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The Singularity of Orbital Measures
on Compact Lie Groups

Kathryn E. Hare and Wai Ling Yee

Abstract

We find the minimal real number k such that the kth power of the
Fourier transform of any continuous, orbital measure on a classical,
compact Lie group belongs to l2. This results from an investigation of
the pointwise behaviour of characters on these groups. An application
is given to the study of Lp-improving measures.

1. Introduction

It is well known that there are many continuous, singular measures on the
circle (or any compact abelian group) all of whose convolution powers remain
singular to L1. In contrast, Ragozin in [5] proved the striking fact that
if G was a compact, connected, simple Lie group and µ was any central,
continuous measure on G then

µdim G ∈ L1(G).

This fact obviously implies that the Fourier transform of any such measure
tends to zero, and was used to prove that compact, simple Lie groups admit
no infinite, central Sidon sets, again in contrast to the abelian case.

Ragozin’s result was first improved in [2] where it was shown that if
k > dim G/2 and µ was a continuous orbital measure on G then µk ∈ L2(G),
while if µ was any central, continuous measure then µk ∈ L1(G). In [3]
estimates were made on the size of characters (in terms of their degrees)
from which one could determine the minimal integer k such that µk ∈ L2

for all continuous orbital measures µ on the classical, compact Lie groups.

2000 Mathematics Subject Classification: Primary 43A80; Secondary 22E46, 43A65.
Keywords: orbital measures, compact Lie group, characters.



518 K.E. Hare and W.L. Yee

Our interest in this paper is to determine the precise size of the Fourier
transform of continuous orbital measures, i.e., to determine the minimal
fractional power k for which µ̂k ∈ l2. The answer depends on the Lie group
type and is summarized below.

Main Theorem Let G be a compact, connected, simple Lie group of type
An, Bn, Cn or Dn. Then µ̂k ∈ l2 for all continuous orbital measures µ on G
if and only if

k > k0 ≡



n + 1/2 if G is type An

2n − 1/2 if G is type Bn

n − 1/4 if G is type Cn, n �= 3

13/4 if G is type C3

n − 3/4 if G is type Dn.

The necessity of this choice of k0 follows easily from the earlier work as
is shown in Corollary 3.2.

The proof of sufficiency is divided into two parts. In the first part of the
proof we continue the study of the pointwise behaviour of characters begun
in [3]. This is relevant because if µg is the orbital measure associated to
g ∈ G, then the Fourier transform of µg at the representation λ is given by

µ̂g(λ) = Trλ(g)/ deg λ.

Here we show that for many g ∈ G it is possible to improve the pointwise
bounds of characters found in [3]. Using these improved estimates, the
orbital measures corresponding to these points are easily seen to have the
desired property. The arguments used to establish these statements are
similar to those of [3]; the details are sketched in Section 3 and the results
are summarized in Corollary 3.4. In the second part of the proof of sufficiency
we consider the points g ∈ G where the pointwise bounds found in [3] are
sharp. For the orbital measures corresponding to these points a different,
more direct approach to summing the Fourier transform is taken. This
approach depends on properties of the particular points g and is the content
of Section 4.

Ricci and Stein in [6] proved that surface measures on compact, con-
nected analytic manifolds which generate the group act as convolution op-
erators from Lp to L2 for some p < 2. In Section 5 we use our results to
investigate the size of p for the particular case of continuous orbital measures.
Previously the minimal p was determined for regular orbital measures in [7].
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2. Notation and Structural properties of Subroot
Systems

The proof of the theorem relies significantly on the representation theory of
simple Lie groups. The main facts we need are recorded below.

2.1. Notation and Basic Facts

Let G be a compact, connected, simple, non-exceptional Lie group of rank n.
Let Z(G) denote its centre and W be its Weyl group. Denote by e1, . . . , em

the usual unit vectors in Rm where m = n + 1 in type An and m = n
otherwise. We take a maximal torus T with Φ the set of roots for (G,T )
described below.

