
Rev. Mat. Iberoamericana 23 (2007), no. 1, 17–55

Stability of Lewis and Vogel’s result

David Preiss and Tatiana Toro

Abstract
Lewis and Vogel proved that a bounded domain whose Poisson

kernel is constant and whose surface measure to the boundary has
at most Euclidean growth is a ball. In this paper we show that this
result is stable under small perturbations. In particular a bounded
domain whose Poisson kernel is smooth and close to a constant, and
whose surface measure to the boundary has at most Euclidean growth
is a smooth deformation of a ball.

1. Introduction

Lewis and Vogel proved (see [10], [11]) that a bounded domain whose har-
monic measure (with respect to a fixed point) is a constant multiple of the
surface measure to the boundary (i.e. a domain whose Poisson kernel is con-
stant) is a ball, provided the surface measure has at most Euclidean growth.
In this paper we prove that this result is stable under small perturbations.
Namely a bounded domain whose Poisson kernel is almost constant, and
whose surface measure to the boundary has at most Euclidean growth, is
geometrically close to a ball.

Both of these results can be viewed as free boundary regularity results
for the Poisson kernel. An interesting feature is that regularity of the free
boundary is proved without an a-priori assumption of flatness. In fact, our
main theorem states that a domain whose Poisson kernel is almost constant
has a locally flat boundary (see Theorem 2.1). Once the boundary is known
to be locally flat the proof of regularity is standard.

Let Ω ⊂ Rn+1 be a bounded domain and a set of locally finite perimeter
such that 0 ∈ Ω and Hn(∂Ω) < ∞. Let ω denote the harmonic measure
of Ω with pole at 0. Let σ denote the surface measure of the boundary, i.e.
σ = Hn ∂Ω. Let h = dω

dσ
denote the Poisson kernel of Ω with pole at 0.
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First we state Lewis and Vogel’s result. Then we state one of our results
which emphasizes the stability of their result.

Theorem 1.1 ([10]) Assume that Ω ⊂ Rn+1 satisfies

(1.1) sup
0<r<1

sup
Q∈∂Ω

Hn(B(Q, r) ∩ ∂Ω)

rn
<∞,

(1.2) ω = Hn ∂Ω.

Then Ω is a ball of center 0 and radius R > 0 such that Hn(∂B(0, R)) = 1.

Theorem 1.2 Assume that Ω ⊂ R
n+1 satisfies

(1.3) sup
0<r<1

sup
Q∈∂Ω

Hn(B(Q, r) ∩ ∂Ω)

rn
<∞,

(1.4)
dω

dσ
= h and sup

∂Ω
| log h| < ε,

for some ε > 0 small enough.

Then Ω is a “smooth” deformation of B(0, R) and D[B(0, R),Ω] < 4ε.
Here Hn(∂B(0, R)) = 1 and D denotes the Hausdorff distance.

The paper is organized as follows: in section 2 we introduce some defin-
itions and state the main theorem precisely. In section 3 we prove that the
gradient of the Green function near the boundary is controlled by the Pois-
son kernel. This is a consequence of the fact that the gradient of the Green
function is a subharmonic function on a bounded domain and therefore the
values near the boundary are controlled by the boundary values. Recall
that the Poisson kernel is basically the derivative of the Green function at
the boundary. As a consequence we show that if Ω satisfies (1.3) and (1.4)
then D[B(0, R),Ω] < 4ε. In section 4 we introduce a local notion of flatness
which involves the geometry of the boundary at a point and the behavior
of G and log h near that point. This allows us to show that ∂Ω is locally
flat. In section 5 we present some applications of Theorem 2.1.

Acknowledgments: The authors would like to thank B. Kirchheim for
his interest in the problem as well as for very stimulating conversations
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2. Preliminaries

In this section we introduce the definitions needed to state our main results.
The main theorem appears at the end of the section and it is proved in
section 4. We always assume that n ≥ 2.

Definition 2.1 Let Σ ⊂ Rn+1 be a locally compact set, and let δ > 0. We
say that Σ is δ-Reifenberg flat if for each compact set K ⊂ Rn+1, there exists
RK > 0 such that for every Q ∈ K ∩ Σ and every R ∈ (0, RK ] there exists
an n-dimensional plane L(Q, r) containing Q such that

(2.1)
1

r
D[Σ ∩B(Q, r), L(Q, r) ∩B(Q, r)] ≤ δ.

Here B(Q, r) denotes the (n+ 1)-dimensional ball of radius r and center Q,
and D denotes the Hausdorff distance.

Recall that for A,B ⊂ Rn+1,

D[A,B] = sup{d(a,B) : a ∈ A} + sup{d(b, A) : b ∈ B}.

Note that the previous definition is only significant for δ > 0 small. We
denote by

(2.2) θ(Q, r) = inf
L

{1

r
D[Σ ∩B(Q, r), L ∩B(Q, r)]

}
,

where the infimum is taken over all n-planes containing Q.

Definition 2.2 Let Ω ⊂ R
n+1 be a set of locally finite perimeter (see [2]),

∂Ω is said to be Ahlfors regular if the surface measure to the boundary, i.e.,
the restriction of the n-dimensional Hausdorff measure to ∂Ω, σ = Hn ∂Ω,
is Ahlfors regular. That is there exists a constant C > 1 so that for Q ∈ ∂Ω
and r ∈ (0, diamΩ)

(2.3) C−1rn ≤ σ(B(Q, r)) ≤ Crn.

Definition 2.3 Let Ω ⊂ Rn+1 be a bounded set. We say that Ω has the
separation property if there exists R > 0 such that for Q ∈ ∂Ω and r ∈ (0, R]
there exists an n-dimensional plane L(Q, r) containing Q and a choice of
unit normal vector to L(Q, r),−−→nQ,r satisfying
(2.4)

T +(Q, r) =
{
X = (x, t) = x+ t−−→nQ,r ∈ B(Q, r) : x ∈ L(Q, r), t >

r

4

}
⊂ Ω,

and
(2.5)

T −(Q, r) =
{
X = (x, t) = x+ t−−→nQ,r ∈ B(Q, r) : x ∈ L(Q, r), t < −r

4

}
⊂ Ωc.
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The notation (x, t) = x + t−−→nQ,r is used to denote a point in R
n+1. The

first component, x, of the pair belongs to an n-dimensional affine space
whose unit normal vector is −−→nQ,r . The second component t belongs to R.
From the context it will always be clear what affine hyperplane x belongs
to, and what the orientation of the unit normal vector is.

Definition 2.4 Let δ ∈ (0, δn), where δn is chosen appropriately (see note
below) and let Ω ⊂ Rn+1. We say that Ω is a δ-Reifenberg flat domain
or a Reifenberg flat domain if Ω has the separation property and ∂Ω is
δ-Reifenberg flat.

When we consider δ-Reifenberg flat domains in Rn+1 we assume that
δn > 0 is small enough, in order to ensure that we are working on NTA
domains (see definition in [5] and also [7, Theorem 3.1]).

Definition 2.5 A set of locally finite perimeter Ω ⊂ Rn+1 is said to be a
chord arc domain, if Ω is an NTA domain whose boundary is Ahlfors regular.

Definition 2.6 Let δ ∈ (0, δn). A set of locally finite perimeter Ω ⊂ Rn+1

is said to be a δ-Reifenberg flat chord arc domain, if Ω is a δ-Reifenberg flat
domain whose boundary is Ahlfors regular.

Definition 2.7 Let δ ∈ (0, δn). A bounded set of locally finite perimeter Ω is
said to be a δ-chord arc domain or a chord arc domain with small constant
if Ω is a δ-Reifenberg flat domain, ∂Ω is Ahlfors regular and there exists
R > 0 so that

(2.6) sup
Q∈∂Ω

‖−→n ‖∗(Q,R) < δ.

Here −→n denotes the unit normal vector to the boundary,

(2.7) ‖−→n ‖∗(Q,R) = sup
0<s<R

(

∫
/

B(Q,s)

|−→n −−−→nQ,s |2dσ)
1
2

and −−→nQ,s =
∫
/

B(Q,s)

−→n dσ.

Definition 2.8 Let Ω ⊂ Rn+1 be a chord arc domain. Let f ∈ L2
loc(dσ), we

say that f ∈ BMO(∂Ω) if

(2.8) ‖f‖∗ = sup
r>0

sup
Q∈∂Ω

(

∫
/

B(Q,r)

|f − fQ,r|2dσ)
1
2 <∞.

Here fQ,r =
∫
/

B(Q,r)
fdσ, and σ = Hn ∂Ω.
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Definition 2.9 Let Ω ⊂ R
n+1 be a chord arc domain. We denote by

VMO(∂Ω) the closure in BMO(∂Ω) of the set of uniformly continuous bound-
ed functions defined on ∂Ω.

From now on we assume that Ω ⊂ Rn+1 is a bounded domain and a set
of locally finite perimeter such that 0 ∈ Ω and Hn(∂Ω) < ∞. Let ω denote
the harmonic measure of Ω with pole at 0. Let σ denote the surface measure
of the boundary. Let h = dω

dσ
denote the Poisson kernel of Ω with pole at 0.

Theorem 2.1 Assume that Ω ⊂ Rn+1 satisfies

(2.9) sup
0<r<1

sup
Q∈∂Ω

Hn(B(Q, r) ∩ ∂Ω)

rn
<∞.

Then given δ > 0 small enough there exists ε > 0 such that if

(2.10) sup
∂Ω

| log h| < ε

then ∂Ω is δ-Reifenberg flat.

3. Rough geometric properties

The Main Lemma below provides a crucial estimate for the gradient of the
Green function near the boundary in terms of the Poisson kernel. It allows
us to deduce that under the hypothesis of Theorem 2.1, ∂Ω is contained in
a very thin annular region.

Main Lemma Let Ω ⊂ R
n+1, 0 ∈ Ω. Let G denote the Green function

of Ω with pole 0 and let h be the corresponding Poisson kernel. Assume that

(3.1) sup
0<r<1

sup
Q∈∂Ω

Hn(B(Q, r) ∩ ∂Ω)

rn
<∞

and

(3.2) sup
∂Ω

| log h| < ε

for some ε ∈ (0, 1). Then

(3.3) lim sup
X→P

|∇G(X)| ≤ eε ∀ P ∈ ∂Ω.

Let

(3.4) K0 = sup
0<r<1

sup
Q∈∂Ω

Hn(B(Q, r) ∩ ∂Ω)

rn
<∞.
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Lemma 3.1 Under the assumptions above, let R > 0 be such that B(0, R) ⊂
Ω and ∂B(0, R) ∩ ∂Ω �= ∅. Then

(3.5) |∇G(X)| ≤ CnK0 ∀X ∈ Ω such that d(X) ≤ R
2
.

Here d(X) denotes the distance from X to ∂Ω.

Note that (3.5) and the maximum principle for harmonic functions yield

(3.6) |∇G(X)| ≤ C(n,K0, R) ∀X ∈ Ω\B
(

0,
R

2

)
.

Proof. Apply the Riesz decomposition theorem for subharmonic functions
to G (see [4, Theorem 6.18]). Let Q ∈ ∂Ω be such that 0 �∈ B(Q, r)

G(Q) =

∫
/

∂B(Q,r)

G(Z)dσ(Z)(3.7)

− 1

(n− 1)(n+ 1)ωn+1

∫
B(Q,r)∩∂Ω

(
1

|Z −Q|n−1
− 1

rn−1

)
dω(Z).

