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Outer and inner vanishing measures
and division in H∞ + C

Keiji Izuchi

Abstract

Measures on the unit circle are well studied from the view of
Fourier analysis. In this paper, we investigate measures from the view
of Poisson integrals and of divisibility of singular inner functions in
H∞+C. Especially, we study singular measures which have outer and
inner vanishing measures. It is given two decompositions of a singular
positive measure. As applications, it is studied division theorems
in H∞ + C.

1. Introduction

Let H∞ be the Banach algebra of bounded analytic functions on the open
unit disk D. We denote by M(H∞) the maximal ideal space of H∞, the
space of nonzero multiplicative linear functionals of H∞ with the weak∗-
topology. We view that D ⊂ M(H∞) and D is an open subset of M(H∞).
By Carleson’s corona theorem [2], D is dense in M(H∞). Identifying a
function in H∞ with its Gelfand transform, we view that H∞ is the closed
subalgebra of C(M(H∞)), the space of continuous functions on M(H∞).

We also identify a function in H∞ with its boundary function and view
that H∞ is an (essentially) supremum norm closed subalgebra of L∞, the
usual Lebesgue space on the unit circle ∂D, see [4, 8, 9] for the study of the
structure of H∞ and M(H∞). A closed subalgebra B of L∞ containing H∞

strictly is called a Douglas algebra. Then we view that its maximal ideal
space M(B) is a subset of M(H∞), and M(L∞) is the Shilov boundary
of H∞, see [3, 19] for the structure of Douglas algebras. In [20], Sarason
proved that the smallest Douglas algebra is H∞ + C, where C is the space
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of continuous functions on ∂D, and M(H∞ + C) = M(H∞) \ D. For f ∈
L∞ \ H∞, we denote by H∞[f ] the Douglas algebra generated by f . For a
function f in H∞, we put

{|f | < 1} = {x ∈ M(H∞ + C); |f(x)| < 1}

and
Z(f) = {x ∈ M(H∞ + C); f(x) = 0}.

We note that these sets are considered in M(H∞) \D. A function f in H∞

is called inner if |f | = 1 on M(L∞). For a sequence {zn}n in D satisfying∑∞
n=1 1 − |zn| < ∞, we have a Blaschke product

b(z) =

∞∏
n=1

−zn

|zn|
z − zn

1 − znz
, z ∈ D.

A Blaschke product is an inner function.

For a measurable subset E of ∂D, we denote by |E| the value of the
Lebesgue measure of E. Let M(∂D) be the Banach space of bounded Borel
measures on ∂D with the total variation norm. Let M+

s be the set of positive
singular measures in M(∂D) with respect to the Lebesgue measure on ∂D.
We denote by M+

s,c and M+
s,d the sets of continuous and discrete measures in

M+
s , respectively. We use familiar notations in the measure theory like as

“�” absolutely continuous and “⊥” mutually singular. For a finite signed
measure µ, let µ = µ+ − µ− be the Jordan decomposition of µ. For µ1, µ2 ∈
M+

s , put µ1 ∨ µ2 = µ1 + (µ2 − µ1)
+ and µ1 ∧ µ2 = µ1 − (µ1 − µ2)

+. Then
µ1 ∨ µ2 and µ1 ∧ µ2 are the least upper and the greatest lower bounds of µ1

and µ2, respectively. It is known that M+
s is a complete lattice. For a point

ζ ∈ ∂D, let δζ be the unit point mass at ζ. For µ ∈ M+
s , we denote by S(µ)

the closed support set of µ.

For each µ ∈ M+
s , let

ψµ(z) = exp

(
−

∫
∂D

eiθ + z

eiθ − z
dµ(eiθ)

)
, z ∈ D.

Then ψµ is inner and called a singular inner function. We note that

− log |ψµ(z)| =

∫
∂D

Pz(e
iθ) dµ(eiθ), z ∈ D,

where Pz is the Poisson kernel, that is, Pz(e
iθ) = (1 − |z|2)/|eiθ − z|2. Let

L1
+(µ) = {ν ∈ M+

s ; 0 ≤ ν � µ, ν 	= 0}.
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Then we have a family of singular inner functions {ψν ; ν ∈ L1
+(µ)} associated

with µ. In [17], we call these functions singular inner functions of L1-type for
the measure µ, and we obtained results which are reminiscent of the results
for Blaschke products in [13], see also [14, 15].

Let µ ∈ M+
s . We say that µ has an outer vanishing measure if there

exists ν ∈ L1
+(µ) such that {|ψµ| < 1} ⊂ Z(ψν), and ν is called an outer

vanishing measure for µ. In this case, ψν/ψ
n
µ ∈ H∞ + C for every positive

integer n, see [7]. In [17, Theorem 2.2], it is actually proved that if µ ∈ M+
s

and S(µ) = ∂D, then µ has an outer vanishing measure and L∞ is generated
by complex conjugate of singular inner functions of L1-type for µ. Also in
[17, Theorem 5.1], we give a characterization of µ ∈ M+

s,d which has an
outer vanishing measure. In [7, p. 181], Guillory and Sarason posed the
following problem. Does there exist µ, ν ∈ M+

s , µ 	= ν, such that ψµ and ψν

are codivisible in H∞ + C ? This problem is very interesting and remains
unsolved.

In Section 2, we study measures which have outer vanishing measures. In
Theorem 2.3, we prove that every µ ∈ M+

s has a decomposition µ = µa +µb,
where µa has an outer vanishing measure, µa ⊥ µb, and there are no nonzero
measures λ ∈ L1

+(µb) which have outer vanishing measures.

In Section 3, we prove that if µ ∈ M+
s and there is ν ∈ M+

s such
that µ ⊥ ν, and ψµ and ψν are codivisible in H∞ + C, then µ has an
outer vanishing measure. So to attack Guillory and Sarason’s problem, it is
important to study measures which have outer vanishing measures.

In Section 4, we give some examples of measures. In Theorem 4.1, we
prove the existence of µ ∈ M+

s,c which does not have outer vanishing mea-
sures. This answers the problem posed in [17, Problem 5.1] negatively. Also
in Theorem 4.2, we prove the existence of µ ∈ M+

s,c which has an outer
vanishing measure and |S(µ)| = 0.

In Section 5, we study factorization in H∞ + C. There are many factor-
ization theorems in H∞ +C, see [1, 6, 12, 21]. Let f ∈ H∞ +C and ψ be an
inner function. In [7], Guillory and Sarason proved that {|ψ| < 1} ⊂ Z(f) if
and only if f/ψn ∈ H∞ +C for every positive integer n. In [16], it is proved
that if |f | ≤ |ψ| on M(H∞ + C), then f 2/ψ ∈ H∞ + C. Let b be a Blaschke
product. In [11], the author proved that for every f ∈ H∞+C with |f | ≤ |b|
on M(H∞ + C), there exists a subproduct ψ of b such that f/ψ ∈ H∞ + C
and Z(ψ) = Z(b), and posed the problem whether there exists a subproduct
ψ of b such that f/ψ ∈ H∞ + C and |ψ| = |b| on M(H∞ + C). We study
the same type of problem for a singular inner function.
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For µ ∈ M+
s , we consider the following two conditions on µ, respectively;

(A) for every f ∈ H∞ + C satisfying |f | ≤ |ψµ| on M(H∞ + C), there
exists ν ∈ M+

s such that ν ≤ µ, |ψν | = |ψµ| on M(H∞ + C), and
f/ψν ∈ H∞ + C,

(B) for every inner function ψ satisfying |ψµ| ≤ |ψ| on M(H∞ +C), there
exists ν ∈ L1

+(µ) such that µ ≤ ν ≤ 2µ, |ψν | = |ψµ| on M(H∞ + C),
and ψν/ψ ∈ H∞ + C.

