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Infinite groups with many
permutable subgroups

A. Ballester-Bolinches, L. A. Kurdachenko, J. Otal
and T. Pedraza

Abstract
A subgroup H of a group G is said to be permutable in G, if

HK = KH for every subgroup K of G. A result due to Stonehewer
asserts that every permutable subgroup is ascendant although the
converse is false. In this paper we study some infinite groups whose
ascendant subgroups are permutable (AP–groups). We show that the
structure of radical hyperfinite AP–groups behave as that of finite
soluble groups in which the relation to be a permutable subgroup is
transitive (PT–groups).

1. Introduction

A subgroup H of a group G is said to be permutable in G (or quasi-normal
in G), if HK = KH for every subgroup K of G. This concept arises as a
generalization of that of normal subgroup. The study of the properties of the
permutable subgroups started a rather long time ago (see, for example [17]).
In particular, the groups (finite and infinite) in which every subgroup is
permutable have been described (see [17, 2.4]). Like normality, the relation
to be a permutable subgroup is not transitive.

A subgroup H of a group G is said to be an ascendant subgroup of G if
there exists an ascending series from H to G, that is, a chain of subgroups
well-ordered by inclusion and indexed by the corresponding ordinal numbers

H = H0 � H1 � · · · � Hα � Hα+1 � · · · � Hγ = G

with the additional stipulation that for each limit ordinal λ the subgroup Hλ

is the union of all subgroups Hβ, β < λ. This is an evident generalization
of the concept of subnormal subgroup.
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According to a well-known theorem by Stonehewer ([18, Theorem A]),
permutable subgroups are always ascendant. Therefore it is natural to con-
sider the opposite situation, that is the groups whose ascendant subgroups
are permutable. A group G is said to be an AP–group if every ascendant
subgroup of G is permutable in G. These groups are very close to the groups
in which the relation to be a permutable subgroup is transitive (studied in [3]
for a class of periodic radical groups). A group G is said to be a PT–group if
permutability is a transitive relation in G, that is, if K is a permutable sub-
group of H and H is a permutable subgroup of G, then K is a permutable
subgroup of G. We note that, if G is an AP–group, then clearly G is a
PT–group, because the relation to be an ascendant subgroup is transitive.
If G is a finite group, then it is known that G is a PT–group if and only
if every subnormal subgroup is permutable. The study of finite PT–groups
began with a paper of G. Zacher [19]. Zacher determined the structure of
finite soluble PT–groups in a similar way to Gaschütz’s [7] characterization
of finite soluble groups in which normality is a transitive relation (i.e. finite
soluble T–groups).

Theorem (Zacher) Let G be a finite soluble group. Then G is a PT–group
(and hence an AP–group) if and only if it has an abelian normal Hall sub-
group L of odd order such that G/L is a nilpotent modular group and every
subgroup of L is normal in G.

As a consequence of this theorem, the class of finite soluble PT–groups
(and therefore the class of finite soluble AP–groups) is subgroup-closed.
There are many papers, in which several properties of finite soluble PT–
groups have been considered (see, for example, [1, 4, 2]).

In [15, Lemma 4], it is claimed that in an arbitrary PT–group every
ascendant subgroup is permutable. However this result is not true. An
specific counterexample is the following. Let G = A � 〈b〉 the semidirect
product of a Prüfer 2–group A = 〈an | a2

1 = 1, a2
n+1 = an, n ∈ N〉 by a

cyclic group 〈b〉 of order 2 that acts on A by ab = a−1 for each a ∈ A. If
x = ab, for some a ∈ A, then x2 = abab = aa−1 = 1. Let H be a proper
subgroup of G. If H lies in A, then H is G–invariant. Otherwise, H is
finite and H = K〈x〉, where K is a proper subgroup of A, x �∈ A, and hence
|x| = 2. Every subgroup of A is cyclic, so K = 〈c〉, where c ∈ A. Suppose
that |c| = 2m, for some m ∈ N. Then |H| = 2m+1. Since A is divisible, we
may choose an element d ∈ A such that dt = c, where t = 25. Put y = dx.
Clearly y �∈ A, and thus |y| = 2.

Suppose that H〈y〉 = 〈y〉H . Then |H〈y〉| = 2m+1 · 2 = 2m+2. On the
other hand, (dx)x ∈ 〈H, y〉 and (dx)x = d, but |d| = 2m+5. This shows
that H can not be permutable in G. In other words, if H is a permutable
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subgroup of G, then H ≤ A, and in this case every permutable subgroup of G
is G–invariant. It follows that G is a PT–group. However, the subgroup 〈b〉
is ascendant in G but it is not permutable in G.

This example shows that for infinite groups the classes of AP–groups and
PT–groups do not coincide. In this paper we start the study of infinite AP–
groups. Obviously groups with no permutable subgroups are AP–groups,
but it appears unreasonable to study properties of permutable subgroups in
groups with no permutable subgroups. This shows that the effective study
of AP–groups must be carried out under the imposition of some natural
restrictions.

The natural framework for considering AP–groups are the classes of
groups that have many ascendant subgroups. If G is a nilpotent group,
then every subgroup of G is subnormal. Hence every subgroup of a nilpo-
tent AP–group is permutable. A natural extension of the class of nilpotent
groups is the class of locally nilpotent groups. One of the classes of locally
nilpotent groups with many ascendant subgroups is the class of N–groups.
We recall that a group G is said to be an N–group, or a group with the
normalizer condition, if every proper subgroup of G is properly contained in
its normalizer (see [12, §63]). It is worth mentioning that G is a N–group
if and only if every subgroup of G is ascendant in G ([12, §63]). A general-
ization of the class of N–groups is the class of Gruenberg groups. We recall
that a group G is said to be a Gruenberg group if every finitely generated
subgroup of G is ascendant in G. Every countable locally nilpotent group is
a Gruenberg group, but there exists an uncountable locally nilpotent group
which does not include ascendant finitely generated subgroups (see [10]).
Furthermore, O. Yu. Schmidt [16] has constructed an example of a count-
able locally nilpotent p-group which is not an N–group. Being countable,
this group is a Gruenberg group. This example shows that the classes of
N -groups and Gruenberg groups are distinct. As we will see in section 2,
every Sylow p–subgroup of a Gruenberg AP–group is nilpotent.