Using Fubini and the fact that G(Q) = 0, (3.7) yields

(3.8)

∫
/

∂B(Q,r)

G(Z)dσ(Z) =
1

(n+ 1)ωn+1

∫ r

0

ω(B(Q, t))

tn
dt.

Note that (2.10) and (3.4) imply that for t < 1,

(3.9) ω(B(Q, t)) ≤ eεHn(B(Q, t) ∩ ∂Ω) ≤ eεK0t
n.

Combining (3.8) and (3.9) we have that for ε < 1

(3.10)

∫
/

∂B(Q,r)

G(Z)dσ(Z) ≤ CnK0r

whenever Q ∈ ∂Ω and 0 �∈ B(Q, r).

Let X ∈ Ω such that d(X) ≤ R
2
, there exists Q ∈ ∂Ω such that d(X) =

r = |X−Q|. Since r < R
2

then 0 �∈ B(Q, 2r), and the representation formula
for subharmonic functions implies

(3.11) G(X) ≤ (2r)2 − |X −Q|2
(n + 1)ωn+1(2r)

∫
∂B(Q,2r)

G(Z)

|Z −X|n+1
dσ(Z).

Since |Z −X| ≥ r for X ∈ ∂B(Q, r), (3.10) and (3.11) yield

(3.12) G(X) ≤ 3

2

∫
/

∂B(Q,2r)

G(Z)dσ(Z) ≤ CnK0r = CnK0d(X).



Stability of Lewis and Vogel’s result 23

Standard estimates for harmonic functions on Ω\B
(
0, R

2

)
ensure that

(3.13) |∇G(X)| ≤ Cn
G(X)

d(X)
= CnK0

�

The proof of the Main Lemma is a slight variation of the proof that
appears in [10]. We sketch the proof and try to indicate as we go along what
the ideas behind the calculations are. For further details we refer the reader
to [10] and [11].

Proof of Main Lemma: Let M = lim supX→∂Ω |∇G(X)|. Assume that
M > eε. Let δ ∈ (0, 10−10) and let X0 ∈ Ω be such that d(X0) ≤ R

4
and

(3.14) |∇G(X0)| ≥M − δ.

Let W (X) = max{|∇G(X)| − (M − 2δ); 0}, observe that W (X0) ≥ δ, and
that W is subharmonic in Ω\B

(
0, R

2

)
. Let G0 be the Green’s function of

Ω with pole at X0. By Sard’s theorem we can choose t > 0 such that
|∇G0(X)| �= 0 on {X : G0(X) = t}. Green’s second identity, the fact
that W is subharmonic on Ω\B

(
0, R

2

)
, the maximum principle applied to

G and G0 on Ω\B
(
0, R

2

)
and Ω\B

(
X0,

d0

2

)
respectively, where d0 = d(X0)

and (3.5) yield

(3.15)
1

6
≤
∫
{|∇G|>M−2δ}∩{G0=t}

∂G0

∂ν
(Y ) dHn(Y )

provided X0 is close enough to ∂Ω, and t is chosen small enough so that
|∇G| < M + δ on {X : G0(X) = t}. Let E(t) = {X : |∇G(X)| > M −2δ}∩
{X : G0(X) = t}.

First one shows that E(t) is a “large” set at “distance” comparable to t
from ∂Ω. More precisely for X ∈ E(t),

(3.16) C1d(X) ≤ t ≤ C2d(X)

where Ci = C(n,K0, R,X0) for i = 1, 2. Furthermore for t small enough
there exist balls {B(Xi, d(Xi))} with Xi = Xi(t) ∈ E(t) such that

E(t) ⊂
⋃

iB
(
Xi,

d(Xi)
4

)
(3.17)

B
(
Xi,

d(Xi)
100

)
∩B

(
Xj ,

d(Xj)

100

)
= ∅ for i �= j(3.18) ∑

i d(Xi)
n ≥ C−1

3 ,(3.19)

where C3 = C(X0, K0, n, R). Note that each B(Xi, d(Xi)) is tangent to ∂Ω.
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Let γ > 0 be a small positive constant. Since Ω is a set of locally finite
perimeter, Egoroff’s theorem ensures that there exits rγ > 0 so that

(3.20)
Hn(∂Ω ∩ B(Z, r))

ωnrn
< 1 + γ for 0 < r < rγ

whenever Z ∈ ∂Ω\Λ and Hn(Λ) < γ100n. Choosing t  rγ (3.17), (3.18),
(3.19) and Lemma 3 in [10] guarantee that there exists Y ∈ E(t) so that

(3.21) |∇G(X) −∇G(Y )| ≤ γ ∀ X ∈ B(Y ; (1 − γ)d(Y ))

and if Ẑ ∈ ∂Ω∩∂B(Y, d(Y )) then there exists Z ∈ ∂Ω such that |Z−Ẑ| < γt
and Z satisfies (3.20). For complete details see [10] Section 3.

For 0 < r < rγ (3.5), (3.8), (3.9), (3.21) and the fact that t ∼ d(Y ) yield∫
/

∂B( �Z,r)

Gdσ ≤
∫
/

∂B(Z,r)

Gdσ + CnK0γt(3.22)

≤ 1

(n+ 1)ωn+1

∫ r

0

ω(B(Z, s))

sn
ds+ CnK0γd(Y )

≤ eε

(n+ 1)ωn+1

∫ r

0

Hn(B(Z, s) ∩ ∂Ω)

sn
ds+ CnK0γd(Y )

≤ eεωn

(n+ 1)ωn+1
(1 + γ)r + CnK0γd(Y )

Assume Ẑ = Y −d(Y )e, from (3.5) and (3.21) we deduce for X ∈ B(Y, d(Y ))

(3.23) |G(X) −G(Y ) − 〈∇G(Y );X − Y 〉| ≤ CnK0γd(Y ).

For X = Ẑ we have

(3.24) |G(Y ) − 〈∇G(Y ); d(Y )e〉| ≤ CnK0γd(Y ).

Combining (3.23) and (3.24) and using the fact that G ≥ 0 we obtain for
X ∈ B(Y, d(Y ))

(3.25) −〈∇G(Y ), e〉d(Y ) − 〈∇G(Y );X − Y 〉 ≤ 2CnK0γd(Y ).

Since Y ∈ E(t), |∇G(Y )| �= 0, letting X tend to Y − d(Y )∇G(Y )/|∇G(Y )|
we obtain

(3.26) 0 ≤ |∇G(Y )| − 〈∇G(Y ), e〉 ≤ 2CnK0γ.

Combining (3.23), (3.24) and (3.25) we find that

(3.27) |G(X) − 〈∇G(Y ); e〉(〈X − Y, e〉 + d(Y ))| ≤ CnK0γd(Y )

for X ∈ B(Y, d(Y )).
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Let r = γ1/2d(Y ). Note that

(3.28) Hn({X : 〈X −Y, e〉+ d(Y ) ≥ 0}\B(Y, d(Y ))∩ ∂B(Ẑ , r)) ≤ Cγ1/2rn

and on this set

(3.29) 〈X − Y ; e〉 + d(Y ) ≤ Cγ1/2r.

From (3.27), (3.28), (3.29) and (3.5) we have∫
∂B( �Z,r)

G(X)dσ(X)(3.30)

≥
∫

∂B( �Z,r)∩{X:〈X−Y,e〉+d(Y )≥0}
G(X)dσ(X)

≥
∫

∂B( �Z,r)∩{X:〈X−Y,e〉+d(Y )≥0}∩B(Y,d(Y ))

G(X)dσ(X)

≥ 〈∇G(Y ), e〉
∫

∂B( �Z,r)∩{X:〈X−Y,e〉+d(Y )≥0}∩B(Y,d(Y ))

(〈X − Y, e〉 + d(Y ))dσ(X)

− CnK0γr
nd(Y )

≥ 〈∇G(Y ), e〉
∫

∂B( �Z,r)∩{X:〈X−Y,e〉+d(Y )≥0}
(〈X − Y, e〉 + d(Y ))dσ(X)

− C|〈∇G(Y ), e〉|γ1/2rn+1 − CnK0γr
nd(Y )

≥ 〈∇G(Y ), e〉
∫

∂B( �Z,r)∩{X:〈X−Y,e〉+d(Y )≥0}
(〈X − Y ; e〉 + d(Y ))dσ(X)

− CnK0γ
1/2rn+1.

Note that∫
∂B( �Z,r)∩{X:〈X−Y ;e〉+d(Y )≥0}

(〈X − Y, e〉 + d(Y ))dσ(X)(3.31)

=

∫
∂B(0,r)∩{X:xn+1≥0}

xn+1dσ(X).

The representation formula for subharmonic functions applied to V (X) =
max{xn+1, 0} yields

(3.32)

∫
∂B(0,r)∩{X:xn+1≥0}

xn+1dσ(X) = rn

∫ r

0

ωns
n

sn
ds = ωnr

n+1.
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Combining (3.30), (3.31) and (3.32) we have

(3.33)

∫
∂B( �Z,r)

G(X)dσ(X) ≥ 〈∇G(Y ), e〉ωnr
n+1 − CnK0γ

1/2rn+1.

From (3.22) and (3.33) we deduce

〈∇G(Y ), e〉 ωn

(n+ 1)ωn+1
r − CnK0γ

1/2r(3.34)

≤ ωn

(n+ 1)ωn
eε(1 + γ)r + CnK0γ

1/2r

thus

(3.35) 〈∇G(Y ), e〉 ≤ eε(1 + γ) + CnK0γ
1/2.

Using the fact that Y ∈ E(t), (3.26) and (3.35) we conclude that

(3.36) M−2δ ≤ |∇G(Y )| ≤ 〈∇G(Y ), e〉+2CnK0γ ≤ eε(1+γ)+CnK0γ
1/2.

Since γ > 0 is arbitrary we conclude from (3.36) that M − 2δ ≤ eε. Letting
δ tend to 0 we get that M ≤ eε, which contradicts our initial assumption
that M > eε. This remark finishes the proof of the main lemma.

Let

0 < R1 = sup{r : B(0, r) ⊂ Ω} <∞(3.37)

0 < R2 = inf{r : Ω ⊂ B(0, r)} <∞.(3.38)

To estimate R1, let P1 = ∂Ω ∩ ∂B(0, R1). Let G1 be the Green’s function
of B(0, R1) with pole 0, let G be the Green’s function of Ω with pole 0. By
the maximum principle for X ∈ B(0, R1)\{0}

(3.39) G1(X) ≤ G(X).

In fact if F (X) denotes the fundamental solution for the Laplacian in Rn+1

with pole at the origin then G = F −u and G1 = F −u1 where ∆u = 0 in Ω
with u = F on ∂Ω and ∆u1 = 0 in B(0, R1) with u1 = F on ∂B(0, R1). Since
G ≥ 0 then u ≤ F in Ω, and hence u ≤ u1 on ∂B(0, R1) (because B(0, R1) ⊂
Ω). By the maximum principle u ≤ u1 in B(0, R1) which justifies (3.39).
Letting X = tP1 with t→ 1 (3.39) yields

(3.40) lim inf
t→1

G1(tP1)

t
≤ lim inf

t→1

G(tP1)

t
.
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Thus by (2.10) and the Main Lemma we have that

(3.41)
1

Hn(∂B(0, R1))
= |∇G1(P1)| ≤ eε.

