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Wavelets on Fractals
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Dedicated to the memory of Gert Kjærgaard Pedersen

Abstract

We show that there are Hilbert spaces constructed from the Haus-
dorff measures Hs on the real line R with 0 < s < 1 which admit
multiresolution wavelets. For the case of the middle-third Cantor set
C ⊂ [0, 1], the Hilbert space is a separable subspace of L2(R, (dx)s)
where s = log3(2). While we develop the general theory of multi-
resolutions in fractal Hilbert spaces, the emphasis is on the case of
scale 3 which covers the traditional Cantor set C. Introducing

ψ1(x) =
√

2χC(3x− 1) and ψ2(x) = χC(3x) − χC(3x− 2)

we first describe the subspace in L2(R, (dx)s) which has the following
family as an orthonormal basis (ONB):

ψi,j,k(x) = 2j/2ψi(3jx− k),

where i = 1, 2, j, k ∈ Z.
Since the affine iteration systems of Cantor type arise from a cer-

tain algorithm in Rd which leaves gaps at each step, our wavelet bases
are in a sense gap-filling constructions.

1. Introduction

The paper has three interrelated themes: (1) construction of wavelet bases
in separable Hilbert spaces built on affine fractals and Hausdorff measure;
(2) approximation of the corresponding wavelet scaling functions, using the
cascading approximation algorithm; and (3) an associated spectral theoretic
analysis of a transfer operator, often called the Ruelle operator.
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There are surprises when our results are compared to what is known for
the traditional multiresolution approach for L2(Rd), and even when com-
pared to known results for special classes of affine fractals.

Some comments on (1)–(3): Due to earlier work by Jorgensen and Ped-
ersen [16] and Strichartz et al [23], it is known that a subclass of the affine
fractals admits Fourier duality. Affine fractals arise from the specification
of an expansive matrix, and a finite set of translations. The fractal X itself
then arises from this data and an iteration ‘in the small’ of the correspond-
ing affine maps. Let L = L(X) be the associated iteration ‘in the large’. We
say that (X,L) is a Fourier duality, if an orthonormal basis on X may be
built from the frequencies in L. While it is known that, if X is the middle
third Cantor set, then there is no L which makes a duality pair, we show
that nonetheless, every affine fractal admits an orthonormal wavelet basis.
In our discussion of wavelets, we start with the middle third Cantor set; and
we then pass on to the general affine fractals.

As for the approximation issues in (2), we know that for L2(Rd), there is a
rich family of wavelet filters which yield cascade approximation. This family
of filters is much more restricted for the fractals: Our results for the affine
fractals even offer a certain dichotomy (Theorem 6.2): If the cascades do not
converge in the Hilbert space, then the terms in the cascading approximation
sequence are typically orthogonal, and thus very far from being convergent.

Our analysis of (1)–(2) is based on spectral theory of the associated
transfer operator, and we show in the second half of the paper (starting with
Section 4) how this spectral theory differs in the three cases, the standard
L2(Rd)-wavelets, and the special duality fractals versus the general class of
affine fractals.

Our proofs depend on ideas from geometric measure theory, and from
earlier papers on harmonic analysis of affine fractals. While some of this
material is in the literature, it isn’t available precisely in the form we need
it here. In any case, it is difficult for readers to locate without first having a
brief overview. So we include a minimum amount of facts from the literature
for the benefit of readers. We hope thereby to bridge the diverse fields,
fractals, Hilbert space, wavelets, approximation, and harmonic analysis.

We develop the theory of multiresolutions in the context of Hausdorff
measure of fractional dimension between 0 and 1. While our fractal wavelet
theory has points of similarity that it shares with the standard case of
Lebesgue measure on the line, there are also sharp contrasts. These are
stated in our main result, a dichotomy theorem. The first section is the
case of the middle-third Cantor set. This is followed by a review of the
essentials on Hausdorff measure. The remaining sections of the paper cover
multiresolutions in the general context of affine iterated function systems.
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It is well known that the Hilbert spaces L2(R) has a rich family of or-
thonormal bases of the following form:

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z,

where ψ is a single function ∈ L2(R), with

‖ψ‖2 =

(∫
R

|ψ(x)|2 dx
)1/2

= 1,

and the integration refers to the usual Lebesgue measure on R. Take for
example

(1.1) ψ(x) = χI(2x) − χI(2x− 1)

where I = [0, 1] is the unit interval. Clearly I satisfies

2I = I ∪ (I + 1).

The Cantor subset C ⊂ I satisfies

(1.2) 3C = C ∪ (C + 2)

and its indicator function ϕC := χC satisfies

(1.3) ϕC

(x
3

)
= ϕC(x) + ϕC(x− 2).

Since both constructions, the first one for the Lebesgue measure, and the
second one for the Hausdorff version (dx)s, arise from scaling and subdivi-
sion, it seems reasonable to expect multiresolution wavelets also in Hilbert
spaces constructed on the scaled Hausdorff measures Hs which are basic for
the kind of iterated function systems which give Cantor constructions built
on scaling and translations by lattices. We show this to be the case, but
there are still striking differences between the two settings, and we spell out
some of them after first developing the theory in the case of the middle-third
Cantor construction.

While there are other wavelet approaches to fractals in the literature, for
example [13], [14], and [21], there is in fact no overlap with this work, since
the previous papers deal with wavelets on the fractal itself, while the present
paper deals with wavelets on an enlarged fractal (actually a fractal measure),
allowing a structure closer to a standard multiresolution analysis (MRA).

The practical applications are to fractals arising in physics and in sym-
bolic dynamical systems from theoretical computer science, see e.g., [2]
[19], [24]. There is already a considerable body of work on harmonic analysis
on fractals, see for example [22], [11], [10], [23], and [16]. Much of it is based
on subdivision techniques, and algorithms which use cascade constructions,
but so far we have not seen direct wavelet algorithms and wavelet analysis
for fractals.
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In section 2, we recall some facts about Hausdorff measure Hs, Hausdorff
dimension, and Hausdorff distance. They will be needed in the Hilbert space
we build on Hs. It is a natural separable subspace of the full Hs-Hilbert
space, and it is built up from the algebra of Z-translations (additive), and
N -adic scaling (multiplicative), where N is fixed. We then turn to the
cascade approximation for the scaling function ϕ defined by the usual 1/N
subdivision. We prove a theorem for the case 0 < s < 1 which stands in sharp
contrast to the traditional and more familiar case s = 1 of Daubechies et. al.;
i.e., the case of the Hilbert space L2(R) based on Lebesgue measure dx on R:
The scaling equation is then

(1.4) ϕ(x) =
√
N
∑
k∈Z

akϕ(Nx− k)

with the masking coefficients ak satisfying the usual two axioms

(1.5)
∑
k∈Z

ak =
√
N , and

∑
k∈Z

ākak+N� = δ�,0, � ∈ Z.

Motivated by the expression on the right hand side in (1.4), we define the
wavelet subdivision operator M by

(1.6) (Mf)(x) :=
√
N
∑
k∈Z

akf(Nx− k), f ∈ L2(R);

and note that its properties depend on the specifications in (1.5).
Simple conditions are known for when the limit

(1.7) lim
n→∞

MnχI = ϕ

exists in L2(R), see [7], chapter 5. Then ϕ (when it exists) solves (1.4), and
there is an easy formula for building functions ψ1, . . . , ψN−1 in L2(R) from ϕ
such that

(1.8)
{
N

k
2ψi(N

kx− �) | 1 ≤ i < N, k, � ∈ Z
}

is an orthonormal basis (ONB) in L2(R). If N = 2, a formula for ψ is

(1.9) ψ(x) =
√

2
∑
k∈Z

(−1)kā1−kϕ(2x− k).

In general when N ≥ 2, the functions ψ1, . . . , ψN−1 may result from the
solution to a simple matrix completion problem; see [20], [5] and [6] for
details. In the case of Hausdorff measure Hs (0 < s < 1, s depending on the
scaling number N), the analogous matrix completion is still fairly simple.
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A main question (non-trivial) is now that of solving the analogue of (1.4),
but in the Hs-Hilbert space. The biggest differences concern the changes
in (1.5) and (1.7) when 0 < s < 1. It turns out in the fractal cases that
there are then many fewer admissible solutions than those suggested by
analogy with (1.5). We summarize the situation in Sections 4–6, where
our main result takes the form of a dichotomy theorem; the solutions to
the Hs-convergence question are isolated within a larger family of masking
coefficients analogous to (1.5). There is further a new set of orthogonality
conditions entering the analysis when 0 < s < 1, which are not present in
the more familiar case of s = 1.

We interpret the wavelet filters as functions m0 on the torus T. If the
scaling number N is given, following [15], we introduce the wavelet-transfer
operator

(1.10) (Rm0f) (z) :=
1

N

∑
wN=z

|m0(w)|2 f(w), for f ∈ C(T), and z ∈ T.

Our dichotomy for wavelets will be explained in terms of the spectral
properties of Rm0, also called the Ruelle operator. For simplicity, we intro-
duce the normalization Rm0(1̂) = 1̂, where 1̂ denotes the constant function 1
on T. A probability measure ν on T is said to be invariant if νRm0 = ν.
Equivalently, ∫

T

Rm0(f)dν =

∫
T

fdν, for all f ∈ C (T) ,

or

(1.11) ν(Rm0(f)) = ν (f) .

We introduce a notion of (m0, N)-cycles for (1.10) which explains the solu-
tions ν ∈M1 (T) to (1.11). In our setting, the dichotomy boils down to two
cases for ν:

(i) ν = δ1 (the Dirac mass at z = 1), or

(ii) some ν is a singular measure on T with full support.

In the first case (i), the Hilbert space is L2(R); i.e., that of the standard
wavelets; and in the second case (ii), the Hilbert space is built from Hausdorff
measure Hs, 0 < s < 1.

We begin the discussion with N = 3 and s = log3(2).

Definition 1.1 We define R to be the set of all real numbers that have a
base 3 expansion containing only finitely many ones. It is an inflated version
of C:

R :=

{∑∞
k=−m ak3

−k
∣∣∣ m ∈ Z, ak ∈ {0, 1, 2} for all k ∈ Z,
ak �= 1 for all but finitely many indices k.

}
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For the fractal cases, 0 < s < 1, the factor
√
N in equations (1.4)–(1.6)

will be different, see details below. Similarly the factor N
k
2 in (1.8) changes:

With scaling number N and with p subdivisions, the ONB corresponding
to (1.8) in L2(R,Hs), s = logN(p) is {p k

2ψi(N
kx−�)}. However, the geomet-

ric properties of the cascade approximation to the scaling function change
completely as the Hausdorff dimension moves from s = 1 to the open in-
terval 0 < s < 1. This will be spelled out in the last four sections of the
paper.

2. The Hausdorff Measure

Returning to the middle-third Cantor set C = C3; i.e., N = 3 and p = 2,
here are some elementary properties of R:

Proposition 2.1 (The middle-third Cantor set) The set R has the fol-
lowing properties:
(i) Invariance under triadic translation:

R +
k

3n
= R, (k, n ∈ Z).

(ii) Invariance under dilation by 3:

3nR = R, (n ∈ Z).

(iii) The middle-third Cantor set C is contained in R and moreover it cov-
ers R by translations and dilations:

(2.1) R =
⋃
n∈Z

⋃
k∈Z

3−n(C + k).

Proof. (i) Any triadic number t = k0

3n0
with k0, n0 ∈ Z, k0 ≥ 0, has a finite

expansion in base 3:

t =
m∑

k=−m

tk3
−k, tk ∈ {0, 1, 2} .

Take x ∈ R. Then x has a finite number of ones in its expansion so the
same affirmation will be true for x+ t.
(ii) is clear: multiplication by 3 means a shift in the base 3 expansion.
(iii) Since

(2.2) C =

{ ∞∑
k=1

ak3
−k | ak ∈ {0, 2}

}
,

it is obvious that C ⊂ R.
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The inclusion “⊃” follows from (i) and (ii). Now take

x ∈ R, x =
∞∑

k=−m

ak3
−k,

only finitely many ak are equal to 1.

Let �0 be the last index for which al0 = 1, and take k0: = max{n0, �0}.
Then

x ∈ 3−k0

(
C +

k0∑
k=−m

ak3
−k+k0

)

and this shows that the other inclusion is also true. �

Remark 2.2 R has Lebesgue measure 0. Indeed, this follows from propo-
sition 2 (iii), because C has Lebesgue measure 0, and so do all the sets
3−n(C + k) with n, k ∈ Z.