The following classes of generalized soluble groups spring from the above
classes of locally nilpotent groups in same way the the class of finite soluble
groups does from the class of finite nilpotent groups. Let X be a class of
groups. A group G is said to be a hyper–X–group if there is an ordinal γ
such that G has an ascending normal series of subgroups

1 = D0 � D1 � · · · � Dα � Dα+1 � · · · � Dγ = G

(where Dλ =
⋃

β<λ Dβ if λ is a limit ordinal) whose factors are X–groups.
In particular, if X is the class of all locally nilpotent groups, then we

obtain the class of radical groups (so called hyper–locally nilpotent–groups)
which is a natural extension of the class of finite soluble groups.



748 A. Ballester-Bolinches, L. A. Kurdachenko, J. Otal and T. Pedraza

Our aim in this paper is to extend results about finite soluble PT–groups
to some classes of infinite groups. We work within the class of hyperfinite
groups. There we find some interesting subclasses as AP–hypernilpotent
groups, AP–hyper–Gruenberg groups and AP–hyper–N–groups that are dif-
ferent extensions of the class of finite soluble AP–groups.

The layout of the paper is as follows. In section 2, some auxiliary results
are proved. In section 3, we give a full characterization of radical hyperfinite
AP–groups in the following way.

Theorem A (Theorem 3.5). Let G be a radical hyperfinite AP–group.
Then the following assertions hold:

(i) G is metabelian;

(ii) if R is the locally nilpotent radical of G, then R = L × Z, where L is
the locally nilpotent residual of G and Z is the upper hypercenter of
G;

(iii) the Sylow p–subgroup of L is the Sylow p–subgroup of G for every
prime p occurring as a divisor of some element of L;

(iv) every subgroup of L is G–invariant; and

(v) G/L is hypercentral and every subgroup of G/L is permutable.

Moreover, if the factor-group G/L is countable, then G splits over L. In
particular, if G is countable, then G splits over L.

On the other hand, if G is a periodic group having a normal abelian
subgroup L that satisfies the conditions (iii)–(v), then G is an AP–group.

In particular, a radical hyperfinite group G is an AP–group if and only
if G satisfies the conditions (iii)–(v) of Theorem A.

Theorem A has the virtue of showing that to be an AP–group is a
subgroup-closed property in the universe of all radical hyperfinite groups, a
fact that is not evident from the definition. Moreover it has another not less
important virtue: it allows us to construct all periodic soluble AP–groups
(see Section 5).

Corollary B (Corollary 3.6). Let G be a radical hyperfinite AP–group.
Then every subgroup of G is a AP–group.

The above results confirm that the structure of (infinite) radical hyperfi-
nite AP–groups is very similar to the structure of finite soluble PT–groups.

We finally analyze in Section 4 the structure of AP–groups in some
classes of groups that are larger than the class of radical hyperfinite groups.

Theorem C (Theorem 4.4). Let G be a periodic AP–group. If G is a
hyper–N–group, then G is hyperfinite.
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Corollary D. Let G be a periodic AP–group. If G is a hyper–N–group,
then G is a hypercyclic metabelian AP–group.

Corollary E. Let G be a periodic AP–group. If G is a hyper–Gruenberg
group, then G is a hypercyclic metabelian AP–group. In particular, if G is
a countable radical group, then G is a hypercyclic metabelian AP–group.

Corollary F. Let G be a periodic AP–group. If G is hyperabelian, then G
is a hypercyclic metabelian AP–group.

Corollary G. Let G be a periodic AP–group. If G is soluble, then G is a
hypercyclic metabelian AP–group.

Corollary H. Let G be a periodic AP–group. If G is residually soluble,
then G is a hypercyclic metabelian AP–group.

Our group-theoretical terminology is standard and can be found in [14]
for example.

2. Preliminary properties of AP–groups

We start by establishing some useful facts. The first one is obvious.

Lemma 2.1 Let G be an AP–group. Then G/H is an AP–group for each
normal subgroup H of G.

Lemma 2.2 Let G be an AP–group. Then every ascendant subgroup of G
is an AP–group. In particular, every subnormal subgroup of G is an AP–
group.

Proof. Indeed, let A be an ascendant subgroup of G. If B is an ascendant
subgroup of A, then B is ascendant in G. Therefore B is permutable in G
and hence in A. �
Corollary 2.3 Let G be an AP–group and let A be an ascendant subgroup
of G. Then A/B is an AP–group for each subgroup B which is normal in A.

Corollary 2.4 Let G be an AP–group, A an ascendant subgroup of G and
let B a normal subgroup of A. If A/B is a N–group, then every subgroup of
A/B is permutable.

As usual, if G is a group, we denote by Π(G) the set of all primes occur-
ring as divisors of the order of some periodic element of G.

Corollary 2.5 Let G be a periodic AP–group. If G is a N–group, then G
can be expressed as a direct product

G = Drp∈Π(G)Gp,

where Gp is the Sylow p–subgroup of G and the following conditions holds:
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(1) if p �= 2, then either Gp is abelian or Gp = Bp〈ap〉, where Bp is
a normal abelian subgroup of exponent pk, and there is a positive integer t
such that t = 1 + pm, for some m ≤ k ≤ m + d, where pd = |Gp/Bp|, and
a−1

p bap = bt for all b ∈ Bp; and

(2) if p = 2, then either Gp is a Dedekind group or Gp = Bp〈ap〉, where
Bp is a normal abelian subgroup of exponent pk, and there is a positive integer
t such that t = 1 + pm, for some 2 ≤ m ≤ k ≤ m + d, where pd = |Gp/Bp|,
and a−1

p bap = bt for all b ∈ Bp.