Type Root system Φ Base ∆ ={αj : j = 1, . . . , n}
An {ei − ej : 1 ≤ i �= j ≤ n + 1} αj = ej − ej+1

Bn {±ei,±(ei ± ej) : 1 ≤ i �= j ≤ n} αj = ej − ej+1 for j �= n
αn = en

Cn {±2ei,±(ei ± ej) : 1 ≤ i �= j ≤ n} αj = ej − ej+1 for j �= n
αn = 2en

Dn {±(ei ± ej) : 1 ≤ i �= j ≤ n} αj = ej − ej+1 for j �= n
αn = en−1 + en

The positive roots associated with the base of simple roots ∆ will be denoted
by Φ+, the fundamental dominant weights relative to ∆ will be denoted by
λ1, . . . , λn, and Λ+ will be the set of all dominant weights. The set Λ+ is in a
1–1 correspondence with Ĝ; σλ ∈ Ĝ is indexed by its highest weight λ ∈ Λ+.
The degree of σλ will be denoted by dλ. The weights of λ ∈ Λ+ are given by

Π(λ) = {µ ∈ Λ : w(µ) < λ for all w ∈ W}
where µ < λ means λ − µ is a non-negative integral sum of positive roots.
We set ρ =

∑n
j=1 λj . According to the Weyl dimension formula ([9]) the

degree of λ is given by

(2.1)
∏

α∈Φ+

(ρ + λ, α)/(ρ, α).

For general facts about root systems we refer the reader to [4].
A measure µ on G is called central if µ commutes with all other measures

on G under the action of convolution. Central measures are characterized
by the fact that their Fourier transforms are scalar multiples of identity
matrices:

µ̂(λ) = aλIdλ
where aλ =

∫
G

Trλ(x)

dλ

dµ.

We will simply write µ̂(λ) in place of aλ.
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An interesting class of singular, central measures are the orbital mea-
sures. The orbital measure µg, supported on the conjugacy class C(g) con-
taining g ∈ G, is defined by∫

G

fdµg =

∫
G

f(tgt−1)dmG(t) for f ∈ C(G).

Orbital measures are continuous if and only if g /∈ Z(G). One can easily see
that µ̂g(λ) = Trλ(g)/dλ, hence the behaviour of the Fourier transform of
orbital measures is determined by the pointwise behaviour of characters.

Since characters are class functions it suffices to know their values on the
torus: For g in the torus the Weyl character formula [9] states

Trλ(g) =
eiρ(g)

∑
w∈W detw exp i(ρ + λ,w(g))∏

α∈Φ+(eiα(g) − 1)

where this is understood to be a limit if it is an indefinite form. It is
important to identify the zeroes of the denominator and so given g ∈ T
we let

Φ(g) = {α ∈ Φ : α(g) ∈ 2πZ} and let Φ+(g) = Φ(g)
⋂

Φ+.

It is easily seen that Φ(g) is a subroot system of Φ and that Φ+(g) is a
complete set of positive roots of this subroot system. It is known that
Φ(g) = Φ if and only if g ∈ Z(G) (see [1, p. 189]). When Φ(g) is empty g is
called a regular element of G.

It was shown in [2] that one can evaluate the Weyl character formula
(by considering suitable directional derivatives if Φ+(g) is not empty) to
obtain

(2.2)
|Trλ(g)|

dλ

= c(g)

∣∣∣∑w∈W detw
∏

α∈Φ+(g)(ρ + λ,w(α)) exp i(ρ + λ,w(g))
∣∣∣∏

α∈Φ+(ρ + λ, α)
.

From this one can immediately derive the key formula which we use to make
estimates:

(2.3)
|Trλ(g)|

dλ

≤ c(g)

∑
w∈W

∣∣∣∏α∈Φ+(g)(ρ + λ,w(α))
∣∣∣∏

α∈Φ+(ρ + λ, α)
.