Even though some of the properties that we need for the Hausdorff mea-
sure, for fractals, and for iterated function systems (IFS) are known, we
found that the material is wildly scattered throughout the literature; and
to increase readability we have included some highpoints from these areas.
This should also help bring out the contrast between the traditional MRA-
analysis, and the present more stochastic approach.

Next we define a measure on R. It is the restriction of the Hausdorff
measure Hs with s = log3(2) to R.

We recall some background on the Hausdorff measures from [9]:

For a subset E of R, s > 0, and δ > 0, define

Hs
δ(E) := inf

{ ∞∑
i=1

|Ui|s
∣∣ ∞⋃

i=1

Ui ⊃ E, |Ui| < δ

}

where |U | = sup {|x− y| | x, y ∈ U} (the diameter of U).

It is known that Hs
δ is an outer measure on R.

Define

(2.3) Hs(E) = lim
δ→0

Hs
δ(E) = sup

δ>0
Hs

δ(E).

Then verify that Hs is also an outer measure. By the Caratheodory con-
struction [9], if we restrict Hs to the σ-field of Hs-measurable sets, we get a
measure called the Hausdorff measure.
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Proposition 2.3

(i) All Borel sets are measurable.

(ii) [Inner regularity ] Any Hs-measurable set of finite Hs-measure contains
a Fσ-set of equal Hs-measure.

(iii) If E ⊂ R then there is a Gδ-set containing E and of the same Hs-
measure.

(iv) For s < 1 and G open, Hs(G) = ∞ (the measure is not regular from
above).

(v) Translation invariance: For any Hs-measurable set E, and any t ∈ R,
E + t is Hs-measurable, and

(2.4) Hs(E) = Hs(E + t).

(vi) For any Hs-measurable set E and any c > 0, cE is Hs-measurable and

(2.5) Hs(cE) = csHs(E).

Consider now Hs with s = log3 2 restricted to the Hs-measurable subsets
of R. We will keep the notation Hs for the restriction.

Proposition 2.4

(i) If E ⊂ R is an Hs-measurable set and t = l0
3p0

is a triadic number, then
E + t ⊂ R is Hs-measurable and

Hs(E) = Hs(E + t).

(ii) If E ⊂ R is an Hs-measurable set then 3E ⊂ R is Hs-measurable, and

(2.6) Hs(3E) = 2Hs(E).

(iii) If f ∈ L1(R,Hs) then the function on R, x→ f(x
3
) is also in L1(R,Hs)

and ∫
R
f(x)dHs(x) =

1

2

∫
R
f(
x

3
)dHs(x).

(iv) Hs(C) = 1, where C is the middle-third Cantor set.

Proof. (i) and (ii) are direct consequences of propositions 2.3 and 2.4.

(iii) follows from (ii) when f is a characteristic function of an Hs-measu-
rable set. Then, for arbitrary f , the formula can be obtained by approxima-
tions by simple functions.

(iv) See [9, theorem 1.14]. �
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Remark 2.5 The measure Hs on R is still non-regular from above. All
open sets in R still have infinite measure.

To see this, we show that Hs(I) = ∞, where I = (0, 1) ∩ R. Indeed
I ⊃ C, so Hs(I) ≥ 1. Also, observe that 3I = I ∪ (I + 1) ∪ (I + 2) disjoint
union (we neglect some points that have Hs-measure 0.). Therefore, with
propositions 2.4 (i) and (ii), we obtain

(2.7) 2Hs(I) = 3Hs(I)

so Hs(I) is either 0 or ∞. 0 cannot be from the previous argument, hence
it must be ∞.

By scalings and translations, it can be proved that Hs((a, b) ∩ R) = ∞
for any interval (a, b).

Since all open subsets of R have measure ∞ it follows that no non-
zero continuous function on R is integrable! (Just take f−1((a, b)) for some
interval that doesn’t contain 0 and intersects the range.)

Definition 2.6 We denote by H the Hilbert space

H := L2(R,Hs).

The linear operator T on H defined by

(2.8) Tf(x) = f(x− 1), (f ∈ H,x ∈ R),

is called the translation operator. The linear operator U on H defined by

(2.9) Uf(x) =
1√
2
f
(x

3

)
, (f ∈ H,x ∈ R)

is called the dilation operator.

From Proposition 2.4, and using some simple computations, we obtain
the following proposition:

Proposition 2.7

(i) T and U are unitary operators.

(ii) UTU−1 = T 3.

Denote by ϕ = χC, the characteristic function of the Cantor set C. We
prove that ϕ satisfies all the properties of a scaling vector.



140 D.E. Dutkay and P. E.T. Jorgensen

Proposition 2.8 The following hold:

(i) [The scaling equation] Uϕ = 1√
2
(ϕ+ T 2ϕ).

(ii) [Orthogonality of the translates]
〈
T kϕ | ϕ

〉
= δk, (k ∈ Z).

(iii) [Cyclicity] span
{
UnT kϕ | n ∈ Z, k ∈ Z

}
= H.

Proof.
(i) Uϕ = 1√

2
χ3C, T 2ϕ = χC+2, but 3C = C

⋃
(C + 2), so (i) follows.

(ii) T kϕ = χC+k so T kϕ and ϕ are disjointly supported for k �= 0. For k = 0,
〈ϕ | ϕ〉 =

∫
R χCdHs = 1, by proposition 2.8 (iv).

(iii) First take E ⊂ R measurable and with Hs(E) < ∞. We want to
approximate χE by linear combinations of functions of the form UnT kϕ.

Note also that

(2.10) UnT kϕ = χ3n(C+k), (n, k ∈ Z).

With proposition 2.4 (iii), and partitioning E if necessary, we may assume
that E is contained in a set of the form 3n0

(C+ k0). Applying dilations and
translations we may further assume that E ⊂ C �

Define

(2.11) V: =

{
Cn,an,...,a1 : = 3−nC +

n∑
k=1

ak3
−k | ak ∈ {0, 2}n ≥ 1

}
.

This family V is a Vitali class for E; i.e., for each x ∈ E and each δ > 0,
there is a U ∈ V with x ∈ U , and 0 < |U | ≤ δ.

Indeed, we see that for all n ≥ 1:

⋃
a1,...,an∈{0,2}

Cn,an,...,a1 = C.

Also using proposition 2.8

Hs(Cn,an,...,a1) = Hs(3−nC) = (3−n)sHs(C) = 2−n = |Cn,an,...,a1|
s .

We conclude that V is indeed a Vitali class for any subset E of C.
Then, by Vitali’s covering theorem (see [9, theorem 1.10]) for a fixed

ε > 0, there exists a finite or countable disjoint sequence of sets {Ui} from V
such that either

∑
|Ui|s = ∞, or Hs(E\

⋃
Ui) = 0, and also

Hs(E) <
∑

i

|Ui|s + ε.
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Since the sets Ui are mutually disjoint and contained in C, and using (i)
in (2.11), it follows that

(2.12)
∑

i

|Ui|s =
∑

i

Hs(Ui) = Hs(
⋃
i

Ui) ≤ Hs(C) = 1.

Therefore the other variant must be true:

Hs(E\U) = 0 with U :=
⋃
i

Ui.

On the other hand

Hs(U\E) = Hs(U) −Hs(U ∩ E) = Hs(U) − (Hs(E) −Hs(E\U))

= Hs(U) −Hs(E) =
∑

i

Hs(Ui) −Hs(E)

=
∑

i

|Ui|s −Hs(E) < ε.

Also, observe that

(2.13) Cn,an,...,a1 = 3−n

(
C +

n∑
k=1

ak3
n−k

)
,

so by (2.10), χCn,an,...,a1
= U−nT lϕ with l =

∑n
k=1 ak3

n−k.

Therefore we see that all measurable sets E ⊂ R with Hs(E) < ∞ are
in the span of {UnT kϕ | n, k ∈ Z}. Since all integrable functions f ∈ H can
be approximated by simple functions, it follows that

(2.14) H = span
{
UnT kϕ | n, k ∈ Z

}
.

3. Iterated Function Systems (IFS) and gap-filling
wavelets

The middle-third Cantor set C of Section 1 is a special case of an Iterated
Function System (IFS). It falls in the subclass of the IFSs which are called
affine. Specifically, let d ∈ Z+, and let A be a d×dmatrix of Z. Suppose that
the eigenvalues λi of A satisfy |λi| > 1. Set N := |detA| . These matrices
are called expansive. Then note that the quotient group Zd�A(Zd) is of
order N . A subset D ⊂ Zd is said to represent the A-residues if the natural
quotient mapping

(3.1) γ: Zd → Zd�A(Zd)

restricts to a bijection γD of D onto Zd�A(Zd).
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For example, if d = 1, and A = 3, then we may take either one of the
two sets {0, 1, 2} or {0, 1,−1} as D. The IFSs which we shall look at will
be constructed from finite subsets S ⊂ Zd which represent the A-residues
for some given expansive matrix A. If (A,S) is a pair with these properties,
define the maps

(3.2) σs(x) := A−1(x+ s), s ∈ S, x ∈ Rd.

Using a theorem of Hutchinson [12], we conclude that there is a unique
measure µ = µ(A,S) with compact support C = C(A,S) on Rd such that

(3.3) µ =
1

#(S)

∑
s∈S

µ ◦ σ−1
s ,

or equivalently

(3.4)

∫
f(x)dµ(x) =

1

#(S)

∑
s∈S

∫
f(σs(x))dµ(x).

The quotient mapping

(3.5) γ: Rd → Td := Rd�Zd

restricts to map C bijectively onto a compact subset of Td. The Hausdorff
dimension h of µ and of the support C is

h =
log #(S)

logN
.

The system (C, µ) is called a Hutchinson pair, see lemma 3.5.
If d = 1, we will look at two examples: (i) (A,S) = (3, {0, 2}) which

is the middle-third Cantor set C in Section 1, and (ii) (A,S) = (4, {0, 2})
which is the corresponding construction, but starting with a subdivision of
the unit interval I into 4 parts, and in each step of the iteration omitting
the second and the fourth quarter interval. As noted, then

(3.6) h(i) = log3(2) =
log 2

log 3
, and h(ii) =

1

2
;

for more details, see [16].
Since the arguments from proposition 2.4 and 2.8 generalize, we will only

sketch the general statements of results for the affine IFSs, those based on
pairs (A,S) in Rd where the matrix A and the subset S ⊂ Zd satisfy the

stated conditions. The number h will be h = log(#(S))
log|det A| ; i.e., the Hausdorff
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dimension of the measure µ, and its support C which are determined from
the given pair (A,S). We will then be working with the corresponding
Hausdorff measure Hh, but now as a measure defined on subsets of Rd. The
facts from Section 2 apply also to this more general case in Rd, for example,
property (1.2) for the middle-third Cantor set, now takes the following form

(3.7) AC =
⋃
s∈S

(C + s)

where AC := {Ax | x ∈ C}, and C + s := {x+ s | x ∈ C}, or equivalently

(3.8) C =
⋃
s∈S

σs(C)

where σs(C) := {σs(x) | x ∈ C}. The conditions on the pair (A,S) guaran-
tees that the sets in the union on the right-hand side in (3.7) or in (3.8), are
mutually non-overlapping. This amounts to the so-called open-set-condition
of Hutchinson [12]. The set R which is defined in Proposition 2.1 in the spe-
cial case of the middle-third Cantor set is now instead

(3.9) R =
⋃
n≥0

⋃
k∈Zd

A−n(C + k) = R =
⋃
n∈Z

⋃
k∈Zd

A−n(C + k)

where C is the (unique) compact set determined by (3.8), of Hutchinson’s
theorem [12]. The properties of Proposition 2.1 carry over mutatis mutandis,
for example, the argument from Section 2 shows that for every k ∈ Zd and
every n ∈ Z,

R + A−nk = R, and AnR = R.
The Hilbert space H from Definition 2.6 is now H := L2(R,Hh). The
unitary operators T and U from (2.8–2.9) are now

(3.10) (Tkf)(x) := f(x− k), f ∈ H, x ∈ R, k ∈ Zd

and

(3.11) (Uf)(x) =
1√

#(S)
f(A−1x), f ∈ H, x ∈ R.

The commutation relation from proposition 2.7 in its general form is

(3.12) UTkU
−1 = TAk, k ∈ Zd.

We now need the familiar duality between the two groups Zd, and Td =
Rd�Zd, which identifies points n ∈ Zd with monomials on Td as follows,

(3.13) zn = zn1
1 zn2

2 · · · znd

d = ei2πn1θ1ei2πn2θ2 · · · ei2πndθd.