If σn = Hn(∂B(0, 1)) then (3.41) implies

(3.42) (e−εσ−1
n )1/n ≤ R1.

To estimate R2 let P2 ∈ ∂Ω be such that |P2| = max{|Q| : Q ∈ ∂Ω}. Let G2

denote the Green’s function of B(0, R2) with pole at 0. A similar argument
to the one above shows that for X ∈ Ω\{0}

(3.43) G(X) ≤ G2(X).

Note that for P2 there exists a ball B ⊂ Ωc such that P2 ∈ ∂Ω ∩ ∂B.

Lemma 3.2 Let Ω, G and h be as above. Let P ∈ ∂Ω and assume that
there exists a ball B ⊂ Ωc = {G = 0} so that P ∈ ∂Ω ∩ ∂B then

(3.44) lim sup
X→P
X∈Ω

G(X)

d(X,B)
≥ e−ε

Proof. Let

l = lim sup
X→P
X∈Ω

G(X)

d(X,B)
.

There exists a sequence {Yk}k≥1 ⊂ Ω, such that Yk → P and G(Yk)
d(Yk ,B)

→ l as

k → ∞. Let dk = d(Yk, B). There exists Xk ∈ ∂B so that |Yk −Xk| = dk.
Consider

Gk(X) =
G(dkX +Xk)

dk
for X ∈ B(0, 2) and Zk =

Yk −Xk

dk
.

Without loss of generality we may assume that Zk → e as k → ∞, |e| = 1

and Gk −→
k→∞

G∞ in C0,β
loc (Rn+1), ∇Gk

∗
⇀

k→∞
∇G∞ weak star in L∞

loc(R
n+1),

weakly in L2
loc(R

n+1);

1

dk
(∂Ω −Xk) = ∂{Gk > 0} −→

k→∞
∂{G∞ > 0}

in the Hausdorff distance sense uniformly on compact sets, and χ{Gk>0} →
χ{G∞>0} in L1

loc(R
n+1). Note that Gk(Zk) = G(Yk)

dk
thus Gk(Zk) → l as

k → ∞. On the other hand since Gk converges uniformly to G∞ in B(0, 2),
we conclude that G∞(e) = l.



28 D. Preiss and T. Toro

In order to prove the lemma we need to get a better understanding of G∞
and Ω∞ = {G∞ > 0}. Our goal is to show that Ω∞ is a half-space and G∞
is linear. Let r be the radius of B. Let αk = d(∂B(Xk, dk) ∩ ∂B;L), where
L is the tangent plane to B through Xk. An easy computation shows that

αk = 2
d2

k

r
. Note that for Pk ∈ B(Xk, dk) ∩ {〈P − Xk,

Yk−Xk

dk
〉 < −αk} ⊂ B

if Qk = Pk−Xk

dk
, then Qk ∈ B(0, 2) ∩ {〈X,Zk〉 < −dk

r
} and Gk(Qk) ≤ 0.

Passing to the limit as k tends to infinity we conclude that if Y ∈ B(0, 2) ∩
{〈Y, e〉 ≤ 0} then G∞(Y ) = 0. Let Y ∈ B(0, 2) ∩ {〈Y, Zk〉 > 0}, then either
dkY + Xk ∈ Ωc and Gk(Y ) = 0 or dkY + Xk ∈ Ω and given ε > 0 there
exists k0 ∈ N such that for k ≥ k0

(3.45)
G(dkY +Xk)

d(dkY +Xk, B)
≤ l + ε

and

G(dkY +Xk) ≤ (l + ε)d(dkY +Xk, B)(3.46)

≤ (l + ε)

{
〈dkY ;

Yk −Xk

dk
〉 + 2

d2
k

r

}
≤ (l + ε)dk

{
〈Y, Zk〉 + 2

dk

r

}
,

which implies

(3.47) Gk(Y ) =
G(dkY +Xk)

dk

≤ (l + ε)

{
〈Y, Zk〉 + 2

dk

r

}
.

Passing to the limit as k goes to infinity we conclude that for Y ∈ B(0, 2)∩
{〈Y, e〉 ≥ 0}, G∞(Y ) ≤ (l + ε)〈Y, e〉 for every ε > 0, thus G∞(Y ) ≤ l〈Y, e〉.
Moreover G∞(e) = l. The maximum principle guarantees that v∞(Y ) =
lmax{〈Y, e〉; 0} for Y ∈ B(0, 1).

If hk(X) = h(dkX +Xk), for ζ ∈ C∞
c (B(1, 0)), ζ ≥ 0∫

∂{Gk>0}
ζhkdHn =

∫
Rn+1

∇Gk · ∇ζ(3.48)

−→
k→∞

−
∫

Rn+1

∇G∞ · ∇ζ =

∫
{〈Y,e〉=0}

lζdHn

thus

(3.49) lim
k→∞

∫
∂{Gk>0}

ζhkdHn = l

∫
{〈Y,e〉=0}

ζdHn.
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On the other hand the divergence theorem ensures that

(3.50)

∫
∂{Gk>0}

ζdHn ≥
∫

∂{Gk>0}
ζe · νkdHn =

∫
{Gk>0}

div (ζe).

Since

(3.51)

∫
{Gk>0}

div (ζe) −→
k→∞

∫
{G∞>0}

div (ζe) =

∫
∂{G∞>0}

ζdHn =

∫
〈Y,e〉=0

ζdHn,

we have that

(3.52) lim
k→∞

∫
∂{Gk>0}

ζdHn ≥
∫
{〈Y,e〉=0}

ζdHn.

Since by (3.2), h ≥ e−ε Hn− a.e. Q ∈ ∂Ω, using (3.49) and (3.52) we have

lim
k→∞

∫
∂{Gk>0}

hkζdHn ≥ lim
k→∞

∫
∂{Gk>0}

e−εζdHn(3.53)

l

∫
{〈Y,e〉=0}

ζdHn ≥ e−ε

∫
{〈Y,e〉=0}

ζdHn,

for any ζ ∈ C∞
c (B(1, 0)), ζ ≥ 0. Therefore (3.53) yields

(3.54) l ≥ e−ε. �

Combining (3.43) and (3.44) we obtain that

(3.55) |∇G2(P2)| ≥ lim sup
X→P2

X∈Ω

G(X)

d(X,B)
≥ e−ε.

Thus

(3.56)
1

Hn(∂B(0, R2))
=

1

σnRn
2

≥ e−ε

which implies

(3.57) R2 ≤ (eεσ−1
n )

1
n .

We have proved the following lemma.

Lemma 3.3 Assume that Ω ⊂ Rn+1 satisfies conditions (2.1) and (2.2) in
Theorem 2.1 then

(3.58) B(0, R1) ⊂ Ω ⊂ B(0, R2)

with

(3.59) e−ε ≤ σnR
n
1 ≤ σnR

n
2 ≤ eε.
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4. Fine Geometric Properties

In this section we prove Theorem 2.1. For this purpose we first introduce
a local notion of flatness that involves the geometry of the boundary at a
point Q0, the behavior of G near Q0 and the oscillation of logh near this
point (see Definition 7.1 in [1]). We assume that G is continuously extended
to be identically 0 outside Ω. Note that G is then subharmonic in Rn+1.

Definition 4.1 Let Ω ⊂ Rn+1 be as in Theorem 2.1. Let Q0 ∈ ∂Ω, ρ > 0
and σ+, σ−, τ ∈ (0, 1). We say that

(4.1) G ∈ F (σ+, σ−; τ) in B(Q0, ρ) in direction ν if

(4.2) G(X) = 0 for 〈X −Q0, ν〉 ≥ σ+ρ

(4.3) G(X) ≥ −h(Q0)[〈X −Q0, ν〉 + σ−ρ] for 〈X −Q0; ν〉 ≤ −σ−ρ

and

(4.4) sup
X∈B(Q0,ρ)

|∇G(X)| ≤ h(Q0)(1 + τ) and osch
B(Q0,ρ)

≤ τh(Q0).

The proof is very similar to the ones presented in [1] section 7 or in [6].
To avoid repetition we state the lemmata and only point out the main dif-
ferences with respect to the proofs of the results mentioned above. For the
complete details we refer the reader to [1] and [6].

Lemma 4.1 Let Ω ⊂ R
n+1 be a bounded domain and a set of locally finite

perimeter such that 0 ∈ Ω. Let G and h be as above. There exists σn > 0 so
that if σ ∈ (0, σn), τ ∈ (0, σ) and ε ∈ (0, σ) with

(4.5) sup
∂Ω

| log h| < ε

then for Q0 ∈ ∂Ω, ρ > 0 and ν ∈ S
n, if G ∈ F (σ, 1; τ) in B(Q0, ρ) in

direction ν then G ∈ F (2σ, Cσ; τ) in B
(
Q0,

ρ
2

)
in direction ν. Here C > 1

is a constant that only depends on n.

Lemma 4.2 Let Ω ⊂ R
n+1 be a bounded domain and a set of locally finite

perimeter such that 0 ∈ Ω. Let G and h be as above. Given θ ∈ (0, 1) there
exists σθ > 0 and ηθ = η ∈ (0, 1) so that if σ ∈ (0, σθ) and τ ∈ (0, σθσ

2)
then for Q0 ∈ ∂Ω, ρ > 0 if G ∈ F (σ, σ; τ) in B(Q0, ρ) in direction ν then
G ∈ F (θσ, 1; τ) in B(Q0, ηρ) in direction ν̄ and |ν − ν̄| ≤ Cσ.
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Lemma 4.3 Assume that Ω ⊂ R
n+1 satisfies (2.9). Then given σ > 0 there

exist εσ > 0 such that if

(4.6) sup
∂Ω

| log h| < ε with ε < εσ

then there is ρε = ρ > 0 (depending on ε > 0) so that for Q ∈ ∂Ω, G ∈
F (σ, σ; (e2ε − 1)1/4) in B(Q, ρ). Here (e2εσ − 1)1/2 < σ.

Proof of Lemma 4.3. Recall from Lemma 3.3 that under the above hy-
pothesis B(0, R1) ⊂ Ω ⊂ B(0, R2) with 1 ≤ R2/R1 ≤ e2ε, and e−ε ≤ σnR

n
i ≤

eε for i = 1, 2. Let ε ∈
(
0, 1

4

)
be a positive number to be chosen later de-

pending on σ > 0. Let ρ = R1

√
2
√
e2ε − 1. From basic geometry and the

remark above (see Lemma 3.3) it is clear that for Q ∈ ∂Ω there exists an
n-plane L(Q, ρ) through Q such that

(4.7)
1

ρ
D[∂Ω ∩ B(Q, ρ), L(Q, ρ) ∩ B(Q, ρ)] ≤

√
2
√
e2ε − 1.

In fact take for example the n-plane through Q orthogonal to the line

joining the origin to Q. Let ν be the unit normal in the direction
−→
OQ

we have that if X ∈ B(Q, ρ) and 〈X − Q, ν〉 ≥ 2
√

2
√
e2ε − 1ρ then since

1 ≤ R2/R1 ≤ e2ε

|X|2 =
∣∣X −Q− 〈X −Q, ν〉ν

∣∣2 +
∣∣〈X −Q, ν〉 + |Q|

∣∣2(4.8)

≥
(
R1 + 2

√
2
√
e2ε − 1ρ

)2

= R2
1

(
1 + 4(e2ε − 1)

)2
≥ R2

2e
−4ε(4e2ε − 3)2

≥ R2
2(4 − 3e−2ε)2 > R2

2.