In order to use this formula at g /∈ Z(G) it is helpful to understand the
structures of the proper subroot systems Φ(g) and their Weyl conjugates.
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Clearly it suffices to analyze those subroot systems which are maximal
in the sense that there is no other proper subroot system containing it; we
provide a listing of these below for the convenience of the reader. For an
explanation on how they are determined see [3].

Type Maximal subroot systems

An An−1, Ak × An−k : k, n − k ≥ 2

Bn Bn−1, Dn, A1 × Dn−1, Dk × Bn−k : k, n − k ≥ 2

Cn An−1, Ck × Cn−k : k, n − k ≥ 1

Dn Dn−1, An−1, Dk × Dn−k : k, n − k ≥ 2.

Here D2 is understood to mean {ei ± ej}, B1 = {ei}, C1 = {2ei}. C2 and D3

are the obvious root systems.

3. Pointwise values of characters

The following theorem, which compares the value of a character to its degree,
was obtained in [3].

Theorem 3.1 Let G be a compact, connected, simple Lie group of type
An−1, Bn, Cn or Dn. For every g /∈ Z(G) there is a constant c(g) such that∣∣∣∣Trλ(g)

deg λ

∣∣∣∣ ≤ c(g)(deg λ)−s

for all λ ∈ Ĝ if and only if

s ≤ s0 ≡


1/(n − 1) if G is type An−1 or Dn

1/(2n − 1) if G is type Bn

2/(2n − 1) if G is type Cn, n �= 3

1/3 if G is type C3.

Moreover, there is some g /∈ Z(G) such that∣∣∣∣Trλ(g)

dλ

∣∣∣∣ ≥ c(g)d−s0
λ

for the infinite family of representations λ = mλ1, m ∈ 2Z
+ (mλ3 in

type C3).

From the final statement of this theorem it is easy to prove the necessity of
k0 in the main theorem.

Corollary 3.2 Let G be a compact, connected, simple Lie group of type
An, Bn, Cn or Dn. Then there is some g /∈ Z(G) such that µ̂g

k0 /∈ l2 .
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Proof. By definition, ∥∥∥µ̂g
k
∥∥∥2

2
=

∑
λ∈Ĝ

d2
λ

∣∣∣∣Trλ(g)

dλ

∣∣∣∣2k

,

thus for the choices of g for which Theorem 3.1 is optimal we obtain∥∥∥µ̂g
k
∥∥∥2

2
≥

∑
m even

d2
mλi

∣∣∣∣Tr mλi(g)

dmλi

∣∣∣∣2k

≥ c(g)
∑

m even

d2−2ks0
mλi

for i = 3 in type C3 and i = 1 otherwise. The degrees of the representations
mλ1 are easily seen to be O(mn) in type An, O(m2n−1) in type Bn and Cn,
and O(m2n−2) in type Dn; the degree of mλ3 in C3 is O(m6). It is a routine
exercise to check that

d2−2k0s0
mλi

= m−1,

and thus µ̂g
k0 /∈ l2. �

Now we turn to the problem of proving the sufficiency of this choice of k0.
Our first step is to show that the pointwise bounds of Theorem 3.1 can be
sharpened for many points of G.

Proposition 3.3 Suppose G is a classical, compact, connected, simple Lie
group. Then ∣∣∣∣Trλ(g)

deg λ

∣∣∣∣ ≤ c(g)(deg λ)−s

for all λ ∈ Ĝ provided G, Φ+(g) and s are as described below:

Type Type of Subroot System Φ+(g) s

An Ak × An−k−1
1

n−1

Bn Bn−1
1

2n−2

A1 × Dn−1
1
n

Dk × Bn−k; k, n − k ≥ 2 1
2n−4

Cn An−1
2

n+1

Ck × Cn−k; k, n − k ≥ 2 2
2n−3

(1
3
;n = 4)