Note that (3.13) identifies the torus Td with the d-cube

{(θ1, . . . , θd) | 0 ≤ θi < 1, i = 1, . . . , d}.
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Since C is naturally identified with a subset of Td, we may view the
monomials {zn | n ∈ Zd} as functions on C by restriction. We say that the
system (A,S) is of orthogonal type if there is a subset T of Zd such that
the set of functions {zn | n ∈ T } is an orthonormal basis (ONB) in the
Hilbert space L2(C, µ(A,S)). If there is no subset T with this ONB-property
we say that (A,S) is of non-orthogonal type. The authors of [16] showed that
(4, {0, 2}) is of orthogonal type, while (3, {0, 2}) is not. So for the Cantor
set C4 there is an ONB {zn | n ∈ T } for a subset T of Z; in fact we may
take

(3.14) T = {0, 1, 4, 5, 16, 17, 20, 21, 24, 25, . . .} =

{ finite∑
0

ni4
i | ni ∈ {0, 1}

}
.

For the middle-third Cantor set C3 it can be checked that {zn | n ∈ Z}
contains no more than two elements which are orthogonal in L2(C3, µ3).

Theorem 3.1 Let (A,S) be an affine IFS in Rd, and suppose S has an
extension to a set of A-residues in Zd. Let

h =
log #(S)

log |detA| ,

and let (C, µ) be as above; i.e., depending on (A,S), and let R be defined
from C in the usual way as in (3.9). Assume further that

(3.15) C ∩ (C + k) = ∅, (k ∈ Zd \ {0}).
Then the system (A,S) is of orthogonal type if and only iff there is a subset T
in Zd such that{

(#(S))n/2 ei2πAnk·x χC(Anx− �) | k ∈ T , (n = 0 and � ∈ Zd) or(3.16)

(n ≥ 1 and � �≡ s mod A for all s ∈ S)
}

is an orthonormal basis in the Hilbert space L2(R,Hh).

Remark 3.2 The significance of the assumption (3.15) is illustrated in [4].
Also note that (3.15) is automatically satisfied if C = C(A,S) is contained
in a Zd-tile. This is the case for the example (A,S) = (4, {0, 2}), but there
are examples in d = 2 where it is not.

Proof. A simple check shows that

R =
⋃{

A−n(C + l) | (n = 0 and � ∈ Zd)

or (n ≥ 1 and � �≡ s mod A for all s ∈ S)
}
,

and the union is disjoint.
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Suppose (A,S) is of orthogonal type. We saw in Section 2 that the
restriction of the Hausdorff measure Hh to C agrees with the Hutchinson
measure µ = µ(A,S) on C = C(A,S). Hence density of {zn | n ∈ T } in
L2(C, µ) implies density of {ei2πk·xχC(x) | k ∈ T } in the subspace L2(C,Hh)
of L2(R,Hh). Now the formula for R implies that the functions in (3.16)
are dense in L2(R,Hh).

Suppose conversely that the family (3.16) is dense in L2(R,Hh). Then
{zn | n ∈ T } must be dense in L2(C, µ) since C is the support of Hutchin-
son’s measure µ, and since µ restricts Hh. �
Corollary 3.3 Let (C4, µ4) be the Cantor construction in the unit interval
I ∼= T1 defined by the IFS σ0(x) = x

4
, σ2(x) = x+2

4
; i.e., by (A,S) =

(4, {0, 2}), and let R be the subset of R defined in (3.9). Then the family of
functions{

2n/2ei2π4nkxχC(4nx− �) | k ∈ {0, 1, 4, 5, 16, 17, . . . },(3.17)

� ∈
{

Z if n = 0
Z \ (4Z + {0, 2}) if n ≥ 1.

}}

forms an orthonormal basis in the Hilbert space L2(R,H 1
2 ).

Proof. This is a direct application of the theorem as the subset

T = {0, 1, 4, 5, 16, 17, . . . }
from (3.14) and (3.17) satisfies the basis property for C4, µ4 by Theorem 3.4
in [16]. �

The next result makes clear the notion of gap-filling wavelets in the
context of iterated function systems (IFS). While it is stated just for a
particular example, the idea carries over to general IFSs. Note that in the
system (3.18) below of wavelet functions, the two ψ2 and ψ3 are gap-filling.

Corollary 3.4 Let C = C4 be the Cantor set determined from the IFS,
σ0(x)= x

4
, σ2(x)= x+2

4
, from the previous corollary. Then the three functions

ψ1(x) := χC(4x) − χC(4x− 2)(3.18)

ψ2(x) :=
√

2χC(4x− 1)

ψ3(x) :=
√

2χC(4x− 3)

generate an orthonormal wavelet basis in the Hilbert space L2(R,H 1
2 ). Speci-

fically, the family

(3.19)
{

2
k
2ψi(4

kx− �) | i = 1, 2, 3, k ∈ Z, � ∈ Z
}

is an orthonormal basis in L2(R,H 1
2 ).
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Proof. We noted that our results in propositions 2.4 and 2.8 apply more
generally to IFSs of affine type. So the result amounts to checking the
general orthogonality relations for the functions m0,m1,m2,m3 on T which
define wavelet filters for the system in (3.19). Note that from (3.19) the
subband filters {mi}3

i=0 are as follows, z ∈ T:

m0(z) =
1√
2
(1 + z2)

m1(z) =
1√
2
(1 − z2)

m2(z) = z

m3(z) = z3.

Since the 4 × 4 matrix in the system


m0(z)
m1(z)
m2(z)
m3(z)


 =




1√
2

0 1√
2

0
1√
2

0 − 1√
2

0

0 1 0 0
0 0 0 1






1
z
z2

z3




is clearly unitary, the result follows from a direct computation; see also the
proof of theorem 6.2.

To verify that the Ruelle operator R = Rm0 given by

(Rf)(z) =
1

4

∑
w4=z

|m0(w)|2 f(w) =
1

4

∑
w4=z

(
1 +

w2 + w−2

2

)
f(w)

satisfies the two conditions
(a) dim{f ∈ C(T) | Rf = f} = 1, and
(b) for all λ ∈ C, |λ| = 1, and λ �= 1, dim{f ∈ C(T) | Rf = λf} = 0,

we may again apply the theorem from [18] or the results of section 6 below. �

For the more general affine IFSs the results above extend as follows.
Consider the affine IFS (σi)

p
i=1 with

σi(x) =
1

N
(x+ ai), (x ∈ R),

where N ≥ 2 is an integer and (ai)
p
i=1 are distinct integers in {0, . . . , N−1}.

Then by [9], there is a unique compact subset K of R which is the attractor
of the IFS, i.e.,

C = ∪p
i=1σi(C).

Actually, one can give a more explicit description of this attractor, namely

C = {
∑

j≥1
djN

−j | dj ∈ {a1, . . . , ap}, j ≥ 1}.
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Since the digits ai are distinct and less then N , K is contained in [0, 1],
and the sets σi(K) are almost disjoint (they have at most one point in
common, those of the form k/N for some k ∈ {1, . . . , N − 1}.

The Hausdorff dimension of K is logN p.

Now consider the set

R=
{∑

j≥−m

djN
−j |m∈Z, dj ∈{a1, . . . , ap} for all but finitely many indices j

}

R is invariant under integer translations

R + k = R, (k ∈ Z),

and it is invariant under dilation by N

NR = R.
Endow R with the Hausdorff measure Hs for s = logN p, and on L2(R,Hs),
define the translation operator

Tf(x) = f(x− 1), (x ∈ R, f ∈ L2(R,Hs)),

and the dilation operator

Uf(x) =

√
1

p
f
( x
N

)
, (x ∈ R, f ∈ L2(R,Hs)).

These are unitary operators satisfying the commutation relation

UTU−1 = TN .

Let ϕ := χC. The function ϕ is an orthogonal scaling function for
L2(R,Hs), with filter

(3.20) m0(z) =

√
1

p

p∑
i=1

zai,

so it satisfies the following conditions:

1. [Orthogonality] 〈
T kϕ | ϕ

〉
= δk, (k ∈ Z).

2. [Scaling equation]

Uϕ =

p∑
i=1

√
1

p
T aiϕ = m0(T ).

3. [Cyclicity]

span{U−nT kϕ |n, k ∈ Z} = L2(R,Hs).
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Next, we define the wavelets. For this, we need the “high-pass” filters
m1, . . . ,mN−1 such that the matrix

1√
N

(mi(ρ
jz))N−1

i,j=0,

is unitary for almost every z. (ρ = e2πi/N).
First, we define the filters for the gap-filling wavelets ψ1, . . . , ψN−p. The

set G = {0, . . . , N − 1} \ {a1, . . . , ap} has N − p elements. We label the
functions z �→ zd for d ∈ G, by m1, . . . ,mN−p.

The remaining p − 1 filters are for the detail-filling wavelets. Let η =
e2πi/p. Define

mN−p+k(z) =

√
1

p

p∑
i=1

ηk(i−1)zai , (k ∈ {1, . . . , p− 1}).

We have to check that

(3.21)
1

N

∑
wN=z

mi(w)mj(w) = δij, (z ∈ T, i, j ∈ {0, . . . , N − 1}).

For this we use the following identity:∑
wN=z

wk = 0, (z ∈ T, k �≡ 0 mod N).

Therefore, if f1(z) =
∑N−1

i=0 αiz
i, f2 =

∑N−1
i=0 βiz

i, then

1

N

∑
wN=z

f1(w)f2(w) =
1

N

N−1∑
i,j=0

αiβj

∑
wN=z

wi−j =
N−1∑
i=0

αiβj.

Applying these to the filters mi, (i ∈ {0, . . . , N − 1}), we obtain (3.21).
With these filters, we construct the wavelets in the usual way:

ψi = U−1mi(T )ϕ, (i ∈ {1, . . . , N − 1}),

and
{UmT nψi |m,n ∈ Z, i ∈ {1, . . . , N − 1}}

is an orthonormal basis for L2(R,Hs).

Let N ∈Z+ be as above, and consider S={a1, ..., ap}⊂{0, 1, 2, ..., N−1}.
A second subset B = {b1, . . . , bp} ⊂ Z is an N -dual if the p× p matrix

(3.22) MN(S,B) =
1
√
p

(
exp

(
i
2πajbk
N

))
1≤j,k≤p

is unitary.
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When N and S are given as specified, it is not always true that there is
a subset B ⊂ Z for which MN (S,B) is unitary. If for example N = 3 and
S = {0, 2}, then no B exists, while for N = 4 and S = {0, 2}, we may take
B = {0, 1}, and

M4(S,B) =
1√
2

(
1 1
1 −1

)

is of course unitary.

Lemma 3.5 ([16]) Let N and S be as specified above, and suppose

B = {b1, . . . , bp} ⊂ Z

is an N-dual subset. Suppose 0 ∈ B, and set

(3.23) Λ = ΛN (B) :=

{ finite∑
i=0

niN
i | ni ∈ B

}
.

Let (C, µ) = (C(N,S), µ(N,S)) be the Hutchinson pair. Then the set of func-
tions {zn | n ∈ Λ} is orthogonal in L2(C, µ); i.e.,

(3.24)

∫
C

zn−n′
dµ(z) = δn,n′ , n, n′ ∈ Λ

where we identify C as a subset of T1 via

C � θ −→ ei2πθ ∈ T1.

Proof. Set e(θ) = ei2πθ, and for k ∈ R

(3.25) B(k) :=

∫
C

e(kθ)dµ(θ).

Using (3.4), we get

(3.26) B(k) =
1
√
p
m0

(
k

N

)
B

(
k

N

)
,

where m0 is defined in (3.20).
If n, n′ ∈ Λ, and n �= n′, we get the representation

n′ − n = b′ − b+mN �, b, b′ ∈ B, m, � ∈ Z, � ≥ 1.

As a result, the inner product in L2(C, µ) is

(3.27)
〈
zn | zn′

〉
µ

= B(n′ − n) =
1
√
p
m0

(
b′ − b

N

)
B

(
n′ − n

N

)
.

Since the matrix MN(S,B) is unitary,

m0

(
b′ − b

N

)
= 0

when b′ �= b in B, and the result follows. �
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Even if the matrix MN(S,B) is unitary, the orthogonal functions {zn |
n ∈ Λ} might not form a basis for L2(C, µ). From [16], we know that it is
an orthonormal basis (ONB) if and only if

(3.28)
∑
n∈Λ

|B(ξ − n)|2 = 1 a.e. ξ ∈ R.