A measure ν ∈ L1
+(µ) with 0 ≤ ν ≤ µ is called an inner vanishing

measure for µ if {|ψν | < 1} ⊂ Z(ψµ). Let µα be the upper band of inner
vanishing measures for µ. Put µβ = µ − µα. Then we have µα ⊥ µβ. In
Theorem 5.1, we prove that conditions (A) and (B) are equivalent to the
condition Z(ψµα) = Z(ψµ).

2. Outer vanishing measures

For µ, ν ∈ M+
s , we have |ψ(aµ+bν)| = |ψµ|a|ψν |b, {|ψ(aµ+bν)| < 1} = {|ψµ| <

1}∪{|ψν | < 1}, and Z(ψ(aµ+bν)) = Z(ψµ)∪Z(ψν) for every positive numbers
a, b. We also have {|ψµ∨ν | < 1} = {|ψµ| < 1}∪{|ψν | < 1}. For measures µ, ν
in M+

s such that ν ≤ µ, we have |ψµ| ≤ |ψν | on M(H∞) and Z(ψν) ⊂ Z(ψµ).
We use these facts frequently without mention.

The following theorem gives a sufficient condition on µ ∈ M+
s which has

an outer vanishing measure.

Theorem 2.1 Let µ ∈ M+
s and let {µn}n be a sequence in M+

s such that µ =∑∞
n=1 µn. Let {νn}n be a sequence in M+

s satisfying the following conditions;

(i) νn ∈ L1
+(µ) for every n,

(ii) {|ψµn | < 1} ⊂ Z(ψνn) for every n.

Then µ has an outer vanishing measure.

To prove our theorem, we need some lemmas.

A Blaschke product with zeros {zn}n is called interpolating if for every
bounded sequence of complex numbers {an}n there exists f ∈ H∞ such
that f(zn) = an for every n. The following is proved essentially in [22], see
also [18].

Lemma 2.1 Let ψ be an inner function. Then there is an interpolating
Blaschke product b such that {|b| < 1} = {|ψ| < 1}.
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The following lemma is proved in [7, p. 176].

Lemma 2.2 Let f ∈ H∞ + C and let ψ be an inner function. Then {|ψ| <
1} ⊂ Z(f) if and only if f/ψn ∈ H∞ + C for every positive integer n. And
in this case, |f/ψ| = |f | on M(H∞ + C).

For x, y ∈ M(H∞), let ρ(x, y) = sup{|f(y)|; f ∈ H∞, f(x) = 0, ‖f‖ ≤
1}. Put P (x) = {ζ ∈ M(H∞); ρ(x, ζ) < 1}. When P (x) 	= {x}, P (x) is
called a non-trivial Gleason part. In [9], Hoffman proved that if P (x) is non-
trivial, then there exists a continuous one to one map Lx from D onto P (x)
such that Lx(0) = x and f ◦ Lx ∈ H∞ for every f ∈ H∞. Also he proved
that P (x) 	= {x} if and only if b(x) = 0 for some interpolating Blaschke
product b.

Lemma 2.3 Let b be an interpolating Blaschke product with zeros {zn}n.
Let µ ∈ M+

s such that ψµ(zn) → 0 as n → ∞. Then {|b| < 1} ⊂ Z(ψµ),
ψµ/b ∈ H∞ + C, and |ψµ/b| = |ψµ| on M(H∞ + C).

Proof. Since Z(b) = cl {zn}n\{zn}n [8, p. 205], where cl {zn}n is the closure
of {zn}n in M(H∞), we have ψµ = 0 on Z(b). Since (ψµ)1/k = ψµ/k = 0 on
Z(b) for every positive integer k, ψµ = 0 on P (x) for every x ∈ Z(b). Then
by [1, 6], we have ψµ/b

n ∈ H∞ + C for every positive integer n. By Lemma
2.2, we have our assertion. �

Proof of Theorem 2.1. Since
∑∞

n=1 ‖µn‖ = ‖µ‖ < ∞, there exists a
sequence of positive numbers {pn}n such that

∑∞
n=1 pn‖µn‖ < ∞,

(2.1) pn ≤ pn+1 for every n,

and pn → ∞ as n → ∞. Since {anνn}n also satisfies conditions (i) and
(ii) in Theorem 2.1 for every sequence of positive numbers {an}n, we may
assume that

∑∞
n=1 ‖νn‖ < ∞. Put

(2.2) ν =
∞∑

n=1

(pnµn + νn).

Then by (i), ν ∈ L1
+(µ). We shall prove that {|ψµ| < 1} ⊂ Z(ψν). By

Lemma 2.1, there is an interpolating Blaschke product b with zeros {zk}k

such that {|b| < 1} = {|ψµ| < 1}. Then

(2.3) A = sup
k

|ψµ(zk)| < 1.

By Lemma 2.3, it is sufficient to show that

(2.4) ψν(zk) → 0 as k → ∞.
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To prove this, suppose not. Then there exist a positive number a and a
subsequence {zkj

}j of {zk}k such that

(2.5) |ψν(zkj
)| → a > 0 as j → ∞.

Here we have

(2.6) |ψµn(zkj
)| → 1 as j → ∞ for every n.

To prove this, suppose not. Considering further subsequence, we may assume
that |ψµn(zkj

)| < r for every j for some positive integer n and 0 < r < 1.
By condition (ii), we have ψνn(zkj

) → 0 as j → ∞. Hence by (2.2),

lim sup
j→∞

|ψν(zkj
)| ≤ lim sup

j→∞
|ψνn(zkj

)| = 0.

This contradicts (2.5). Thus we get (2.6).

Now for each positive integer N , we have

lim sup
j→∞

|ψν(zkj
)| ≤ lim sup

j→∞

∞∏
n=1

|ψµn(zkj
)|pn by (2.2)

≤ lim sup
j→∞

∞∏
n=N

|ψµn(zkj
)|pN by (2.1) and (2.6)

= lim sup
j→∞

|ψµ(zkj
)|pN by (2.6) and µ =

∞∑
n=1

µn

≤ ApN by (2.3).

Since 0 ≤ A < 1 and pn → ∞ as n → ∞, we obtain ψν(zkj
) → 0 as j → ∞.

This contradicts (2.5). Thus we get (2.4). This completes the proof. �

Corollary 2.1 Let µ ∈ M+
s and let {µn}n be a sequence in M+

s such that
µ =

∑∞
n=1 µn. If µn has an outer vanishing measure for every n, then µ has

an outer vanishing measure.

For a subset E of the complex plane, we denote by E the closure of E. In
[17, Proposition 5.1], it is proved that if µ ∈ M+

s,c and S(µ) = J for an open
subarc J of ∂D, then µ has an outer vanishing measure. For a subset E of
∂D, we denote by int E the interior of E.