Dn An−1; n ≥ 5 1
n−2

(2
7
;n = 5)

Dk × Dn−k; k, n − k ≥ 2 1
n−2

.
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Proof. The arguments used to show this are similar to those used in [3],
but more delicate. We first note that inequality (2.3), together with the
Weyl dimension formula (2.1), show that it is sufficient to prove that there
is some constant c = c(g) such that for all representations λ,

(3.1)

∣∣∣∣ ∏
α∈Φ′+(ρ + λ, α)∏

α∈Φ+(ρ + λ, α)1−s

∣∣∣∣ =

∣∣∣∣ ∏
α∈Φ′+

(ρ + λ, α)s
∏

α∈Φ+\Φ′+
(ρ + λ, α)s−1

∣∣∣∣ ≤ c,

whenever Φ′+ is the set of positive roots of a maximal subroot system Weyl
conjugate to Φ+(g). One should observe that the action of the Weyl group
preserves the type and basic structure of the subroot system.

Throughout the proof we will assume ρ + λ can be expressed in terms
of the fundamental dominant weights as

∑n
i=1 miλi. We will also assume

mM = maxi=1,...,n mi. The letter c will denote a constant which may vary
from one line to another.

The proof proceeds by considering each Lie type separately. We give the
details here for type Cn and maximal proper subroot system Ck × Cn−k,
k, n − k ≥ 2 to illustrate the ideas. This subroot system has positive roots

Φ′+ = {2el, ei ± ej : i < j, l ∈ J1}
⋃

{2el, ei ± ej : i < j, l ∈ J2}

where J1, J2 are disjoint subsets of {1, . . . , n}, |J1| = k, |J2| = n − k. By
symmetry we may assume 1 ∈ J1. Let Ψ+ be the set of roots in Φ+ on the
letters {2, . . . , n} and Ψ′+ = Ψ+

⋂
Φ′+. Then (3.1) can be written as PQ

where

P ≡ (ρ + λ, 2e1)
s

∏
j∈J1\{1}

(ρ + λ, e1 ± ej)
s
∏
j∈J2

(ρ + λ, e1 ± ej)
s−1

and

Q ≡
∏

α∈Ψ′+
(ρ + λ, α)s

∏
α∈Ψ+\Ψ′+

(ρ + λ, α)s−1.

As Ψ+ is a root system of type Cn−1 containing Ψ′+ a subroot system of
type Ck−1 × Cn−k (with k ≥ 2, n− k ≥ 2) it follows from Theorem 3.1 that
Q is bounded if s ≤ 2/(2n − 3) and n − 1 ≥ 4, or if s ≤ 1/3 and n − 1 = 3.

Since (ρ + λ, e1 + ej) = O(mM) for all j,

P ≤ cm
s(1+2(|J1|−1))+|J2|(s−1)
M ,

and because 2≤|J1|,|J2|≤n−2, this expression is bounded for s≤2/(2n−3).

Modifications of these arguments are needed for types An, Bn and Dn. �
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We will refer to the maximal subroot systems of the proposition as the
better maximal subroot systems and the others as the worst maximal subroot
systems. To summarize, the worst maximal subroot systems are: type An−1

in An; Dn in Bn; C1 × Cn−1 in Cn; Dn−1 in Dn and A3 in D4. (See the list
in section 2 of maximal subroot systems.)

Notice that any proper subroot system is either one of the worst types
or is contained in one of the better types. For example, a proper subroot
system of An which is not type An−1 is either contained in one of the better
subroot systems Ak ×An−k−1, or is contained in a proper subroot system of
type An−1. We can show, in fact, that the second case falls within the first.
The two maximal subroot systems of An−1 are An−2, which is contained in
the better subroot system A1×An−2, and Ak×An−1−k−1, which is contained
in the better subroot system Ak×An−k−1. The arguments for the other types
are similar.