Introducing the function

(3.29) Ω(ξ) :=
1

p

∑
b∈B

|B(ξ − n)|2 ,

and the dual Ruelle operator

(3.30) (RBf)(ξ) :=
1

p

∑
b∈B

∣∣∣∣m0

(
ξ − b

N

) ∣∣∣∣
2

f

(
ξ − b

N

)
,

we easily verify that Ω and the constant function 1̂ both solve the eigenvalue
problem RB(f) = f , both functions Ω and 1̂ are continuous on R, even
analytic.

Theorem 3.6 If the space

(3.31) {f ∈ Lip(R) | f ≥ 0, f(0) = 1, RB(f) = f}

is one-dimensional, then Λ(= ΛN (B)) induces an ONB ; i.e., {zn | n ∈ Λ}
is an ONB in L2(C, µ).

Proof. The result follows from the discussion and the added observation
that Ω(0) = 1. This normalization holds since 0 ∈ B was assumed, and so
〈e0 | en〉µ = 0 for all n ∈ Λ�{0}. �

Definition 3.7 A B-cycle is a finite set {z1, z2, . . . , zk+1} ⊂ T, with a pair-
ing of points in B, say b1, b2, . . . , bk+1 ∈ B, such that

(3.32) zi = σ−bi
(zi+1), zk+1 = z1,

and |m0(zi)|2 = p.
Equivalently, a B-cycle may be given by {ξ1, . . . , ξk+1} ⊂ R satisfying

ξi+1 ≡ bi +Nξi modNZ(
Nk − 1

)
ξ1 ≡ bk +Nbk−1 + · · · +Nk−1b1 modNkZ.
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Theorem 3.8 Let N ∈ Z+, N ≥ 2 be given. Let S ⊂ {0, 1, . . . , N − 1},
and suppose there is a B ⊂ Z such that 0 ∈ B, #(S) = #(B) = p, and the
matrix

MN (S,B) =
1
√
p

(
exp

(
i
2πab

N

))

is unitary. Then {zn | n ∈ ΛN (B)} is an ONB for L2(C, µ) where ΛN (B) is
defined in (3.23) if the only B-cycles are the singleton {1} ⊂ T.

Proof. By Theorem 3.6, we need only verify that the absence of B-cycles
of order ≥ 2 implies that the Perron-Frobenius eigenspace (3.30) is one-
dimensional. But this follows from [6, Theorem 5.5.4]. In fact, the argument
from Chapter 5 in [6] shows that the absence of B-cycles of order ≥ 2 implies
that the B-Ruelle operator RB with σ−b(ξ) := ξ−b

N
,

(RBf)(ξ) =
1

p

∑
b∈B

(
|m0(σ−b(ξ))|2 f(σ−b(ξ))

)

satisfies the two Perron-Frobenius properties:
(i) the only bounded continuous solutions f to RB(f) = f are the multiples
of 1̂, and
(ii) for all λ ∈ T�{1}, the eigenvalue problem RB(f) = λf has no non-zero
bounded continuous solutions. �

Example 3.9 (An Application) Let N = 4, S = {0, 2}, and B = {0, 1}.
Then

M4(S,B) =
1√
2

(
1 1
1 −1

)
,

Λ4(B) = {0, 1, 4, 5, 16, 17, 20, 21, . . . }, and

(RBf)(ξ) = cos2(2πξ) f

(
ξ

4

)
+ sin2(2πξ) f

(
ξ − 1

4

)

and there is only on B-cycle, the singleton {1} ⊂ T. Recall from [12] that
the Hutchinson construction of (C, µ) identifies C as the Cantor set arising
by the subdividing algorithm starting with the unit interval I dividing into
four equal subintervals and dropping the second and the fourth at each step
in the algorithm. The measure µ is the restriction of H 1

2 to C, and it follows
from the last theorem that {zn | n ∈ Λ4(B)} is an ONB for L2(C, µ). The
dual system {σ−b | b ∈ B}; i.e., σ0(ξ) = ξ

4
, σ−1(ξ) = ξ−1

4
, generates a Cantor

subset CB ⊂ [−1, 0] also of Hausdorff dimension 1
2
. Note that the fractional

version of the Ruelle operator RB does not map 1-periodic functions into
themselves; in general

(RBf)(ξ) �= (RBf)(ξ + 1);
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in fact

(RBf)(ξ + 1) = cos2(2πξ)f

(
ξ + 1

4

)
+ sin2(2πξ)f

(
ξ

4

)
;

so
RBf(ξ) = RBf(ξ + 1)

holds only if

cos4(2πξ)f

(
ξ + 1

4

)
= sin4(2πξ)f

(
ξ − 1

4

)
.

The following tables of similar examples is included hopefully offering
the reader a glimpse of the variety of examples, all of orthogonal type. The
tables also offers some insight into the duality between the two systems, one
in the x-variable and the other in the Fourier dual variable ξ

N p S B MN (S,B) Hausdorff Dim.

4 2 {0, 2} {0, 1} 1√
2

(
1 1
1 −1

)
1
2

6 2 {0, 3} {0, 1} 1√
2

(
1 1
1 −1

)
log6(2)

6 2 {0, 1} {0, 3} 1√
2

(
1 1
1 −1

)
log6 (2)

6 3 {0, 2, 4} {0, 1, 2}
1√
3


 1 1 1

1 ζ3 ζ2
3

1 ζ2
3 ζ3




where ζ3 = exp
(
i2π

3

) log6 (3)

N p ΛN (B)
4 2 {0, 1, 4, 5, 16, 17, 20, 21, . . . }
6 2 {0, 1, 6, 7, 36, 37, 42, 43, . . . }
6 2 {0, 3, 6, 9, 36, 39, 42, 45, . . . }
6 3 {0, 1, 2, 6, 7, 8, 36, 37, 38, 42, 43, 44, . . .}

N p (RBf)(ξ)

4 2 cos2(2πξ)f
(

ξ
4

)
+ sin2(2πξ)f

(
ξ−1
4

)
6 2 cos2

(
πξ
2

)
f
(

ξ
6

)
+ sin2

(
πξ
2

)
f
(

ξ−1
6

)
6 2 cos2

(
πξ
6

)
f
(

ξ
6

)
+ sin2

(
πξ
6

)
f
(

ξ−3
6

)
6 3 W

(
ξ
6

)
f
(

ξ
6

)
+W

(
ξ−1
6

)
f
(

ξ−1
6

)
+W

(
ξ−2
6

)
f
(

ξ−2
6

)
where W (ξ) := 2 cos2(2πξ)−sin2(3πξ)

3
.
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4. A Generalized Zak-Transform

The notion of filter is imported into math from signal processing. It has
now been well adapted to wavelet analysis: In the familiar dyadic case the
two wavelet functions ϕ (the father function) and ψ (the mother function)
are in the Hilbert space L2(R). In the N -adic case, the wavelet functions
are ϕ, ψ1, . . . , ψN−1, and there are known conditions for when these func-
tions are in L2(R). The starting point is the scaling identity (1.6) satisfied
by ϕ. Introducing the wavelet filter m0(z) =

∑
k akz

k as a function on
T = R/2πZ, and the transfer operator Rm0 in (1.10), we note that necessary
conditions for ϕ to be in L2(R) are |m0(1)| =

√
N , the low-pass condition,

and Rm0(1̂) = 1̂, where 1̂ is the constant function 1. Let δ1 denote the Dirac
mass at z = 1. It follows that δ1Rm0 = δ1. But what if, for some m0, δ1 does
not satisfy this, so called low-pass condition; but rather there is some other
probability measure ν on T which is Rm0-invariant; i.e., satisfies νRm0 = ν,
and which is singular with full support. A main point in our paper is that
this alternative introduces fractal analysis into the wavelet construction.

Traditionally, the Zak-transform [7] is a standard tool of analysis in
L2(R), and in this section it is extended to the abstract case of Hilbert
space. If {Tk: k ∈ Z} denotes translation (Tkf)(x) = f(x − k), x ∈ R,
k ∈ Z, f ∈ L2(R), we set

(Zf)(z, x) =
∑
k∈Z

zkTkf(x), z ∈ T,x ∈ I,

and we check that Z defines a unitary isomorphism of L2(R) onto L2(T× I)
where T is the torus, and I the unit-interval I = [0, 1). The measure on T

is Haar measure, denoted µ; i.e.,∫
T

· · · dµ(z) =
1

2π

∫ 2π

0

· · · dθ, where z = eiθ.

Let H be a Hilbert space, U a unitary operator in H, and T : Z → U(H)
a unitary representation. Let N ≥ 2, and suppose that

(4.1) UTkU
−1 = TNk, k ∈ Z.

In general, the inner product in a Hilbert space H will be written 〈· | ·〉.
If f ∈ H, then the form g → 〈f | g〉 is taken linear on H; and 〈f | f〉 = ‖f‖2.

For fi ∈ H, i = 1, 2, we introduce the following function

(4.2) p(f1,f2)(z) =
∑
k∈Z

zk 〈Tkf1 | f2〉

defined formally for z ∈ T.
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Let m0 ∈ L∞(T) be given, and suppose that

(4.3)
1

N

∑
w∈T, wN=z

|m0(w)|2 = 1, a.e. z ∈ T.

Note that the sum in (4.3) is finite, since for each z ∈ T, the equa-
tion wN = z has precisely N solutions. In fact, the cyclic group ZN acts
transitively on this set of solutions {w}.

(We will work with the torus T in anyone of its three familiar incar-
nations: (i) {z ∈ C | |z| = 1}, (ii) the quotient group R/2πZ, or (iii) the
period interval [0, 2π) via the identification z = eiθ. With this identifica-
tion, we get the familiar description of the set

{
w ∈ T | wN = z(= eiθ)

}
in

the summation on the left-hand side of (4.3) as the N distinct frequency
bands

{
θ+2πk

N
| k = 0, 1, . . . , N − 1

}
. The sub-interval [0, 2π

N
) represents the

low frequency band.)
The operator m0(T ) is defined from the spectral theorem in the usual

way: If the spectral measure of T is denoted ET , then ET is a projection
valued measure on T, and we have the following three identities:

‖f‖2 =

∫
T

‖ET (dz)f‖2 , f ∈ H,(4.4)

Tk =

∫
T

zkET (dz), k ∈ Z,(4.5)

and by functional calculus,

(4.6) m0(T ) =

∫
T

m0(z)ET (dz)

If

(4.7) m0(z) =
∑
k∈Z

akz
k

is the Fourier series of m0, it follows that m0(T ) =
∑

k∈Z
akTk is then well

defined.
The following operator R = Rm0, called the Ruelle operator, (see [15]) is

acting on functions h or T as follows,

(4.8) (Rh)(z) =
1

N

∑
w∈T, wN=z

|m0(w)|2 h(w), z ∈ T.

Let 1̂ denote the constant function 1 on T. Then condition (4.3) amounts
to the eigenvalue equation

(4.9) R(1̂) = 1̂
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On the Hilbert space H, we introduce the operator

(4.10) M := U−1m0(T ).

It is called the cascade approximation operator. In the special case when
Tkf(x) = f(x− k), (Uf)(x) = N− 1

2f( x
N

), and H = L2(R), then

(4.11) (Mf)(x) =
√
N
∑

k

akf(Nx− k)

where {ak: k ∈ Z} is the sequence of Fourier coefficients of m0, see (4.7).
In this case M is also called the wavelet subdivision operator. The following
general lemma applies also to the case of wavelets in L2(R). The advantage
of (4.10) over (4.11) is that (4.10) is defined for all systems U, T satisfy-
ing (4.1) and applies in particular to our present fractal examples.

For measurable functions ξ and η on T, formula (4.6) represents the usual
functional calculus; i.e., ξ(T ) =

∫
T
ξ(z)ET (dz). Setting π(ξ) := ξ(T ), we get

π(ξη) = π(ξ)π(η), π(1̂) = I = the identity operator, π( ξ ) = π(ξ)∗ = the
adjoint operator. These properties together state that π(= πET

) defines a
∗-representation of L∞(T) acting on the Hilbert space HT of the translation
operators {Tk: k ∈ Z}.

Lemma 4.1 Let H, T , U , and m0 be as described above, and let the oper-
ators M and R be the corresponding operators; i.e., the cascade operator,
and Ruelle operator, respectively. Then the identity

(4.12) R(p(f1, f2)) = p(Mf1,Mf2)

holds for all f1,f2 ∈ H, where the two sides in (4.12) are viewed as functions
on T.