Note that in both cases Gp is nilpotent, and bounded in the non-abelian
case.

Proof. By Corollary 2.4, every subgroup of G is permutable in G and it
suffices to apply the description of the periodic locally nilpotent groups, in
which every subgroup is permutable (see [17, Theorem 2.4.14]). �

The next result shows a local criterion of permutability, which has some
fruitful consequences.

Lemma 2.6 Suppose that a group G has a local system of subgroups L such
that if L ∈ L, then every subgroup of L is permutable in L. Then every
subgroup of G is permutable in G.

Proof. Let H be an arbitrary subgroup of G. It suffices to prove that
〈x〉H = H〈x〉 for each element x ∈ G. Let h ∈ H . Then there exists a
member L ∈ L such that x, h ∈ L. In particular, U = H∩L �= 〈1〉. It follows
that U is a permutable subgroup of L, and thus 〈x〉U = U〈x〉. In particular,
xh = uxk for some u ∈ U ≤ H and k ∈ Z. Therefore 〈x〉H = H〈x〉, as
required. �

Corollary 2.7 Let G be a group and let M be a family of subgroups lin-
early ordered by inclusion whose union is G itself. Suppose that if L ∈ M,
then every subgroup of L is permutable in L. Then every subgroup of G is
permutable in G.

Corollary 2.8 Let G be a group having an ascending series of subgroups

〈1〉 = D0 ≤ D1 ≤ · · · Dα ≤ Dα+1 ≤ · · · ≤ Dγ = G

where γ is a limit ordinal. Suppose that every subgroup of Dα is permutable
in Dα for all α < γ. Then every subgroup of G is permutable in G.

Corollary 2.9 Let G be a periodic AP–group. If G is a Gruenberg group,
then every subgroup of G is permutable. In particular, G is the direct product
of nilpotent Sylow subgroups.
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Proof. Let K be an arbitrary finitely generated subgroup of G. Then K is
ascendant in G and hence it is permutable in G. By the same reason every
subgroup of K is permutable in G, and hence in K. By Lemma 2.6 every
subgroup of G is permutable in G. �

Lemma 2.10 Let G be a group and let H be a periodic subgroup of G. If H
is ascendant in G, then H ≤ Oπ(G), where π = Π(H).

Proof. It suffices to apply the formula (10) of [14, p. 20]. �
The following result is devoted to establish sufficient conditions for a

group to be an AP–group.

Lemma 2.11 Let G be a periodic group and let L be a normal subgroup
satisfying the following conditions:

(i) every subgroup of L is G–invariant;

(ii) G/L is an AP–group; and

(iii)] Π(L) ∩ Π(G/L) = ∅.
Then G is an AP–group.

Proof. Let H be an ascendant subgroup of G. Let D = L ∩ H ; by (i), D
is normal in G. Therefore it suffices to prove that H/D is permutable in
G/D. There is no loss if we assume that D = 〈1〉, that is H ∩ L = 〈1〉.
By Lemma 2.10, H ≤ Oπ(G), where π = Π(H). Let σ = Π(L). Then
[H, L] ≤ Oπ(G) ∩ Oσ(G) = 〈1〉 since π ∩ σ = ∅ by (iii). Then [H, L] = 〈1〉
and it suffices to show that 〈g〉H = H〈g〉, where g is a p–element and p is
an arbitrary prime.

If p ∈ σ, then g ∈ L and 〈g〉H = 〈g〉 × H . Suppose now that p �∈ σ,
and put T = 〈H, g〉. By Lemma 2.10, H ≤ Oπ(G). Let ω = π ∪ {p}, then
Π(T ) = ω and, by (iii), T ∩L = 〈1〉. By (ii), G/L is an AP–group. Since the
subgroup HL/L is ascendant in G/L, it is permutable in G/L. In particular,
(HL/L)〈gL〉 = 〈gL〉(HL/L). In other words, for each element h ∈ H and
every positive integer k, there are an element u ∈ H and a positive integer m
such that hgkL = gmuL. It follows that u−1g−mhgk ∈ L. On the other hand
u−1g−mhgk ∈ T , that is u−1g−mhgk ∈ L ∩ T = 〈1〉. Therefore hgk = gmu
and hence H〈g〉 = 〈g〉H , which proves the result. �

The next results are mainly devoted to prove that a radical hyperfinite
AP–group is hypercyclic.

Proposition 2.12 Let P be a locally finite p–group, where p is a prime, and
let G be a finite subgroup of Aut(P ). If p �∈ Π(G), then P = CP (G)[P, G].
Moreover, if P is abelian, then P = CP (G) × [P, G].
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Proof. Let L be the local system of finite subgroups of P and put M =
{LG | L ∈ L}. Since G is finite, every member B ∈ M is also finite. By [8,
Theorem 5.3.5],

B = CB(G)[B, G].

If C ∈ M satisfies B ≤ C, then CB(G) ≤ CC(G) and [B, G] ≤ [C, G]. These
inclusions give that

CP (G) =
⋃

B∈M
CB(G) and [P, G] =

⋃

B∈M
[B, G].

It follows that P = CP (G)[P, G].
If P is abelian, then B = CB(G)× [B, G] (see [8, Theorem 5.2.3]). It fol-

lows that CP (G) ∩ [P, G] = 〈1〉, and therefore P = CP (G) × [P, G]. �

Lemma 2.13 Let G be an AP–group and let g be an element of G. Suppose
that H is an ascendant 〈g〉–invariant subgroup of G such that 〈g〉∩H = 〈1〉.
If H is a Gruenberg group, then 〈h〉〈g〉 = 〈h〉 for each element h ∈ H.

