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Rees algebras on smooth schemes:
integral closure and

higher differential operator

Orlando Villamayor U.

Abstract

Let V be a smooth scheme over a field k, and let {In, n ≥ 0}
be a filtration of sheaves of ideals in OV , such that I0 = OV , and
Is · It ⊂ Is+t. In such case

⊕
In is called a Rees algebra.

A Rees algebra is said to be a differential algebra if, for any two
integers N > n and any differential operator D of order n, D(IN ) ⊂
IN−n. Any Rees algebra extends to a smallest differential algebra.

There are two extensions of Rees algebras of interest in singular-
ity theory: one defined by taking integral closures, and another by
extending the algebra to a differential algebra.

We study here some relations between these two extensions, with
particular emphasis on the behavior of higher order differentials over
arbitrary fields.

1. Introduction

A smooth ring R, of finite type over a field k, has a locally free sheaf of
k-linear differential of order n, say Diffn(R), for each index n ≥ 0.

A graded subring of a polynomial ring over R, say R[W ], can be expressed
as G =

⊕
n≥0 In ·W n, where each In is an ideal in R. G is called the Rees

algebra of the filtration {In}n≥0. For example a Rees ring of an ideal I is of
this type; in which case In = In. The integral closure of a Rees ring is also
a Rees algebra (not necessarily a Rees ring of an ideal).

Taking integral closure of Rees algebras in R[W ] can be thought of as an
operator, say G ⊂ G.
2000 Mathematics Subject Classification: 14E15.
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The study of embedded singularities has motivated another kind of ex-
tension, linked to differential operators. In fact, from the point of view of
singularities it is interesting to consider Rees algebras G =

⊕
n≥0 In · W n

with the additional compatibility with differential operators; namely with
the property that for any operator D ∈ Diffn(R), and any index N > n,
D(IN) ⊂ IN−n.

It is simple to show that for any G =
⊕

n≥0 In ·W n, there is a smallest
extension to one with this property, say G(G). This defines a second oper-
ator, say G ⊂ G(G). The objective of this paper is to study the interplay
between both operators. In Theorem 6.13 it is shown that if two Rees alge-
bras have the same integral closure, then their G-extensions also have the
same integral closure. This shows a curious relation of differential operators
with integral closures.

Sections 2 and 3 are devoted to extensions of Rees algebras to those
which are compatible with differential operators.

In Sections 4 and 5 we study some natural relation of of the first two
sections with the study of singularities.

Our main results are addressed in Section 6. The key idea is to consider
suitable weighted algebras defined by coefficients of truncated Taylor devel-
opment. In fact, it is in this context where the link of integral closure with
differential operators arises.

The study of differential operators on smooth schemes, and their relation
with with integral closure have also been developed independently in a very
interesting paper of Kawanoue, including Theorem 6.13 (see [9]).

The results in this paper have been applied in the study of singularities
over arbitrary fields. In fact, these results were essential in order to develop
a notion of elimination, defined in terms of Rees algebras; a notion with ap-
plication to the study of singularities of hypersurfaces over fields of positive
characteristic (see [19]).

Extensions of algebras by differential operators appeared in [22], and
more recently in work of J. Wlodarczyk and J. Kollár ([10] and [20]). But
it is in the work of Hironaka [6, 7, 8] where the notion of differential algebra
is treated systematically in relation to the theory of infinitely close points.
Our work is related with these last three papers, particularly with his “finite
presentation theorem” in [7]. In this paper we do not make use of monoidal
transformations, and hence of the theory of infinitely close points. The
notion of restriction of differential algebras, in section 5, appears already in
the work of Hironaka. We refer here to [1] and [18] for other applications
of this work, and also for more details on the relation of our results with
results of Hironaka.

I profited from discussions with Vincent Cossart, Marco Farinati, Moni-
que Lejeune, Luis Narváez, Augusto Nobile, and Santiago Zarzuela.
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2. Graded rings and Differential algebras

2.1. Fix a noetherian ring B, and a sequence of ideals {Ik}, k ≥ 0, which
fulfill the conditions:

1) I0 = B, and

2) Ik · Is ⊂ Ik+s.

This defines a graded subring G =
⊕

k≥0 Ik ·W k of the polynomial ring
B[W ]. We say that G is a Rees algebra if this subring is a (noetherian)
finitely generated B-algebra.

Remark 2.2. 1) Examples of Rees algebras are Rees rings of ideals, say
I ⊂ B, where Ik = Ik for each k ≥ 1. In general we will not assume that a
Rees algebra is generated in degree one.

2) Whenever
⊕

Ik ·W k(⊂ B[W ]) is a Rees algebra, a new Rees algebra⊕
I ′
k ·W k is defined by setting

I ′
k =

∑
r≥k

Ir.

If
⊕

Ik · W k is generated by F = {gni
· W ni|1 ≤ i ≤ m, ni > 0}.

Namely, if: ⊕
Ik ·W k = B[{gni

·W ni}gni ·W ni∈F ],

then
⊕

I ′
k·W k is generated by the finite set {gni

·W n′
i|1≤ i ≤m, 1 ≤ n′

i ≤ ni}.
Note that I ′

k ⊃ I ′
k+1, and that

⊕
Ik ·W k ⊂⊕

I ′
k ·W k is a finite extension.

In fact, it suffices to check that given an element g ∈ Ik, then g ·W k−1 is
integral over

⊕
Ik ·W k. One can check that

g ∈ Ik ⇒ gk−1 ∈ Ik(k−1) ⇒ gk ∈ Ik(k−1),

so g ·W k−1 fulfills the equation Zk − (gk ·W k(k−1)) = 0.
In this paper we shall consider Rees algebras up to integral closure, so

in the sequel we will assume that:

Ik ⊃ Ik+1.

2.3. In what follows we define a Rees algebra, say
⊕

n≥0 In ·W n in B[W ],
by fixing a set of generators, say

F = {gni
·W ni|ni > 0, 1 ≤ i ≤ m}.

So if f ∈ In, then
f = Fn(gn1, . . . , gnm),

where Fn(Y1, . . . , Ym) is a weighted homogeneous polynomial in m variables,
and each Yj has weight nj .
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For a fixed positive integer N , B[W N ] ⊂ B[W ] is a finite extension of
graded rings. Furthermore,

⊕
k≥0 IkN · W kN is a Rees algebra in B[W N ],

and the ring extension
⊕

k≥0 IkN ·W kN ⊂⊕
n≥0 In ·W n is also finite.

Note that if N is a common multiple of all integers ni, 1 ≤ i ≤ m, then⊕
k≥0

Ik
N ·W kN ⊂

⊕
n≥0

In ·W n

is an integral extension, where the left hand side is the Rees ring of IN (in
B[W N ]). So Rees algebras are finite extensions of Rees rings.

If a Rees algebra
⊕

n≥0 In · W n in B[W ] is the Rees ring of I1, then

the integral closure in B[W ] is
⊕

n≥0 In ·W n, where each In is the integral
closure of the ideal In. This is a Rees algebra, and not necessarily the Rees
ring of the ideal I1.

2.4. Let B be a normal excellent ring, and let

Spec(B)
π←− X

be a proper birational morphism, then I ⊂ π∗(IOX) ⊂ I, where I denotes
the integral closure of I in B. Moreover, if π is the normalization of the
blow-up at I, then IOX is an invertible sheaf of ideals, and

I = π∗(IOX).

Assume that the normal ring B is of finite type over a field k. If B is a
one dimensional normal domain, any ideal is invertible and integrally closed.
We add the following well known result for self-containment (see [6, p. 54]
or [12, p. 100]).

Lemma 2.5. Let I, J be two ideals in a normal domain B, which is finitely
generated over a field k. Then I = J if and only if IOW = JOW , for any
morphism of k-schemes W → Spec(B), with W of dimension one, regular
and of finite type over k.

Proof. Let x ∈W be a closed point that maps to y ∈ Spec(B), then OW,x is
a valuation ring that dominates OSpec(B),y. So if I = J , then IOW = JOW .
In fact, for any morphism B → A, where A is a valuation ring, IA = IA.

Assume that this condition holds for any morphism from a regular one di-
mensional scheme W . We claim now that both ideals have the same integral
closure in B.