Proof. Let ξ ∈ C(T). Then it follows from (4.2) and (4.7) that

(4.13)

∫
T

ξ(z)p(f1, f2)(z)dµ(z) = 〈f1 | ξ(T )f2〉

where µ is the Haar measure on T, 〈· | ·〉 is the inner product of H, and
ξ(T ) =

∫
T
ξ(z)dET (z). Using this, in combination with (4.10), we there-

fore get

p(Mf1,Mf2)(z) =
∑
k∈Z

zk
〈
TkU

−1m0(T )f1 | U−1m0(T )f2

〉

=
∑
k∈Z

zk 〈TNkm0(T )f1 | m0(T )f2〉

=
1

N

∑
w∈T, wN=z

p
(
f1, |m0|2 (T )f2

)
(w)
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and therefore∫
T

ξ(z)p(Mf1,Mf2)(z)dµ(z) =

∫
T

ξ(zN)p(f1, |m0|2 (T )f2)(z)dµ(z)

=

∫
T

ξ(zN) |m0(z)|2 p(f1, f2)(z)dµ(z)

=

∫
T

ξ(z)R(p(f1, f2))(z)dµ(z).

Since this is valid for all ξ ∈ C(T), a comparison of the two sides in the last
formula, now yields the desired identity (4.13). �

Remark 4.2 An immediate consequence of the lemma is that if some ϕ ∈ H
satisfies Mϕ = ϕ, or equivalently

(4.14) Uϕ =
∑
k∈Z

akTkϕ

then the corresponding function h := p(ϕ,ϕ) on T satisfies R(h) = h. Recall
that (4.14) is the scaling equation. If further the functions {Tkϕ : k ∈ Z} on
the right hand side in (4.14) can be chosen orthogonal, then

(4.15) p(ϕ,ϕ)(z) = 〈ϕ | ϕ〉H = ‖ϕ‖2
H

is the constant function, and so we are back to the special normalization
condition (4.3) above.

The function p(ϕ,ϕ) is called the auto-correlation function since its
Fourier coefficients

(4.16)

∫
T

z−kp(ϕ,ϕ)(z)dµ(z) = 〈Tkϕ | ϕ〉H

are the auto-correlation numbers.

Lemma 4.3 Let m0 ∈ C(T) be given, and suppose (4.3) holds.

(a) Then there is a probability measure ν = νm0 depending on m0 such
that

(4.17)

∫
T

ξdν =

∫
T

R(ξ)dν

holds for all ξ ∈ C(T).
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(b) If m0 is further assumed to be in the Lipschitz space Lip(T), then the
following limit exists

(4.18) lim
n→∞

1

n

n−1∑
k=0

µRk = ν

where µRn(ξ) := µ(Rnξ) =
∫

T
Rnξdµ, µ is the Haar measure, and the con-

vergence in (4.18) is in the Hausdorff metric (details below). The measure ν
satisfies (4.17). Moreover, when then operator R from C(T) to C(T) has
Perron-Frobenius spectrum (i.e., 1 is the only eigenvalue of absolute value 1)
then the limit

(4.19) lim
n→∞

µRn = ν,

exists and gives the unique invariant measure ν.

Definition 4.4 A function ξ on T is said to be in Lip(T) if

(4.20) Dξ := sup
−π≤s<t<π

∣∣∣∣ξ(e
is) − ξ(eit)

s− t

∣∣∣∣ <∞.

The Lipschitz-norm is ‖ξ‖Lip := Dξ + ξ(1).

The Hausdorff distance between two real valued measures ν1, ν2 on T is
defined as

distHaus(ν1, ν2) =(4.21)

= sup

{∫
T

ξdν1 −
∫
ξdν2 | ξ ∈ Lip(T ), ξ real valued and Dξ ≤ 1

}
.

Hence the conclusion is the lemma states that if m0 ∈ Lip satisfies (4.3),
then

(4.22) lim
n→∞

distHaus(ν, µR
n) = 0.

Note that both the Ruelle operator R and the measure ν depend on the
function m0. Condition (4.3) states that the constant function 1̂ is a right-
Perron Frobenius eigenvector, and (4.17) that ν is a left-Perron-Frobenius
eigenvector.

Proof of Lemma 4.3. The lemma is essentially a special case of the Perron-
Frobenius-Ruelle theorem, see [1]. Also note that an immediate consequence
of (4.17) is the invariance

(4.23)

∫
T

ξ(zN)dν(z) =

∫
T

ξ(z)dν(z)
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A key step in the proof is the following estimate: Let ‖ξ‖ := supz∈T
|ξ(z)|;

then the following estimate

(4.24) ‖Rnξ‖Lip ≤ 1

Nn
‖ξ‖Lip + 2D

(
|m0|2

)
· ‖ξ‖

hold for all ξ ∈ Lip(T) and all n ∈ Z+. We leave the details of the verification
of (4.24) to the reader; see also [6], and [17]. �

For functions m and m′ on T, define the form 〈m,m′〉 as a function on
T as follows

(4.25) 〈m,m′〉 (z) :=
1

N

∑
w∈T

wN =z

m(w)m′(w).

Lemma 4.5 Let N ≥ 2, and let (H, U, T ) be a system which satisfies the
commutation relation (4.1). Let m and m′ be functions on T which both
satisfy the normalization condition (4.3). Let M = Mm be the cascade
approximation operator, M = U−1m(T ), and suppose the scaling identity
Mϕ = ϕ has a non-zero solution in H such that the vectors Tkϕ, k ∈ Z, are
mutually orthogonal. Let M ′ = Mm′ = U−1m′(T ).

Then

(4.26) p(ϕ,M ′ϕ)(z) = ‖ϕ‖2
H · 〈m,m′〉 (z), z ∈ T.

Proof. Using Mϕ = ϕ, and p(ϕ,ϕ)(z) = ‖ϕ‖2
H, we get

p(ϕ,M ′ϕ)(z) = p(Mϕ,M ′ϕ)

=
1

N

∑
wN=z

m(w)m′(w)p(ϕ,ϕ)(w)

= ‖ϕ‖2
H · 1

N

∑
wN=z

m(w)m′(w) = ‖ϕ‖2
H · 〈m,m′〉 (z)

which is the desired identity (4.26) in the conclusion of the lemma. �
Corollary 4.6 With the assumptions in Lemma 4.5, set

(4.27) m(n)(z) := m(z)m(zN) . . . m(zNn−1

)

and
m′(n)(z) := m′(z)m′(zN) . . . m′(zNn−1

).

Then

(4.28) p(ϕ,M ′nϕ)(z) = ‖ϕ‖2
H · 1

Nn

∑
wNn

=z

m(n)(w)m′(n)(w)

Proof. A direct iteration of the argument of Lemma 4.5 immediately yields
the desired identity (4.28). �
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Example 4.7 Let N = 3, and let the functions m and m′ be given by
m(z) = 1+z2√

2
and m′(z) = z3m(z). Let

(4.29) H = L2(R, (dx)s), s = log3(2),

and ϕ = χC; i.e., ϕ ∈ H is the indicator function of the middle-third Cantor
set, C ⊂ I. Let Tf(x) = f(x − 1), and (Uf)(x) = 1√

2
f(x

3
). Then the

conditions in Lemma 4.5 and Corollary 4.6 are satisfied for this system.
Specifically ‖ϕ‖H = 1, Mϕ = ϕ where M = U−1m(T ); i.e.,

(4.30) ϕ(x) = ϕ(3x) + ϕ(3x− 2),

or

(4.31) 3C = C ∪ (C + 2).

Also notice that

(4.32) M ′ = U−1m′(T ) = TM .

It follows that

p(ϕ,M ′nϕ)(z) = z1+3+32+···+3n−1

= z
3n−1

2 ;

and therefore

〈ϕ,M ′nϕ〉 =

∫
T

p(ϕ,M ′nϕ)(z)dµ(z) = 0

for all n ∈ Z+. In contrast to the standard cascade approximation for L2(R)
with Lebesgue measure, we see that the cascade iteration on the Cantor
function χC; i.e.,

(4.33) χC,M
′χC,M

′2χC, . . .

does not converge in the Hilbert space Hs = L2(R, (dx)s). In fact the vectors
in the sequence (4.33) are mutually orthogonal.

While the measure ν ∈M(T ) from Lemma 4.5 is generally not absolutely
continuous with respect to the Haar measure µ on T, the next result shows

that it is the limit of the measures
∣∣m(n)(z)

∣∣2 dµ(z) as n→ ∞ if the function

m is given to satisfy (4.3) and if the sequence m(n) is defined by (4.27).

Proposition 4.8 Let m ∈ L∞(T) be given. Suppose (4.3) holds, and let ν
be the Perron-Frobenius measure of Lemma 4.5; i.e., the measure ν = νm

arising as a limit (4.19). Then

(4.34) lim
n→∞

∫
T

ξ(z)
∣∣m(n)(z)

∣∣2 dµ(z) =

∫
T

ξ(z)dν(z)

holds for all ξ ∈ C(T).
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Proof. Calculating the integrals on the left-hand side in (4.34), we get

∫
T

ξ
∣∣m(n)

∣∣2 dµ =

∫
T

ξR∗n

(1̂)dµ =

∫
T

Rn(ξ)dµ −→
n→∞

∫
T

ξdν

where (4.18) was used in the last step. This is the desired conclusion (4.34)
of the proposition. �

Corollary 4.9 If m(z) = 1+z2√
2

is the function from Example 4.7, then the

substitution z = eit yields the following limit formula for the corresponding
Perron-Frobenius measure ν, written in multiplicative notation:

(4.35) lim
n→∞

1

2π

n∏
k=1

(
1 + cos(2 · 3kt)

)
= dν(t)

Proof. The expression on the left-hand side in (4.35) is called a Riesz-
product, and it belongs to a wider family of examples; see for example [17]
and [26]. The limit measure ν is known to be singular. It follows, for ex-
ample from [26]. A computation shows that the Fourier coefficients ν̂(n) :=∫

T
zndν(z), are real valued, satisfy ν̂(0) = 1, ν̂(1) = 0, ν̂(−n) = ν̂(n),

ν̂(3n) = ν̂(n), ν̂(3n− 2) = 1
2
ν̂(n), ν̂(3n+ 2) = 1

2
ν̂(n), for all n ∈ Z. Hence

(4.36) lim
1

2n+ 1

n∑
k=−n

|ν̂(k)|2 = 0 = sum of atoms;

i .e.,
∑

|ν({z})|2 = 0. The last conclusion is from Wiener’s theorem, and
implies that ν has no atoms; i.e., ν({z}) = 0 for all z ∈ T.

To check (4.36) some computations are required. Let

sn = |ν̂(0)|2 + |ν̂(1)|2 + · · · + |ν̂(n)|2, (n ∈ N).

Then, using the recursive relations for ν̂ we have

s3n+1 = s3n +
3n+1∑

k=3n+1
k≡0 mod 3

|ν̂(k)|2 +
3n+1∑

k=3n+1
k≡2 mod 3

|ν̂(k)|2 +
3n+1∑

k=3n+1
k≡−2 mod 3

|ν̂(k)|2

≤ s3n + s3n +
1

4
s3n +

1

4
s3n =

5

2
s3n .

By induction

s3n ≤
(

5

2

)n

s0.
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Now take k arbitrary then for some n, k is inbetween 3n and 3n+1 so

sk

k
≤ s3n+1

3n
≤
(

5
2

)n+1
s0

3n
=

(
5

6

)n
5

2
s0,

which shows that sk/k converges to 0 and this proves (4.36).

In summary, the measure ν is singular and non-atomic. In the next
section we show that ν has full support.

Moreover there are supporting sets for ν which have zero Haar measure
as subsets of T. Concrete constructions are given below.

It follows from the recursive relations for the numbers ν̂(n) that ν̂(2k +
1) = 0, k ∈ Z; i.e., that all the odd Fourier coefficients vanish.

Each integer n ∈ Z+ has a representation of the following form:

(4.37) n = l0+l1 ·3+l2 ·32+· · ·+lp ·3p, li ∈ {0,−2, 2}, i < p, lp ∈ {1, 2}.

The representation is not unique (because for example 1 = 3 · 1 − 2) but
uniqueness is obtain if we impose that lp−1 �= −2 when lp = 1. We define a
counting function #(n) which records the occurrence of values −2 and 2 for
the ‘trigets’ li. Hence, if n ∈ Z+ is even, then

ν̂(n) = 2−#(n).