Proof. Put L = 〈h〉〈g〉. Then 〈g, h〉 = L � 〈g〉 is a semidirect product.
Since 〈h〉 is ascendant in H (and hence in G), 〈h〉 is permutable in G. Thus
〈g, h〉 = 〈g〉〈h〉 and

L = L ∩ (〈h〉〈g〉) = 〈h〉(L ∩ 〈g〉) = 〈h〉. �

Lemma 2.14 Let G be a periodic AP–group and let g be an element of G.
Suppose that H is an ascendant 〈g〉–invariant p–subgroup of G, where p is a
prime. If H is a Gruenberg group and g �∈ CG(H) but gn ∈ CG(H) for some
p′–number n, then H is abelian and [H, g] = H.

Proof. We have g = bx, where b is a p–element and x is a p′–element.
Clearly b ∈ CG(H), so hg = hx for each element h ∈ H . Let L be an
arbitrary subgroup of H and let K = L〈x〉. Being a Gruenberg group, H
is locally nilpotent. In particular, L is a finite nilpotent group. Then K
is finite and 〈x〉-invariant. By Lemma 2.13, x induces on K a non-identity
power automorphism. It follows from [9, Hilfssatz 5] that K is abelian.
Hence every finite subgroup of H is abelian and, therefore, H is abelian.
Applying Proposition 2.12, we obtain the direct decomposition

H = CH(g) × [H, 〈g〉] = CH(g) × [H, g].

By the choice of g, we have H �= CH(g), and thus [H, g] �= 〈1〉. Suppose
that CH(g) �= 〈1〉 and choose in CH(g) an element c of order p. Let a be an
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element of [H, g] having order p. Since a �∈ CH(G), ag = ad, where d is a
p′–number, and moreover d �≡ 1 (mod p). We have

(ac)g = agcg = adc,

and, since ac �∈ CH(G), we have that

(ac)g = (ac)t,

where t is also a p′–number such that t �≡ 1 (mod p). Hence

adc = (ac)t = atct,

and therefore d ≡ t (mod p) and t ≡ 1 (mod p). This contradiction proves
that CH(g) = 〈1〉 and hence [H, g] = H . �

Lemma 2.15 Let G be a periodic AP–group and let H be a normal p–sub-
group of G, where p is a prime. Suppose that H is a Gruenberg group.
If QCG(H)/CG(H) is a non-identity p′–subgroup, then H is abelian and
[H, Q] = H. In particular, [H, G] = H. Moreover, every subgroup L of H is
Q–invariant and [L, Q] = L.

We are now in a position to show the mentioned hypercyclicity of a
radical hyperfinite AP–group.

Lemma 2.16 Let G be a radical hyperfinite group. If G is an AP–group,
then G is hypercyclic.

Proof. Since G is hyperfinite and radical, G has a normal finite abelian
p–subgroup for some prime p. It follows that G contains a minimal normal
abelian p–subgroup A. The finiteness of A yields that G/CG(A) is finite.
Being soluble, by Hall’s theorem,

G/CG(A) = (Q/CG(A))(P/CG(A)),

where Q/CG(A) is the Hall p′–subgroup of G/CG(A) and P/CG(A) is the
Sylow p–subgroup of G/CG(A). Since P/CG(A) is a finite p–group, CA(P ) =
B �= 〈1〉. Moreover, B is a P–invariant subgroup of A. By Lemma 2.13,
B is also Q–invariant. The equation G = PQ yields that B is G–invariant.
However, in this case B = A. This shows that G/CG(A) is a p′–group.
Application of Lemma 2.13 again gives that A is cyclic. Hence G has a
non-identity normal cyclic subgroup. From this statement and making use
of transfinite induction, we obtain that G is hypercyclic, as required. �
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3. Structure of hyperfinite AP–groups

As the title indicates, the first objective of this section is to determine the
structure of a (radical) hyperfinite AP–group. We split the proof of our
main theorem in several results.

Lemma 3.1 Let G be a radical hyperfinite group and suppose that G has a
normal Sylow p–subgroup P such that G/P is locally nilpotent, where p is a
prime. If G is an AP–group and G is not locally nilpotent, then P is abelian.
Moreover, if B is a subgroup of P , then B is G–invariant and B = [B, G].

Proof. Being hyperfinite, P is hypercentral. Then every subgroup of P is
ascendant (see, for example [12, §63]). By Corollary 2.4, every subgroup of
P is permutable. Suppose that P is non-abelian and G = PCG(P ). Then
G = P × Q, where Q is the Sylow p′–subgroup of G ([5, Theorem 7]). It
follows that G is locally nilpotent This is a contradiction that proves that
G �= PCG(P ). By Lemma 2.15, P must be abelian.

Reasoning as above we can see that G �= PCG(P ). Let B be an arbitrary
subgroup of P . Applying again Lemma 2.15, we obtain that B is G–invariant
and [B, G] = B. �

Corollary 3.2 Let G be a radical hyperfinite AP–group, and suppose that G
is not locally nilpotent. If L is the locally nilpotent residual of G, then every
Sylow p–subgroup of G is abelian for each p ∈ Π(L). In particular, L is
abelian. Moreover, every Sylow p–subgroup of L is the Sylow p–subgroup
of G for each p ∈ Π(L).