Clearly Proposition 3.3 continues to hold if Φ+(g) is only assumed to be
contained in one of the better maximal subroot systems. These observations
imply that as long as Φ+(g) is not one of the worst maximal subroot systems,

then there is a constant c(g) such that for all λ ∈ Ĝ,∣∣∣∣Trλ(g)

dλ

∣∣∣∣ ≤ c(g)(dλ)
−s,

provided s is as stated in the proposition.
As a consequence, for many orbital measures a stronger result than the

main theorem can be proved.

Corollary 3.4 Suppose G is a classical, compact, connected, simple Lie
group, g /∈ Z(G) and Φ+(g) is not one of the worst maximal subroot systems.
Then µ̂g

k0 ∈ l2.

Proof. The previous corollary implies that∥∥∥µ̂g
k
∥∥∥2

2
=

∑
λ∈Ĝ

d2
λ

∣∣∣∣Trλ(g)

dλ

∣∣∣∣2k

≤ c(g)
∑
λ∈Ĝ

d2−2ks
λ

(for s as in the chart). It was shown in [2, Cor. 9] that∑
λ∈Ĝ

dt
λ < ∞

whenever t < −rank G/ |Φ+| and it is a straightforward calculation to check
that 2 − 2k0s < −rank G/ |Φ+|. �
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4. Completion of the Proof of the Main Theorem

In this section we will complete the proof of the main theorem.

Theorem 4.1 Let G be a compact, connected, simple Lie group of type
An, Bn, Cn or Dn. Then µ̂g

k ∈ l2 for all continuous orbital measures on G if

k > k0 ≡


n + 1/2 if G is type An

2n − 1/2 if G is type Bn

n − 1/4 if G is type Cn, n �= 3
13/4 if G is type C3

n − 3/4 if G is type Dn.

Proof. It remains only to prove this theorem for orbital measures µg with
Φ+(g) one of the worst maximal subroot systems: type An−1 in An, type
Dn in Bn, type C1 × Cn−1 in Cn, type Dn−1 in Dn and type A3 in D4. The
previous method will not work for these orbital measures as the (optimal)
pointwise estimates on the trace function are not adequate. Instead we will
find an upper bound on the l2 norm of µ̂g

k by appealing to (2.3) and using
the fact that∥∥∥µ̂g

k
∥∥∥2

2
=

∑
λ∈Ĝ

d2
λ

∣∣∣∣Trλ(g)

dλ

∣∣∣∣2k

≤ c
∑

Φ′=w(Φ(g))

∑
λ∈Ĝ

∏
α∈Φ′+

(ρ+λ, α)2
∏

α∈Φ+\Φ′+
(ρ+λ, α)2−2k

where the outer sum is taken over the finitely many subroot systems, Φ′,
Weyl conjugate to Φ(g). Thus it suffices to show that for k > k0,

(4.1)
∑
λ∈Ĝ

( ∏
a∈Φ′+

(ρ + λ, α)2
∏

α∈Φ+\Φ′+
(ρ + λ, α)2−2k

)
< ∞

for each such positive subroot system Φ′+. This alternate approach will
allow us to take advantage of the fact that while |Trλ(g)| /dλ = O(d−s0

λ ) for
certain λ, it is much smaller for others.

We will continue to adhere to the convention that mM = maxi mi, where
ρ + λ =

∑
miλi and c will denote a constant which may vary. Our strategy

requires us to consider each type separately. Again, we will give the details
for type Cn and sketch the main ideas for the other types.