Let Spec(B)
π←− X be the normalized blow up at I, and let {H1, . . . , Hs}

be the irreducible components of the closed set defined by the invertible sheaf
of ideals IOX . Here each Hi is an irreducible hypersurfaces in X. Let hi ∈ X
denote the generic point of Hi. There are positive integers ai, so that IOX
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can be characterized as the sheaf of functions vanishing along Hi with order
at least ai (i.e. with order at least ai at the valuation rings OX,hi

).

Claim: The sheaf of ideals JOX also has order ai at OX,hi
.

If the claim holds, JOX ⊂ IOX , and

J ⊂ π∗(JOX) ⊂ π∗(IOX) = I.

In particular J ⊂ I. A similar argument would lead to the other inclusion.
In order to prove the claim we choose a closed point x ∈ Hi so that:

1) OX,x is regular,

2) x ∈ Hi − ∩j �=iHj ,

3) Hi is regular at x, and

4) JOX,x is a p-primary ideal, for p = I(Hi)x.

Since any sheaf of ideals has only finitely many p-primary components,
such choice of x is possible.

Let {x1, . . . xd−1, xd} be a regular system of parameters at OX,x such that
p = I(Hi)x = xdOX,x, and let W be the closure of the irreducible curve de-
fined locally by < x1, . . . , xd−1 >. So W is one dimensional, and regular
locally at x. We may assume that W is regular after applying quadratic
transformations which do not affect the local ring OW,x. By construction
IOW,x has order ai, by hypothesis the same holds for JOW,x. This proves
the claim. �

2.6. Let B = S[X] be a polynomial ring, and let Tay : B → B[U ] be the
S-algebra homomorphism defined by setting Tay(X) = X + U . For any
f(X) ∈ B set

Tay(f(X)) =
∑
α≥0

∆α(f(X))Uα.

The operators ∆α are S-differential operators (S linear). Furthermore,
for any positive integer N , the set {∆α|0 ≤ α ≤ N} is a basis of the B-
module of S-differential operators on B, of order ≤ N .

Definition 2.7. Let B = S[X] be a polynomial ring over a noetherian
ring S. A Rees algebra ⊕

Ik ·W k ⊂ B[W ]

is a differential algebra, say Diff-algebra, relative to S, when:

i) Ik ⊃ Ik+1 for any k ≥ 0.

ii) For any n > 0 and f ∈ In, and for any index 0 ≤ j ≤ n and any
S-differential operator of order ≤ j, say Dj :

Dj(f) ∈ In−j.
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Remark 2.8. Let DiffN
S (B) denote the module of S-differential operators

of order at most N . Then

DiffN
S (B) ⊂ DiffN+1

S (B) ⊂ . . .

For this reason it is natural to require condition (i) in our previous definition.
Note also that 2.6 asserts that (ii) can be reformulated as:

ii’) For any n > 0 and f ∈ In, and for any index 0 ≤ α ≤ n:

∆α(f) ∈ In−α,

In fact, (i) and (ii) are equivalent to (i) and (ii’):

Theorem 2.9. Fix B = S[X] as before, and a finite set F = {gni
W ni|ni >

0, 1 ≤ i ≤ m}, with the following properties:

a) For any 1 ≤ i ≤ m, and any n′
i, 0 < n′

i ≤ ni:

gni
·W n′

i ∈ F .

b) For any 1 ≤ i ≤ m, and for any index 0 ≤ α < ni:

∆α(gni
) ·W ni−α ∈ F .

Then the B sub-algebra of B[W ], generated by F over the ring B, is a
Diff-algebra relative to S.

Proof. Condition (i) in Definition 2.7 holds by 2.2, 2).
Fix a positive integer N , and let IN ·W N be the homogeneous component

of degree N of the B sub-algebra generated by F . We prove that for any
h ∈ IN , and any 0 ≤ α ≤ N , ∆α(h) ∈ IN−α.

The ideal IN ⊂ B is generated by all elements of the form

(2.9.1) HN = gni1
· gni2

· · · gnip
ni1 + ni2 + · · ·nip = N,

with the gnij
·W nij ∈ F not necessarily different.

Since the operators ∆α are linear, it suffices to prove that ∆α(a ·HN) ∈
IN−α, for a ∈ B, HN as in 2.9.1, and 0 ≤ α ≤ N . We proceed in two steps,
by proving:

1) ∆α(HN) ∈ IN−α.

2) ∆α(a ·HN) ∈ IN−α.

We first prove 1). Set Tay : B = S[X] → B[U ], as in 2.6. Consider, for
any element gnil

·W nil ∈ F ,

Tay(gnil
) =

∑
β≥0

∆β(gnil
)Uβ ∈ B[U ].
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Hypothesis (b) states that for each 0 ≤ β < nil , ∆β(gnil
) ·W nil

−β ∈ F .
On the one hand

Tay(HN) =
∑
α≥0

∆α(HN)Uα,

and, on the other hand

Tay(HN) = Tay(gni1
) · Tay(gni2

) · · ·Tay(gnip
)

in B[U ]. This shows that for a fixed α (0 ≤ α ≤ N), ∆α(HN) is a sum of
elements of the form:

∆β1(gni1
) ·∆β2(gni2

) · · ·∆βp(gnip
),

∑
1≤s≤p

βs = α.

So it suffices to show that each of these summands is in IN−α.
Note here that ∑

1≤s≤p

(nis − βs) = N − α,

and that some of the integers nis − βs might be zero or negative. Set

G = {r|1 ≤ r ≤ p and nir − βr > 0}.
So

N − α =
∑

1≤s≤p

(nis − βs) ≤
∑
r∈G

(nir − βr) = M.

Hypothesis (b) ensures that ∆βr(gnir
) ∈ Inir−βr for every index r ∈ G, in

particular:
∆β1(gni1

) ·∆β2(gni2
) · · ·∆βp(gnip

) ∈ IM .

Finally, since M ≥ N − α, IM ⊂ IN−α, and this proves Case 1).
For Case 2), fix 0 ≤ α ≤ N . We claim that ∆α(a ·HN ) ∈ IN−α, for a ∈ B

and HN as in 2.9.1. At the ring B[U ],

Tay(a ·HN) =
∑
α≥0

∆α(a ·HN)Uα,

and, on the other hand

Tay(a ·HN) = Tay(a) · Tay(HN).

This shows that ∆α(a ·HN) is a sum of terms of the form ∆α1(a) ·∆α2(HN),
αi ≥ 0, and α1 + α2 = α. In particular α2 ≤ α; and by Case 1), ∆α2(HN) ∈
IN−α2 . On the other hand N −α2 ≥ N −α, so ∆α2(HN) ∈ IN−α, and hence
∆α(a ·HN) ∈ IN−α. �
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Corollary 2.10. The Rees algebra in B[W ], generated over B by

F = {gni
·W ni|ni > 0, 1 ≤ i ≤ m},

extends to a smallest Diff-algebra, which is generated by the finite set

F ′ = {∆α(gni
) ·W n′

i−α|gni
·W ni ∈ F , and 0 ≤ α < n′

i ≤ ni}.

Remark 2.11. Theorem 2.9 shows how to extend any Rees algebra to a
Diff-algebra, say

⊕
Ik ·W k ⊂ B[W ] so that the conditions of Definition 2.7

holds; namely that for any S-differential operator of order j(≤ n), say Dj:
Dj(In) ∈ In−j .

A similar argument can be used to extend Rees algebras to algebras, say⊕
Ik ·W k ⊂ B[W ] again, with the condition:

(2.11.1) Dj(In) ∈ In

for any positive n, and any differential operator of order j, with no condition
on j. It is easy to check that ideals In with this property are those generated
by elements in S.

Consider, as in Theorem 2.9, a finite set F = {gni
·W ni, ni > 0, 1≤ i ≤m}

with the following properties:

a) For any 1 ≤ i ≤ m, and any n′
i, 0 < n′

i ≤ ni: gni
W n′

i ∈ F .

b) For any 1 ≤ i ≤ m, and for any index 0 ≤ α: ∆α(gni
)W ni ∈ F .

We claim now that the B sub-algebra of B[W ], generated by F over
the ring B, fulfills (2.11.1). Note here that as each gni

is polynomial on Z,
∆α(gn) = 0 for α big enough, so F is in fact finite.

In order to prove the claim it suffices to show that ∆α(a ·HN ) ∈ IN , for
a ∈ B, HN as in (2.9.1). As in the previous Theorem we proceed in two
steps, but proving now that:

1) ∆α(HN) ∈ IN .