Corollary 2.2 Let µ ∈ M+
s such that ‖µ‖ = µ(int S(µ)). Then µ has an

outer vanishing measure.
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Proof. There is a set of countably many disjoint open subarcs {Jn}n of
∂D such that int S(µ) =

⋃∞
n=1 Jn. Put µn = µ|Jn . Then µ =

∑∞
n=1 µn,

S(µn) = Jn, and ‖µn‖ = µn(Jn). By the fact mentioned above, µn has an
outer vanishing measure. By Corollary 2.1, we get our assertion. �

Corollary 2.3 Suppose that µ ∈ M+
s has an outer vanishing measure. Let

λ ∈ M+
s such that µ � λ � µ. Then λ has an outer vanishing measure.

Proof. By our assumption, there exists ν ∈ L1
+(µ) such that {|ψµ| <

1} ⊂ Z(ψν). We have ν ∈ L1
+(µ) = L1

+(λ). By Radon-Nikodym’s theorem,
dλ = fdµ, where f > 0 a.e. dµ. Put

En = {eiθ ∈ ∂D;n − 1 < f(eiθ) ≤ n} and λn = λ|En

for every positive integer n. Then λn ≤ nµ, so that we have

{|ψλn | < 1} ⊂ {|ψnµ| < 1} = {|ψµ| < 1} ⊂ Z(ψν).

Since λ =
∑∞

n=1 λn, by Theorem 2.1 we have our assertion. �

Corollary 2.4 Let {µn}n be a sequence in M+
s such that µn has an outer

vanishing measure for every n. If ‖ ∨∞
n=1 µn‖ < ∞, then ∨∞

n=1µn has an
outer vanishing measure.

Proof. There exists a sequence of positive numbers {an}n such that µ =∑∞
n=1 anµn ∈ M+

s . Since anµn has an outer vanishing measure, by Corollary
2.1 µ has an outer vanishing measure. Since µ � ∨∞

n=1µn � µ, by Corollary
2.3 ∨∞

n=1µn has an outer vanishing measure. �
For a closed subset E of ∂D, put

ME(H∞ + C) = {x ∈ M(H∞ + C); z(x) ∈ E},
where z is the identity function on D. Let µ ∈ M+

s . If S(µ) ⊂ E, then
{|ψµ| < 1} ⊂ ME(H∞ + C) and |ψµ| = 1 on M(H∞ + C) \ ME(H∞ + C),
see Hoffman’s book [8].

Theorem 2.2 Let µ ∈ M+
s . Then the following conditions are equivalent.

(i) µ has an outer vanishing measure.

(ii) For each open subset U of ∂D such that U ∩ S(µ) 	= ∅, µ|U has an
outer vanishing measure.

(iii) For every ζ ∈ S(µ), there exists an open neighborhood Vζ of ζ in ∂D
such that µ|Vζ

has an outer vanishing measure.
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Proof. (i) ⇒ (ii) Suppose that µ has an outer vanishing measure. Then
there exists ν ∈ L1

+(µ) such that

(2.7) {|ψµ| < 1} ⊂ Z(ψν).

Let U be an open subset of ∂D such that U ∩ S(µ) 	= ∅. Then ν|U ∈
L1

+(µ|U ). Take a sequence of increasing closed subsets {En}n of ∂D such
that

⋃∞
n=1 En = U . Put µ1 = µ|E1

and µn = µ|(En\En−1) for n ≥ 2.

Then µ|U =
∑∞

n=1 µn and

(2.8) {|ψµn | < 1} ⊂ {|ψµ| < 1} ∩ MEn(H∞ + C).

Since U c ∩ En = ∅, |ψν|Uc | = 1 on MEn(H∞ + C). Since ψν = ψν|U ψν|Uc , we
have

(2.9) |ψν|U | = |ψν | on MEn(H∞ + C).

Then

{|ψµn | < 1} ⊂ {|ψµ| < 1} ∩ MEn(H∞ + C) by (2.8)

⊂ Z(ψν) ∩ MEn(H∞ + C) by (2.7)

= Z(ψν|U ) ∩ MEn(H∞ + C) by (2.9)

⊂ Z(ψν|U ).

Hence by Theorem 2.1, we have our assertion.

(ii) ⇒ (iii) is trivial.

(iii) ⇒ (i) By (iii), there exist ζ1, ζ2, . . . , ζn ∈ S(µ) and open subsets
Vζ1 , Vζ2 , . . . , Vζn of ∂D such that S(µ) ⊂ ⋃n

j=1 Vζj
, ζj ∈ Vζj

, and µ|Vζj
has an

outer vanishing measure for every j. Put σ =
∑n

j=1 µ|Vζj
. Then σ � µ � σ.

By Corollaries 2.1 and 2.3, we have our assertion. �

Theorem 2.3 Let µ ∈ M+
s . Then µ has a unique decomposition µ = µa +

µb, where µa and µb satisfy the following conditions.

(i) µa, µb ∈ M+
s and µa ⊥ µb.

(ii) µa has an outer vanishing measure.

(iii) Let ν ∈ M+
s such that 0 ≤ ν ≤ µ. If ν has an outer vanishing measure,

then ν ≤ µa.

(iv) There are no nonzero measures λ ∈ L1
+(µb) which have outer vanishing

measures.
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Proof. Let Ω be the set of measures ν such that 0 ≤ ν ≤ µ and ν has an
outer vanishing measure.

First, suppose that Ω = ∅. Put µa = 0 and µb = µ. If there is a measure
λ ∈ L1

+(µ), λ 	= 0, which has an outer vanishing measure, by Corollary 2.3
we have Ω 	= ∅. Hence µa and µb satisfies our conditions.

Next, suppose that Ω 	= ∅. Put

(2.10) α = sup{‖ν‖; ν ∈ Ω}.

Then 0 < α ≤ ‖µ‖, and there is a sequence {νn}n in Ω such that ‖νn‖ → α
as n → ∞. Put µa = ∨∞

n=1νn. Then we have ‖µa‖ = α and µa ≤ µ. Since νn

has an outer vanishing measure, by Corollary 2.4 µa has an outer vanishing
measure. Put µb = µ − µa.

To prove (i), suppose not. Then µa ∧µb 	= 0. By Corollary 2.3, µa +µa ∧
µb ∈ Ω and ‖µa + µa ∧ µb‖ > ‖µa‖ = α. This contradicts (2.10).

(iii) By Corollary 2.4, µa ∨ ν has an outer vanishing measure. If ν 	≤ µa,
then ‖µa ∨ ν‖ > ‖µa‖ = α. Since µa ∨ ν ≤ µ, this contradicts (2.10).

(iv) follows from (iii). �

3. Codivisibility of singular inner functions

Up to now, Guillory and Sarason’s problem [7] is still open, that is, it is
not known the existence of measures µ, ν ∈ M+

s such that ψµ/ψν , ψν/ψµ ∈
H∞ + C, and µ 	= ν.

Suppose, for a while, that there exist µ, ν ∈ M+
s such that ψµ and ψν are

codivisible in H∞+C and µ 	= ν. Then ψµ−µ∧ν and ψν−µ∧ν are codivisible in
H∞ + C. Hence moreover we may assume that µ ⊥ ν. By the codivisibility,
we have |ψµ| = |ψν | on M(H∞ + C), so that {|ψµ| < 1} = {|ψν | < 1} and
S(µ) = S(ν).