Thus X �∈ Ω and G(X) = 0 as G was extended to be identically equal
to zero in Ωc. Now let X ∈ B(Q, ρ) with 〈X −Q, ν〉 ≤ −2

√
2
√
e2ε − 1ρ. In

this case

|X|2 =
∣∣X −Q− 〈X −Q, ν〉ν|2 + |〈X −Q, ν〉 + |Q|

∣∣2(4.9)

≤ |X −Q|2 +
(
R2 − 4(e2ε − 1)R1

)2
≤ ρ2 + (e2ε − 4e2ε + 4)2R2

1

≤
[
2(e2ε − 1) +

(
1 − 3(e2ε − 1)

)2]
R2

1

≤
(
1 + 9(e2ε − 1)2 − 4(e2ε − 1)

)
R2

1

≤
[
1 + (e2ε − 1)(9(e2ε − 1) − 4)

]
R2

1 < R2
1,

provided ε > 0 is such that e2ε − 1 < 4/9. Thus for X ∈ B(Q, ρ) with
〈X−Q, ν〉≤−2

√
2
√
e2ε − 1ρ, X∈B(0, R1) and by (3.39) we have that if G1
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denotes the Green function of B(0, R1) with pole 0 then

G(X) ≥ G1(X) = G1(X) −G1

(
R1

X

|X|
)

(4.10)

≥ 〈∇G1(Y ), X − R1
X

|X|〉 = 〈∇G1(Y ),
X

|X|〉 (|X| − R1) ,

for some Y = tX+(1−t)R1
X
|X| with t ∈ [0, 1]. Note that R1−ρ ≤ |Y | ≤ R1.

The last inequality is a simple application of the fundamental theorem of
calculus.

Since G1(Y ) = 1
(n−1)σn

(
1

|Y |n−1 − 1
Rn−1

1

)
, ∇G1(Y ) = −1

σn

Y
|Y |n+1 and for Y

as above (4.10) and (3.59) ensure

G(X) ≥ −1

σn|X|n

(
t+ (1 − t)

R1

|X|

)−n

(|X| − R1)(4.11)

≥ 1

σn|Y |n
(R1 − |X|) ≥ 1

σnR
n
1

(R1 − |X|)

≥ e−ε (R1 − |X|)
Combining (4.10), (4.11) and (4.6) we obtain

G(X) ≥ e−ε(R1 − |X|)(4.12)

≥ h(Q)(R1 − |X|) − h(Q)(1 − e−2ε)(R1 − |X|)
≥ h(Q)(R1 − |X|) − h(Q)(1 − e−2ε)ρ,

for X ∈ B(Q, ρ) with 〈X −Q, ν〉 ≤ −2
√

2
√
e2ε − 1ρ.

Our next goal is to compare R1 − |X| to |〈X − Q, ν〉|. Note that the
basic picture is as follows:
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where

(4.13) |〈X −Q, ν〉| = cos θX |X − X̂| ≤
(
R1 − |X| + R2 −R1

cos θX

)
cos θX .

Thus since 〈X −Q, ν〉 ≤ −2
√

2
√
e2ε − 1ρ ≤ 0 and R1 ≤ R2 ≤ e2εR1

R1 − |X| ≥ 1

cos θX
|〈X −Q, ν〉| − (R2 − R1)(4.14)

≥ 1

cos θX
|〈X −Q, ν〉| −R1(e

2ε − 1)

≥ 1

cos θX
|〈X −Q, ν〉| −

√
e2ε − 1√

2
ρ

≥ |〈X −Q, ν〉| − e2ε − 1√
2

ρ.

Combining (4.6), (4.12) and (4.14) we have that for X ∈ B(Q, ρ) with
〈X −Q; ν〉 ≤ −2

√
2
√
e2ε − 1ρ

G(X) ≥ h(Q)(R1 − |X|) − h(Q)(1 − e−2ε)ρ(4.15)

≥ h(Q)

[
|〈X −Q, ν〉| − e2ε − 1√

2
ρ− h(Q)(1 − e−2ε)

]
≥ h(Q)

[
−〈X −Q, ν〉 − 1 +

√
2√

2
(e2ε − 1)ρ

]
.

Thus choosing ε > 0 so that 2
√

2
√
e2ε − 1 < (e2ε − 1)

1
12 < σ and we have

that for X ∈ B(Q, ρ)

(4.16) G(X) = 0 for 〈X −Q, ν〉 ≥ σρ

(4.17) G(X) ≥ −h(X)[〈X −Q, ν〉 + σρ] for 〈X −Q, ν〉 ≤ −σρ.

Hypothesis (4.6) implies that for P,Q ∈ ∂Ω

(4.18) e−2ε ≤ h(P )

h(Q)
≤ e2ε.

Thus

(4.19) osc B(Q,P )h ≤ (e2ε − 1)h(Q).

To estimate supB(Q,P )∩Ω |∇G| recall that the function V (X) = |∇G(X)|
is subharmonic and bounded on Ω\B

(
0, R1

2

)
. Hence, since

B(Q, ρ) ∩ Ω ⊂ Ω\B(0, R1 − 2ρ),
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the maximum principle for subharmonic functions ensures that

sup
B(Q,ρ)∩Ω

|∇G| ≤ sup
Ω\B(Q,R1−2ρ)

|∇G|(4.20)

= max

{
lim sup
X→∂Ω

|∇G(X)|, sup
∂B(0,R1−2ρ)

|∇G|
}
.

Let Y ∈ ∂B(0, R1−2ρ) then B(Y, ρ) ⊂ B(0, R1) ⊂ Ω since G and G1 are
harmonic on B(Y, ρ) Poisson’s representation formula yields for X ∈ B(Y, ρ)

(4.21) G(X) =
ρ2 − |X − Y |2
(n+ 1)ωn+1ρ

∫
∂B(Y,ρ)

G(ζ)

|X − ζ |n+1
dζ.

Differentiating the expression in (4.21) and applying the obtained formula
to X = Y we obtain

∇G(Y ) = − ρ

ωn+1

∫
∂B(Y,ρ)

G(ζ)

|Y − ζ |n+3
(Y − ζ)dζ(4.22)

= − 1

ωn+1ρn+2

∫
∂B(Y,ρ)

G(ζ)(Y − ζ)dζ.

Thus if Gi denotes the Green function of B(0, Ri) for i = 1, 2 with pole 0,
we have

(4.23) |∇G(Y ) −∇G1(Y )| ≤ ρ

ωn+1ρn+2

∫
∂B(Y,ρ)

|G(ζ) −G1(ζ)|dζ.

Using (3.39), (3.43) and (4.23) we have

|∇G(Y )−∇G1(Y )| ≤ 1

ωn+1ρn+1

∫
∂B(Y,ρ)

(G2(ζ) −G1(ζ))dζ(4.24)

≤ Cn
1

ρn+1

∫
∂B(Y,ρ)

(
1

Rn−1
1

− 1

Rn−1
2

)
dζ

≤ Cn

ρ

[
1

Rn−1
1

− 1

Rn−1
2

]
=

Cn

ρRn−1
1 Rn−1

2

(Rn−1
2 − Rn−1

1 )

≤ CnR
n−2
2

ρRn−1
1 Rn−1

2

(R2 − R1) =
Cn

ρRn−1
1 R2

(R2 − R1)

≤ CnR1(e
2ε − 1)

ρRn
1

≤ Cn

ρ

1

Rn−1
1

(e2ε − 1)

≤ Cn

Rn
1

√
e2ε − 1 ≤ Cn

√
e2ε − 1,

where we used the facts that 1 ≤ R2

R1
≤ e2ε, ρ =

√
2
√
e2ε − 1R1 and e−ε ≤

Rn
1σn ≤ eε, with ε ∈

(
0, 1

4

)
.
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Since

G1(Y ) =
1

(n− 1)(n+ 1)ωn+1

(
1

|Y |n−1
− 1

Rn−1
1

)
then

|∇G1(Y )| =
1

(n+ 1)ωn+1

1

|Y |n .

For Y ∈ ∂B(0, R1 − 2ρ) and ε > 0 small enough, we have

|∇G1(Y )| =
1

ωn+1(n + 1)(R1 − 2ρ)n
(4.25)

=
1

σnRn
1 (1 − 2

√
2
√
e2ε − 1)

n

≤ eε

(1 − 2
√

2
√
e2ε − 1)n

≤ eε(1 + 8n
√
e2ε − 1).

Combining (4.6), (4.20), (4.24) and (4.25) we obtain

sup
B(Q,ρ)

|∇G| ≤ eε(1 + 8n
√
e2ε − 1) + Cn

√
e2ε − 1(4.26)

≤ eε(1 + Cn

√
e2ε − 1)

≤ e2εh(Q)(1 + Cn

√
e2ε − 1)

≤ h(Q)(1 + Cn

√
e2ε − 1).

Thus for ε > 0 small enough so that Cn(e2ε − 1)
1
4 < 1 we have that

(4.27) sup
B(Q,ρ)

|∇G| ≤ h(Q)(1 + (e2ε − 1)1/4).

Note that (4.16), (4.17), (4.19) and (4.27) show that for ε > 0 small enough
in terms of n and such that (ε2ε − 1)1/12 < σ then G ∈ F (σ, σ; (e2ε − 1)1/4)
in B(Q, ρ), ∀Q ∈ ∂Ω where ρ =

√
2
√
e2ε − 1R1.

Before sketching the proofs of Lemma 4.1 and Lemma 4.2 we indicate
how from the 3 lemmata above one proves Theorem 2.1.

Proof of Theorem 2.1. Let θ′ ∈
(
0, 1

2

)
to be chosen. Let σ′ ∈ (0, σθ′)

as in Lemma 4.2. By Lemma 4.3 for σ ∈ (0, σθ′) there is εσ′ > 0 so that
if (4.6) holds, then G ∈ F (σ′, σ′, (e2ε − 1)1/4) in B(Q, ρ), for Q ∈ ∂Ω with
ρ =

√
2
√
e2ε − 1R1, and with (e2εσ′ − 1)1/12 < σ′. Note that by choosing

ε′ < εσ′ so that (e2εσ − 1)1/4 < σθ′ we have that (e2ε − 1)1/4 ≤ σθ′(σ
′)2

for ε < ε′. Lemma 4.2 ensures that G ∈ F (θ′σ′, 1; (e2ε − 1)1/4) in B(Q, ηρ).
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Lemma 4.1 now guarantees thatG ∈ F (2θ′σ′, Cθ′σ′; (e2ε−1)1/4) inB
(
Q, ηρ

2

)
.

Choosing θ′ so that Cθ′ + 2θ′ < 1 we conclude that

G ∈ F (σ′, σ′; (e2ε − 1)1/4) in B
(
Q, ηρ

2

)
.

Since (e2ε − 1)1/4 ≤ σθ′(σ
′)2 we can repeat the previous argument to show

that ∀ k ∈ N and ∀Q ∈ ∂Ω

G ∈ F (σ′, σ′; (e2ε − 1)1/4) in B
(
Q,
(

η
2

)k
ρ
)
.

Thus there exists νk ∈ Sn so that

(4.28) G(X) = 0 for 〈X −Q, νk〉 ≥ σ′
(η

2

)k

ρ

and

(4.29) G(X) ≥ −h(Q)

[
〈X −Q, νk〉 + σ′

(η
2

)k

ρ

]
≥ 0

for 〈X −Q, νk〉 ≤ −σ′ (η
2

)k
ρ.