Proof. By Lemma 2.16, G is hypercyclic. Therefore [G, G] is hypercentral
(see [12, §64]). The obvious inclusion L ≤ [G, G] implies that L is likewise
hypercentral. Then

L = Drp∈Π(L)Lp,

where Lp is the Sylow p–subgroup of L. Pick p ∈ Π(L) and put R =
Drr �=pLr. Since G is locally finite, G/L is locally nilpotent. Thus G/L has
an unique Sylow p–subgroup, say P/L. It follows that P/R is the unique
Sylow p–subgroup of G/R. Since R �= L, G/R is not locally nilpotent. By
Lemma 3.1, P/R is abelian. Since P/R is the unique Sylow p–subgroup of
G/R, LpR/R ≤ P/R, and thus

Lp
∼= Lp/(Lp ∩ R) ∼= LpR/R

and Lp is abelian. Since this holds for each p ∈ Π(L), L is abelian too.
Suppose that LpR/R = L/R �= P/R. Being hyperfinite and locally

nilpotent, G/L is hypercentral. It follows that P/L∩ ζ(G/L) = Z/L �= 〈1〉.
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Then [Z/R, G/R] ≤ L/R. We have already noted that G/R is not locally
nilpotent. Since Z/R is a G–invariant subgroup of P/R, Lemma 3.1 yields
that [Z/R, G/R] = Z/R. This contradiction proves the equation LpR/R =
L/R = P/R. It follows that Lp is the Sylow p–subgroup of G. �
Lemma 3.3 A radical hyperfinite AP–group G is metabelian.

Proof. Let L be the locally nilpotent residual of G. Since L ≤ [G, G],

G/[G, G] ∼= (G/L)/([G, G]/L).

Since G/L is locally nilpotent,

G/L = Drp∈Π(G/L)Sp/L,

where Sp/L is the Sylow p–subgroup of G/L. Then

[G, G]/L = [G/L, G/L] = Drp∈Π(G/L)[Sp/L, Sp/L].

Put Dp/L = [Sp/L, Sp/L]. Being hyperfinite, G/L is hypercentral. In par-
ticular, every subgroup of G/L is ascendant in G/L (see [12, §63]). Corol-
lary 2.5 yields that every Sylow p–subgroup Sp/L of G/L is metabelian, so
that Dp/L is abelian for each p ∈ Π(G/L).

On the other hand, by Lemma 2.16, G is hypercyclic. Therefore [G, G] is
hypercentral (see[12, §63]). Pick p ∈ Π([G, G]) \Π(L) and choose the Sylow
p–subgroup P of [G, G]. By Corollary 3.2, P ∩ L = 〈1〉. Therefore

P ∼= P (P ∩ L) ∼= PL/L ≤ Dp/L,

and then P is abelian. By Corollary 3.2, the Sylow p–subgroup of L is
abelian for each p ∈ Π(L). It follows that [G, G] is abelian. �

Lemma 3.4 Let G be a radical hyperfinite group and let R be the locally
nilpotent radical of G. If G is an AP–group, then R = L × Z, where L is
the locally nilpotent residual of G and Z is the upper hypercenter of G.

Proof. By Corollary 3.2, L is an abelian normal subgroup of G, so that
L ≤ R. Being locally nilpotent, R is the product of its Sylow subgroups.
Let π = Π(L). By Corollary 3.2, L is the Hall π–subgroup of R. Hence
R = L × Z, where Z is the Hall π′–subgroup of R. Since the factor group
G/L is locally nilpotent and hyperfinite, it is hypercentral. Let

〈1〉 = C0/L ≤ C1/L ≤ · · · ≤ Cα/L ≤ Cα+1/L ≤ · · · Cγ/L = G/L

be the upper central series of G/L. Let Zα be the subgroup of Z such that
ZαL/L = Cα/L ∩ ZL/L, for every α < γ. We have

[Zα+1, G]L = [Zα+1L/L, G/L] ≤ Cα/L ∩ ZL/L = ZαL/L,
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so that
[Zα+1, G] ≤ ZαL ∩ Z = Zα(L ∩ Z) = Zα

for all α < γ. In other words, the series

〈1〉 = Z0 ≤ Z1 ≤ · · · ≤ Zα ≤ Zα+1 ≤ · · · Zγ = Z

is G–central. This shows that the upper hypercenter ζ∞(G) of G contains Z.
On the other hand, ζ∞(G) ≤ R, and then

ζ∞(G) = Z × (ζ∞(G) ∩ L).

We claim that ζ∞(G) ∩ L = 〈1〉. For, otherwise ζ(G) ∩ L = Y �= 〈1〉. Pick
p ∈ Π(Y ), and let P be the Sylow p–subgroup of L and let Q be the Hall p′–
subgroup of L. By Corollary 3.2, P is abelian. If we suppose that CG(P ) =
G, then CG/Q(PQ/Q) = G/Q. It follows that G/Q = PQ/Q × S/Q, where
S/Q is the Hall p′–subgroup of G/Q ([5, Theorem 7]). This means that the
factor-group G/Q is hypercentral, which contradicts the choice of L. This
contradiction shows that CG(P ) �= G, so there is a p′–element g such that
g �∈ CG(P ). By Proposition 2.12, P = CP (g)× [P, g]. By the choice of P , we
have that CP (g) �= 〈1〉. Therefore [P, g] �= P . However Lemma 2.15 yields
that [P, g] = P . This contradiction shows our claim, that is ζ∞(G)∩L = 〈1〉.
Therefore ζ∞(G) = Z, as required. �

We are now in a position to prove our result on the description of the
structure of radical hyperfinite AP–groups.

Theorem 3.5 Let G be a radical hyperfinite AP–group. Then the following
assertions hold:

(i) G is metabelian;

(ii) if R is the locally nilpotent radical of G, then R = L × Z, where L is
the locally nilpotent residual of G and Z is the upper hypercenter of G;

(iii) The Sylow p–subgroup of L is the Sylow p–subgroup of G for every
p ∈ Π(L);

(iv) every subgroup of L is G–invariant; and

(v) G/L is hypercentral and every subgroup of G/L is permutable.

Moreover, if the factor group G/L is countable, then G splits over L. In
particular, if G is countable, then G splits over L.