2) ∆α(a ·HN) ∈ IN .

∆α(HN) is a sum of elements of the form:

∆β1(gni1
) ·∆β2(gni2

) · · ·∆βp(gnip
),

∑
1≤s≤p

βs = α.

So, to prove 1), it suffices to show that each of these products is in IN . This
follows from (2.9.1) and the assumption on F . The proof for 2) is similar.
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Remark 2.12. The proof of Theorem 2.9, and also that of Remark 2.11, rely
strongly on the fact that Tay : B → B[U ], defined on the polynomial ring
B = S[X] by setting Tay(X) = X + U , is an S-algebra homomorphism. In
fact the proof of the Theorem reduces to showing that ∆α(HN) ∈ IN−α (that
∆α(HN) ∈ IN−α in the case of Remark 2.11), where HN = gni1

· gni2
· · · gnip

is a product of elements in a finite set of generators F .
An interesting, and different, S-algebra homomorphism is

TayX : B → B[U ],

defined by setting TayX(X) = X + XU . In this case

TayX(F (X) =
∑
α≥0

Xα∆α(f(X))Uα.

Consider a finite set F = {gni
·W ni, ni > 0, 1 ≤ i ≤ m} such that:

a) For any 1 ≤ i ≤ m, and any n′
i, 0 < n′

i ≤ ni: gni
·W n′

i ∈ F .

b) For any 1 ≤ i ≤ m, and for any index 0 ≤ α: Xα∆α(gni
) ·W ni ∈ F .

As each gni
is polynomial on X, Xα∆α(gn) = 0 for α big enough, so F

is in fact finite; and any finite set of generators can be extended to one with
these properties.

The same argument used above show that the Rees algebra generated
by F fulfills:

Xα∆α(In) ⊂ In.

Rees algebras with this property are considered in toric geometry. They are
also characterized by the fact that if f(X) =

∑
srX

r(∈ S[X]) is in In, then
each srX

r ∈ In.
Also Theorem 2.9, as stated, can be formulated in terms of differentials

with logarithmic poles.

3. Differential algebras on smooth schemes

3.1. A sequence of coherent ideals on a scheme Z, say {In}n∈N, such that
I0 = OZ , and Ik ·Is ⊂ Ik+s, defines a graded sheaf of algebras

⊕
n≥0 In ·W n ⊂

OZ [W ].
We say that this algebra is a Rees algebra if there is an open covering

of Z by affine open sets {Ui}, so that

⊕
n

In(Ui) ·W n ⊂ OZ(Ui)[W ]

is a finitely generated OZ(Ui)-algebra.
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In what follows Z will denote a smooth scheme of a field k, and Diffr
k(Z),

or simply Diffr
k, the locally free sheaf of k-linear differential operators of order

at most r.

Definition 3.2. We say that a Rees algebra defined by {In}n∈N is a Diff-
algebra relative to the field k, if:

i) In ⊃ In+1.

ii) There is open covering of Z by affine open sets {Ui}, and for any
D ∈ Diff(r)(Ui), and any h ∈ In(Ui), then D(h) ∈ In−r(Ui), provided n ≥ r.

Due to the local nature of the definition, we reformulate it in terms of
smooth k-algebras.

Definition 3.3. In what follows R will denote a smooth algebra over a field,
or a localization of such algebra on a closed point (a regular local ring). A
Rees algebra is defined by a sequences of ideals {Ik}k∈N such that:

1) I0 = R, and Ik · Is ⊂ Ik+s.

2)
⊕

Ik ·W k is a finitely generated R-algebra.

We shall say that the Rees algebra is a Diff-algebra relative to k, if

3) In ⊃ In+1, and

4) given D ∈ Diff
(r)
k (R), then D(In) ⊂ In−r.

We now show that any Rees algebra extends to a smallest Diff-algebra
(i.e. included in any other Diff-algebra containing it).

Theorem 3.4. Assume that G =
⊕

Ik ·W k is a Rees algebra over a smooth
scheme Z. Then there is a natural and smallest extension of it, say G ⊂
G(G), where G(G) is a Diff-algebra relative to the field k.

Proof. The problem is local, so we will assume that R is a local ring at a
closed point of Z, and show that a finitely generated sub-algebra of R[W ]
extends, by successive applications of differential operators, to a finitely
generated algebra.

We will argue in steps. Assume that the local ring R is of dimension 1,
and let x denote a parameter. Set Tay : R̂→ R̂[[U ]] the k-algebra morphism

at the completion defined by setting Tay(x) = x + U . Here R̂ = k′[[x]] is a
ring of formal power series over a finite extension k′ of k,

Tay(f) =
∑

∆r(f)U r,

and each
∆r : k′[[x]]→ k′[[x]]

maps the sub-ring R into R, defining ∆r : R→ R (see [13, Th. 99, p. 228]).

So Tay : R̂→ R̂[[U ]] induces by restriction Tay : R→ R[[U ]] (see [13]).
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For any f ∈ R set

Tay(f) =
∑
r≥0

∆r(f)U r(∈ R[[U ]]).

The operators ∆r are a basis of the k-linear differential operators on R.
The same argument used in Theorem 2.9 shows that if

⊕
Ik · W k is

generated by F = {gni
·W ni|ni > 0, 1 ≤ i ≤ m}, then

F ′ = {∆r(gni
) ·W n′

i−r|gni
·W ni ∈ F , and 0 ≤ r < n′

i ≤ ni}
generates the smallest extension to a Diff-algebra.

Let now R be a localization of an arbitrary smooth algebra at a closed
point, and fix a regular system of parameters {x1, . . . , xn}. Define

Tay : R̂→ R̂[[U1, . . . , Un]]

as the continuous morphisms of algebras defined by setting Tay(xi) = xi+Ui.

So for any h ∈ R̂ set:

Tay(h) =
∑

α∈(N)n

∆α(h)Uα.

This morphism defines, by restriction, Tay : R → R[[U1, . . . , Un]] (see
[13, Theorem99, p. 228]). Set, for g ∈ R:

Tay(g) =
∑

α∈(N)n

∆α(g)Uα.

Here {∆α|α ∈ (N)n, 0 ≤ |α| ≤ n} is a basis of the free R-module
Diffn(R), and in order to show that a Rees algebra

⊕
Ik · W k is a Diff-

algebra, it suffices to check that given g ∈ Im:

(3.4.1) ∆α(g) ∈ Im−|α|.

Note that ∆α∆α′
= ∆α′

∆α. Define, for each index i0, 1 ≤ i0 ≤ n:

Tayi0 : R→ R[[Ui0 ]],

Tayi0(xj) = xj for i 
= j, and Tayi0(xi0) = xi0 + Ui0 . So

Tayi0(g) =
∑
α∈Nn

∆α
i0
(g)Uα,

is defined in terms of the differential operators ∆α
i0
.
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For any α = (α1, α2, . . . , αn) ∈ (N)n:

∆α = ∆α1
1 · · ·∆αn

n ,

is a composition of partial operators defined above. And
⊕

Ik ·W k is a Diff-
algebra if the requirement in (3.4.1) holds for each of these partial differential
operators.

So again, the arguments in Theorem 2.9 ensure that if
⊕

Ik · W k is
generated by

F = {gni
·W ni|ni > 0, 1 ≤ i ≤ m},

then

(3.4.2) F ′ = {∆α(gni) ·W n′
i−α|gni ·W ni ∈ F , α ∈ (N)n, and 0 ≤ |α| < n′

i ≤ ni}

generates the smallest extension of
⊕

Ik ·W k to a Diff-algebra relative to
the field k. �

Remark 3.5. In the previous discussion we reduce the proof of the Theorem
to the case of one variable, and we make use of Theorem 2.9. There are
interesting variations in the one variable case discussed in Remark 2.12, of
particular interest is that of differentials with logarithmic poles. Such is
the case when we fix an integer s, 1 ≤ s ≤ n, and consider, for each index
1 ≤ i0 ≤ s, the modified function:

Tayxi0
: R→ R[[Ui0 ]]

(defined by Tayxi0
(xj) = xj for i 
= j and Tayxi0

(xi0) = xi0 + xi0Ui0); and

the usual Tayj0 : R→ R[[Ui0 ]] for s + 1 ≤ j0 ≤ n.
There is an natural analog of Diff-algebras with Rees algebras which

are closed by differential operators with logarithmic poles. This follows
from Remark 2.12, and it is simple to extend the outcome of (3.4.2) to this
context.