Type C1 × Cn−1 in Cn: We will leave C3 for the reader and proceed
inductively. So assume n ≥ 4, k > n − 1/4, and Φ′+ is a type C1 × Cn−1

subroot system in type Cn. It will have positive roots

{2en0}
⋃

{ei ± ej, 2el : 1 ≤ i < j ≤ n, 1 ≤ l ≤ n : i, j, l �= n0}
for some n0 ∈ {1, . . . , n}.
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Case M < n0 : Let Ψ+ be the set of all positive roots on the letters
{2, . . . , n}, i.e.,

Ψ+ = {ei ± ej, 2el : 2 ≤ i < j ≤ n, 2 ≤ l ≤ n}
and let Ψ′+ = Φ′+ ∩ Ψ+. With this notation we may factor∏

α∈Φ+\Φ′+
(ρ + λ, α)2−2k

∏
α∈Φ′+

(ρ + λ, α)2

as PQ, where

P ≡ (ρ + λ, e1 ± en0)
2−2k(ρ + λ, 2e1)

2
∏

j �=1,n0

(ρ + λ, e1 ± ej)
2

and
Q ≡

∏
α∈Ψ+\Ψ′+

(ρ + λ, α)2−2k
∏

α∈Ψ′+
(ρ + λ, α)2.

Since M < n0, we have (ρ + λ, e1 ± en0) = O(mM). This ensures that
P ≤ cm4n−2−4k

M ≤ cm4n−2−4k
1 .

Now Ψ′+ is a type C1 × Cn−2 subroot system in a type Cn−1 root sys-
tem Ψ+ (on the letters {2, . . . , n}). For α ∈ Ψ+, (ρ+λ, α) = (

∑n
i=2 miλi, α),

thus the induction assumption may be applied to Q to give the conclusion∑
m2,...,mn

∏
α∈Ψ+\Ψ′+

(ρ + λ, α)2−2k
∏

α∈Ψ′+
(ρ + λ, α)2 < ∞.

Since 4n − 2 − 4k < −1, we can combine these facts to obtain∑
λ:M<n0

∏
α∈Φ+\Φ′+

(ρ + λ, α)2−2k
∏

α∈Φ′+
(ρ + λ, α)2

≤ c
∑
m1

m4n−2−4k
1

∑
m2,...,mn

∏
α∈Ψ+\Ψ′+

(ρ + λ, α)2−2k
∏

α∈Ψ′+
(ρ + λ, α)2 < ∞.

Type An−1 in An or Type Dn−1 in Dn: Before explaining the case
M ≥ n0 we remark that a similar induction argument works for these two
types, as well. We again factor the summands in (4.1) as PQ, where bounds
on Q can be obtained by the induction assumption and P can be bounded
by finding a suitable number of roots α with (ρ + λ, α) ≥ mM . For type An

we take Q to be the product of the factors involving positive roots built on
either the letters {2, . . . , n+1} or {1, . . . , n}, depending on whether M < n0

or M ≥ n0 (giving the problem of type An−2 in An−1). In the first case we
can use the fact that (ρ + λ, α) ≥ mM for α = e1 − en0 to bound P . In the
second case, the root α = en0 − en+1 has the desired property.
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For type Dn one can observe that it suffices to assume n0 > 1 and thus
we may apply an induction argument by taking Q to be the product of the
factors involving the roots built on the letters {2, . . . , n}. Finding a suitable
number of roots α with (ρ + λ, α) ≥ mM is somewhat more delicate in this
case. For example, if M ≥ n0, then (ρ + λ, α) ≥ mM for α = ei + en0 for all
i �= n0 (or i �= n0, n) provided M �= n− 1 (M = n− 1) and for α = en0 − en

if M = n − 1.

Type C1 × Cn−1 in Cn (ctd):

Case M ≥ n0 : Here we take a different approach and instead factor∏
α∈Φ+\Φ′+

(ρ + λ, α)2−2k
∏

α∈Φ′+
(ρ + λ, α)2

as P ′Q′ where

P ′ =
∏
i �=n0

(ρ + λ, ei + en0)
2−2k

∏
i

(ρ + λ, 2ei)
2

∏
i<j;i,j �=n0

(ρ + λ, ei + ej)
2

and
Q′ =

∏
i �=n0

(ρ + λ, ei − en0)
2−2k

∏
i<j;i,j �=n0

(ρ + λ, ei − ej)
2.