On the other hand, if G is a periodic group having a normal abelian
subgroup L that satisfies the conditions (iii)–(v), then G is an AP–group.

Proof. The statement (i) follows from Lemma 3.3, the statement (ii) follows
from Lemma 3.4 and the statement (iii) follows from Corollary 3.2. As we
see above, CG(L) �= G, so that G/CG(L) is a non-identity group such that
Π(L) ∩ Π(G/L) = ∅. Therefore, Lemma 2.15 yields (iv).
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Finally G/L is locally nilpotent and, being hyperfinite, G/L is hyper-
central. In particular, every subgroup of G/L is ascendant in G/L (see
[12, §63]). Hence every subgroup of G/L is permutable, that is (v) holds.
To obtain the mentioned splitting of G over L it suffices to apply [6, Theorem
2.4.5], for example.

The last assertion is an immediate consequence of Lemma 2.11. �
We remark that the description of hypercentral periodic groups, every

subgroup of which is permutable has been obtained above in Corollary 2.5.
Since a radical hyperfinite AP–group G is hypercyclic by Lemma 2.16, it is
not hard to see that G has a descending Sylow series, that is G has a series

G = G0 ≥ G1 ≥ · · · ≥ Gn ≥ Gn+1 ≥ · · ·
⋂

n∈N

Gn = 〈1〉

of normal subgroups satisfying the following conditions:

(i) for every n ∈ N, Gn/Gn+1 is a pn–group, for some prime pn; and

(ii) p0 < p1 < · · · < pn < pn+1 < · · · .
As a consequence, we can see that 2 �∈ Π(L). Another consequence is

the following important result.

Corollary 3.6 Let G be a radical hyperfinite AP–group. Then every sub-
group of G is an AP–group.

The corresponding result for PT–groups is not true as the locally dihedral
2–group shows. In this sense, we say that a group G is a PT–group if every
subgroup of G is a PT–group, that is, if for subgroups H , K and L such that
H is permutable in K and K is permutable in L, it is always true that H is
permutable in L. It is easy to prove, using transfinite induction, that every
ascendant subgroup of a PT–group is permutable. Since every AP–group is
a PT–group, we also deduce from Corollary 3.6 that PT–groups are exactly
AP–groups in the universe of all radical hyperfinite groups.

We recall that a group G is said to be a T–group if normality is a tran-
sitive relation in G, that is if K is a normal subgroup of H and H is a
normal subgroup of G implies that K is normal in G. The study of infinite
T–groups has began in a paper of D. J. S. Robinson [13]. This study has
been continued in many papers, where infinite T–groups have been studied
from different points of view. The next results show connections between
the classes of AP–groups and T–groups.

Corollary 3.7 Let G be a radical hyperfinite AP–group. If the Sylow 2–sub-
groups of G are Dedekind groups and the Sylow p–subgroups of G are abelian
for p �= 2, then G is a metabelian T–group.
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Proof. Let L be the locally nilpotent residual of G. If H is a given subnormal
subgroup of G, we put D = L∩H . By the condition (i) of Theorem 3.5, D is
normal in G. Therefore it suffices to prove that H/D is normal in G/D.
Without loss of generality, we can suppose that D = 〈1〉, that is H∩L = 〈1〉.
By Lemma 2.10, H ≤ Oπ(G), where π = Π(H). Put σ = Π(L). It follows
that [H, L] ≤ Oπ(G) ∩ Oσ(G) = 〈1〉 since π ∩ σ = ∅ by the condition (iii)
of Theorem 3.5. Then [H, L] = 〈1〉. It suffices to show that g−1Hg = H ,
where g is a p–element and p is an arbitrary prime. If p ∈ σ, then g ∈ L
and 〈g〉H = H〈g〉. In particular, g−1Hg = H . Suppose now that p �∈ σ and
put R = 〈H, g〉. By Lemma 2.10, H ≤ Oπ(G). Let ω = π ∪ {p} so that
Π(R) = ω and, by the condition (iii) of Theorem 3.5, R ∩ L = 〈1〉. Since
G/L is Dedekind, HL/L is normal in G/L. Hence for each element h ∈ H
we have [hL, gL] = [h, g]L ∈ HL/L, that is [h, g] ∈ HL. On the other hand,
g, h ∈ R and so [h, g] ∈ R. Thus [h, g] ∈ HL ∩ R = H(L ∩ R) = H . This
means that g−1Hg = H , which proves the result. �
Corollary 3.8 Let G be a radical hyperfinite AP–group. If the Sylow p–sub-
groups of G are abelian for all primes p ∈ Π(G), then G is a metabelian
T–group.

Corollary 3.9 Let G be a radical hyperfinite AP–group. If the locally nilpo-
tent residual of G coincides with the derived subgroup, then G is a metabelian
T–group.

Proof. Let p be a prime, and let P be a Sylow p–subgroup of G. Let L be
the locally nilpotent residual of G. If p ∈ Π(L), then by the condition (iii)
of Theorem 2.7, P ≤ L, and the condition (iv) of Theorem 3.5, yields that
P is abelian. If p �∈ Π(L), then, by the condition (iii) of Theorem 3.5,
P ≤ L = 〈1〉. Since G/L is abelian, P is abelian too. It suffices to apply
Corollary 3.8. �
Corollary 3.10 Let G be a radical hyperfinite AP–group. If ζ(G)∩ [G, G]
= 〈1〉, then G is a metabelian T–group.