Now, introduce the following sequence of functions

(4.38) gk(z) := z2·3k − 1

2
, z ∈ T.

with inner products as follows with respect to the measure ν:

(4.39) 〈gk | gl〉ν =

∫
T

gk(z)gl(z)dν(z) =
3

4
δk,l

It follows from this that the series

(4.40) g(z) :=
∞∑

k=0

1

k + 1
gk(z), z ∈ T,

is convergent in L2(T, ν) with

(4.41) ‖g‖2
ν =

∞∑
k=0

1

(k + 1)2
‖gk‖2

ν =
π2

8
.
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Using the Riesz-Fisher theorem, we get a Borel subset A ⊂ T, ν(A) = 1;
i.e., ν(T�A) = 0, and a subsequence n1 < n2 < n3 < . . . , ni → ∞, such
that the series

(4.42)

ni∑
k=0

1

k + 1
gk(z)

is pointwise convergent, i→ ∞, for all z ∈ A. But note that

(4.43)
∑

k

1

k + 1
gk(z) =

∑
k

1

k + 1
z2·3k − 1

2

∑
k

1

k + 1
.

Using now Carleson’s theorem about Fourier series on T with respect to
Haar measure µ (=Lebesgue measure), we conclude that there is a Borel
subset B ⊂ T, µ(B) = 1; i.e., µ(T�B) = 0, such that the series

n∑
k=0

1

k + 1
z2·3k

is pointwise convergent, n → ∞, for all z ∈ B. But identity (4.43) implies
that A ∩B = ∅, and so µ(A) = 0. The supporting set A for the measure ν
has Lebesgue measure zero; and moreover the two measures ν and µ (= Haar
measure on T) are mutually singular. �

It can be shown, using a theorem of Nussbaum [18], that the Ruelle
operator

(Rf)(z) =
1

3

∑
w3=z

|m(w)|2 f(w) =
1

3

∑
w3=z

(
1 +

w2 + w−2

2

)
f(w)

has Perron-Frobenius spectrum on C(T), specifically that

ER(1) = {f ∈ C(T) | Rf = f} = C1̂,

and if λ ∈ C, |λ| = 1, and λ �= 1, that

ER(λ) = {f ∈ C(T) | Rf = λf} = 0.

As a consequence we get that

‖Rn(f) − ν(f)‖Lip ≤ 1

3n
‖f‖Lip

holds for all f ∈ Lip(T) where ‖·‖Lip denotes the Lipschitz norm on functions
on T.
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5. The support of Perron-Frobenius measures

In this section we consider the support of the measure ν. Caution: By the
support of ν, we mean the support of ν when it is viewed as a distribution;
i.e., the support of ν is the complement of the union of the open subsets
in T where ν acts as the zero distribution, or the zero Radon measure. Even
though the support of ν may be all of T, there can still be Borel subsets
E ⊂ T with ν(E) = 1, but E having zero Lebesgue measure.

Theorem 5.1 Let m0 ∈ Lip(T). Suppose (4.3) holds and m0 has finitely
many zeros and let ν be the Perron-Frobenius measure of Lemma 4.3. Then
exactly one of the following affirmations is true:

(i) The support of ν is T.

(ii) ν is atomic and the support of ν is a union of cycles C = {z1, . . . , zp}
with zN

1 = z2, . . . , z
N
p−1 = zp, z

N
p = z1, and |m0|2 (zi) = N for all

i ∈ {1, . . . , p}. (Such cycles are called (m0, N)-cycles).

Proof. To simplify the notation, we use

W := |m0|2 .

Note that proposition 4.8 gives us ν as an infinite product
∏∞

k=1W (zNk
)dµ.

In the next lemma we analyze the measures given by the tails of this product.

Lemma 5.2 Fix n ≥ 0. We then have:

(i) For all f ∈ C(T) the following limit exists, and defines a measure on
T: νn(f) := limk→∞

∫
T
W (zNn

) · · ·W (zNn+k
)f(z)dµ

(ii) νn(f) = ν(Rn
1f),(f ∈ C(T) where R1 is given as in (4.8) but with

m0 = 1.

(iii)
∫

T
f(z)W (z) · · ·W (zNn−1

)dνn =
∫

T
f(z)dν, f ∈ C(T). (So ν is abso-

lutely continuous with respect to νn.)

iv) limn→∞ νn(f) = µ(f), f ∈ C(T).

Proof of Lemma. We can use a change of variable to compute

lim
k→∞

∫
T

W
(
zNn) · · ·W (zNn+k

)
f(z)dµ =

= lim
k→∞

∫
T

W (z) · · ·W
(
zNk
)
Rn

1f(z)dµ = ν (Rn
1f) .

This proves (i) and (ii). (iii) is immediate from proposition 4.8.
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For (iv) note that for f ∈ C(T) and n ∈ N.

Rn
1f(θ) =

1

Nn

Nn−1∑
k=0

f

(
θ + 2kπ

Nn

)

therefore Rn
1f converges uniformly to

∫
T
fdµ.

Then, with (ii), limn→∞ νn(f) = µ(f). �
We continue now the proof of the theorem. We distinguish two cases:

Case I: All measures νn are absolutely continuous with respect to ν. In this
case we prove that the support of ν is T. Assume the contrary. Then there
is an open set U with ν(U) = 0. This implies νn(U) = 0 for all n.

Take f ∈ C(T) with support contained in U . Then νn(f) = 0. Take
the limit and use lemma 5.2(iv), it follows that µ(f) = 0. As f is arbitrary,
µ(U) = 0. But this implies U = ∅, so the support of ν is indeed T.

Case II: There is an n ∈ N such that νn is not absolutely continuous with
respect to ν. This means that there is a Borel set E with ν(E) = 0 and
νn(E) > 0.

We prove that there is a zero of W (n), call it z0, such that νn({z0}) > 0.
Suppose not. Then, take E ′ = E� zeros(W (n)), ν(E ′) = 0 νn(E ′) > 0.

The measure ν is regular so there is a compact subset K of E ′ such that
νn(K) > 0. Of course ν(K) = 0. Since K has no zeros of W (n) and this is
continuous, W (n) is bounded away from 0 on K. Then, with lemma 5.2(iii)

0 =

∫
K

1

W (n)(z)
dν =

∫
K

W (n)(z)
1

W (n)(z)
dνn = νn(K)

which is a contradiction.
Thus, there is a z0 ∈ zeros(W (n)) with ν({z0}) > 0.

We know also that ν(f) = ν(Rf) for all f ∈ C(T). By approximation
(Lusin’s theorem) the same equality is true for all bounded Borel functions.
Then

0 < ν(χ{z0}) = ν(Rχ{z0}) = ν

(
1

N

∑
wN=z

W (w)χ{z0}(w)

)
(5.1)

=
W (z0)

N
ν(χ{zN

0 }).

Therefore W (z0) > 0 and ν({zN
0 }) > 0. By induction, W (zNk

0 ) > 0 and
ν({zNk

0 }) for all k ∈ N.
Since (4.3) holds, W (z) ≤ N for all z ∈ T; so from the previous compu-

tation we obtain
ν
({
zN
})

≥ ν({z}).



Wavelets on Fractals 165

Since ν is a finite measure, the orbit
{
zNk

0 | k ∈ N
}

has to be finite so

the points z0, z
N
0 , . . . , z

Np

0 will form a cycle, zNp+1

0 = z0. Also,

ν({z0}) = ν
({
zNp+1

0

})
≥ ν
({
zNp

0

})
≥ · · · ≥ ν ({z0})

hence all inequalities are in fact equalities and with (5.1), this shows that
W (zNk

0 ) = N for k ∈ {0, . . . , p}.
We are now in the “classical” case and we can use corollary 2.18 in [8]

(See also [6]) to conclude that ν must be atomic and supported on cycles as
mentioned in the theorem. �
Lemma 5.3 Let m0,m

′
0 be Lipschitz, with finitely many zeros. Suppose

Rm0(1̂) = 1̂ = Rm′
0
(1̂),

and suppose there are no m0 or m′
0-cycles. Assume in addition that m0 and

m′
0 have the same Perron-Frobenius measure ν, then |m0| = |m′

0|.
Proof. With W := |m0|2, we have, from proposition 4.8, for f ∈ C(T):

lim
n→∞

∫
T

f(z)W (n)(z)dµ(z) =

∫
T

f(z)dν(z).

Then

lim
n→∞

∫
T

f(z)W (n)(zN)dµ = lim
n→∞

∫
T

R1f(z)W (n)(z)dµ =

∫
T

R1f(z)dν.

Take f ∈ C(T) such that f is zero in a neighborhood of zeros(m0). Then
f

|m0|2 is continuous. So

lim
n→∞

∫
T

f(z)

|m0(z)|2
W (n)(z)dµ(z) =

∫
T

f(z)

|m0(z)|2
dν(z).

On the other hand

lim
n→∞

∫
T

f(z)

|m0(z)|2
W (n)(z)dµ(z) = lim

n→∞

∫
T

f(z)

|m0(z)|2
|m0(z)|2 · · ·

∣∣∣m0(z
Nn−1

)
∣∣∣2dµ

= lim
n→∞

∫
T

f(z)W (n−1)(zN)dν(z)

=

∫
T

R1f(z)dν.

Thus

(5.2)

∫
T

f(z)

|m0(z)|2
dν(z) =

∫
T

R1f(z)dν(z)

for all f ∈ C(T) which are zero in a neighborhood of zeros(m0).
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The same argument can be applied to m′
0. But note that the right-hand

side of (5.2) doesn’t depend on m0 or m′
0 (because ν is the same).

Therefore

(5.3)

∫
T

f(z)

|m0(z)|2
dν(z) =

∫
T

f(z)

|m′
0(z)|

2dν(z)

for all f ∈ C(T) which are zero on a neighborhood of zeros(m0)∪ zeros(m′
0).

From (5.3) it follows that |m0| = |m′
0|, ν-almost everywhere on

C := T�(zeros(m0) ∪ zeros(m′
0)).

Since the support of ν is T, this implies that |m0| = |m′
0| on a set which is

dense in T, and since the zeros ofm0 andm′
0 are finite in number, |m0| = |m′

0|
on a dense subset of T. By continuity therefore

|m0| = |m′
0| on T.

�

If m0 and W := |m0|2 are not assumed continuous, there is still a variant
of Theorem 5.1, but with a weaker conclusion. For functions W on T we
introduce the following axioms. The a.e. conditions are taken with respect
to the Haar measure µ on T:

(i) W ∈ L∞(T),

(ii) W ≥ 0 a.e. on T with respect to µ,

(iii)
1

N

∑
wN=z

W (w) = 1 a.e. on T,

(iv) The limit

(5.4) dνW := lim
n→∞

1

n

n∑
k=1

W (k)dµ

exists in M1(T). Here, as before,

(5.5) W (k)(z) := W (z)W (zN) · · ·W
(
zNk−1

)
,

and

(5.6) (RWf)(z) =
1

N

∑
wN=z

W (w)f(w), z ∈ T, f ∈ C(T).
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Theorem 5.4 Let N ∈ Z+, and let a function W be given on T satisfy-
ing (i)–(iv) above. Let νW , W (k) and RW be given as in (5.4)–(5.6). Then
(a)–(c) hold:

(a) νW (RW (f)) = νW (f), f ∈ C(T).

(b) If W0, and W both satisfy (i)–(iv), set

(5.7) dν0 := lim
n→∞

1

n

n∑
k=1

W
(k)
0 dµ,

and

f −→ ν0 (RW (fW0))

defines a measure on T which is absolutely continuous with respect to
ν0 with Radon-Nikodym derivative W ; i.e., we have

(5.8) ν0 (RW (fW0)) = ν0(fW ), f ∈ C(T).

(c) If W0 and W are as in (b), then the following are equivalent :

(c1) ν0RW = ν0 and

(c2) there is a Borel subset E ⊂ T such that ν0(E) = 1 and

(5.9) W0(z) = W (z)

for all z ∈ E.

Proof. The structure of this proof is as that of Theorem 5.1, the essential
step consists of the following two duality identities. Each one amounts to a
basic property of the Haar measure µ on T. For every k ∈ Z+ and f ∈ C(T),
we have ∫

T

RW (f)W (k)dµ =

∫
T

fW (k+1)dµ

and ∫
T

RW (fW0)W
(k)
0 dµ =

∫
T

fWW
(k+1)
0 dµ.