In particular if Lk(Q) denotes the n-plane through Q orthogonal to νk

(4.28) and (4.29) imply that

(4.30) D

[
∂Ω ∩B

(
Q,
(η

2

)k

ρ

)
;Lk(Q) ∩ B

(
Q,
(η

2

)k

ρ

)]
≤ σ′

(η
2

)k

ρ.

Let r ∈ (0, ρ) there is k ≥ 0 so that
(

η
2

)k+1
ρ ≤ r ≤

(
η
2

)k
ρ, let rk =

(
η
2

)k
ρ.

For P ∈ ∂Ω ∩ B(Q, r) by (4.30), there exists Z ∈ Lk(Q) ∩ B(Q, rk) so that
|Z − P | < σ′rk. Note that |Z − Q| ≤ |Z − P | + |P − Q| < σ′rk + r. There
exists Z ′ ∈ seg [Q,Z] such that |Z ′ −Q| < r and |Z ′ − Z| < σ′rk. Moreover
|Z ′ − P | ≤ |Z − Z ′| + |Z − P | < 2σ′rk.

For Z ∈ Lk(Q) ∩ B(Q, r), there exists Z ′ ∈ Lk(Q) ∩ B(Q, r − σ′rk) so
that |Z − Z ′| < σ′rk. By (4.30) there exists P ∈ ∂Ω ∩ B(Q, rk) so that
|Z ′ − P | < σ′rk. Note that |Z − P | ≤ |Z −Z ′|+ |Z ′ − P | < 2σ′rk, moreover
|P −Q| ≤ |P − Z ′| + |Z ′ − Q| < r. Thus P ∈ ∂Ω ∩ B(Q, r). The previous
argument ensures that for Q ∈ ∂Ω and r ∈ (0, ρ) there exists an n-plane
through Q, L(Q, r) so that

(4.31)
1

r
D[∂Ω ∩B(Q, r), L(Q, r) ∩ B(Q, r)] ≤ 2σ′.

Thus for σ ∈
(
0,

σθ′
2

)
there exists εσ > 0 so that if ε < εσ and sup∂Ω | log h|<ε

then θ(Q, r) ≤ σ for r ∈ (0; ρ) with ρ =
√

2
√
e2ε − 1R1.
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We now focus our attention in the proofs of Lemmas 4.1 and 4.2. As
mentioned earlier these are just small variations of results that appear both
in [1] and [6], thus we do not present all the details.

Proof of Lemma 4.1. Without loss of generality we may assume that
Q0 = 0 ∈ ∂Ω, ρ = 1 and ν = en+1. By hypothesis G ∈ F (σ, 1; τ) in
B1 = B(0, 1) in the direction en+1, h(Q) ≥ e−ε for Hn a.e. Q ∈ ∂Ω and
supB1

|∇G| ≤ eε(1 + τ) ≤ eε(1 + σ).

This implies that for ϕ ∈ C∞
0 (Rn+1), ϕ ≥ 0

(4.32)

∫
Ω

G∆ϕ ≥ e−ε

∫
∂Ω

ϕdHn.

Let η(Y ) = exp
(

−9|Y |2
1−9|Y |2

)
for |Y | < 1

3
and η(Y ) = 0 otherwise. Choose

s0 > 0 to be the maximum s so that

(4.33) B1 ∩ {G > 0} ⊂ D = {X ∈ B1 : xn+1 < 2σ − sη(x̄)}

where X = (x̄, xn+1) with x̄ ∈ Rn × {0} Note that s0 ≤ 2σ. Since G ∈
F (σ, 1; τ) in B1 there exists Z ∈ ∂D ∩ ∂Ω ∩ B

(
0, 1

3

)
. Let B ⊂ DC be a

tangent ball to D at Z. Since ∂D ∩ B1 is smooth and s0 ≤ 2σ ≤ σn for
σn > 0 small we may assume that the radius of B is Cn

σn
. Consider the

function V defined by ∆V = 0 in D, V = 0 in ∂D ∩B1 and V = 2σ − xn+1

on ∂D\B1. By the maximum principle V > 0 in D and

(4.34) G ≤ V in D

as G ≤ V on ∂D and G is subharmonic. For X ∈ D define F (X) =
(2σ − xn+1) − V (X), F is a harmonic function on D. Since Z is a smooth
point of ∂D, standard boundary regularity arguments (see [3, Lemma 6.5])
ensures that supX∈D̄ |∇F (X)| ≤ C supD̄ |F | ≤ Cs0 ≤ Cσ. Therefore

(4.35) − ∂V

∂xn+1

(Z) = 1 +
∂F

∂xn+1

(Z) ≤ 1 + Cσ.

Using (4.35) and noting that |−→n (Z) − en+1| ≤ cσ we have that if
〈∇V,−→n 〉 = ∂V

∂n
where −→n denotes the outward unit normal to ∂D then

(4.36) −∂V
∂b

(Z) ≤ 1 + cσ + (1 + σ)|−→n − en+1| ≤ 1 + cσ.

Our goal now is to estimate G from below by the linear function −xn+1 up
to a constant of order σ. Let ζ ∈ ∂B

(
0, 3

4

)
∩
{
xn+1 < −1

2

}
. Consider the

function ωζ defined by ∆ωζ = 0 in D\B
(
ζ, 1

8

)
, ωζ = 0 on ∂D ωζ = −xn+1

on ∂B
(
ζ, 1

8

)
.
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The Hopf boundary point lemma ensures that

(4.37) −∂ωζ

∂n
(Z) ≥ Cn > 0.

Assume that there exists d > 0 such that ∀X ∈ B̄
(
ζ, 1

8

)
(4.38) G(X) ≤ V (X) + σdxn+1.

The maximum principle would then imply that

(4.39) G(X) ≤ V (X) − dσωζ(X) in D\B
(
ζ,

1

8

)
.

Combining Lemma 4.1, (4.36), (4.31), (4.5) and the hypothesis that ε ∈
(0, σ) we would have

(4.40) 1 − σ ≤ 1 − ε ≤ −∂V
∂n

(Z) − dσ
∂ωζ

∂n
(Z) ≤ 1 + Cσ − Cndσ

which is a contradiction for d large. Thus fr d large enough (depending on
n) there are points Xζ ∈ B

(
ζ, 1

8

)
such that

(4.41) G(Xζ) ≥ V (Xζ) + dσ(Xζ)n+1.

Let X ∈ B
(
Xζ,

1
4

)
then noting that V (X) ≥ −xn+1 for X ∈ D, using

the fact that supB1
|∇G| ≤ eε(1+σ) and (4.41) we have for σn small enough

G(X) ≥ G(Xζ) − sup
B(ζ, 1

4)
|∇G| |X −Xζ |(4.42)

≥ V (Xζ) + dσ(Xζ)n+1 −
1

4
(1 + σ)eε

≥ −(Xζ)n+1 + dσ(Xζ)n+1 −
1

4
(1 + σ)eε

≥ 5

8
− 7

8
dσ − 1

4
(1 + σ)eε

≥ 5

8
− 7

8
dσ − 1

4
(1 + σ)eε > 0

for σ < σn. Since G(X) > 0 for X ∈ B
(
Xζ ,

1
4

)
, G is harmonic on B

(
Xζ ,

1
4

)
and so is V −G. Moreover

V −G ≥ 0 on B

(
Xζ,

1

4

)
⊃ B

(
ζ,

1

8

)
.
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Harnack’s inequality combined with (4.41) yields

(4.43) (V −G)(ξ) ≤ Cn(V −G)(Xζ) ≤ −Cdσ(Xζ)n+1 ≤ Cσ

and

(4.44) G(ζ) ≥ V (ζ) − Cσ ≥ −ζn+1 − Cσ.

For X ∈ D∩B
(
0, 1

2

)
, X = ζ + txn+1 for some ζ ∈ ∂B

(
0, 3

4

)
∩
{
xn+1 < −1

2

}
then (4.44) implies that

(4.45) G(X) ≥ G(ζ) − (1 + σ)eεt ≥ −(ζn+1 + t) − Cσ

since G ∈ F (σ, 1; τ) in B1 in direction en+1, inequality (4.45) ensures that
G ∈ F (2σ, Cσ; τ) in B

(
0, 1

2

)
in direction en+1.

Lemma 4.2 is proved by contradiction, using a non-homogeneous blow-
up. Assume that Lemma 4.2 does not hold. There exists θ0 ∈ (0, 1) such
that for every η > 0 (later we specify one) and every non-negative decreasing
sequence {σj} there is a sequence {τj} with τjσ

−2
j → 0 so that

(4.46) G ∈ F (σj, σj ; τj) in B(Qj, ρj) in direction νj

but

(4.47) G �∈ F (θ0σj, 1; τj) in B(Qj , ηρj).

Since the estimate in Lemma 4.2 is to hold uniformly on compact sets we
assume that for each j ∈ N, Qj ∈ K and that limj→∞Qj = Q0 ∈ K Q0 �= 0
where K is a fixed compact set in Rn+1.

Note that ifG ∈ F (σ, σ; τ) inB(Q, ρ) in direction ν thenG ∈ F (4σ, 4σ; τ)
in B

(
P, ρ

2

)
in direction ν for every P ∈ ∂Ω∩B

(
Q, P

2

)
. Let Rj be the rotation

which maps R
n+1
+ onto {(x, t) = x+ tνj : x ∈ 〈νj〉⊥; t ≥ 0}. Let

Ωj = ρ−1
j R−1

j (Ω −Qj), ∂Ωj = ρ−1
j R−1

j (∂Ω −Qj).

Define

(4.48) Gj(X) =
1

ρjh(Qj)
G(ρjRjX +Qj)

and for Q ∈ ∂Ωj

(4.49) hj(Q) =
1

h(Qj)
h(ρjRjQ+Qj).

Note that Gj is a positive multiple of the Green function of Ωj with pole

−ρ−1
j R−1

j Qj. Note that |ρ−1
j R−1

j Qj| ≥ |Q0|
2ρj

for j large enough.
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Thus for ϕ ∈ C∞
c (Rn+1) and j large enough so supportϕ ⊂ B

(
0, |Q0|

4ρj

)
we have

(4.50)

∫
Ωj

Gj∆ϕdX =

∫
∂Ωj

ϕhjdHn

with

(4.51) sup
B(0,1)

|∇Gj| ≤ 1 + τj and osc B(0,1)hj ≤ τj with hj(0) = 1.

Moreover

(4.52) Gj ∈ F (σj , σj ; τj) in B(0, 1) in direction en+1

but

(4.53) Gj �∈ F (θ0σj , 1; τj) in B(0, η)

with σj → 0 and τjσ
−2
j → 0 as j → ∞.

We define sequences of scaled height functions (in the direction en+1)
corresponding to ∂Ωj . We prove that this sequence converges to a subhar-
monic Lipschitz function, and use this information to contradict (4.53) for
j large enough. For y ∈ B(0, 1) ∩ Rn × {0} = B′ define

(4.54) f+
j (Y ) = sup {h : (y1σjh) ∈ ∂{Gj > 0}} ≤ 1

and

(4.55) f−
j (Y ) = inf {h : (y, σjh) ∈ ∂{Gj > 0}} ≥ −1

Lemma 4.4 (Non-homogeneous blow up (Lemma 7.3 in [1])) There
exists a subsequence kj such that for y ∈ B′

(4.56) f(y) = lim sup
kj→∞

z→y

f+
kj

(z) = lim inf
kj→∞

z→y

f−
kj

(z).

