃ and g̃ as in Section 2.
We will use the following constant for the sharp function estimate

c =
(
sup
Nk

∑
k

∣∣ ∑
Nk−1<i<j≤Nk

f̃i g̃j
∣∣t)1/t

.

Since 1
2 ≤ t < 1, both |x|t and |x|1/(2t) define a norm, so T (f, g) is sublinear.

We actually do not need t < 1 for this to be true, because when t ≥ 1 we could
combine the |x|1/2 and 
t(Z) norms. We then have

|T (f, g)− c| ≤ T (f − f̃ , g − g̃) + T (f − f̃ , g̃) + T (f̃ , g − g̃) .
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The contributions of T (f − f̃ , g − g̃) and of T (f − f̃ , g̃) can be estimated as in
the consideration of case (2) in the last subsection. To estimate the contribution
of T (f̃ , g − g̃), as before it suffices to estimate the unconstrained expression:

1

|I|
∫
I

sup
Nk

(∑
k

∣∣ ∑
Nk−1<i,j≤Nk

f̃i(φj ∗ gj − g̃j)
∣∣t) 1

2t

.

By Hölder’s inequality we can estimate this by

≤ sup
Nk

(∑
k

∣∣ ∑
Nk−1<i≤Nk

f̃i
∣∣r) 1

2r 1

|I|
∫
I

(
sup
Nk

∑
k

∣∣ ∑
Nk−1<i≤Nk

(φj ∗ gj − g̃j)
∣∣s) 1

2s

.

Using the estimates in Section 2 we can estimate the last display by

≤ C
(
sup
Nk

(
∑
k

∣∣ ∑
Nk−1<i≤Nk

f̃i
∣∣r) 1

r

)1/2(
Ms

((∑
j

|gj |s
)1/s))1/2

.

Now, since

f̃i =
1

|I|
∫
I

φi ∗ fi

for i < − log2 |I| and f̃i = 0 otherwise, by Minkowski’s inequality we can estimate
the last display by

≤ C
( 1

|I|
∫
I

(
sup
Nk

∑
k

∣∣ ∑
Nk−1<i≤Nk

φi ∗ fi
∣∣r) 1

r
)1/2(

Ms

((∑
j

|gj |s
)1/s))1/2

≤ C
(
M

(‖φi ∗ fi‖V r

)
Ms

((∑
j

|gj |s
)1/s))1/2

.

References

[1] Bourgain, J.: Pointwise ergodic theorems for arithmetic sets. Inst. Hautes Études
Sci. Publ. Math. 69 (1989), 5–45.

[2] Friz, P. and Victoir, N.: The Burkholder–Davis–Gundy inequality for enhanced
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