Using these, and (5.2) for the measure ν0, the desired conclusions follow as
before. For (c), in particular, we note that (c1) yields the identity Wdν0 =
W0dν0 for the two functions W0 and W on T. Hence W0 and W must agree
on a Borel subset in T of full ν0-measure, and conversely. �
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6. Transformation Rules

If m0: T → C is a Fourier polynomial; i.e., represented by a finite sum
m0(z) =

∑
k akz

k, and if

(6.1)
1

N

∑
wN=z

|m0(w)|2 = 1, z ∈ T,

for someN ∈Z+, N≥2 we showed in [5] that there are functionsm1, . . . ,mN−1

on T such that

(6.2)
1

N

∑
wN=z

mj(w)mk(w) = δj,k, z ∈ T,

or equivalently, the N ×N matrix

(6.3)
1√
N

(
mj

(
ei k·2π

N z
))N−1

j,k=0
, z ∈ T

is unitary; i.e., defines a function from T into the group UN(C) of all unitary
N × N matrices. Moreover the functions m1, . . . ,mN−1 may be chosen to
be Fourier polynomials of the same total degree as m0. For the example in
Section 2, N = 3, and m0(z) = 1+z2√

2
, condition (6.1) is satisfied, and the

other two functions may be chosen as: m1(z) = z, and m2(z) = 1−z2√
2

. There

is a more general result, also from [5] which defines a transitive action of the
group GN of all unitary matrix functions (GN is often called the Nth order
loop-group, and it is used in homotopy theory). An element in GN is a func-
tion A: T → UN(C). Let FN denote all the functions m = (mj)

N−1
j=0 : T → CN

which satisfy (6.2), or equivalently (6.3). Define the action of A on m as
follows:

(6.4) mA(z) := A(zN )m(z), z ∈ T

Lemma 6.1 The action of GN on FN is transitive and effective; specifically,
for any two m and m′ ∈ FN , there is a unique A ∈ GN such that m′ = mA;
i.e., A transforms m to m′.

Proof. For functions f and g on T,

(6.5) 〈f, g〉N (z) :=
1

N

∑
wN=z

f(w)g(w), z ∈ T.

If m,m′ ∈ FN are given, set

(6.6) Aj,k(z) := 〈mk,mj〉N (z), z ∈ T.

Then an easy verification shows that A = (Aj,k)
N−1
j,k=0 defines an element in

GN which transforms m to m′. Conversely, if m ∈ FN is given, and mA is
defined by (6.4), then it follows that mA ∈ FN if and only if A ∈ GN . �
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If a function m0: T → C is given, and satisfies (6.1) for some N , then
the Ruelle transfer operator

(6.7) (Rf) (z) :=
1

N

∑
wN=z

|m0(w)|2 f(w), z ∈ T

satisfies R1̂ = 1̂ where 1̂ denotes the constant function 1 on T.
By a probability measure on T, we mean a (positive) Borel measure ν

on T such that ν(T) =1. The probability measure will be denoted M1(T).

Terminology for measures ν on T: If f ∈ C(T), set

ν(f) :=

∫
T

fdν =

∫
T

f(z)dν(z).

If τ : T → T is a measurable transformation, set

ντ−1

(E) = ν(τ−1(E))

for Borel sets E ⊂ T.
If R: C(T) →C(T) is linear, set

(νR)(f) = ν(Rf) =

∫
T

(Rf)dν.

If m0 is given as in (2.13), we introduce

(6.8) L(m0) := {ν ∈M1(T) : νRm0 = ν} .

If ν ∈ L(m0) and E ⊂ T is a Borel subset, we recall that E supports ν
if ν(E) = 1. Note that from the examples in Section 4, it may be that the
support of ν is all of T even though ν has supporting Borel sets E with zero
Haar measure; i.e., ν(E) = 1 and µ(E) = 0.

We now return to the case of the middle-third Cantor set C. Set s :=
log3(2), and view χC as an element in the Hilbert space L2(R, (dx)s). We
recall the usual unitary operators (Uf)(x) := 1√

2
f(x

3
), and (Tkf)(x) = f(x−

k), k ∈ Z, and the relation

(6.9) UTkU
−1 = T3k, k ∈ Z.

If m0(z) =
∑

k akz
k, m0 ∈ L∞(T), is given, we define the cascade ap-

proximation operator M = Mm0 as before

Mf(x) = U−1m0(T )f(x) =
√

2
∑
k∈Z

akf(3x− k), f ∈ L2(R, (dx)s).

The condition

(6.10)
1

3

∑
w3=z

|m0(w)|2 = 1, a.e. z ∈ T,

will be a standing assumption on m0.
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We then define the sequence m
(n)
0 (z) := m0(z)m0(z

3) · · ·m0(z
3n−1

), and
we say that m0 has frequency localization if the limit of an associated se-
quence of measures,

lim
n→∞

∣∣∣m(n)
0 (z)

∣∣∣2 dµ(z)

exists; i.e., if there is a ν ∈M1(T) such that

(6.11) lim
n→∞

∫
T

f(z)
∣∣∣m(n)

0 (z)
∣∣∣2 dµ(z) =

∫
T

f(z)dν(z)

holds for all f ∈ C(T). Recall that if m0 ∈ Lip(T) is assumed, and Rm0

has Perron-Frobenius spectrum, then it has frequency localization, and the
limit measure ν satisfies

(6.12) lim
n→∞

distHaus(dν,
∣∣∣m(n)

0

∣∣∣2 dµ) = 0.

Theorem 6.2 (The Dichotomy Theorem) Let m0 ∈ L∞(T) be given,
and suppose (6.10) holds, and let ν be the corresponding limit measure. As-
sume further that, for k ∈ Z+,

(6.13) lim
n→∞

∫
T

|m(n)
0 (z)|2A(k)

0,0(z) dµ(z) = ν(A
(k)
0,0),

where A is the matrix function defined in (6.6), and
A(k)(z) := A(z)A(z3) . . . A(z3k

). Let M = Mm0 be the cascade approxi-
mation operator in L2(R, (dx)s), s = log3(2). Then the limit

(6.14) lim
n→∞

MnχC exists in L2(R, (dx)s)

if and only if there is a Borel subset E ⊂ T such that ν(E) = 1 (i.e., E is a
supporting set for ν), and m0(z) = 1+z2√

2
, for all z ∈ E. In the special case

where A is further assumed continuous and m0 has frequency localization,
the condition (6.13) is automatically satisfied,

(6.15) Mf(x) = (MCf)(x) = f(3x) + f(3x− 2)

and

(6.16) MCχC = χC.

Proof. Suppose first that (6.14) holds; i.e., that the cascading limit exists
in L2(R, (dx)s). Then in particular

(6.17) lim
n→∞

∥∥MnχC −Mn+1χC

∥∥
L2((dx)s)

= 0.
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We saw, using [5] that there is a measurable matrix function A: T → U3(C)
such that m0 is the first component in the product, matrix times vector,

(6.18)


 m0(z)

m1(z)
m2(z)


 = A(z3)




1+z2√
2

z
1−z2√

2


 , z ∈ T.

If the functions Aj,k denote the entries in the matrix A on the right-hand
side in (6.18), we saw that

(6.19) p(χC,MχC)(z) = A0,0(z), z ∈ T

and

(6.20)
〈
MnχC,M

n+1χC

〉
L2((dx)s)

=

∫
T

Rn (p(χC,MχC)) dµ =

∫
T

Rn(A0,0)dµ

where

Rn (A0,0) (z) =
1

3n

∑
w3n=z

∣∣∣m(n)
0 (w)

∣∣∣2A0,0(w), z ∈ T.

After a change of variable in (6.13), we conclude from (6.20) that

(6.21) lim
n→∞

〈
MnχC,M

n+1χC

〉
L2((dx)s)

=

∫
T

A0,0(z)dν(z) =: ν(A0,0)

and therefore

(6.22) 0 = lim
n→∞

∥∥MnχC −Mn+1χC

∥∥2

L2((dx)s)
= 2 − 2 Re ν(A0,0).

From (6.18), we know that |A0,0| ≤ 1, pointwise for z ∈ T. From this, we get
that ν(A0,0) = 1. Hence, there is a Borel subset E ⊂ T, such that ν(E) = 1,
and A0,0(z) = 1 for all z ∈ E. Since

(6.23) |A0,0(z)|2 + |A0,1(z)|2 + |A0,2(z)|2 = 1, z ∈ T,

we conclude that A0,1(z) = A0,2(z) = 0 for z ∈ E. Using (6.18) again, we

finally get m0(z) = 1+z2√
2

for z ∈ E; i.e., the conclusion of the theorem holds.
If A0,0 is assumed continuous, then A0,0 = 1 on T since the support of ν is
all of T. The conclusions (6.15)–(6.16) in the theorem then follow.

We now turn to the converse implication: If some supporting set E ⊂ T

exists such that A0,0(z) = 1 for z ∈ E, then

ν(A0,0) =

∫
T

A0,0dν =

∫
E

A0,0dν =

∫
E

dν = ν(E) = 1.
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To prove the convergence in L2((dx)s) of the cascades in (6.14), we must
consider

(6.24)
∥∥MnχC −Mn+kχC

∥∥2

L2((dx)s)
= 2 − 2 Re

∫
T

Rn(p(χC,M
kχC))dµ,

we note as in the case k = 1, that

p
(
χC,M

kχC

)
(z) = A

(k)
0,0(z).

If z ∈ E, then A0,0(z) = 1, and A0,j(z) = Aj,0(z) = 0 for j = 1, 2.
As a result, using (6.23), we get

A
(2)
0,0(z) =

2∑
j=0

A0,j(z)Aj,0(z
3) = A0,0(z)A0,0(z

3) = A0,0(z
3),

and therefore∫
E

A
(2)
0,0(z)dν(z) =

∫
E

A0,0(z
3)dν(z) =

∫
T

A0,0(z
3)dν(z)

=

∫
T

A0,0(z)dν(z) = ν(A0,0) = 1.

Continuing by induction, we find a supporting set, which is also de-
noted E, such that

A
(k)
0,0(z) = 1

for all z ∈ E, k = 1, 2, . . . . Since

p(χC,M
kχC)(z) = A

(k)
0,0(z), z ∈ T,

substitution into (6.24) yields

∥∥MnχC−Mn+kχC

∥∥2

L2((dx)s)
=2−2 Re

∫
T

Rn
(
A

(k)
0,0

)
dµ →

n→∞
2−2 Re ν

(
A

(k)
0,0

)
= 0.

This proves convergence of the cascades, and concludes the proof of the
theorem. �

7. Low pass filters

For functions on the real line R, and for every N ∈ Z+, N ≥ 2, the scaling
identity takes the form

(7.1) ϕ(x) = D
∑
k∈Z

akϕ(Nx− k)

where D is a dimensional fixed constant. We take D =
√
N .
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The values ak are called masking coefficients, and

(7.2) m0(z) := D−1
∑
k∈Z

akz
k

is the corresponding low-pass filter. The terminology is from graphics algo-
rithms and signal processing, and the books [7] and [6] explain this connec-
tion in more detail. The function m0 is viewed as a function on T = R/2πZ,
or alternately as a 2π-periodic function on R, via z := e−iθ, θ ∈ R. It
turns out that the regularity properties of m0 are significant for the spectral
theoretic properties which hold for the operators associated with m0, specifi-
cally the cascade subdivision operator, and the Ruelle transfer operator. The
function spaces which serve as repository for the function m0 are measurable
functions on T, for example Lp(T), 1 ≤ p ≤ ∞, the continuous functions;
i.e., C(T), or the Lipschitz functions Lip(T).

We will consider low-pass filters m0 with the following properties:
(1) m0 ∈ Lip(T);
(2) m0 has a finite number of zeros;
(3) Rm0(1) = 1.

Proposition 7.1 Suppose m0 satisfies (1), (2), (3) and

(7.3) dim {h ∈ C(T) |Rm0(h) = h} ≥ 2.

Then there exists an (m0, N)-cycle (i.e., a set {z1, . . . zp} with zN
i = zi+1,

zN
p = z1 and |m0(zi)|2 = N for all i).

Proof. Let h ∈ C(T) satisfy Rm0(h) = h, and h non-constant. Taking the
real or imaginary part, we may assume that h is real valued. Also, replacing
h by ‖h‖∞ − h, we may assume h ≥ 0, and that h has some zeros.

We prove that all the zeros of h must be cyclic points.
Suppose not, and let z0 ∈ T be a zero of h which is not on a cycle. Then,

wN�1

1 = z0 and wN�2

2 = z0 with �1 �= �2 implies w1 �= w2. Otherwise we have
for some �1 < �2, z

N�2−�1

0 = wN�2

1 = z0 so z0 is a cyclic point.
We say that w is at level � if wN�

= z0. The previous remark shows
that � is uniquely determined by w.

Since h(z0) = 0, it follows that

1

N

∑
wN=z0

|m0(w)|2 h(w) = 0,

so |m0(w)|2 h(w) = 0 for all w with wN = z0. Not all such w’s can have
m0(w) = 0 because Rm0(1) = 1. Thus there is a z1 with zN

1 = z0 and
h(z1) = 0.