Corollary 4.1 (Corollary 7.4 in [1])The function f that appears in (4.56)
is a continuous function in B′, f(0) = 0; and f+

kj
and f−

kj
converge uniformly

to f on compact sets of B′.

The proofs of Lemma 4.4 and Corollary 4.1 are identical to those that
appear in [1] or [6], thus we omit them here.

Lemma 4.5 (Lemma 7.5 in [1]) The function f introduced in Lemma 4.4
is subharmonic in B′.
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Proof. This proof is done by contradiction. Assuming that f is not subhar-
monic in B′ we contradict the fact that σ−2

j τj → 0 as j → ∞. In fact if f is
not subharmonic in B′ there exists y0 ∈ B′ and ρ > 0 so that B′(y0, ρ) ⊂ B′

and

(4.57) f(y0) >

∫
/

∂B′(y0,ρ)

f(x)dx.

Let

(4.58) ε0 =
f(y0) −

∫
/

∂B′(y0,ρ)
f(x)dx

2
.

Let g be the solution to the Dirichlet problem

(4.59)

{
∆g = 0 in B′(y0, ρ)
g = f + ε0 on ∂B′(y0, ρ).

}
Note that

(4.60) f < g on ∂B′(y0, ρ), and

g(y0) =

∫
/

∂B′(y0,ρ)

g(x)dx =

∫
/

∂B′(y0,ρ)

f(x)dx+ ε0(4.61)

g(y0) =
1

2

{
f(y0) +

∫
/

∂B′(y0,ρ)

f(x)dx

}
g(y0) < f(y0).(4.62)

Summarizing, we have the following picture.

y0

graph g = Z0(g)

graph f = Z0(f)

ρ

(4.63)

⎧⎨⎩
∆g = 0 in B′(y0, ρ)
g > f in ∂B′(y0, ρ)

g(y0) < f(y0)
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The main idea of the proof is to compare the n-dimensional Hausdorff mea-
sure of ∂{Gkj

> 0} on the cylinder B′(y0, ρ)× (−1, 1) to that of the graph of
σkj

g on the same cylinder to obtain a contradiction from an estimate on the
size of the area enclosed by these 2 surfaces. In order to simplify the nota-
tion we relabel the sequences that appear in Lemma 4.4. We also introduce
some new definitions.

Let Z = B′(y0, ρ)×R be the infinite cylinder. For φ defined on Rn define

Z+(φ) = {(y, h) ∈ Z : h > φ(y)}(4.64)

Z−(φ) = {(y, h) ∈ Z : h < φ(y)}
Z0(φ) = {(y, h) ∈ Z : h = φ(y)}.

We may assume that for k large enough

(4.65) Hn(Z0(σkg) ∩ ∂{Gk > 0}) = 0.

It might be necessary to modify g above by adding a suitable constant which
can be chosen as small as one wants. In particular the function g would still
satisfy (4.60) and (4.61).

Claim 1 For k large enough

(4.66) Hn(Z+(σkg) ∩ ∂{Gk > 0}) ≤ 1 + τk
1 − τk

Hn(Z0(σkg) ∩ {Gk > 0}).

Claim 2 Let Ek = {Gk > 0}∩Z−(σkg). Ek is a set of locally finite perime-
ter and

Hn(Z ∩ ∂∗Ek) ≤ Hn(∂{Gk > 0} ∩ Z+(σkg))(4.67)

+ Hn({Gk = 0} ∩ Z0(σkg)).

Here ∂∗Ek denotes the reduced boundary of Ek.

Claim 3 There exists a constant C > 0 such that

(4.68) Hn(Z ∩ ∂∗Ek) ≥ Hn(Z0(σkg)) + Cσ2
kρ

n.

Before proving the claims we indicate how combining inequalities (4.66),
(4.67) and (4.68) we obtain a contradiction. Combining (4.66), (4.67)
and (4.68) and using (4.65) we have

Hn(Z0(σkg)) + Cσ2
kρ

n ≤ Hn(Z ∩ ∂∗Ek)(4.69)

≤ Hn(∂{Gk > 0} ∩ Z+(σkg) + Hn({Gk = 0} ∩ Z−(σkg))

≤ 1 + τk
1 − τk

Hn(Z0(σkg) ∩ {Gk > 0}) + Hn({Gk = 0} ∩ Z0(σkg))

≤ 2τk
1 − τk

Hn(Z0(σkg) ∩ {Gk > 0}) + Hn(Z0(σkg))



Stability of Lewis and Vogel’s result 43

which implies

Cσ2
kρ

n ≤ 2τk
1 − τk

Hn(Z0(σkg) ∩ {Gk > 0})(4.70)

≤ 2τk
1 − τk

∫
Bρ′(y0)

√
1 + σ2

k|∇g|2.

For τk <
1
2

and σk < 1 (4.70) yields Cσ2
k ≤ C ′τk which contradicts the fact

that τkσ
−2
k → 0 as k → ∞. Thus we conclude that f is subharmonic in B′.

Proof of Claim 1. Since hk(0) = 1 and osc B(0,1)hk ≤ τk we have that

Hn(Z+(σkg) ∩ ∂{Gk > 0}) =

∫
Z+(σkg)∩∂{Gk>0}

dHn(4.71)

≤ 1

1 − τk

∫
Z+(σkg)∩∂{Gk>0}

hkdHn.

For ϕ ∈ C∞
c (Rn+1) and k large enough we have

(4.72) −
∫
{Gk>0}

∇Gk∇ϕ =

∫
∂{Gk>0}

ϕhkdHn.

Letting ϕ→ χZ+(σkg), (4.72) yields

(4.73) −
∫
{Gk>0}∩∂Z+(σkg)

∇Gk · ν =

∫
∂{Gk>0}∩Z+(σkg)

hkdHn

where ν denotes the outward pointing unit normal. Combining (4.65),
(4.71), (4.73) and (4.51) we have that

Hn(Z+(σkg) ∩ ∂{Gk > 0}) ≤ 1

1 − τk

∫
{Gk>0}∩∂Z+(σkg)

|∇Gk|(4.74)

≤ 1 + τk
1 − τk

Hn({Gk > 0} ∩ Z0(σkg)).

�
The proof of Claim 2 is straightforward. The proof of Claim 3 is identical

to the one that appears in either [1] or [6], thus we do not present it here.

To obtain the desired contradiction we need to prove that f is Lipschitz.
This proof relies on the following lemma which claims that f converges to
its average faster than linearly in an integral sense.
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Lemma 4.6 (Lemma 7.6 in [1]) There is a constant C = C(n) > 0 such
that for y ∈ B′

1/2 = B
(
0, 1

2

)
∩ Rn × {0}

(4.75) 0 ≤
∫ 1

4

0

1

r2
(fy,r − f(y))dr ≤ C

where

(4.76) fy,r =

∫
/

∂B′(y,r)

fdHn−1.

Proof. The proof is very similar to the ones that appear in [1] and [6].
Nevertheless since the minor differences are technically important we sketch
the proof here pointing out how to overcome the difficulties that arise in this
situation. For the complete details we refer the reader to [1] or [6]. Without
loss of generality we may assume that y = 0. Since f(0) = 0 it is enough to
show

(4.77) 0 ≤
∫ 1

4

0

1

r2

∫
/

∂B′
r

fdHn−1 ≤ C

where B′
r = B′(0, r) and C only depends on n since f is subharmonic (see

Lemma 4.5) then for r ∈
(
0, 1

2

)
, f(0) ≤

∫
/

∂B′
r
fdHn−1 which proves the first

inequality.
Let h > 2σj be small and let Gh denote the Green function of B

(
0, 1

2

)
∩

{xn+1 < 0} with pole −hen+1. By reflection Gh can be extended to a
smooth function on B

(
0, 1

2

)
\{±hen+1} with Gh(x̄, xn+1) = −G(x̄,−xn+1)

for xn+1 > 0. For j large let Gj
h(X) = Gn(X + σjen+1) be defined on

B
(

1
2
,−σjen+1

)
\{(σj±h)en+1}. We denote by B1/2 = B

(
0, 1

2

)
and by Bj

1/2 =

B
(

1
2
;−σjen+1

)
. We may assume that Hn(∂Bj

1/2 ∩ ∂{Gj > 0}) = 0. Green’s
formula ensures that

(4.78) −
∫

Bj
1/2

〈∇Gj,∇Gj
h〉 =

∫
∂Bj

1/2

Gj∂νG
j
h −Gj(−(h + σj)en+1),

where ∂νG
j
h = 〈∇Gj

h, ν〉, and ν denotes the inward pointing unit normal to
∂B′

1/2. On the other hand

(4.79) −
∫

∂Bj
1/2

〈∇Gj,∇Gj
h〉 =

∫
∂{Gj>0}∩Bj

1/2

hjG
j
hdHn.
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Let νj denote the inward point unit normal to ∂Ωj = ∂{Gj > 0} then
by Green’s formula we have∫

Bj
1/2

∩∂{Gj>0}
〈Gj

hen+1 − xn+1∇Gj
h, νj〉dHn(4.80)

= (σj + h) +

∫
∂Bj

1/2
∩{Gj>0}

xn+1∂νG
j
h.

Combining (4.78), (4.79) and (4.80) we obtain∫
Bj

1/2
∩∂{Gj>0}

xn+1∂νj
Gj

hdHn(4.81)

=

∫
B1/2∩∂{Gj>0}

(hj + 〈en+1, νj〉)Gj
hdHn

−
∫

∂Bj
1/2

∩{Gj>0}
(xn+1 +Gj)∂νG

j
h +Gj(−(h+ σj)en+1) − (σj + h)

=

∫
B1/2∩∂{Gj>0}

(
hj

1 − τj
+ 〈en+1, νj〉

)
Gj

hdHn

−τj
∫

B1/2∩∂{Gj>0}
hjG

j
hdHn +Gj(−(h + σj)en+1) − (σj + h)

−
∫

∂Bj
1/2

∩{Gj>0}
(xn+1 +Gj)∂νG

j
n

=

∫
B1/2∩∂{Gj>0}

(
hj

1 − τj
+ 〈en+1, νj〉

)
Gj

hdHn

+(1 + τj)Gj(−(h+ σj)en+1) − (σj + h)

−
∫

∂Bj
1/2

∩{Gj>0}
(xn+1 +Gj(1 + τj))∂νG

j
h.

Since σj − h < −σj and Gj ∈ F (σj , σj ; τj) in B(0, 1) in direction en+1, then
Gj

h ≤ 0 on ∂{Gj > 0} ∩ Bj
1/2. Furthermore since hj(0) = 1, by (4.51)

hj ≥ 1 − τj on Bj
1/2 ∩ ∂{Gj > 0}.

Thus

(4.82)

∫
B1/2∩∂{Gj>0}

(
hj

1 − τj
+ 〈en+1, νj〉

)
Gj

h ≤ 0.