It is also not known the existence of µ, ν ∈ M+
s such that {|ψµ| < 1} =

{|ψν | < 1} and µ ⊥ ν. But we have the following.

Proposition 3.1 There exist µ, ν ∈ M+
s such that {|ψµ| < 1} ⊂ {|ψν | < 1},

µ ⊥ ν, and S(µ) = S(ν).

Proof. Let µ, λ ∈ M+
s such that µ ⊥ λ and S(µ) = S(λ) = ∂D. By

Lemma 2.1, there is an interpolating Blaschke product b such that {|b| <
1} = {|ψµ| < 1}. By [17, Theorem 2.1], there exists ν ∈ L1

+(λ) such
that {|b| < 1} ⊂ Z(ψν). It is not difficult to see that µ and ν satisfy our
conditions. �



520 K. Izuchi

The following is the main theorem is this section, and we prove this as
an application of Theorem 2.1.

Theorem 3.1 Let µ, λ ∈ M+
s such that {|ψµ| < 1} ⊂ {|ψλ| < 1}, µ ⊥ λ,

and S(µ) = S(λ). Then µ has an outer vanishing measure.

Proof. Since µ ⊥ λ, by the regularity of measures there is a sequence of
closed subsets {En}n of ∂D such that {En}n is mutually disjoint, µ(En) > 0
for every n, µ =

∑∞
n=1 µ|En , and λ(En) = 0 for every n.

Let fix n. Then there is a decreasing sequence of open subsets {Uj}j of
∂D such that

(3.1) En =
∞⋂

j=1

Uj ,

(3.2) λ(U j \ Uj) = µ(U j \ Uj) = 0 for every j,

and
∑∞

j=1 ‖λ|Uj
‖ < ∞. Put

(3.3) σ =

∞∑
j=1

λ|Uj
.

Then σ ∈ M+
s and S(σ) ⊂ S(λ) = S(µ). Moreover we have

(3.4) {|ψµ|En
| < 1} ⊂ Z(ψσ).

Let x ∈ {|ψµ|En
| < 1}. Then x ∈ MEn(H∞ + C). By (3.1), |ψλ| = |ψλ|Uj

| on

MEn(H∞ + C). Hence we have

(3.5) |ψλ(x)| = |ψλ|Uj
(x)| for every j.

Since |ψµ(x)| ≤ |ψµ|En
(x)| < 1, by our assumption we have |ψλ(x)| < 1.

Hence by (3.3) and (3.5), we get

|ψσ(x)| ≤
t∏

j=1

|ψλ|Uj
(x)| = |ψλ(x)|t for every t.

Since |ψλ(x)| < 1, by the above we obtain (3.4).

Next, we prove the existence of τn ∈ L1
+(µ) such that

(3.6) {|ψµ|En
| < 1} ⊂ Z(ψτn).
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By Lemma 2.1, there exists an interpolating Blaschke product b such that

(3.7) {|b| < 1} = {|ψµ|En
| < 1}.

Let {zi}i be the zeros of b in D. Then

(3.8) {zi}i \ {zi}i = S(µ|En) ⊂ En.

To show (3.6), by (3.7) and Lemma 2.3 it is sufficient to prove

(3.9) ψτn(zi) → 0 as i → ∞.

To prove the existence of τn ∈ L1
+(µ) satisfying (3.9), put

(3.10) λj = jλ|Uj\Uj+1
and µj = µ|Uj\Uj+1

for every j.

Since {Uj}j is decreasing, by (3.3) we have

(3.11) σ =
∞∑

j=1

λj .

Since S(λ) = S(µ), by (3.2) we have S(λj) = S(µj). Then for each j, there
is a sequence of measures

(3.12) {µj,k}k ⊂ L1
+(µj)

such that

(3.13) ‖µj,k‖ ≤ ‖λj‖ for every k

and µj,k → λj as k → ∞ in the weak*-topology of M(∂D) as the dual space
of C(∂D). Then
(3.14)

ψµj,k
→ ψλj

uniformly on each compact subset of D \ S(λj) as k → ∞.

By (3.1), (3.8), and (3.10), we have |ψλj
(zi)| → 1 as i → ∞ for each j, so

that by (3.14),

(3.15) |ψµj,k
|/|ψλj

| → 1 uniformly on {zi}i as k → ∞.

Take a sequence of positive numbers {rj}j such that rj > 1 for every j and

(3.16)

∞∏
j=1

rj < 2.
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By (3.15), for every j there exists a positive integer kj such that

(3.17) |ψµj,kj
(zi)| < rj|ψλj

(zi)| for every i.

We put τn =
∑∞

j=1 µj,kj
. Since ‖σ‖ < ∞, by (3.11)

∑∞
j=1 ‖λj‖ < ∞. Hence

by (3.13), we have ‖τn‖ < ∞ and τn ∈ M+
s . By (3.10) and (3.12), we have

τn ∈ L1
+(µ). For every i, we have

|ψτn(zi)| =
∞∏

j=1

|ψµj,kj
(zi)|

<
( ∞∏

j=1

rj

)( ∞∏
j=1

|ψλj
(zi)|

)
by (3.17)

< 2|ψσ(zi)| by (3.11) and (3.16).

By (3.6) and (3.7), ψσ(zi) → 0 as i → ∞. Hence by the above, ψτn(zi) → 0
as i → ∞. Thus we get (3.9), so that we have (3.6).

Hence we can apply Theorem 2.1 and we get our assertion. �

In [5], Gorkin proved that for every µ ∈ M+
s there exists λ ∈ M+

s such
that {|ψµ| < 1} ⊂ Z(ψλ). In this case, we have S(µ) ⊂ S(λ). Moreover, if
µ does not have an outer vanishing measure, then by Theorem 3.1 we have
S(µ) 	= S(λ).

Corollary 3.1 Let µ ∈ M+
s . If there exists ν ∈ M+

s such that µ ⊥ ν, and
ψµ and ψν are codivisible in H∞+C, then µ has an outer vanishing measure.

4. Examples of measures

The following answers the problem posed in [17, p. 809] negatively.

Theorem 4.1 There exists µ ∈ M+
s,c satisfying the following.

(i) {|ψµ| < 1} 	⊂ Z(ψν) for every ν ∈ M+
s with S(ν) ⊂ S(µ).

(ii) For every ν ∈ L1
+(µ), ν does not have outer vanishing measures.

(iii) For every ν ∈ L1
+(µ), {|ψν | < 1} 	⊂ Z(ψµ).

(iv) For every ν ∈ M+
s,d with S(ν) ⊂ S(µ), ν does not have outer vanishing

measures.

To prove the existence of such µ, we need some preparation. The following
lemma follows from elementary properties of Poisson kernels.
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Lemma 4.1 Let J = {eiθ; a ≤ θ ≤ b}, 0 ≤ a < b ≤ 1, and K ⊂ ∂D be a
closed subset such that J ∩ K = ∅. For each R > 0 and ε > 0, there exist
a positive number r, 0 < r < 1, and disjoint closed subarcs J1 = {eiθ; a ≤
θ ≤ a′}, J2 = {eiθ; b′ ≤ θ ≤ b}, a < a′ < b′ < b, of J satisfying the following
conditions.

(i) Pζ1(e
ia) = Pζ1(e

ia′
) = R, where ζ1 = rei(a+a′)/2.