Corollary 3.6. Given inclusions of Rees algebras, say

G =
⊕

In ·W n ⊂ G′ =
⊕

I ′
n ·W n ⊂ G(G) =

⊕
I ′′
n ·W n,

where G(G) is the Diff-algebra spanned by G, then G(G) is also the Diff-
algebra spanned by G ′.
3.7. Fix now a smooth morphism of smooth schemes, say Z → Z ′. Let
Diffr

Z′(Z), or simply Diffr
Z′ denote the locally free sheaf of relative differential

operators of order r.
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We say that the Rees algebra
⊕

Ik ·W k over Z (see 3.1) is a Diff-algebra
relative to Z ′, if conditions in Definition 3.2 hold, where we now require that
D ∈ Diffr

Z′(Ui) in (ii).
Since Diffr

Z′(Z) ⊂ Diffr
k(Z) it follows that any Diff-algebra relative to k

is also relative to Z ′.
Theorem 3.4 has a natural formulation for the case of Diff-algebras rel-

ative to Z ′. Given an ideal I ⊂ OZ , and a smooth morphism Z → Z ′, we
define an extension of ideals I ⊂ Diffr

Z′(I),

Diffr
Z′(I)(U) = 〈D(f)|f ∈ I(U), D ∈ Diffr

Z′(U)〉
for each open U in Z.

Since Diffr
Z′ ⊂ Diffr+1

Z′ , clearly Diffr
Z′(I) ⊂ Diffr+1

Z′ (I) for r ≥ 0.
Note finally that a Rees algebra

⊕
Ik ·W k over Z (3.1) is a Diff-algebra

relative to Z ′, if and only if, for any positive integers r ≤ n, Diffr
Z′(In) ⊂

In−r. In particular, for Z ′ = Spec(k), condition ii) in Definition 3.2 can be
reformulated as:

ii’) Diffr
k(In) ⊂ In−r.

4. Differential algebras and singular locus

4.1. The notion Diff-algebra relative to a field k, on a smooth k-scheme
Z, is closely related to the notion of order at the local regular rings of Z.
Recall that the order of a non-zero ideal I at a local regular ring (R, M) is
the biggest integer b such that I ⊂M b.

If I ⊂ OZ is a sheaf of ideals, V (Diffb−1
k (I)) is the closed set of points

of Z where the ideal has order at least b. We analyze this fact locally at a
closed point x.

Let {x1, . . . , xn} be a regular system of parameters at OZ,x, and consider
the differential operators ∆α, defined on OZ,x in terms of these parameters,
as in the Theorem 3.4. So at x,

(Diffb−1
k (I))x = 〈∆α(f)|f ∈ I, 0 ≤ |α| ≤ b− 1〉.

One can now check at OZ,x, or at the ring of formal power series ÔZ,x, that
Diffb−1

k (I) is a proper ideal if and only if I has order at least b at the local
ring.

The operators ∆α are defined globally at a suitable neighborhood U
of x. So if

⊕
In · W n ⊂ OZ [W ] is a Diff-algebra relative to the field k

and x ∈ Z is a closed point, the Diff-algebra defined by localization, say⊕
(In)x W n ⊂ OZ,x[W ], is properly included in OZ,x[W ], if and only if, for

each index m ∈ N, the ideal (Im)x has order at least m at the local regular
ring OZ,x.
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Definition 4.2. The singular locus of a Rees algebra G =
⊕

In · W n ⊂
OZ [W ], will be

Sing(G) = ∩r≥1V (Diffr−1
k (Ir))(⊂ Z).

It is the set of points x ∈ Z for which all (Ir)x have order at least r (at OZ,x).

Remark 4.3. Assume that f ∈ (Ir)x has order r at OZ,x. Then, locally
at x, Sing(G) is included in the set of points of multiplicity r (or say, r-fold
points) of the hypersurface V (〈f〉).

In fact Diffr−1
k (f) ⊂ Diffr−1

k (Ir), and the closed set defined by the first
ideal is that of points of multiplicity r.

Proposition 4.4. 1) If G =
⊕

In · W n and G′ =
⊕

I ′
n · W n are Rees

algebras with the same integral closure (e.g. if G ⊂ G′ is a finite
extension), then

Sing(G) = Sing(G′).

2) If G is a Rees algebra generated over OZ by F = {gni
·W ni, ni > 0, 1 ≤

i ≤ m}, then
Sing(G) = ∩V (Diffni−1(〈gni

〉)).
3) Let G′′ =

⊕
I ′′
n ·W n be the extension of G to a Diff-algebra relative

to k, as defined in Theorem 3.4, then Sing(G) = Sing(G ′′).
4) For any Diff-algebra G′′ =

⊕
I ′′
nW n, Sing(G′′) = V (I ′′

1 ).

5) Let G′′ =
⊕

I ′′
n · W n be a Diff-algebra. For any positive integer r,

Sing(G′′) = V (I ′′
r ).

Proof. 1) The argument in 2.3 shows that there is an index N , so that G is
finite over the subring

⊕
Ik
N ·W Nk, and G′ is finite over

⊕
I ′k
N ·W Nk. And

furthermore, IN and I ′
N have the same integral closure. In these conditions

Sing(G) is the set of points x ∈ Z such that IN has order at least N at OZ,x,
and similarly, Sing(G ′) is the set of points x ∈ Z such that I ′

N has order at
least N . Finally, the claim follows from the fact that the order of an ideal,
at a local regular ring, is the same as the order of its integral closure ([23],
Appendix 3).

2) We have formulated 2) with a global condition on Z, however this is
always the case locally. In fact, there is a covering of Z by affine open sets,
so that the restriction of G is generated by finitely many elements. Let U be
such open set, so G(U) =

⊕
Ik(U) ·W k is generated by F = {gni

·W ni, ni >
0, 1 ≤ i ≤ m}, gni

∈ OZ(U).
The claim is that y ∈ Sing(G) ∩ U if and only if the order of gni

at OZ,y

is at least ni, for 1 ≤ i ≤ m.
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The condition is clearly necessary. Conversely, if G =
⊕

In · W n =
OU [{gi ·W ni}gi·W ni∈F ], and each gni

has order at at least ni at OZ,y, then In

(generated by weighted homogeneous expressions on the gi’s) has order at
least n at OZ,y.

3) We argue as in 2), here we may also assume that there is x ∈ U , a
regular system of parameters {x1, . . . , xn} at x, and differential operators ∆α

as in Theorem 3.4, defined globally at U .
Formula (3.4.2) shows that the Diff-algebra G ′′ in Theorem 3.4 is a finite

extension of the Rees algebra defined by

F ′ = {∆α(gni
) ·W ni−α|gni

·W ni ∈ F , α ∈ (N)n, and 0 ≤ |α| < ni}.

Note finally that if the order of gni
at a local ring is ≥ ni, then the order

of ∆α(gni
) is ≥ ni − |α|.

4) The inclusion Sing(G′′) ⊂ V (I ′′
1 ) holds, by definition, for any Rees

algebra. On the other hand, the hypothesis ensures that Diffr−1(I ′′
r ) ⊂ I ′′

1 ,
so Sing(G ′′) ⊃ V (I ′′

1 ).

5) Follows from 4). �

5. On restrictions of differential algebras

Proposition 5.1. Let G =
⊕

Ik·W k be a Diff-algebra on a smooth scheme V
defined by ideals Ik ⊂ OV .

A) If V ′ ⊂ V is a closed and smooth sub-scheme, the restriction of G
to V ′, say

G′ =
⊕

IkOV ′ ·W k,

is a Diff-algebra on V ′.

B) If V ′′ → V is a smooth morphism, then the natural extension, say

G′′ =
⊕

IkOV ′′ ·W k,

is a Diff-algebra on V ′′.

Proof. It is clear that both G′ and G′′ are Rees algebras (3.1). We will show
that conditions (i) and (ii) in Definition 3.2 hold.