Since Gj(0) = 0, (4.51) ensures that

(4.83) |Gj(−(h + σj)en+1)| ≤ sup
B(0,1)

|∇Gj|(h+ σj) ≤ (1 + τj)(h+ σj).
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Hence

(4.84) (1 + τj)Gj(−(h + σj)en+1) − (σj + h) ≤ 3τj(h+ σj)

Since {Gj > 0} ⊂ {xn+1 < σj}, by (4.51) for xn+1 ≤ σj we have in B(0, 1)

(4.85) Gj(x̄, xn+1) = |Gj(x̄, xn+1) −Gj(x̄, σj)| ≤ (1 + τj)(σj − xn+1)

which yields

(4.86) xn+1 ≤ xn+1 +(1+τj)Gj(x̄, xn+1) ≤ (1− (1+τj)
2)xn+1 +(1+τj)

2σj .

Thus

(4.87) 0 ≤ xn+1 + (1 + τj)Gj(x̄, xn+1) ≤ (1 + τj)
2σj for xn+1 ∈ [0, σj]

(4.88) −σj ≤ xn+1 +(1+ τj)Gj(x̄, xn+1) ≤ (1+ τj)σj for xn+1 ∈ [−σj , 0].

Since Gj ∈ F (σj , σj; τj) in B(0, 1) in direction en+1 with hj(0) = 1 then

xn+1 + (1 + τj)Gj(x̄, xn+1) ≥ xn+1 + (1 + τj)(−xn+1 − σj)(4.89)

≥ −τjxn+1 − σj(1 + τj) ≥ −σj(1 + τj) for xn+1 ≤ −σj

We combine the fact that ∂νG
j
h ≥ 0 with (4.87), (4.88) and (4.89) and

obtain that

−
∫

∂Bj
1/2

∩{Gj>0}
(xn+1 + (1 + τj)Gj)∂νG

j
h(4.90)

≤ σj(1 + τj)

∫
∂Bj

1/2
∩{Gj>0}∩{xn+1<0}

∂νG
j
n.

Combining (4.81), (4.82), (4.84), (4.90), the fact that σ−2
j τj ≤ 1 for j large

enough, and that 1 ≥ h > 2σj we conclude that

(4.91)
1

σj

∫
Bj

1/2
∩∂{Gj>0}

xn+1∂νj
Gj

h ≤ 9σj + 2

∫
∂Bj

1/2
∩{Gj>0}∩{xn+1<0}

∂νG
j
n.

Thus

(4.92) lim sup
j→∞

1

σj

∫
Bj

1/2
∩∂{Gj>0}

xn+1∂νj
Gj

h ≤ 2

∫
∂B1/2∩{xn+1≤0}

∂νGh ≤ Ch.

The rest of the argument is identical to the one that appears in [6] in the
proof of Lemma 0.9.
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Lemma 4.7 (Lemmata 7.7 and 7.8 in [1]) The function f introduced in
Lemma 4.4 is Lipschitz in B′

1/16 with Lipschitz constant that only depends

on n. Furthermore there exists a large constant C = C(n) > 0 such that for
any given θ ∈ (0, 1) there exists η = η(θ) > 0 and l ∈ R

n × {0} with |l| ≤ c
so that

(4.93) f(y) ≤ 〈l, y〉 +
θ

2
η for y ∈ B′

η.

The proof of this lemma basically appears in [1] and [6]
Now we indicate how the last 2 lemmata yield a contradiction in the proof

of Lemma 4.2. Recall that by assuming that the statement in Lemma 4.2 is
false we can construct sequences of function {Gj} and {hj} satisfying (4.50),
(4.51), (4.52) and (4.53). From them as in (4.54), (4.55) and Lemmas 4.4,
4.5, 4.6 and 4.7 we can produce a subharmonic Lipschitz function f on B′

1/16

satisfying (4.93). Recall that by Lemma 4.4 and Corollary 4.1 f is uniform
limit of the functions f+

j defined in (4.54). Therefore Lemma 4.7 yields that
for θ ∈ (0, 1) there exists η > 0 so that for j large enough

(4.94) f+
j (y) ≤ 〈l, y〉 + θη for y ∈ B′

η,

which by definition means that

(4.95) Gj(X) = 0 for X = (x̄, xn+1) ∈ B(0, η) with xn+1 > σj〈l, x̄〉+ θησj .

Let ν̄ = (1 + σ2
j |l|2)−1/2(−σjl, 1) (4.95) implies that

(4.96) Gj(X) = 0 for X ∈ B(0, η) with 〈X, ν̄〉 ≥ θησj

(1 + σ2
j |l|2)1/2

≥ 2θησj

for j large enough. But (4.51) and (4.96) state that Gj ∈ F (2θηj, 1; τj)
in B(0, η) in direction ν̄. This contradicts statement (4.53) in the case
that θ = θ0

2
, which concludes the proof of Lemma 4.2 and thus that of the

Theorem 2.1.

5. Applications

Lemma 5.1 Assume that Ω ⊂ Rn+1 satisfies (2.9). Then there exist ε0 > 0
and r0 > 0 such that if

(5.1) sup
∂Ω

| log h| < ε0

then for Q ∈ ∂Ω and r ∈ (0, r0)

(5.2) C−1
n rn ≤ Hn(∂Ω ∩ B(Q, r)) ≤ Cnr

n,

where Cn is a constant that only depends on n, i.e. ∂Ω is Ahlfors regular.
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Proof. Let σ ∈
(
0, 1

4

)
be small enough in Theorem 2.1 then there exists

ε1 > 0 such that if sup∂Ω | log h| < ε1, then ∂Ω is σ-Reifenberg flat. This
ensures that there exists ρ1 > 0 so that for Q ∈ ∂Ω and r < ρ1

(5.3) Hn(∂Ω ∩B(Q, r)) ≥ (1 + σ)−1ωnr
n ≥ 1

2
ωnr

n

(for the proof see Remark 2.2 in [7]). By Lemma 4.3 there exists 0 < ε2 < ε1

so that if sup∂Ω | log h| < ε with 0 < ε < ε2 there exists ρε = ρ > 0 such
that for Q ∈ ∂Ω, G ∈ F (σ, σ; (e2ε − 1)1/4) in B(Q, ρε). Thus in particular
for r < min{ρε, ρ1}

(5.4) sup
B(Q,r)

|∇G| ≤ h(Q)(1 + (e2ε − 1)1/4) ≤ eε(1 + (e2ε − 1)1/4).

Hence

Hn(∂Ω ∩B(Q, r)) =

∫
B(Q,r)∩∂Ω

h
1

h
dHn(5.5)

≤ eε

∫
B(Q,r)∩∂Ω

hdHn ≤ eε

∫
∂Ω

ϕhdHn

≤ −eε

∫
Ω

〈∇ϕ,∇G〉dHn+1,

for any non-negative ϕ ∈ C∞
c (Rn+1) such that ϕ ≡ 1 on B(Q, r) and 0 �∈

supportϕ.
In particular if ϕ is chosen so that ϕ ∈ C∞

c (B(Q, 2r)) for r < 1
2
min{ρε, ρ1}

and |∇ϕ| < 2/r, (5.4) and (5.5) yield for ε > 0 small enough

(5.6) Hn(B(Q, r) ∩ ∂Ω) ≤ eε 2

r
eε(1 + (e2ε − 1)1/4)ωn+1r

n+1 ≤ 4ωn+1r
n.

Choosing

ε0 = min

{
ε2

2
,
1

4

}
and r0 =

1

2
min{ρε0 , ρ1}

we conclude that (5.2) holds.

Corollary 5.1 Assume that Ω ⊂ Rn+1 satisfies (2.9). Then given δ > 0
small enough there exists ε > 0 such that if

(5.7) sup
∂Ω

| log h| < ε

then Ω is a δ-Reifenberg flat chord arc domain.
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Proof. By Theorem 2.1, ∂Ω is δ-Reifenberg flat provided ε > 0 is small
enough. Since Ω is bounded and B(0, R1)⊂Ω⊂B(0, R2) it is easy to show
that it satisfies the separation property. Therefore Ω is a δ-Reifenberg flat
domain and for δ > 0 small enough it is also NTA (see [7]). Moreover if
ε < ε0 Lemma 5.1 ensures that for r ∈ (0, r0) (5.2) holds. Since Ω is bounded
it is easy to see that for r ∈ (0, diamΩ), (5.2) also holds with a constant that
only depends on n, and diamΩ

r0
. Thus Ω is a chord arc domain.

The crucial information contained in Lemma 5.1 and Corollary 5.1 is that
bounded domains which are sets of locally finite perimeter and satisfy (2.9)
belong to a family of chord arc domains with uniform constants.

Corollary 5.2 Assume that Ω ⊂ Rn+1 satisfies (2.9). There exists ε1 > 0
so that if sup∂Ω | log h| < ε1 and log h ∈ VMO(∂Ω) (resp. log h ∈ Ck,α(∂Ω))
then Ω is a chord arc domain with vanishing constant (resp. Ω is a Ck+1,α

domain).

Proof. By choosing ε1 > 0 small enough Corollary 5.1 ensures that Ω is a δ-
Reifenberg flat chord arc domain. Choosing δ > 0 as in the statement of the
Main Theorem in [8] we conclude that if logh ∈ VMO then −→n ∈ VMO(∂Ω).
Choosing δ > 0 as in the statement of Alt and Caffarelli’s theorem we
conclude that if log h ∈ Ck,α then Ω is a Ck+1,α domain.

Corollary 5.3 Assume that Ω ⊂ Rn+1 satisfies (2.9). There exists ε2 > 0
so that it sup∂Ω | log h| < ε2 and log h ∈ C0,α there exists a homeomorphism
ψ : B(0, R1) → Ω where ψ and ψ−1 are C1,α.

Proof. By the work in [1] and Corollary 5.1 we know that there exists δ > 0
and ε > 0 depending on δ > 0 so that if sup∂Ω | log h| < ε and log h ∈ C0,α

then Ω is a C1,α domain. Moreover using the proof of Theorem 8.1 in [1]
and (4.7) above we conclude that

(5.8)

∣∣∣∣−→n (Q) − Q

|Q|

∣∣∣∣ < δ.

Here −→n (Q) denotes the outward unit normal to ∂Ω. Since Ω is a bounded
C1,α domain there exists r ∈

(
0, R1

8

)
so that for Q ∈ ∂Ω ∩ B(Q, r) can be

written as the area below the graph of a C1,α function (with small C1,α

norm 1 over the n-plane through Q and orthogonal to −→n (Q). Inequal-
ity (5.8) guarantees that Ω ∩ B(Q, r) can also be seen as the area below
the graph of a C1,α function (with C1,α norm less than Cδ) over the n-
plane through Q and orthogonal to Q

|Q| . This implies that the spherical
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projection S : ∂Ω → B(0, R1) S(Q) = R1
Q
|Q| is a 1-1 map. Moreover since

B(Q,R1) ⊂ Ω, S is onto and Lipschitz on ∂Ω. In particular Ω is star shaped
with respect to the origin.

Since S is smooth on Rn+1\B
(
0, R1

4

)
and ∂Ω is a C1,α submanifold it

is clear that S is a C1,α map from ∂Ω onto B(0, R1), and S−1 is a C1,α

map from ∂B(0, R1) onto ∂Ω. For X ∈ Ω\B
(
0, R1

4

)
there exists a unique

QX ∈ ∂Ω so that X
|X| = QX

|QX | . The previous remark ensures that the map that

to X ∈ Ω\B
(
0, R1

4

)
associates QX is a C1,α map. Our goal is to construct

a homeomorphism Φ : Ω → B(0, R1), such that Φ and Φ−1 are C1,α. Let
X ∈ Ω and define

(5.9) g(t) =

⎧⎨⎩
t t ∈

[
0, R1

4

]
R1−|QX |

(|QX |−R1
4 )

2

(
t− R1

4

)2
+ t for t ∈

[
R1

4
, |QX |

]
.