(ii) Pζ1(e
iθ) < ε for eiθ ∈ K ∪ J2.

(iii) Pζ2(e
ib) = Pζ2(e

ib′) = R, where ζ2 = rei(b+b′)/2.

(iv) Pζ2(e
iθ) < ε for eiθ ∈ K ∪ J1.

(v) |J1| = |J2| ≤ |J |/4.
Moreover, we may take a′ and b′ such that both a′−a and b−b′ are sufficiently
small.

Put

Λn = {(ε1, ε2, . . . , εn); εi = 0 or 1 for every i} and Λ =
∞⋃

n=1

Λn.

Lemma 4.2 Let J = {eiθ; a ≤ θ ≤ b}, 0 ≤ a < b ≤ 1. Then there exist a
family of points {zα}α∈Λ in D and closed arcs {Jα}α∈Λ, say Jα = {eiθ; aα ≤
θ ≤ bα}, aα < bα, satisfying the following conditions for every n.

(i) Jα ⊂ J for α ∈ Λn.

(ii) Jα ∩ Jβ = ∅ for α, β ∈ Λn, α 	= β.

(iii) Pzα(eiaα) = Pzα(eibα) = 2n for α ∈ Λn.

(iv) J(α,0) ∪ J(α,1) ⊂ {eiθ ∈ Jα; 2n ≤ Pzα(eiθ) ≤ 2n+1} for α ∈ Λn.

(v) Pzα(eiθ) < 1/2n for eiθ ∈ ⋃
β∈Λn,β �=α Jβ.

(vi)
∑

α∈Λn+1
|Jα| ≤

∑
α∈Λn

|Jα|/2.
(vii) |J(α,0)| = |J(α,1)| ≤ |Jα|/4 for α ∈ Λ.

Proof. By induction, we shall prove our assertion. First, take R = 2 and
ε = 1/2 in Lemma 4.1. Then there exist ζ1, ζ2 ∈ D and disjoint closed
subarcs J1, J2 satisfying the conditions in Lemma 4.1. Put

z(0) = ζ1, z(1) = ζ2, J(0) = J1, and J(1) = J2.



524 K. Izuchi

Next, suppose that zα and Jα, α ∈ ⋃k
n=1 Λn, are already chosen satisfying

(i)–(vii). Let α ∈ Λk. Apply Lemma 4.1 for J = Jα, R = 2k+1, and ε =
(1/2)k+1. Then there exist z(α,0), z(α,1) ∈ D and disjoint closed subarcs
J(α,0) = {eiθ; a(α,0) ≤ θ ≤ b(α,0)}, J(α,1) = {eiθ; a(α,1) ≤ θ ≤ b(α,1)}, aα =
a(α,0) < b(α,0) < a(α,1) < b(α,1) = bα, of Jα such that

Pz(α,0)
(eia(α,0)) = Pz(α,0)

(eib(α,0)) = 2k+1,

Pz(α,1)
(eia(α,1)) = Pz(α,1)

(eib(α,1)) = 2k+1,

Pz(α,0)
(eiθ) < (1/2)k+1 for eiθ ∈

( ⋃
β∈Λk,β �=α

Jβ

)
∪ J(α,1),

Pz(α,1)
(eiθ) < (1/2)k+1 for eiθ ∈

( ⋃
β∈Λk,β �=α

Jβ

)
∪ J(α,0),

and
|J(α,0)| = |J(α,1)| ≤ |Jα|/4.

Since Pzα(eiaα) = Pzα(eibα) = 2n, we may further assume that

J(α,0) ∪ J(α,1) ⊂ {eiθ ∈ Jα; 2n ≤ Pzα(eiθ) ≤ 2n+1}.
This completes the induction. �

Lemma 4.3 ([17], Theorem 5.1) . Let µ =
∑∞

n=1 anδζn ∈ M+
s,d, where

ζn ∈ ∂D and an > 0 for every n. Then µ has an outer vanishing measure
if and only if for each n there exists λn ∈ M+

s such that S(λn) ⊂ S(µ) and
{|ψδζn

| < 1} ⊂ Z(ψλn).

Proof of Theorem 4.1. First, we construct µ ∈ M+
s,c. Take a closed subarc

J of ∂D such that |J | > 0 and J ⊂ {eiθ; 0 ≤ θ ≤ 1} and apply Lemma 4.2.
Then there exist a family of points {zα}α∈Λ in D and a family of open subarcs
{Jα}α∈Λ of J , say Jα = {eiθ; aα ≤ θ ≤ bα}, aα < bα, satisfying

(4.1) Jα ∩ Jβ = ∅ for α, β ∈ Λn, α 	= β,

(4.2) J(α,0) ∪ J(α,1) ⊂ {eiθ ∈ Jα; 2n ≤ Pzα(eiθ) ≤ 2n+1} for α ∈ Λn,

(4.3) Pzα(eiθ) < 1/2n for eiθ ∈
⋃

β∈Λn,β �=α

Jβ,

(4.4) Pzα(eiaα) = Pzα(eibα) = 2n for α ∈ Λn,
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(4.5)
∑

α∈Λn+1

|Jα| ≤
∑
α∈Λn

|Jα|/2,

and

(4.6) |J(α,0)| = |J(α,1)| ≤ |Jα|/4 for α ∈ Λ.

For each α ∈ Λn, put

(4.7) λα =
1

2n+1
(δeiaα + δeibα ).

For each positive integer n, put

λn =
∑
α∈Λn

λα.

Then ‖λα‖ = 1/2n and S(λα) ⊂ Jα. Since number of elements of Λn is 2n,

‖λn‖ = 1 and S(λn) ⊂
⋃

α∈Λn

Jα.

It is not difficult to see that λn → µ in the weak*-topology as n → ∞ for
some positive continuous measure µ on ∂D such that

(4.8) ‖µ‖ = 1

and

(4.9) S(µ) =

∞⋂
n=1

( ⋃
α∈Λn

Jα

)
.

By (4.5),

|S(µ)| ≤
∑
α∈Λn

|Jα| ≤ (1/2)n−1(|J(0)| + |J(1)|)

for every n, so that we have |S(µ)| = 0.

For α ∈ Λn, let

(4.10) µα = µ|Jα .

For each positive integer k, let Λk,α = {β ∈ Λk;λβ(Jα) 	= 0}. Then by (4.1),
(4.2), and (4.7), we have

∑
β∈Λk,α

λβ → µα as k → ∞ and

∥∥∥ ∑
β∈Λk,α

λβ

∥∥∥ = λα(Jα) = 1/2n for k ≥ n.
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Hence

(4.11) ‖µα‖ = 1/2n,

(4.12) µ =
∑
α∈Λn

µα,

and

(4.13) µα = µ(α,0) + µ(α,1).

By (4.11) and (4.12), µ ∈ M+
s,c. Now we have

∫
∂D

Pzα dµ =
∑
β∈Λn

∫
∂D

Pzα dµβ by (4.12)

=

∫
∂D

Pzα dµ(α,0) +

∫
∂D

Pzα dµ(α,1) +
∑

β∈Λn,β �=α

∫
∂D

Pzα dµβ

by (4.13)

≤ 2n+1 ‖µ(α,0) + µ(α,1)‖ +
1

2n

∑
β∈Λn,β �=α

‖µβ‖

by (4.2) and (4.3)

≤ 2n+1 ‖µα‖ +
1

2n
by (4.8) and (4.13)

≤ 3 by (4.11).