It suffices to prove both results locally at closed points, say x ∈ Sing(G).
Set Gx =

⊕
(Ik)x ·W k where now each (Ik)x is an ideal in OV,x. We may

also replace the local ring by its completion.
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A) Fix a closed point x ∈ V ′ ⊂ V and a local regular system of parame-
ters, say

{x1, . . . , xh, xh+1, . . . xd}
at OV,x, such that V ′ is locally defined by the ideal < x1, . . . , xh >. Set

ÔV,x = k′[[x1, . . . , xh, xh+1, . . . xd]],

where k′ is a finite extension of k. For each multi-index α = (α1, ..., αd)∈N
d,

∆α = ∆α(1)

∆α(2)

;

where α(1) = (α1, . . . , αh) ∈ N
h, and α(2) = (αh+1, . . . , αd) ∈ N

d−h.
Express an element fn ∈ In as

fn =
∑

α(1)∈(N)h

xα1
1 · · ·xαh

h aα(1) ,

a
α(1) ∈ k′[[xh+1, . . . xd]].

If |α(1)| = α1 + · · ·+αh ≤ n, then aα(1) ·W n−|α(1)| is the class of ∆α(1)
(fn) ·

W n−|α(1)| in ÔV ′,x[W ]. So it is an element in the restricted algebra. Similarly,
if |α(1)|+ |α(2)| ≤ n,

∆α(2)

aα(1) ·W n−|α(1)|−|α(2)|

is the class of the element (∆α(2)
∆α(1)

)(fn) ·W n−|α(1)|−|α(2)| in ÔV ′,x[W ].
For each index m ≥ 1, ImOV ′ ·W m is defined by the coefficient a0 ·W m

(0 ∈ (N)h), for each fm ·W m ∈ Im ·W m. Conditions (i) and (ii) in 3.2 are
now easy to check.

For our further discussion we point out that ImOV ′W m also contains all
coefficients aα(1) ·W n−|α(1)| of f ·W n ∈ In ·W n, and n− |α(1)| = m.

B) Fix a point x′ ∈ V ′′ mapping to x ∈ V . The completion of OV ′′,x′

contains that of OV,x, say

ÔV,x = k′[[x1, . . . , xd]] ⊂ ÔV ′′,x′ = k′[[x1, . . . , xd, xd+1, . . . xe]].

Each ideal In in k′[[x1, . . . , xd]] extends to In · k′[[x1, . . . , xd, xd+1, . . . xe]];
and the claim is that the extended algebra is a Diff-algebra. The statement
follows easily in this case, for example by formula (3.4.2), which expresses
generators of the Diff-algebra in terms of generators of the Rees algebra. �

Definition 5.2. Fix G =
⊕

Ik ·W k, a Rees algebra on V , and let V
π←− V ′

be a morphism of smooth schemes. We define the total transform of G to be

π−1(G) =
⊕

IkOV ′ ·W k.

Namely the Rees algebra defined by the total transforms of the ideals In,
n ≥ 0.



Rees algebras on smooth schemes 229

Note that the restriction in A) and the natural extension in B), are
particular examples of total transforms.

Lemma 5.3. Let G =
⊕

Ik ·W k(⊂ OV [W ]) be a Rees algebra generated by
a finite set F = {gN1 ·W N1, . . . , gNs ·W Ns}, and let V

π←− V ′ be a morphism
of smooth schemes. Then π−1(G) is also generated by F .

Proof. Since any element of IM is a weighted homogeneous polynomial of
degree M in elements of F , the total transform of the ideal is also generated
by elements that are weighted homogeneous in the same set F . �

In particular:

A) the restriction of G to V ′(⊂ V ) is generated by {gN1
·W N1 , . . . , gNs

·
W Ns}, where each gNi

is the restriction of gNi
to V ′.

B) If V ′′ → V is a smooth morphism, the total transform of
⊕

Ik ·W k

to V ′′ is generated by {gN1 ·W N1, . . . , gNs ·W Ns}.
Theorem 5.4. Let V ′ π−→ V be a morphism of smooth schemes, then:

i) if G is a Diff-algebra on V , the total transform π−1(G) is a Diff-algebra
on V ′.

ii) Sing(π−1(G)) = π−1(Sing(G)).
Proof. Since V ′ π−→ V is of finite type, it can be expressed locally in the

form V ′ ⊂ V ′′ β−→ V, where β is smooth. So Proposition 5.1 proves (i).
Fix a closed point x ∈ Sing(π−1(G)). Since Sing(G) = V (In) for all

n ≥ 1 (see 4.4), it follows that π(x) ∈ Sing(G). On the other hand, if
π(x) ∈ Sing(G), the order of In is at least n at OV,π(x), for each n ≥ 1; so
the same holds at OV ′,x. This proves (ii).

6. On differential algebras and integral closures

6.1. Fix a Rees algebra G =
⊕

Ik ·W k(⊂ OV [W ]), and a point x ∈ Sing(G).
Let Z be a smooth sub-scheme containing x, and let x1, . . . , xh be part of
a regular system of parameters at OV,x so that < x1, . . . , xh > is the ideal
defining Z locally at x. We define now a graded algebra over the completion,
namely in ÔZ,x[W ].

This new graded algebra will be defined in terms of the (local) inclusion
Z ⊂ V , and the retraction V → Z defined locally at x (see 6.3).

Extend {x1, . . . , xh} to a regular system of parameters of the local ring

OV,x , say {x1, . . . , xh, xh+1, . . . xd}. ÔV,x is a ring of formal power series, say

k′[[x1, . . . , xh, xh+1, . . . xd]], and ÔV ′,x is k′[[xh+1, . . . xd]]. The local retraction
is defined by k′[[xh+1, . . . xd]] ⊂ k′[[x1, . . . , xh, xh+1, . . . xd]].
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Set, as usual, Gx =
⊕

Ik ·W k(⊂ OV,x[W ]), which also extends to a Rees

algebra over ÔV,x. Express an element fn ∈ In as

fn =
∑

α(1)∈(N)h

xα1
1 · · ·xαh

h aα(1) , aα(1) ∈ k′[[xh+1, . . . xd]].

For any such fn ·W n, consider the set {a
α(1) ·W n−|α(1)||0 ≤ |α(1)| < n},

which we call the coefficients of fn ·W n. So the coefficients of fn ·W n is a
finite set, defined in terms of a regular system of parameters, and the weight
of each coefficient depends on the index n.

Claim: As fn ·W n varies on the Rees algebra Gx, the coefficients of fn ·W n

generate a Rees algebra, say Coeff(G)x, in k′[[xh+1, . . . xd]][W ].

The claim here is that the graded algebra Coeff(G)x is a finitely generated
sub-algebra of k′[[xh+1, . . . xd]][W ].

Assume that F = {gN1 ·W N1 , . . . , gNs ·W Ns} generate Gx. Express, for
1 ≤ i ≤ s:

(6.1.1) gNi
=

∑
α∈(N)h

xα1
1 · · ·xαh

h a(i)
α aα ∈ k′[[xh+1, . . . xd]].

We search for a finite set of coefficients, that span Coeff(G)x. A first
candidate would be

(6.1.2) F ′
1 = {a(i)

α ·W Ni−|α||0 ≤ |α| < Ni, 1 ≤ i ≤ s}.
Consider the product of two elements in F , say gNi

·W Ni ·gNj
·W Nj = fn ·W n

(n = Ni + Nj); and a coefficient, say a
α(1) · ·W n−|α(1)|, of fn ·W n.

It follows from 6.1.1 that

aα(1) =
∑

β+δ=α(1)

a
(i)
β a

(j)
δ ,

for β, δ, and α(1) in (N)h. Note that we cannot extract from the previous,
expressions of the form

aα(1) ·W n−|α(1)| =
∑

β+δ=α(1)

a
(i)
β ·W Ni−|β|a(j)

δ ·W Nj−|δ|.

In fact, it can happen that |δ| ≥ Nj , and we only consider W with positive

exponents. In particular, the previous expression of a
α(1) ·W n−|α(1)| is not

weighted homogeneous in F ′
1, and hence not in the graded sub-algebra of

k′[[xh+1, . . . xd]][W ] generated by F ′
1.
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One way to remedy this situation is to allow a
(i)
β to have weight n−|α(1)|

if |δ| ≥ Nj. Note that in such case

n− |α(1)| = Ni − |β|+ Nj − |δ| ≤ Ni − |β|.
Therefore F ′

1 can be enlarged to say,

(6.1.3) F1 = {a(i)
α ·W ni,α|0 ≤ |α| < Ni, 1 ≤ i ≤ s, 0 < ni,α ≤ Ni − |α|},

for Ni and α as in F ′
1; and the coefficients of fn ·W n are now weighted homo-

geneous on F1 (i.e. are in the sub-algebra of k′[[xh+1, . . . xd]][W ] generated
by F1).