In particular g ∈ C1,1([0, |QX |]), g(0) = 0 and g(|QX|) = R1. Moreover since
|QX | ≥ R1, for ε < 1

64
, g′ > 0 on [0, |QX |] thus g is 1− 1 and maps [0, |QX |]

onto[0, R1]. For X ∈ Ω define

Φ(X) =(5.10)

= g(|X|) X|X| −

⎧⎨⎩
X for X ∈ B

(
0, R1

4

)(
R1−|QX |

(|QX |−R1
4 )

2

(
|X| − R1

4

)2
+ |X|

)
X
|X| for X ∈ Ω\B

(
0, R1

4

)
.

Note that Φ is a C1,α map. For Y ∈ B(0, R1) ⊂ Ω there exists a unique
QY ∈ ∂Ω. Since g is a bijection there exists a unique t ∈ [0, |QY |] so
that |Y | = g(t). Since Ω is star-shaped with respect to the origin there
exists X ∈ Ω, such that X = t QY

|QY | . This implies that Φ(X) = Y . If

Φ(X) = Φ(X ′) ⇒ g(|X|) = g(|X ′|) and X
|X| = X′

|X′| . Since g is 1 − 1,

|X| = |X ′| which yields X = X ′. Thus Φ : Ω → B(0, R1) is a C1,α bijection.
It is easy to check that Φ−1 is also C1,α.

Lemma 5.2 Assume that Ω ⊂ Rn+1 satisfies (2.9). Given δ > 0 there exists
ε > 0 such that if sup∂Ω | log h| < ε with ε < ε0 then there exists ρε > 0 such
that for r ∈ (0, ρε) and Q ∈ ∂Ω

(5.11)
Hn(B(Q, r) ∩ ∂Ω)

ωnrn
≤ (1 + δ).

Proof. Let ϕ ∈ C∞
c (Rn+1) such that 0 �∈ suppϕ then

(5.12) −
∫

Ω

〈∇ϕ,∇G〉 =

∫
∂Ω

ϕhdσ.
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By choosing ϕ as an approximation of χB(Q,r) we obtain after passing to the
limit that for a.e. r > 0 with r < R1

4

(5.13)

∫
∂Ω∩B(Q,r)

hdHn =

∫
∂B(Q,r)∩Ω

〈
∇G, X −Q

|X −Q|

〉
dHn.

For the details of this computation see [9] section 3.
Let δ′ = δ′(δ) ∈ (0, 1) and choose ε′0 ∈

(
0, 1

4

)
so that if sup | log h| < ε′ for

ε′ ∈ (0, ε′0) then Ω is a δ′-Reifenberg flat chord arc domain (see Corollary 5.1)
and

G ∈ F

(
δ′

2
,
δ′

2
, (e2ε′−1)1/4

)
in B

(
Q,

(
η

2

)k

ρ′
)

for all Q ∈ ∂Ω, k ≥ 1 where ρ′ =
√

2
√
e2ε′−1R1 and η ∈

(
0, 1

4

)
(see

Lemma 4.3 and the proof of Theorem 2.1, namely (4.28) and (4.29)).

By Lemma 3.3, B(0, R1) ⊂ Ω ⊂ B(0, R2) with e−ε′ ≤ σnR
n
1 ≤ σnR

n
2 ≤

eε′. Note that since G ∈ F
(

δ′
2
, δ′

2
, (e2ε′ − 1)1/4

)
in B

(
Q,
(

η
2

)k
ρ′
)

for k ≥ 1

then G ∈ F (δ′, δ′, (e2ε′ − 1)1/4) in B(Q, r) for r ∈ (0, ρ′). Thus there exists
−−→nQ,r ∈ S

n so that

(5.14) G(X) = 0 for 〈X −Q;−−→nQ,r 〉 ≤ −δ′r

and

(5.15) G(X) ≥ h(Q) [〈X −Q;−−→nQ,r 〉 − δ′r] for 〈X −Q;−−→nQ,r 〉 ≥ δ′r.

To estimate the term in the right hand side of (5.13) consider

0 ≤
∫

∂B(Q,r)∩Ω

〈
∇G;

X −Q

|X −Q|

〉
dHn(5.16)

≤
∫

∂B(Q,r)∩{x+t−−→nQ,r :t≥2
√

δ′r}

〈
∇G(X);

X −Q

|X −Q|

〉
dHn

+

∫
∂B(Q,r)∩{x+t−−→nQ,r :−δ′r≤t≤2

√
δ′r}

|∇G|dHn

Here the decomposition x + t−−→nQ,r means that x ∈ L(Q, r) where L(Q, r) is
an n-plane through Q, orthogonal to −−→nQ,r .

Given our choice of r, Lemma 4.3 guarantees that

(5.17) sup
B(Q,r)

|∇G| ≤ h(Q)(1 + (e2ε′1 − 1)1/4) ≤ h(Q)(1 + 2(ε′)1/4),

for ε′0 small enough.
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Using (5.17) a simple computation yields

(5.18)

∫
∂B(Q,r)∩{x+t−−→nQ,r ;−δ′r≤t≤2

√
δ′r}

|∇G|dHn ≤ Cn

√
δ′rn.

Combining (5.14), (5.15) and (5.17) we have for X ∈ B(Q, r), X = x+t−−→nQ,r

with t ≥ 2δ′r ≥ 2
√
δ′r

(5.19) h(Q)(t− δ′r) ≤ G(X) ≤ h(Q)(1 + 2(ε′)1/4)(t+ δ′r).

Note that for such X, if d(X) denotes the distance from X to ∂Ω then

(5.20) r ≥ d(X) ≥ t− δ′r ≥ t

2
.

As in (4.22) and (4.23) we have that

∇G(X) =
−2n+2

ωn+1d(X)n+2

∫
∂B(X, d(X)

2 )
G(ζ)(X − ζ)dζ(5.21)

= − 2n+2

ωn+1d(X)n+2

∫
∂B(X,

d(X)
2 )

(G(ζ) − h(Q)t̃ζ)(X − ζ)dζ

− 2n+2

ωn+1d(X)n+2

∫
∂B(X, d(X)

2 )
h(Q)t̃ζ(X − ζ)dζ,

where t̃ζ = 〈ζ−Q,−→n Q,2r〉. Note that if ζ ∈ ∂B
(
X, d(X)

2

)
, then ζ ∈ B(Q, 2r).

The first equality in (5.21) applied to the function t̃ζ rather than G guaran-
tees that

(5.22)
2n+2

ωn+1d(X)n+2

∫
∂B(X,

d(X)
2 )

h(Q)t̃ζ(X − ζ)dζ = h(Q)−→n Q,2r.

Since |t̃ζ | ≤ 2r using (5.19) we have that

(5.23)

|∇G(X) − h(Q)−→n Q,2r| ≤
Cn

d(X)n+1

∫
∂B(X,

d(X)
2 )

|G(ζ) − h(Q)t̃ζ |dζ

≤ Cnh(Q)

d(X)n+1

∫
∂B(X, d(X)

2 )
((ε′)1/4(|t̃ζ | + δ′r) + δ′r)dζ

≤ Cnh(Q)

d(X)
((ε′)1/4r + δ′r) ≤ Cn

h(Q)

t
((ε′)1/4r + δ′r).
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Using (5.20) and (5.23) we can estimate the remaining term in (5.16).
Namely ∫

∂B(Q,r)∩{x+t−→n Q,r :t≥2
√

δ′r}

〈
∇G(X);

X −Q

|X −Q|

〉
dHn(5.24)

≤ h(Q)

∫
∂B(Q,r)∩{x+t−→n Q,r :t≥2

√
δ′r}

〈
−→n Q,2r,

X −Q

|X −Q|

〉
dHn

+ Cnh(Q)
(ε′)1/4 + δ′√

δ′
rn.

Choosing ε′0 > 0 so that ε′0 ≤ (δ′)4, and recalling that h(Q) ≤ eε′ ≤ 2
(5.24) becomes∫

∂B(Q,r)∩{x+t−−→nQ,r :t≥2
√

δ′r}

〈
∇G;

X −Q

|X −Q|

〉
dHn(5.25)

≤ h(Q)

∫
∂B(Q,r)∩{x+�t−→n Q,2r :�t≥0}

〈
−→n Q,2r,

X −Q

|X −Q|

〉
dHn

+ 2Hn
(
∂B(Q, r)∩

(
{x+ t̃−→n Q,2r : t̃≥0}∆{x+ t−→n Q,r : t≥2

√
δ′r}

))
+ Cn

√
δ′rn.

A simple computation shows that the angle between −→n Q,2r and −→n Q,r is
less than Cδ′. This fact combined with (5.13) applied to the function t̃−→n Q,2r

instead of G and (5.25) implies∫
∂B(Q,r)∩{x+t−→n Q,r ,t≥2

√
δ′r}

〈
∇G, X −Q

|X −Q|

〉
dHn(5.26)

≤ h(Q)

∫
L(Q,2r)∩B(Q,r)

dHn + Cn

√
δ′rn

Combining (5.13), (5.16), (5.18) and (5.26) plus the fact that e−ε′ ≤
h(P ) ≤ eε′ for P ∈ ∂Ω we conclude for r ≤

√
2
√
e2ε′ − 1R1

Hn(B(Q, r) ∩ ∂Ω) =

∫
B(Q,r)∩∂Ω

h(P )h−1(P )dHn(5.27)

≤ eε′
∫

B(Q,r)∩∂Ω

hdHn ≤ e2ε′ωnr
n + Cn

√
δ′rn.

By our choice of ε′0 > 0 (so that ε′0 ≤ (δ′)4) we have that for r ≤√
2
√
e2ε′ − 1R1

(5.28) Hn(B(Q, r) ∩ ∂Ω) ≤ ωnr
n(1 + Cn

√
δ′).

Choosing δ′ > 0 so that Cn(δ
′)1/2 = δ, and ε0 the corresponding ε′0 we have

proved the statement of Lemma 5.2.
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Corollary 5.4 Assume that Ω ⊂ R
n+1 satisfies (2.9). Given δ > 0 there

exists ε > 0 such that if sup∂Ω | log h| < ε then Ω is a δ-chord arc domain.

Proof. From the proof of Lemma 5.1 (see (5.3)) and Lemma 5.2 we have
that given δ > 0 there exist ε > 0 and ρ > 0 so that if sup∂Ω | logh| < ε
then for r ∈ (0, ρ) and Q ∈ ∂Ω

(5.29) (1 + δ)−1 ≤ Hn(∂Ω ∩ B(Q, r))

ωnrn
≤ 1 + δ.

By Theorem 2.1 we also know that ρ > 0 can be chosen so that

(5.30) θ(Q, ρ) ≤ δ.

This is a straightforward consequence of Corollary 4.5 (for the proof,
see [7, §2]).

Corollary 5.5 Assume that Ω ⊂ Rn+1 satisfies (2.9). Given δ > 0 there
exist ε > 0 and ρ > 0 such that if sup∂Ω | log h| < ε then

(5.31) ‖−→n ‖∗(ρ) = sup
Q∈∂Ω

sup
0<r<ρ

(∫
/

B(Q,r)∩∂Ω

|−→n −−→n Q,r|2dσ
)1/2

≤ δ.
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