On the other hand, by (4.4) we have Pzα ≥ 2n on Jα. By (4.10) and (4.11),
we get 1 ≤ ∫

∂D
Pzα dµα. Hence 1 ≤ ∫

∂D
Pzα dµ ≤ 3 for every α ∈ Λ. Since

− log |ψµ(zα)| =
∫

∂D
Pzα dµ, we have

(4.14) e−3 ≤ |ψµ(zα)| ≤ e−1 for every α ∈ Λ.

To prove (i), let ν ∈ M+
s such that S(ν) ⊂ S(µ). Put να = ν|Jα for

α ∈ Λ. Then in the same way as the above paragraph, we have

(4.15)

∫
∂D

Pzα dν ≤ 2n+1‖να‖ +
‖ν‖
2n

for α ∈ Λn.

Since S(ν) ⊂ S(µ), by (4.9) we have
∑

α∈Λn
‖να‖ = ‖ν‖ < ∞. Since the

number of elements of Λn is 2n, there exists αn in Λn such that ‖ναn‖ ≤
‖ν‖/2n. Hence by (4.15),

∫
∂D

Pzαn
dν ≤ 3‖ν‖ for every n. Thus we get

0 < e−3‖ν‖ ≤ |ψν(zαn)| for every n. Therefore, by (4.14) we have {|ψµ| <
1} 	⊂ Z(ψν).
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Next, we prove (ii) and (iii). Let ν, λ ∈ L1
+(µ). It is sufficient to prove

that {|ψν | < 1} 	⊂ Z(ψλ). We may assume that ‖ν‖ = ‖λ‖ = 1. Then there
exist K > 0 and a sequence {αn}n, αn ∈ Λn, such that

(4.16) λ(Jαn)/K ≤ µ(Jαn) ≤ Kν(Jαn) for every n.

In the similar way as above, we have∫
∂D

Pzαn
dλ ≤

∫
Jαn

Pzαn
dλ +

1

2n

≤ 2n+1λ(Jαn) +
1

2n

≤ 2n+1Kµ(Jαn) +
1

2n
by (4.16)

≤ 2K + 1 by (4.11)

and ∫
∂D

Pzαn
dν ≥

∫
Jαn

Pzαn
dν

≥ 2nν(Jαn) by (4.2)

≥ 2nµ(Jαn)/K by (4.16)

= 1/K by (4.11).

Hence we get 0 < e−(2K+1) ≤ |ψλ(zαn)| and |ψν(zαn)| ≤ e−1/K < 1 for every
n. Thus we obtain {|ψν | < 1} 	⊂ Z(ψλ).

(iv) Let ζ = eiθ0 ∈ S(µ). By Lemma 4.3, it is sufficient to prove that

(4.17) {|ψδζ
| < 1} 	⊂ Z(ψσ).

for every measure σ ∈ M+
s such that

(4.18) S(σ) ⊂ S(µ)

To prove (4.17), let σ ∈ M+
s satisfying (4.18). We may assume that ‖σ‖ = 1.

By (4.9), there exists a sequence {αn}n in Λ, αn ∈ Λn, such that ζ ∈ Jαn for
every n. Then ζ ∈ J(αn,0) ∪ J(αn,1). Here we may assume that ζ ∈ J(αn,0),
that is, αn+1 = (αn, 0). Then a(αn,0) ≤ arg ζ = θ0 ≤ b(αn,0) < a(αn,1). Put

(4.19) ξn = exp
( i

2
(θ0 + a(αn,1))

)
and ζn = exp

( i

4
(θ0 + 3 a(αn,1))

)
.

Then by (4.6),

arg ζ ≤ b(αn,0) < arg ξn < arg ζn < a(αn,1)
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and ζn is the center of the arc jointing ξn and eia(αn,1) . Hence

(4.20) |ξn − ζn| = |eia(αn,1) − ζn| = d(ζn, S(µ)) < |ζ − ζn|.
Let wn ∈ D such that

(4.21) |ψδζ
(wn)| = e−1 and wn/|wn| = ζn.

Put

(4.22) θn = arg ζnξn.

Then θn → 0 as n → ∞. Since ζ = eiθ0 , by (4.19) we have 3θn = arg ζnζ.
Hence by (4.21), we get

(4.23) |wn| = cos(3θn).

Now we have

− log |ψσ(wn)| =

∫
∂D

Pwn dσ

≤
∫

∂D

Pwn dδξn by (4.18), (4.20), and (4.21)

=

∫
∂D

P|wn| dδξnζn
by (4.21)

=
1 − cos2(3θn)

1 − 2 cos(3θn) cos θn + cos2(3θn)
,

where the last equality follows from (4.22) and (4.23). It is not difficult to
see that

lim
θ→0

1 − cos2(3θ)

1 − 2 cos(3θ) cos θ + cos2(3θ)
= 9.

Hence we obtain
lim inf
n→∞

|ψσ(wn)| ≥ e−9.

By (4.21), we get (4.17). �

The following follows from Theorem 4.1 and Corollary 3.1.

Corollary 4.1 Let µ be the measure given in Theorem 4.1 and ν ∈ L1
+(µ).

Then there are not singular inner functions which are codivisible with ψν.

Relating to Theorem 4.1 (iv), we have the following problem.

Problem 4.1. Let µ be the measure given in Theorem 4.1. Does there
exist ν ∈ M+

s such that S(ν) ⊂ S(µ) and ν has an outer vanishing measure?
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Theorem 4.2 There exists a measure µ ∈ M+
s,c which has an outer vanish-

ing measure and |S(µ)| = 0.

To prove this, we need the following lemma.

Lemma 4.4 Let µ ∈ M+
s and let U be an open subset of ∂D such that

S(µ) ⊂ U . Then for every ε > 0, there exists λ ∈ M+
s,c satisfying the

following conditions.

(i) S(µ) ⊂ S(λ) ⊂ U .

(ii) |S(λ)| = |S(µ)|.
(iii) ‖λ‖ < ε.

(iv) {|ψµ| < 1} ⊂ Z(ψλ).

Proof. By Lemma 2.1, there is an interpolating Blaschke product b with
zeros {zn}n such that

(4.24) {|b| < 1} = {|ψµ| < 1}.

Since we may discard finitely many zeros from {zn}n, we may assume that
zn 	= 0 for every n and

(4.25)
∞∑

n=1

1 − |zn| < ε.

By (4.24), we have {zn}n \ {zn}n = S(µ). Put eiθn = zn/|zn|. Then

(4.26) {eiθn}n \ {eiθn}n ⊂ S(µ) ⊂ {eiθn}n,

so that we may assume that eiθn ∈ U for every n. Put

(4.27) En = {eiθ; |θ − θn| ≤ 1 − |zn|}.

Then

(4.28) Pzn ≥ 1/(1 − |zn|) on En for every n.

By (4.25), there exists a sequence of positive numbers {pn}n such that

(4.29)

∞∑
n=1

pn(1 − |zn|) < ε and pn → ∞ as n → ∞.
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There is a measure λn in M+
s,c such that

(4.30) ‖λn‖ = pn(1 − |zn|),

(4.31) eiθn ∈ S(λn) ⊂ En ∩ U,

and

(4.32) |S(λn)| = 0.