Proof. Let R be the locally nilpotent radical of G. By the condition (ii)
of Theorem 3.5, R = L × Z, where L is the locally nilpotent residual of G,
and Z is the upper hypercenter of G. Lemma 2.16 yields that G is hyper-
cyclic. It follows that [G, G] is hypercentral (see [12, §64]). In particular,
[G, G] ≤ R. On the other hand, L ≤ [G, G], so that

[G, G] = L × ([G, G] ∩ Z) = L

and it suffices to apply Corollary 3.9. �
Corollary 3.11 Let G be a radical hyperfinite AP–group. If ζ(G) = 〈1〉,
then G is a metabelian T–group.
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4. The structure of AP–groups in some wider classes of
groups

In this section we extend some of our previous results to certain exten-
sions of the class of radical hyperfinite groups. They are the hyperabelian
groups, hyper–N–groups, hyper–Gruenberg groups. In general, these classes
of groups are much wider than the class of radical hyperfinite groups. Re-
ally the class of hyperfinite groups is “very narrow”. In particular, there
are hyperabelian (even soluble) groups, which are not hyperfinite. In fact,
for every prime p and every periodic locally cyclic p′–group L there exists
a simple FpL–module A, where Fp is the field of order p (see, for exam-
ple, [11, Chapter 2]). The natural semidirect product of A by L gives an
example of a metabelian group which is not hyperfinite. However, as we will
see in this section, periodic AP–groups in the above classes are hyperfinite.

Lemma 4.1 Let G be an AP–group and let P be a normal p–subgroup of G
for some prime p. Suppose that P has an ascending series of normal sub-
groups

〈1〉 = D0 ≤ D1 ≤ · · · ≤ Dα ≤ Dα+1 ≤ · · · Dγ = P

whose factors are N–groups. Then every subgroup of P is permutable in G.

Proof. We proceed by induction on γ. If γ = 1, then P itself is a N–group.
In this case every subgroup of P is ascendant in P and hence in G. It follows
that every subgroup of P is permutable in G.

Let now γ > 1 and suppose that we have already proved that every
subgroup of Dα is permutable in G for all α < γ. If γ is a limit ordinal,
then the result follows from Corollary 2.8. Therefore we assume that γ − 1
exists. Put D = Dγ−1. By induction, every subgroup of D is permutable
in G. Being a p–group, D is hypercentral (see [17, Theorem 2.4.14]). Since
every subgroup of P/D is ascendant in P/D, Corollary 2.4 yields that every
subgroup of P/D is permutable in G/D and so P/D is likewise hypercentral.
Let L be the family of all finite subgroups of P/D and let U and V be
P–invariant subgroups of D such that U ≤ V and the factor V/U is D–
central. If L/D ∈ L, then L = KD for some finite subgroup K of P . Pick
v ∈ V , and put T = 〈v, K〉. Being a finite p–subgroup, T is nilpotent and
then TU/U is nilpotent too. Since V is normal in P ,

Z/U = V/U ∩ ζ(T/U) �= 〈1〉.

This shows that

CV/U(L/D) �= 〈1〉.
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Applying transfinite induction, we obtain that V/U has an ascending
L–central series. Since this holds for each factor of the upper central series
of D, L is hypercentral. Since L is ascendant in G, every subgroup of L is
ascendant in G. Applying Lemma 2.6, we see that every subgroup of P is
permutable in G, as required. �
Lemma 4.2 Let G be a locally finite group. Suppose that, for some prime p,
G has a normal Sylow p–subgroup P such that P does not contain CG(P ).
Then Op′(G) �= 〈1〉. Moreover, if G/P is infinite and G/CG(P ) is finite,
then Op′(G) is infinite.

Proof. Put C = CG(P ) and A = P ∩ C. The isomorphism

C/A = C/(C ∩ P ) ∼= CP/P

shows that C/A is a p′–group. It follows that A is the Sylow p–subgroup
of C and C = A × Op′(C) ([5, Theorem 7]). The conditions of the Lemma
imply that C �= A, therefore Op′(C) �= 〈1〉. Since C is normal in G, Op′(C) ≤
Op′(G), and the first assertion follows. The second one is immediate. �
Lemma 4.3 Let G be a periodic AP–group. Suppose that Op′(G) = 〈1〉 for
some prime p. If G is a hyper–N–group, then G/Op(G) is finite.

Proof. Obviously we can suppose that G is infinite. Put P = Op(G). Sup-
pose the contrary, that is G/P is infinite. We claim that P is infinite. For,
otherwise, Op′(G) is infinite by Lemma 4.2, which is impossible. Hence P is
infinite. Since G is a hyper–N–group, then we fall into one of the following
cases.

(a) G has a finite series of normal subgroups

P = D0 ≤ D1 ≤ · · · ≤ Dn ≤ Dn+1,

where the factors Dj/Dj−1 are finite rj–groups for some prime rj, 1 ≤ j ≤ n,
and Dn+1/Dn is an infinite q–group for some prime q.

(b) G has an infinite series of normal subgroups

P = D0 ≤ D1 ≤ · · · ≤ Dn ≤ Dn+1 ≤ · · · ,

where the factors Dj/Dj−1 are finite rj–groups for some prime rj, 1 ≤ j.
Consider first the case (a). Applying Lemma 4.2, after finitely many

steps, we see that G has a normal subgroup Q such that P ≤ Q and Q/P
is an infinite q–group. By definition of P , we have p �= q. By Lemma 4.1,
every subgroup of P is permutable in G. Then Corollary 2.5 yields that
either P is abelian or P = B〈b〉, for some element b and some abelian normal
subgroup B of P such that every cyclic subgroup of B is P–invariant. In both
cases, Lemma 2.13 proves that every subgroup of A (respectively of B) is
Q–invariant, while, in particular, in the second case B is normal in Q.
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If P is abelian, then Q/CQ(P ) is finite (see [17, Theorem 1.5.6]). Ap-
plying Lemma 4.2 in this case, Op′(G) = 〈1〉, which is impossible. Now
we suppose that P is non-abelian. Since P/B is finite, by Lemma 4.2,
R/B = Op′(Q/B) is infinite. Repeating now the same arguments that we
used when supposed P abelian, we obtain again that Op′(G) �= 〈1〉. There-
fore the case (a) leads to a contradiction.