By induction, there is a zn+1 with zN
n+1 = zn and h(zn+1) = 0.
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Now, m0 has only finitely many zeros, so from some level on, there are
no zeros of m0; i.e., if wN�

= z0 with � ≥ �0 then m0(w) �= 0. But then
look at those w’s with wN = z�0. Since h(z�0) = 0 and m0(w) �= 0, it follows
that h(w) = 0. By induction, h(w) = 0 for all w with wNn

= z0 and n large
enough.

However, these w’s form a dense set because for any interval (a, b) ⊂ T

there is an m big enough such that τm(a, b) = T �z�0 (where τ(z) = zN) so
there is a w ∈ (a, b) with wNm

= z0. Since h is continuous, it follows that
h = 0, a contradiction.

Thus, all zeros of h are cyclic points. In particular z0, z1, . . . zn, . . . are
cyclic.

Since z0 and z1 are cyclic and zN
1 = z0 (hence they are on the same

cycle), if w �= z1, w
N = z0 then w is not cyclic so h(w) �= 0, and therefore

m0(w) = 0. But this implies (from Rm0(1) = 1) that |m0(z1)|2 = N . We can
do the same for all terms of the cycle generated by z1 and the conclusion of
the proposition follows. �
Remark 7.2 It is known generally that the dimension of the eigenspace
in (7.3) depends on the metric properties of orbits in T under z → zN where
N ≥ 2 is fixed. These orbits are called cycles. The solutions h to

(7.4) Rm0(h) = h

are called |m0|2-harmonic functions and are important in the general theory
of branching processes. Their significance for the present discussion is noted
in [15]. There we prove that each solution h ∈ L1(T), h ≥ 0, h �= 0, to
equation (7.4); i.e., a non-negative harmonic function, is naturally associated
with a system (H,U, T, ϕ) where H is a Hilbert space, U and T are unitary
operators in H satisfying UTU−1 = TN (i.e., equation (4.1)), and the vector
ϕ ∈ H, ϕ �= 0, satisfies the general scaling identity

Uϕ = m0(T )ϕ, (i.e., the abstract form of (1.4) or (4.14).)

See also [3].
T generates a representation of L∞(T) by

π(f) = f(T ), (f ∈ L∞(T)).

This representation satisfies the commutation relation

Uπ(f)U−1 = π(f(zN)), (f ∈ L∞(T)).

Iterating the scaling identity one has

Unϕ = π(m
(n)
0 )ϕ, (n ≥ 0).

Moreover, the system (H,U, π, ϕ) is determined from h in (7.4) up unitary
equivalence and it is called the wavelet representation associated to (m0, h).
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Returning to the form p(·, ·) in (4.2), we note that h is related to the
new data by the two formulas,

h = p(ϕ,ϕ) and∫
T

ξ(zN)p(Uϕ,Uϕ)(z)dµ(z) =

∫
T

ξ(z)h(z)dµ(z), for all ξ ∈ C(T).

The paper [25] treats a general form of the problem (7.4), and these
authors state that the number of (m0, N)-cycles on T equals the dimension of
the eigenspace in (7.3); i.e., the space of continuous Rm0-harmonic functions.
Recall the points {zi} on an (m0, N)-cycle satisfy |m0(zi)| =

√
N , zi+1 = zN

i ,
and zk = z0, if k is the length of the cycle. The following example shows
that this result from [25] is in need of a slight correction: Take for example
m0(z) = 1+z2√

2
, N = 3, where there are no (m0, 3)-cycles. What is true is

that, if the dimension in (7.3) is > 1,or if there are eigenvalues λ ∈ T�{1},
then there must be (m0, N)-cycles, and the arguments in [25] work: All the
invariant measures are supported on cycles. But if the dimension in (7.3)
is 1, then there may, or may not, be (m0, N)-cycles. If not, then the invariant
measures have support equal to T. If {1} is an (m0, N)-cycle, then Dirac’s δ1
is an invariant measure.

We stress this distinction because it is central to explaining our di-
chotomy; i.e., explaining when a non-zero solution ϕ exists to the scaling
equation (4.14). If the given filter m0 has an (m0, N)-cycle of length 1,
then there is a scaling function ϕ in L2(R), and we are in the classical (non-
fractal) case. If m0 and N are fixed, but there is no (m0, N)-cycle on T, then
ϕ is instead in one of the Hs-Hilbert spaces, 0 < s < 1, with s depending
on the chosen particular iterated function system (IFS).

Proposition 7.3 Let m0 be a filter that satisfies (1), (2), (3). If there exists
a λ �= 1 with |λ| = 1 and h ∈ C(T), h �= 0, such that Rm0(h) = λh, then
there exists an (m0, N)-cycle.

Proof. We know that the peripheral eigenvalue spectrum of Rm0 is a finite
union of cyclic subgroups of T (see section 4.5 in [6]). Hence λn = 1 for
some n.

Then Rn
m0

(h) = h so R
m

(n)
0

(h) = h and h is not a constant. But

m
(n)
0 is Lipschitz, it has finitely many zeros and R

m
(n)
0

(1̂) = 1̂ (the scale

for m
(n)
0 is Nn). Using proposition 7.1, it follows that there is an (m

(n)
0 , Nn)-

cycle; i.e., there exist points z1, . . . , zp on T with zNn

i = zi+1, z
Nn

p = z1, and∣∣m(n)
0 (zi)

∣∣2 =Nn.
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But |m0|2 ≤ N (since Rm0(1) = 1) and this implies that

|m0(zi)|2 =
∣∣m0(z

N
i )
∣∣2 = . . . =

∣∣m0(z
Nn−1

i )
∣∣2 = N

and therefore zi will generate an (m0, N)-cycle. �

Theorem 7.4 Suppose m0 satisfies (1), (2), (3). Then exactly one of the
following affirmations is true:
(i) There exists an (m0, N)-cycle. In this case, the invariant measures ν
with

ν(Rm0(f)) = ν(f), (f ∈ C(T))

are atomic supported on the (m0, N)-cycles. The spectrum of Rm0 is com-
puted in [6] and [8]. The wavelet representation associated to (m0, 1) is a
direct sum of cyclic amplifications of L2(R) (see [3]).
(ii) There are no (m0, N)-cycles. In this case there are no eigenvalues for
Rm0 |C(T) with |λ| = 1 other then λ = 1; 1 is a simple eigenvalue. There
exists a unique probability measure ν on T which is invariant for Rm0 (i.e.,
ν(Rm0(f)) = ν(f) for f ∈ C(T)).

(7.5) lim
n→∞

Rn
m0

(f) = ν(f) uniformly f ∈ C(T).

Proof. When there are no (m0, N)-cycles, proposition 7.1 and 7.3 show that
there are no peripheral eigenvalues other than 1 and 1 is a simple eigenvalue.
The statements about ν follow from theorem 3.4.4 and proposition 4.4.4 in [6]
and their proofs. �

Remark 7.5 When m0 satisfies (1), (2), (3) and 1 is a simple eigenvalue
for Rm0 |C(T) then the invariant measure ν is unique and (7.5) holds (see [6]
and [8], [3]). In the case of wavelet filters in L2(R), m0 satisfies the extra
condition

m0(1) =
√
N

so {1} is an (m0, N)-cycle. The measure ν is simply the Dirac measure δ1.

Lemma 7.6 Let m0 be a filter that satisfies (1), (2), (3). Assume in ad-
dition that 1 is a simple eigenvalue for Rm0 |C(T). Consider the wavelet
representation (H,U, π, ϕ) associated to (m0, 1) as in remark 7.2.

Then for all ξ ∈ H with ‖ξ‖ = 1 and all f ∈ C (T),

lim
n→∞

〈
ξ | U−nπ(f)Unξ

〉
= ν(f).
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Proof. First take ξ of the form ξ = U−mπ(g)ϕ with m ∈ Z, g ∈ C (T).
Then, for n > m:

〈U−m π(g)ϕ | U−nπ(f)UnU−mπ(g)ϕ〉 =

=
〈
π
(
g
(
zNn−m

)
m

(n−m)
0 (z)

)
ϕ | π

(
f(z)g

(
zNn−m

)
m

(n−m)
0 (z)

)
ϕ
〉

=

∫
T

f(z)
∣∣∣g (zNn−m

)∣∣∣2 ∣∣∣m(n−m)
0 (z)

∣∣∣2 dµ
=

∫
T

|g(z)|2R(n−m)
m0

f(z)dµ.

Since ‖ξ‖ = 1, it follows that ‖π(g)ϕ‖ = 1 so
∫

T
|g(z)|2 dµ = 1. Also,

from (7.5), limn→∞Rn−m
m0

(f)(z) = ν(f) uniformly.

Therefore

lim
n→∞

〈
ξ | U−nπ(f)Unξ

〉
=

∫
T

|g(z)|2 ν(f)dµ = ν(f).

Now take ξ ∈ H arbitrarily, ‖ξ‖ = 1. We can approximate ξ by a sequence
(ξj)j of the form mentioned before, with ‖ξj‖ = 1.

Fix ε > 0. Then there is a j such that ‖ξj − ξ‖ < ( ε
3
) ‖f‖∞ and there is

an nε such that, for n ≥ nε,

∣∣〈ξj | U−nπ(f)Unξj
〉
− ν(f)

∣∣ < ε

3
.

Then

∣∣〈ξ | U−nπ(f)Unξ
〉
− ν(f)

∣∣ ≤
≤
∣∣〈ξ | U−nπ(f)Unξ

〉
−
〈
ξ | U−nπ(f)Unξj

〉∣∣
+
∣∣〈ξ | U−nπ(f)Unξj

〉
−
〈
ξj | U−nπ(f)Unξj

〉∣∣
+
∣∣〈ξj | U−nπ(f)Unξj |

〉
− ν(f)

∣∣
≤ ‖f‖∞ ‖ξ − ξj‖ ‖ξ‖ + ‖f‖∞ ‖ξj‖ ‖ξ − ξj‖ +

ε

3
< ε

�

Theorem 7.7 Let m0,m
′
0 be two filters satisfying (1), (2), (3) and sup-

pose that 1 is a simple eigenvalue for Rm0 and Rm′
0

on C(T). Let ν and
ν ′ be the invariant probability measures for Rm0 and Rm′

0
respectively and

let (H,U, π, ϕ), (H ′, U ′, π′, ϕ′) be the wavelet representations associated to
(m0, 1) and (m′

0, 1) respectively.
If ν �= ν ′ then the two wavelet representations are disjoint.
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Proof. Suppose the representations are not disjoint, then there is a partial
isometryW fromH toH ′, whereH andH ′ are the respective Hilbert spaces,
and W �= 0. Take ξ in the initial space of W , ‖ξ‖ = 1; then ‖Wξ‖ = 1.
Using lemma 7.6 we have for all f ∈ C (T)

ν(f) = lim
n→∞

〈
ξ | U−nπ(f)Unξ

〉
= lim

n→∞
〈
Wξ | WU−nπ(f)Unξ

〉
= lim

n→∞
〈
Wξ | U ′−nπ′(f)U ′nWξ

〉
= ν ′(f).

Thus ν = ν ′. �

Corollary 7.8 Let m0 be a filter that satisfies (1), (2), (3), and suppose 1
is a simple eigenvalue for Rm0 on C (T). Let ν be the invariant measure for
Rm0 and let (H,U, π, ϕ) be the wavelet representation associated to (m0, 1).
Suppose ϕ′ ∈ H is another orthogonal scaling function with filter m′

0. Then
1 is a simple eigenvalue for Rm′

0
on C(T). If m′

0 satisfies also (1), (2) then
the invariant measure ν ′ for Rm

′
0
is equal to the one for Rm0, i.e., ν ′ = ν.

Proof. Repeating the calculation given in the proof of lemma 7.6 we have

ν(f) = lim
n→∞

〈
U−mπ(g)ϕ′ | U−nπ(f)Un(U−mπ(g)ϕ′)

〉

= lim
n→∞

∫
T

|g(z)|2Rn−m
m′

0
(f)dµ

For all f , g ∈ C (T), m ∈ Z,
∫

T
|g|2 dµ = 1. Suppose h ∈ C (T), h non

constant with Rm′
0
(h) = h. Then

ν(h) =

∫
T

|g(z)|2 h(z)dµ

for all g ∈ C (T) with
∫

T
|g(z)|2 dµ = 1 then h is constant.

The last assertion follows directly from theorem 7.7. �

Corollary 7.9 Let m0 be a filter that satisfies (1), (2), (3) and suppose
there are no (m0, N)-cycles. Then the wavelet representation associated to
(m0, 1) is disjoint from the classical wavelet representation on L2 (R).

Proof. Since δ1 is not invariant for Rm0, everything follows from theo-
rem 7.7. �
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