The argument applied here to gNi
· W Ni · gNj

· W Nj , also holds for
the coefficients of any product of elements in F , and hence for the co-
efficients of any homogeneous element in the algebra generated by F =
{gN1 · W N1, . . . , gNs · W Ns} (i.e. for the coefficients of any homogeneous
element of Gx).

This shows that there is an inclusion of subalgebras in k′[[xh+1, . . . xd]][W ],
say

(6.1.4) k′[[xh+1, . . . xd]][F ′
1] ⊂ Coeff(G)x ⊂ k′[[xh+1, . . . xd]][F1].

On the other hand k′[[xh+1, . . . xd]][F ′
1] ⊂ k′[[xh+1, . . . xd]][F1] is a finite ex-

tension (2.2, 2)). In particular Coeff(G)x is finitely generated.

Remark 6.2. 1) F ′
1 can be extended to a finite set, say F ′′

1 , of generators
of Coeff(G)x.

2) Sing(k′[[xh+1, . . . xd]][F ′
1]) = Sing(Coeff(G)x) (Prop 4.4, (1)).

3) Sing(Coeff(G)x) can be naturally identified with the intersection Z ∩
Sing(G) locally at the point x.

To check 3) note that the singular locus of k′[[xh+1, . . . xd]][F ′
1] can be

naturally identified with the intersection Z ∩Sing(G). This follows from the
definition of F ′

1 in (6.1.2), and the expressions in (6.1.1). Finally apply 2).

6.3. Fix, as in 6.1, an inclusion of smooth schemes Z ⊂ V , and a closed
point x ∈ Z. Assume that there is a retraction say V → Z locally at x.
Let x1, . . . , xh be part of a regular system of parameters at OV,x so that
< x1, . . . , xh > defines Z atOV,x; and let {xh+1, . . . xd} be a regular system of
parameters at OZ,x. The local retraction at the point x defines an inclusion
OZ,x ⊂ OV,x, so we may consider {x1, . . . , xh, xh+1, . . . xd} as parameters
at OV,x.

We may identify ÔV,x with a ring of power series k′[[x1, . . . , xh, xh+1, . . . xd]],

ÔZ,x with k′[[xh+1, . . . xd]]; and the local retraction defines the inclusion

k′[[xh+1, . . . xd]] ⊂ k′[[x1, . . . , xh, xh+1, . . . xd]].
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Given G =
⊕

Ik ·W k(⊂ OV [W ]), we have defined Coeff(G) at ÔZ,x[W ].
We now show that it can also be defined in OZ,x[W ], and that the definition
relies on the local retraction and the local inclusion. Express an element
fn ∈ InÔV,x as

fn =
∑

α(1)∈(N)h

xα1
1 · · ·xαh

h aα(1) ,

a
α(1) ∈ k′[[xh+1, . . . xd]]. For each multi-index α(1), 0 ≤ |α(1)| ≤ n, the

coefficient a
α(1) can be identified with the class of ∆α(1)

(fn) in ÔZ,x. How-

ever, ∆α(1)
is a differential operator, relative to the local retraction V → Z,

∆α(1)
(fn) is an element in OV,x, and we can therefore consider the class of

this element in OZ,x.
This shows that Coeff(G)(⊂ OZ,x[W ]), is the restriction via Z ⊂ V , of

the extension of G defined by the Diff-algebra relative to the local retraction
(see 3.7). In other words, and from an algebraic point of view, Coeff(G)(⊂
OZ,x[W ]) is defined in terms of:

i) the surjection OV,x → OZ,x; and

ii) the inclusion OZ,x ⊂ OV,x (etale locally).

This proves the following Remark in the formal case:

Remark 6.4. Consider G ⊂ OV,x[W ], and, as before, a surjection ÔV,x →
ÔZ,x; and an inclusion ÔZ,x ⊂ ÔV,x. Let {xh+1, . . . , xd} be a regular sys-
tem of parameters at OZ,x, and assume that {x1, . . . xh, xh+1, . . . , xd} and
{x′

1, . . . x
′
h, xh+1, . . . , xd} are two extensions to regular system of parameters

at OV,x, and that < x1, . . . , xh >=< x′
1, . . . , x

′
h >= I(Z) ⊂ OV,x

The same inclusion OZ,x ⊂ OV,x can be expressed as

ÔZ,x = k′[[xh+1, . . . , xd]] ⊂ k′[[x1, . . . , xh, xh+1, . . . , xd]] = ÔV,x

or as

ÔZ,x = k′[[xh+1, . . . , xd]] ⊂ k′[[x′
1, . . . , x

′
h, xh+1, . . . , xd]] = ÔV,x.

In both cases Coeff(G) ⊂ ÔZ,x[W ] is the same.
The discussion in 6.3 also shows that, of course, the definition of Coeff(G)

⊂ ÔZ,x[W ] is independent of the coordinates we choose in the subring ÔZ,x.

6.5. Set G ⊂ OV,x[W ] and

ÔZ,x = k′[[xh+1, . . . , xd]] ⊂ k′[[x1, . . . , xh, xh+1, . . . , xd]] = ÔV,x

as above, where < x1, . . . , xh >= I(Z) ⊂ ÔV,x.
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Note that the natural identification of k′[[xh+1, . . . , xd]] with ÔV,x/I(Z),
provides an inclusion:

G ⊂ Coeff(G) ⊂ ÔZ,x[W ],

where G ⊂ (ÔV,x/I(Z))[W ] denotes the restriction. Furthermore, this inclu-
sion is an equality if G is a differential algebra (see also Lemma 6.6 below).

Lemma 6.6. With the setting as above, the restriction of G(G) to the smooth
sub-scheme Z is the Diff-algebra spanned by Coeff(G) (i.e. the Diff-algebra
generated by Coeff(G) in OZ,x[W ]).

Proof. The previous discussion shows that Coeff(G) is included in the re-
striction of G(G), which is a Diff-algebra over OZ,x (Proposition 5.1,A)). In
particular, the Diff-algebra spanned by Coeff(G)x is included in the restric-
tion. The claim is that this last inclusion is an equality.

Here G(G) =
⊕

I ′
k·W k is the Diff-algebra generated by G, so to prove this

equality it suffices to show that given fn ∈ In, and α = (α1, . . . , αd) ∈ (N)d,
0 ≤ |α| < n, the class of ∆α(fn) ·W n−|α| in OZ,x[W ], is in the Diff-algebra
generated by Coeff(G).

For this last claim we argue as in the proof of Proposition 5.1, (A), by
splitting each multi-index α = (α1, . . . , αd) ∈ (N)d :

∆α = ∆α(1)

∆α(2)

;

where α(1) = (α1, . . . , αh), and α(2) = (αh+1, . . . , αd).

The class of ∆α(1)
(fn) ·W n−|α(1)| is a

α(1) ·W n−|α(1)| ∈ Coeff(G); and that

of ∆α(fn) ·W n−|α| is ∆α(2)
(aα(1)) ·W n−|α(1)|−|α(2)|, which is clearly in the Diff-

algebra spanned by Coeff(G). �

Corollary 6.7. Fix a smooth scheme V , a Rees algebra G, and a closed and
smooth sub-scheme Z of V . If G(G) denotes the Diff-algebra spanned by G,
and if [G(G)]Z denotes the restriction to Z, then Sing([G(G)]Z), as closed
set in Z, can be identified with Z ∩ Sing(G).

This follows from Lemma 6.6 and 6.2, 3).

Remark 6.8. Let G =
⊕

Ik ·W k(⊂ OV ′[W ]) be a Rees algebra on a one
dimensional smooth scheme V ′. If we assume that some Ik 
= 0, then Sing(G)
is a finite set of points.

Fix x ∈ Sing(G) and set ÔV ′,x = k′[[t]], so

G =
⊕
r≥1

< tar > ·W r,
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and ar ≥ r for each index r. Define

λG = inf
r

{ar

r

}
,

and note that λG ≥ 1.
Let {gN1 ·W N1 , . . . , gNs ·W Ns} be a set of generator locally at a closed

point x ∈ Sing(G). Fix any integer M divisible by all Ni, 1 ≤ i ≤ s, then

λG =
ν(IM)

M

where ν(IM) denotes the order of the ideal at OV ′,x. Let G denote the
integral closure of G.