Note that (ρ + λ, ei − ej) = (
∑n−1

k=1 mkλk, ei − ej) for any j > i. Thus Q′ is
the summand in (4.1) which arises from a subroot system of type An−2 in
An−1, on the letters {1, . . . , n}. As k > n − 1/2 it follows from the analysis
for this case that∑

m1,...,mn−1

∏
i �=n0

(ρ + λ, ei − en0)
2−2k

∏
i<j;i,j �=n0

(ρ + λ, ei − ej)
2 < ∞.

Thus it suffices to prove P ′ ≤ cm−t
n for some t > 1, and this is what

we will verify. It is convenient to let bi = maxl≥i ml. Then (ρ + λ, 2ei) and
(ρ + λ, ei + ej) for j > i are O(bi), so

P ′ ≤ c
∏
j<n0

b2−2k
j

∏
j>n0

b2−2k
n0

∏
i

b2
i

∏
i<j;i,j �=n0

b2
i

= c
∏
i<n0

b
2(n−i−1)+4−2k
i

∏
i>n0

b
2+2(n−i)
i

(
b2+(2−2k)(n−n0)
n0

)
.

Now bi ≤ mM and 2 + 2(n − i) > 0, thus∏
i>n0

b
2+2(n−i)
i ≤

∏
i>n0

m
2+2(n−i)
M = m

(n−n0+1)(n−n0)
M .

Since M ≥ n0, bi = mM for i ≤ n0, hence∏
i<n0

b
2(n−i−1)+4−2k
i = m

(2n+2−2k−n0)(n0−1)
M .
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Combining these observations, and using the fact that n ≥ 4, gives
the bound

P ′ ≤ cm2k+n2+n−2kn
M ≤ cm−5/2

n ,

completing the proof of this case.

Type Dn in Bn: In this case Φ+ \ Φ′+ consists of all the positive roots
of length one. If α = ei is such a root, then

(ρ + λ, α) = O(mi + · · · + mn) ≥ (ρ + λ, β)

for β = ei ± ej and any i < j. From this it follows that (4.1)∑
λ

∏
α∈Φ+\Φ′+

(ρ + λ, α)2−2k
∏

α∈Φ′+
(ρ + λ, α)2

≤ c
∑

m1,...,mn

( n∏
i=1

(mi + · · · + mn)

)4n−4i−2k+2

≤ c
∑

m1,...,mn

( n∏
i=1

mi

)4n−2k−2

,

and this is finite as 4n − 2k − 2 < −1.

Type A3 in D4: This type can be done by explicit calculation. Alter-
natively, one can effectively reduce the problem to that of type D3 in D4 by
considering a suitable automorphism of the root system. �

Remark 4.1The main theorem stated in the introduction results from Corol-
lary 3.2 and Theorem 4.1. It would be interesting to know if there was a less
computational proof of this result, or a proof which did not involve consider-
ation of each Lie type separately. Also, it remains to carry out the analysis
for the exceptional groups. The maximal subroot systems of E6, E7 and E8

seem to be too cumbersome for our approach.

5. Applications

5.1. Convolutions

Since the convolution of two L2 functions is continuous we immediately
obtain the following corollary of the theorem.

Corollary 5.1 If µ is a continuous orbital measure, then µ2n−1 is a contin-
uous function if G is type An−1 or Dn, µ2n is continuous if G is type Cn,
n ≥ 4, and µ4n−1 is a continuous function if G is type Bn.

A similar result will hold for any central, continuous measure compactly
supported on the conjugates of a set of the form {x ∈ T : Φ+(x) = Φ+} for
some fixed set Φ+ (c.f., [2, Cor. 7]).
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5.2. Lp-Improving Measures

A measure µ is called Lp-improving if there is some p < 2 such that

µ ∗ Lp ⊆ L2.

Young’s inequality implies that all functions in Lq, for some q > 1, are
examples of Lp-improving measures. A question of current interest is to
understand which singular measures on compact groups are Lp-improving.