Consider now the case (b). Put D =
⋃

n∈N
Dn. Since D is normal in G, D

is an AP–group by Lemma 2.2. Being hyperfinite, D/P is metabelian by
Theorem 3.5. Let L/P be the locally nilpotent radical of D/P . If we as-
sume that L/P is finite, then D/P is finite, because CD/P (L/P ) ≤ L/P .
However this contradicts our assumption. Hence L/P is infinite. By defi-
nition of P , L/P is a p–group. Reasoning as in case (a), we obtain again
that Op′(G) �= 〈1〉. As in case (a), this is a contradiction. This contradiction
shows that G/P is finite, as required. �
Theorem 4.4 Let G be a periodic AP–group. If G is a hyper–N–group,
then G is hyperfinite.

Proof. Let

〈1〉 = D0 � D1 � · · · � Dα � Dα+1 � · · · Dγ = G

be an ascending series of normal subgroups of G whose factors are N–groups.
Pick p ∈ Π(D1), and let S be the Sylow p–subgroup of D1. Put Q = Op′(G)
and P/Q = Op(G/Q). By Lemma 4.3, G/P is finite. Then Lemma 4.1
shows that every subgroup of P/Q is permutable in G/Q. Being a p–group,
P/Q is hypercentral by Corollary 2.5. Since SQ/Q is normal in P/Q,

SQ/Q ∩ ζ(P/Q) �= 〈1〉.
Pick 1 �= z ∈ S such that zQ ∈ SQ/Q∩ ζ(P/Q). Then CG/Q(zQ) has finite
index. Put Z = 〈z〉G so that

ZQ/Q ≤ SQ/Q ∩ ζ(P/Q),

and hence ZQ/Q is finite. Since S is normal in G, Z ≤ S, which implies the
finiteness of Z. Consequently, G has a non-identity finite normal subgroup.
Applying transfinite induction, we obtain that G is hyperfinite. �

It is worth noting that the groups in Theorem 4.4 are in fact hypercyclic
by Lemma 2.16. Thus, we obtain the following consequences.

Corollary 4.5 Let G be a periodic AP–group. If G is a hyper–N–group,
then G is a hypercyclic metabelian AP–group.

Corollary 4.6 Let G be a periodic AP–group. If G is a hyper–Gruenberg
group, then G is a hypercyclic metabelian AP–group. In particular, if G is
a countable radical group, then G is a hypercyclic metabelian group.
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Proof. Let U ≤ V be two normal subgroups of G such that U/V is a
Gruenberg group. By Corollary 2.9, every Sylow p-subgroup of U/V is
nilpotent, for all primes p. It follows that G is hypernilpotent. In particular,
it is a hyper–N–group and we can apply Corollary 4.5. �
Corollary 4.7 Let G be a periodic AP–group. If G is hyperabelian, then G
is a hypercyclic metabelian AP–group.

Corollary 4.8 Let G be a periodic AP–group. If G is soluble, then G is a
hypercyclic metabelian AP–group.

Corollary 4.9 Let G be a periodic AP–group. If G is residually soluble,
then G is a hypercyclic metabelian AP–group.

Proof. By Lemma 2.1, every soluble factor-group of G is an AP–group, and,
by Corollary 4.8, this factor-group is metabelian. If follows that G itself is
metabelian. By Corollary 4.8, G is also hypercyclic. �

We recall that a group G is called a Baer group, if every finitely generated
subgroup of G is subnormal in G. Since every Baer group is a Gruenberg
group, we have

Corollary 4.10 Let G be a periodic AP–group. If G is a hyper–Baer group,
then G is a hypercyclic metabelian AP–group.

5. The construction of periodic soluble AP–groups

The main object of this section is to show how our results allows us to
construct all periodic soluble AP–groups.

Let G be a periodic soluble AP–group and let R be the locally nilpotent
radical of G. In particular, it follows from Theorem 4.4 that G is hyperfinite.
By virtue of Lemma 3.4, we have R = L×Z, where L is the locally nilpotent
residual of G and Z is the upper hypercenter of G. It is clear then that G
is embedded into G/L × G/Z. In addition, applying Theorem 3.5, G/L
is a locally nilpotent group with all subgroups permutable. Consider H =
G/Z and let K = LZ/Z. Then K = Drp∈Π(K)Kp where Kp is the Sylow
p–subgroup of K. Let Up be the normal subgroup of G which is maximal with
the property: Drq �=pKq is contained in Up and Up∩Kp = 1. Now we consider
the quotient H/Up. Then CH/Up(KpUp/Up) = KpUp/Up. Furthermore, by
Theorem 3.5, every Sylow subgroup of L is the Sylow subgroup of G. It
follows that (H/Up)/(KpUp/Up) is a p′–group. Since H/Up induces power
automorphisms on KpUp/Up, then being periodic, it is finite of order at most
p − 1. Hence H/Up is the semidirect product of KpUp/Up and Vp/Up where
Vp/Up is finite of order at most p − 1. Since the intersection of all Up is
trivial (it lies in the centralizer of K), then H is embedded in the Cartesian
product of all the (H/Up)

′s.
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Let π be a non-empty set of primes such that 2 /∈ π. Let Ap be an abelian
p–group for every prime p ∈ π. We consider the natural semidirect product
Cp of Ap and Fp where Fp is a finite group of order at most p−1 such that Fp

acts as power automorphisms group on Ap. Let B be the Cartesian product
of Cp, p ∈ π, and let A be the direct product of Ap, p ∈ π. Choose an
arbitrary periodic subgroup P of B including A and consider G the direct
product of P and Q where Q is a locally nilpotent π′–group such that every
subgroup of Q is permutable. Then, by the above paragraph, every periodic
soluble AP–group arises as a subgroup of such group.
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