Claim 1: The integral closure of G is determined by the rational number
λG, and λG = λG.

In fact, by usual arguments of toric geometry, we conclude that tn ·W m ∈
G, if and only if n

m
≥ λG. This proves the claim.

Let G(G) denote the Diff-algebra spanned by G. Recall that Sing(G) =
Sing(G(G)).

Claim 2: Locally at any x ∈ Sing(G), both G and G(G) have the same
integral closure.

We prove our claim by showing that λG = λG′. To this end note that
given ta ·W b ∈ G, and an operator ∆j , 0 ≤ j < b,

∆j(ta) ·W b−j = d · ta−j ·W b−j,

where d is the class of an integer in the field k′. Since a ≥ b > j ≥ 0 it
follows that a−j

b−j
≥ a

b
, so Claim 2 follows from Claim 1.

6.9. The previous Remark shows that in the one dimensional case, the
extension G ⊂ G(G) is finite, where G(G) is the Diff-algebra spanned by G.

In general G(G) is not integrally closed. Consider, for example, the
semi-group in N× N defined by the pairs (x, y) such that −2x + y ≥ 0 and
−x+ y ≥ 3. Use the previous remark to show that the set of pairs {ti ·W j},
where (j, i) fulfills the previous inequalities, form a Diff-algebra G which is
not integrally closed. In fact t3 ·W is integral over G.
6.10. Let G be a Rees algebra over a smooth scheme V , generated by
{gN1 ·W N1 , . . . , gNs ·W Ns}, which we may assume by restriction to affine
open sets. Let M is a positive integer divisible by all Nj , 1 ≤ j ≤ s; and
consider the Rees ring OV [IM ·W M ]. Recall that OV [IM ·W M ] ⊂ G is a finite
extension of graded algebras, and that any Rees algebra is a finite extension
of a Rees ring of an ideal (see 2.3).
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Given two Rees algebras G1 =
⊕

r≥0 I(1)r ·W r and G2 =
⊕

r≥0 I(2)r ·
W r, there is a positive integer M such that both are integral extensions
of the Rees ring generated by the M-th term, say

⊕
k≥0 I(1)k

M ·W kM and⊕
k≥0 I(2)k

M ·W kM .

Proposition 6.11. Fix two Rees algebras G1 and G2 on a smooth scheme
V over a field k. Assume that for any morphism of regular k-schemes, say
V ′ π−→ V , where V ′ is one dimensional, both pull-backs have the same
integral closure (i.e. π−1(G1) = π−1(G2)). Then G1 and G2 have the same
integral closure in V .

Proof. Choose M and ideals I(1)M and I(2)M as in 6.10. We may assume
here that π is of finite type. Lemma 5.3 and the previous properties show
that under the condition of the hypothesis both I(1)M and I(2)M have the
same integral closure in OV (see 2.5). In particular, G1 and G2 have the same
integral closure. �

Proposition 6.12. Let G1 ⊂ G2(⊂ OV [W ]) be a finite extension of Rees
algebras on a smooth scheme V , and let V ′ be a smooth one dimensional sub-
scheme in V. Fix x∈V ′ and a regular system of coordinates {x1, . . . , xd−1, xd}
at OV,x, so that the curve is locally defined by < x1, . . . , xd−1 >. Then

Coeff(G1) ⊂ Coeff(G2)

is a finite extension in OV ′ [W ].

Proof. Express any f ∈ ÔV = k′[[x1, . . . , xd−1, xd]] as:

f =
∑

α∈(N)d−1

xα1
1 · · ·xαd−1

d−1 aα aα ∈ k′[[xd]].

The coefficients of f ·W N are {aα ·W N−|α||0 ≤ |α| < N}, and we define

slV ′(f ·W N) = min
{ ν(aα)

N − |α| |0 ≤ |α| < N
}

,

where ν(aα) denotes the order of aα in k′[[xd]]. Set Coeff(G1) and Coeff(G2)
in OV ′[W ], as in (6.1). Assume that F1 = {fN1 ·W N1, . . . , fNs ·W Ns} generate
G1 locally at x, and that F2 = {gM1 ·W M1, . . . , gMt ·W Mt} generate G2.

The inclusion Coeff(G1) ⊂ Coeff(G2) at OV ′ [W ] is clear.

Set Coeff(Gi) =
⊕

r≥0 J(i)rW
r in OV ′ [W ], for i = 1, 2. Note that

J(1)r = 0 for all r ≥ 1 iff V ′ ⊂ Sing(G1) iff G1 ⊂
⊕

r≥0 P rW r; where P
is the ideal defining the smooth sub-scheme V ′. Since G1 ⊂ G2 is finite, it
follows that also J(2)r = 0 for all r ≥ 1.
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Assume now that some J(1)r is not zero for some r > 0. The inclusion
Coeff(G1) ⊂ Coeff(G2) ensures that

(6.12.1) λCoeff(G1) ≥ λCoeff(G2),

and we shall prove the claim, in what follows, by showing that they are equal
(see Remark 6.8).

Each gMj
·W Mj is integral over the localization of G1 in OV,x[W ]. And this

property is preserved by any change of rings. Namely, for any ring homo-
morphism φ : OV,x → S, φ(G1) is a Rees algebra in S[W ], and φ(gMj

) ·W Mj

is integral over φ(G1).
Express, for any gMj

·W Mj ∈ F2:

(6.12.2) gMj
=

∑
α∈(N)h

xα1
1 · · ·xαh

h a(j)
α aα ∈ k′[[xd]],

and set
F ′

2 = {a(j)
α ·W Mj−|α||0 ≤ |α| < Mj , 1 ≤ j ≤ t}

(coefficients of all gMj
’s).

We know that k′[[xd]][F ′
2] ⊂ Coeff(G2) is a finite extension in k′[[xd]][W ]

(see 6.1.4); in particular:

λCoeff(G2) = min
{ ν(a

(j)
α )

Mj − |α| |0 ≤ |α| < Mj , 1 ≤ j ≤ t
}

(6.8),

or, equivalently:

λCoeff(G2) = min{slV ′(gMj
)|1 ≤ j ≤ t}.

So equality in (6.12.1) would follow if we show that λCoeff(G1) ≤ ν(a
(j)
α )

Mj−|α|
for each fraction as above.

We will assume that

(6.12.3)
ν(a

(j0)
α )

Mj0 − |α|
< λCoeff(G1)

for some index 1 ≤ j0 ≤ t, or equivalently, that slV ′(gMj0
) < λCoeff(G1) for

some index j0, and show that in such case gMj0
·W Mj0 is not integral over G1;

which is a contradiction.
Define, as before, slV ′(fNi

) for each fNi
·W Ni ∈ F1, so that

λCoeff(G1) = min{slV ′(fNi
)|1 ≤ i ≤ s}.
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We will show that if slV ′(gMj0
) < λCoeff(G1), for some index j0, a ring S

and a morphism φ : ÔV = k′[[x1, . . . , xd−1, xd]] → S can be defined so that
φ(gMj0

) ·W Mj0 is not integral over φ(G1).

Given f =
∑

α λαxα1
1 . . . x

αd−1

d−1 xαd
d ∈ k′[[x1, . . . , xd−1, xd]], set

Supp(f) = {α ∈ N
d|λα 
= 0}.

Let a > 0 and b > 0 be positive integers such that

λ = λCoeff(G1) =
a

b
.

Define l : R
d → R, l(y1, . . . , yd) = ay1 + ay2 + · · · + ayd−1 + byd, which

maps N
d into N.

It follows that for a fixed integer N :

l(N, 0, . . . , 0, 0) = l(0, N, . . . , 0, 0)= · · ·= l(0, . . . , N, 0)= l(0, . . . , 0, λN)=aN.

Given (α1, . . . , αd−1, s) ∈ N
d, if l(α1, α2, . . . , αd−1, s) < aN , |α| := α1 + · · ·+

αd−1 < N . Furthermore:

(6.12.4) l(α1, α2, . . . , αd−1, s) < aN ⇔ a|α|+ bs < aN ⇔ s

N − |α| < λ.

We show now that:

1) For each fNi
· W Ni ∈ F1, Supp(fNi

) is included in the half space
l(y1, . . . , yd) ≥ aNi.