Put λ =
∑∞

n=1 λn. Then by (4.29) and (4.30), ‖λ‖ < ε. Since λn ∈ M+
s,c,

λ ∈ M+
s,c. By (4.27), |En| → 0 as n → ∞, so that by (4.26) and (4.31) we

have

S(λ) = S(µ) ∪ ( ∞⋃
n=1

S(λn)
) ⊂ U.

Hence by (4.32), |S(λ)| = |S(µ)|.
Now we have

− log |ψλ(zn)| =

∫
∂D

Pzn dλ

≥
∫

En

Pzn dλn

≥ pn by (4.28) and (4.30)

→ ∞ by (4.29).

Therefore ψλ(zn) → 0 as n → ∞. Hence by Lemma 2.3, {|b| < 1} ⊂ Z(ψλ),
so that by (4.24) we have {|ψµ| < 1} ⊂ Z(ψλ). This completes the proof. �

Proof of Theorem 4.2. By induction, we shall prove the existence of
{µn}n in M+

s,c and open subsets {Un}n of ∂D satisfying

(4.33) S(µn−1) ⊂ S(µn) ⊂ Un ⊂ Un−1,

(4.34) |S(µn)| = 0,

(4.35) ‖µn‖ < 1/2n,

(4.36) {|ψµn−1 | < 1} ⊂ Z(ψµn),

and

(4.37) |Un| < 1/n.
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First, take a measure µ1 ∈ M+
s,c such that ‖µ1‖ < 1/2 and |S(µ1)| = 0.

Then take an open subset U1 of ∂D such that S(µ1) ⊂ U1 and |U1| < 1.
We use Lemma 4.4 for µ = µ1, U = U1, and ε = (1/2)2. Then there
exists µ2 ∈ M+

s,c such that S(µ1) ⊂ S(µ2) ⊂ U1, |S(µ2)| = |S(µ1)| = 0,
‖µ2‖ < (1/2)2, and {|ψµ1| < 1} ⊂ Z(ψµ2).

Assume that µ1, . . . , µn and U1, . . . , Un−1 are chosen satisfying the above
conditions. Since S(µn) ⊂ Un−1, by (4.34) there is an open subset Un such
that S(µn) ⊂ Un ⊂ Un−1 and |Un| < 1/n. By Lemma 4.4, there exists
µn+1 ∈ M+

s,c such that S(µn) ⊂ S(µn+1) ⊂ Un, |S(µn+1)| = |S(µn)| =
0, ‖µn+1‖ < 1/2n+1, and {|ψµn | < 1} ⊂ Z(ψµn+1). This completes our
induction.

Put µ =
∑∞

n=1 µn. Then by (4.35), ‖µ‖ < ∞ so that µ ∈ M+
s,c. By (4.33),

S(µn) ⊂ Uk for every pair of positive integers n and k. Hence S(µ) ⊂ Uk

for every k. Then by (4.37), we have |S(µ)| = 0. By (4.36) and Theorem
2.1, µ has an outer vanishing measure. �

We have the following problem:

Problem 4.2. Let E be a closed subset of ∂D such that |E| > 0. Does
there exist µ ∈ M+

s such that S(µ) ⊂ E and µ has an outer vanishing
measure?

5. Inner vanishing measures and factorization in H∞+C

In this section, we characterize µ ∈ M+
s satisfying conditions (A) and (B).

Lemma 5.1 ([21]) . Let B be a Douglas algebra and let ψ be an inner
function. Then ψB ⊂ H∞ +C if and only if ψ = 0 on M(H∞ +C)\M(B).

In the same way as [11, Lemma 4.2], we have

Lemma 5.2 Let ψ be an inner function. If f ∈ H∞ + C and |f | ≤ |ψ| on
M(H∞ + C), then ψ = 0 on M(H∞ + C) \ M(H∞[f/ψ]).

Hence the proof of [11, Theorem 4.2] actually proved the following.

Proposition 5.1 Let f ∈ H∞ +C and let ψ be an inner function such that
|f | ≤ |ψ| on M(H∞ + C). Then there is a Blaschke product b such that
b = 0 on M(H∞ + C) \ M([H∞[f/ψ]) and {|b| < 1} ⊂ Z(ψ).
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Corollary 5.1 Let f ∈ H∞ + C and let ψ be an inner function such that
|f | ≤ |ψ| on M(H∞ + C). Then there is a Blaschke product b satisfying the
following conditions.

(i) (bf)/ψ ∈ H∞ + C and |bf | = |f | on M(H∞ + C).

(ii) ψ/b ∈ H∞ + C, |ψ/b| = |ψ| on M(H∞ + C), and f/(ψ/b) ∈ H∞ + C.

Proof. By Proposition 5.1, there is a Blaschke product b such that

(5.1) b = 0 on M(H∞ + C) \ M([H∞[f/ψ])

and {|b| < 1} ⊂ Z(ψ). By our assumption, Z(ψ) ⊂ Z(f), so that we have
|bf | = |f | on M(H∞ + C). By (5.1) and Lemma 5.1, (bf)/ψ = b(f/ψ) ∈
H∞ + C.

By Lemma 2.2, ψ/b ∈ H∞ + C and |ψ/b| = |ψ| on M(H∞ + C). And
we have f/(ψ/b) = b(f/ψ) ∈ H∞ + C. �

Proposition 5.2 Let ζ ∈ ∂D. Then δζ does not satisfy condition (A).

Proof. There exists an interpolating sequence {zn}n in D such that

ψδζ
(zn) → 0 as n → ∞.

Let b be the interpolating Blaschke product with zeros {zn}n. Then by
Lemma 2.3, f = ψδζ

/b ∈ H∞ + C and |f | = |ψδζ
| on M(H∞ + C). We also

have f/ψδζ
= 1/b /∈ H∞ +C. Let ν ∈ M+

s such that ν ≤ δζ and |ψν | = |ψδζ
|

on M(H∞ + C). Then ν = δζ . Hence δζ does not satisfy condition (A). �

Let µ ∈ M+
s . Recall that a measure ν with 0 ≤ ν ≤ µ is called an inner

vanishing measure for µ if {|ψν | < 1} ⊂ Z(ψµ). Let µα be the upper band
of inner vanishing measures for µ. We put µβ = µ − µα. Generally µα is
not an inner vanishing measure for µ. The measure µα is called the inner
vanishing part of µ.

The following is the main theorem in this section.

Theorem 5.1 Let µ ∈ M+
s and let µα be the inner vanishing part of µ.

Then the following conditions are equivalent.

(i) Z(ψµα) = Z(ψµ).

(ii) µ satisfies condition (A).

(iii) µ satisfies condition (B).
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To prove our theorem, we need some lemmas.

Lemma 5.3 Let µ ∈ M+
s . Then there exists a sequence of measures {λn}n

in M+
s satisfying the following conditions.

(i) λn is an inner vanishing measure for µ for every n.

(ii) 0 ≤ λn ≤ λn+1 ≤ µ for every n.

(iii) µα = ∨∞
n=1λn.

(iv) µα ⊥ µβ.

(v) If 0 	= ν ≤ µβ, then ν is not an inner vanishing measure for µ.