In [6] surface measures on compact, connected analytic submanifolds
which generate the group were shown to be Lp-improving. Continuous or-
bital measures are an example of this phenomena. The measure µg is sup-
ported on the conjugacy class containing g, and this manifold generates G
since a suitable k-fold product supports the non-zero, absolutely continuous
measure µk

g and thus must have positive Haar measure.

A more refined problem is to determine the minimal p such that µ∗Lp ⊆
L2. This was done for for orbital measures corresponding to regular elements
(those with Φ+(g) empty) in [7] where it was shown that

µg ∗ Lp ⊆ L2 if and only if p ≥ 1 + r/(2 dim G − r).

Our theorem gives results for all continuous orbital measures.

Proposition 5.2 If g /∈ Z(G) then µg ∗ Lp ⊆ L2 for p > p0 where:

(i) p0 = 2 − 4/ (2n + 3) when G is type An ;

(ii) p0 = 2 − 4/ (4n + 1) when G is type Bn;

(iii) p0 = 2 − 8/ (4n + 3) when G is type Cn, n �= 3; p0 = 26/17 if n = 3;

(iv) p0 = 2 − 8/ (4n + 1) when G is type Dn.

Proof. The main theorem implies that for k > k0 the operator

Tk(f) = µk
g ∗ f

maps L1(G) into L2(G) whenever g /∈ Z(G). Since the identity map obvi-
ously maps L2(G) into L2(G), an application of Stein’s interpolation theo-
rem [8] gives that µg ∗ Lp ⊆ L2 for the choices of p0 listed. �

Remark 5.1 It would be interesting to know if these results are optimal
for the orbital measures corresponding to the worst subroot systems. Clearly
they are not optimal for other continuous, orbital measures as better results
can be obtained by invoking Proposition 3.3.
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[1] Bröcker, T. and Dieck, T.: Representations of compact Lie groups.
Graduate Texts in Mathematics 98. Springer-Verlag, New York, 1985.

[2] Hare, K. E.: The size of characters of compact Lie groups. Studia Math.
129 (1998), 1–18.

[3] Hare, K. E., Wilson, D. and Yee, W.L.: Pointwise estimates of the
size of characters of compact Lie groups. J. Austral. Math. Soc. Ser. A. 69
(2000), 61-84.

[4] Humphreys, J. E.: Introduction to Lie algebras and representation theory.
Graduate Texts in Mathematics 9. Springer-Verlag, New York-Berlin, 1972.

[5] Ragozin, D. L.: Central measures on compact simple Lie groups. J. Func-
tional Analysis 10 (1972), 212–229.

[6] Ricci, F. and Stein, E.M.: Harmonic analysis on nilpotent groups and
singular integrals. III. Fractional integration along manifolds. J. Funct.
Anal. 86 (1989), 360–389.

[7] Ricci, F. and Travaglini, G.: Lp − Lq estimates for orbital measures
and Radon transform on compact Lie groups and Lie algebras. J. Funct.
Anal. 129 (1995), 132–147.

[8] Stein, E.M. and Weiss, G.: Introduction to Fourier analysis on Eu-
clidean spaces. Princeton Mathematical Series 32. Princeton University
Press, Princeton, N.J., 1971.

[9] Varadarajan, V. S.: Lie groups, Lie algebras, and their representations.
Reprint of the 1974 edition. Graduate Texts in Mathematics 102. Springer-
Verlag, New York, 1984.

Recibido: 27 de septiembre de 2002

Kathryn E. Hare
Department of Pure Mathematics

University of Waterloo
200 University Avenue W.

N2L 3G1, Waterloo, Ontario (Canada)
kehare@math.uwaterloo.ca

Wai Ling Yee
Department of Mathematics

MIT
02139, Cambridge, MA (USA)

wlyee@math.mit.edu

This research was supported in part by NSERC.