2) For some fNi
· W Ni ∈ F1, the intersection of Supp(fNi

) with the
hyperplane l(y1, . . . , yd) = aNi is not empty.

3) For some gMj0
·W Mj0 ∈ F2, Supp(gMj0

) is not included in the half
space l(y1, . . . , yd) ≥ aMj0 .

In order to prove 1) set

(6.12.5) fNi
=

∑
α∈(N)d−1

xα1
1 · · ·xαd−1

d−1 a(i)
α a(i)

α ∈ k′[[xd]].

and assume that
xα1

1 · · ·xαd−1

d−1 xs
d

is a monomial with non-zero coefficient in this expression (i.e. assume that
(α1, . . . , αd−1, s) ∈ Supp(fNi

)). The claim in 1) is that l(α1, . . . , αd−1, s) ≥
aNi. In fact, if l(α1, . . . , αd−1, s) < aNi, then |α| := α1 + · · · + αd−1 < Ni

and s
Ni−|α| < λ (6.12.4). But in such case

slV ′(fNi
) ≤ s

Ni − |α| < λ = λCoeff(G1) = min{slV ′(fNj
)|1 ≤ j ≤ s},

which is a contradiction.
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Both conditions 2) and 3) follow similarly, from (6.12.3) and ((6.12.4).

Set S = k′′[[t]] for some field extension k′′ of k′, and define

β : k′[[x1, . . . , xd]]→ k′′[[t]]

the continuous morphism, such that β(xi) = λit
a (λi ∈ k′′), for 1 ≤ i ≤ d−1,

and β(xd) = tb.
So β(G1) is the Rees algebra in k′′[[t]][W ] generated by {β(fNi

) ·W Ni|1 ≤
i ≤ s}.

It follows that for k′′ an infinite field, and for sufficiently general λi ∈ k′′:

1’) β(fNi
) has order at least aNi in k′′[[t]].

2’) β(fNi0
) has order aNi0 for some fNi0

·W Ni0 ∈ F1.

3’) β(gMj0
) has order strictly smaller then aMj0 .

Finally Claim 1 in Remark 6.8, where now λβ(G1) = a, asserts that
β(gMj0

) ·W Mj0 is not integral over β(G1); so (6.12.3) can not hold. �
The following Theorem can also be proved using Hironaka’s theory on

infinitely near points in [7]; a theory based on the behavior by monoidal
transforms. Our proof relies on the previous development in this section,
which will also be used for the proof of Theorem 6.14.

Theorem 6.13. Let G1 ⊂ G2 be an inclusion of Rees algebras on a smooth
scheme V . Let G(Gi) be the Diff-algebra spanned by Gi (i = 1, 2) . If G1 ⊂ G2

is a finite extension, then G(G1) ⊂ G(G2) is a finite extension.

Proof. The inclusion G(G1) ⊂ G(G2) is clear. We will argue locally at a
point x ∈ Sing(G1), and we make use of the criterion in Proposition 6.11
to show that the extension is finite. Let F1 = {fN1 ·W N1 , . . . , fNs ·W Ns}
generate G1 locally at x, and let F2 = {gM1 ·W M1, . . . , gMt ·W Mt} generate G2.

Set V ′ π−→ V where V ′ is one dimensional, and let x′ ∈ V ′ map to x.

Locally at x′ one can factor π as V ′ ⊂ V ′′ φ−→ V , so that φ : V ′′ → V is
smooth. Let φ−1(G1), φ−1(G2) denote the total transforms of G1, G2; and
φ−1(G(G1)), φ−1(G(G2)) be the total transforms of G(G1), G(G2).

If {x1, . . . , xd} is a regular system of parameters atOV,x, then {x1, . . . , xd}
extends to a regular system of parameters, say {x1, . . . , xd, · · · , xe} atOV ′′,x′.
It is easy to check that

(1) F1 = {fN1 ·W N1 , . . . , fNs ·W Ns} generate φ−1(G1) locally at OV ′′,x′;

(2) F2 = {gM1 ·W M1, . . . , gMt ·W Mt} generate φ−1(G2) at OV ′′,x′.

(3) φ−1(G(G1)) is the Diff-algebra generated by φ−1(G1).

(4) φ−1(G(G2)) is the Diff-algebra generated by φ−1(G2).
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Therefore the setting at V and at V ′′ is the same, and hence, in order to
apply Proposition 6.11 we need only to show that given a finite extension
G1 ⊂ G2, the restrictions of the Diff-algebras G(Gi), i = 1, 2, to a smooth
one dimensional scheme V ′, have the same integral closure.

Lemma 6.6 says that the restriction of G(Gi) to V ′ is the Diff-algebra
generated by Coeff(Gi) (i = 1, 2). Remark 6.8 shows that for each in-
dex i = 1, 2, the Rees algebra Coeff(Gi), and the Diff-algebra generated
by Coeff(Gi), have the same integral closure. So it suffices to show that
Coeff(G1) and Coeff(G2) have the same integral closure, which was proved
in Proposition 6.12. In fact, (1), (2), (3) and (4) show that the setting of
Proposition 6.12 holds. �

Theorem 6.14. Let G1 ⊂ G2 be an inclusion of Rees algebras on a smooth
scheme V . Fix a smooth sub-scheme Z ⊂ V , and a local (or formal) retrac-
tion V → Z. If G1 ⊂ G2 is a finite extension, then Coeff(G1) ⊂ Coeff(G2) is
also finite.

Proof. Set π : C → Z where C is smooth and one dimensional, and let

x′ ∈ C map to x. Locally at x′, one can factor π as C ⊂ Z1
φ−→ Z, so

that φ : Z1 → Z is smooth. The retraction of V on Z, together with the
morphism Z1 → Z, define by fiber products, a retraction say V1 → Z1, and
a smooth morphism, say V1 → V .

The total transform of G1 ⊂ G2(⊂ OV [W ]) to say G′1 ⊂ G′2 ⊂ OV1 [W ] is
again finite, and the construction of Coeff ⊂ OZ [W ] is compatible with base
change. So

Coeff(G′1) ⊂ Coeff(G′2) ⊂ OZ1 [W ]

is the total transform of

Coeff(G1) ⊂ Coeff(G2) ⊂ OZ [W ].

By further restriction of Z1 to C, we may assume that Z1 is one dimen-
sional. Theorem 6.14 follows now from Proposition 6.12. �

Theorem 6.15. Let G(= G(G)) be a differential algebra defined on a smooth
scheme V . Fix a point x ∈ Sing(G), a smooth sub-scheme Z ⊂ V contain-
ing x, and two local (or formal) retractions, say π : V → Z and π′ : V → Z
at x. If Coeff(G) and Coeff(G)′ are defined in terms of π and π′ respectively,
then both define same differential algebra in OZ,x[W ].

Proof. Let G(G) denote the differential algebra spanned by G in the smooth
scheme V . The claim is a corollary of 6.6. �
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7. Further applications

There is a particular but natural morphism among smooth schemes, namely
that defined by blowing up closed and smooth centers (i.e. monoidal trans-
formations). Given an ideal in a smooth scheme, there are several notions
of transformations of sheaves of ideals defined in terms of monoidal trans-
formations (e.g. total transforms, weak transforms, and strict transforms of
ideals.).

Questions as resolution of singularities, or Log principalization of ideals,
are formulated in terms of these notions of transformations. In the case of
schemes over fields of characteristic zero, both resolution and Log princi-
palization of ideals are two well known theorems due to Hironaka. If two
ideals have the same integral closure, then a Log-principalization of one of
them is also a Log-principalization of the other; the key point being that the
transforms of both ideals also have the same integral closure.

Notions of transformations on ideals extend naturally to Rees algebras.
And again, if two Rees algebras have the same integral closure, then their
transforms are Rees algebras with the same integral closure.

Both theorems of Log-principalization of ideals and resolution of singu-
larities are proved by induction on the dimension of the ambient space. In
the setting of differential algebras this form of induction relates to the notion
of restriction on a smooth sub-schemes, say Z ⊂ V in Theorems 6.14.

The outcome of Theorems 6.15 is that such form of restriction on Z is, up
to integral closure, independent of the particular retraction. This result has
been applied in [1], and plays a role in the extension of resolution theorems
to Rees algebras. We refer here to [7] or [8] for the notions of transformations
of differentiable algebras, and related results.

The results in this paper were also applied in [19], in relation with the
study of hypersurface singularities over fields of positive characteristic.
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