Proof. Let M be the set of inner vanishing measures for µ and A =
sup{‖λ‖;λ ∈ M}. If λ ∈ M and 0 ≤ σ ≤ λ, then {|ψσ| < 1} ⊂ {|ψλ| < 1},
so that σ ∈ M. If ν1, ν2 ∈ M and ν1+ν2 ≤ µ, then we have ν1+ν2 ∈ M and
ν1∨ν2 ∈ M. Then it is not difficult to find a sequence {λn}n in M satisfying
conditions (i) and (ii), and ‖λn‖ → A as n → ∞. Put µ′

α = ∨∞
n=1λn. Then

‖µ′
α‖ = A and µ′

α ≤ µα.

To prove (iii), suppose not. Then there exists ν ∈ M such that ν 	≤ µ′
α.

Then ‖µ′
α ∨ ν‖ > ‖µ′

α‖ = A. Since λn ∨ ν ∈ M, ‖λn ∨ ν‖ ≤ A. Since
‖λn ∨ ν‖ → ‖µ′

α ∨ ν‖, we have a contradiction.

To prove (iv), suppose not. Then µα ∧ µβ 	= 0. By (iii), λn0 ∧ µβ 	= 0 for
some n0. Since λn0 ∧µβ ≤ λn0 ∈ M, λn0 ∧µβ ∈ M. Since λn +(λn0 ∧µβ) ≤
µα + µβ = µ, we have λn + (λn0 ∧ µβ) ∈ M and ‖λn + (λn0 ∧ µβ)‖ →
A + ‖λn0 ∧ µβ‖ > A. This is a contradiction.

(v) follows from (iv). �

Lemma 5.4 Let µ ∈ M+
s and let µα be the inner vanishing part of µ. Then

there is a sequence of inner vanishing measures {µn}n for µ such that µα =∑∞
n=1 µn.

Proof. Let {λn}n be a sequence of measures given in Lemma 5.3. Put
µ1 = λ1 and µn = λn − λn−1 for n ≥ 2. Then µn is an inner vanishing
measure for µ and

∑∞
n=1 µn = ∨∞

n=1λn. �

Lemma 5.5 Let µ ∈ M+
s and let µα be the inner vanishing part of µ. Sup-

pose that Z(ψµα) 	= Z(ψµ). Then there is an interpolating Blaschke product b
such that {|b| < 1} ⊂ Z(ψµ), ψµ/b ∈ H∞+C, |ψµ/b| = |ψµ| on M(H∞+C),
and ψν/b /∈ H∞ + C for every measure ν ∈ M+

s satisfying Z(ψν) ⊂ Z(ψµα).
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Proof. By our assumption, Z(ψµ) 	⊂ Z(ψµα). Take x ∈ M(H∞ + C) such
that ψµ(x) = 0 and ψµα(x) 	= 0. Then there exists an interpolating Blaschke
product b with zeros {zn}n such that ψµ(zn) → 0 and ψµα(zn) → ψµα(x) as
n → ∞. By Lemma 2.3, ψµ/b ∈ H∞ +C and |ψµ/b| = |ψµ| on M(H∞ +C).
Since Z(b) = cl {zn}n\{zn}n, we have ψµα = ψµα(x) on Z(b). Take y ∈ Z(b).
Then b(y) = 0 and ψµα(y) 	= 0. Let ν ∈ M+

s satisfying Z(ψν) ⊂ Z(ψµα).
Then ψν(y) 	= 0. If ψν/b ∈ H∞ + C, ψν = bh for some h ∈ H∞ + C. Then
we have 0 	= ψν(y) = (bh)(y) = b(y)h(y) = 0. This is a contradiction. �

The following is a key to prove Theorem 5.1.

Lemma 5.6 Let µ ∈ M+
s and let {µn}n be a sequence of inner vanishing

measures for µ such that µ =
∑∞

n=1 µn. Let {bn}n be a sequence of inter-
polating Blaschke products such that

⋃∞
n=1{|bn| < 1} ⊂ Z(ψµ). Then there

exists a measure λ such that 0 ≤ λ ≤ µ and
∞⋃

n=1

{|bn| < 1} ⊂ Z(ψλ) ⊂ {|ψλ| < 1} ⊂ Z(ψµ) .

Proof. Let {cj}j be a sequence of positive numbers such that

(5.2) cj → 0 as j → ∞ and 0 < cj+1 ≤ cj ≤ 1 for every j.

Put

(5.3) λ =

∞∑
j=1

cjµj.

Then 0 ≤ λ ≤ µ. Moreover we have

(5.4) {|ψλ| < 1} ⊂ Z(ψµ).

For, let x ∈ M(H∞ + C) such that |ψλ(x)| < 1. Since λ ≤ µ, Z(ψλ) ⊂
Z(ψµ). Hence to show (5.4), we may assume that

(5.5) 0 < |ψλ(x)| < 1.

Since {|ψµn | < 1} ⊂ Z(ψµ), we may further assume that

(5.6) |ψµj
(x)| = 1 for every j.

For each positive integer n, put

(5.7) λn =

∞∑
j=n

cjµj and µn =

∞∑
j=n

µj.

Then by (5.2),

(5.8) cnµn ≥ λn for every n.
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Now we have

|ψµ(x)| = |ψµn(x)| by (5.6) and (5.7)

≤ |ψλn(x)|1/cn by (5.8)

= |ψλ(x)|1/cn by (5.3), (5.6), and (5.7).

Then by (5.2) and (5.5), we have ψµ(x) = 0. Thus we get (5.4). Next, we

shall find a sequence {cj}j satisfying (5.2) and λ defined by (5.3) satisfies

(5.9)
∞⋃

n=1

{|bn| < 1} ⊂ Z(ψλ).

Let {zn,k}k be the zeros of bn in D. Since
⋃∞

n=1{|bn| < 1} ⊂ Z(ψµ), for each
n we have

(5.10) ψµ(zn,k) → 0 as k → ∞.

By induction, we shall find a strictly increasing sequence of positive inte-
gers {ki}i and a family of sequence of positive integers {ni,j}1≤i≤j satisfying
ni,j < ni,j+1 for j ≥ i,

(5.11) |ψν′
i
(zt,s)| ≤ 2|ψνi−1

(zt,s)| for 1 ≤ t ≤ i, 1 ≤ s ≤ nt,i,

and

(5.12) |ψνi−1
(zt,s)| ≤ (1/2)i for 1 ≤ t ≤ i, s ≥ nt,i,

where we put ν0 = µ, and for each positive integer i we set

(5.13) ν ′
i =

k1∑
j=1

µj +

k2∑
j=k1+1

(1/2)µj + . . . +

ki∑
j=ki−1+1

(1/2)i−1µj

and

(5.14) νi = ν ′
i +

∞∑
j=ki+1

(1/2)iµj.

Since ν0 = µ, by (5.10) there is a positive integer n1,1 such that

|ψν0(z1,s)| ≤ 1

2
for s ≥ n1,1.

Hence (5.12) holds for i = 1. Then there exists a positive integer k1, so we
get ν ′

1 by (5.13), such that |ψν′
1
(z1,s)| ≤ 2|ψν0(z1,s)| for 1 ≤ s ≤ n1,1. Hence

(5.11) holds for i = 1.

Next, suppose that {k1, k2, . . . , kN} and {ni,j ; 1 ≤ i ≤ j ≤ N} are cho-
sen satisfying our conditions. We get ν ′

N and νN by (5.13) and (5.14), re-
spectively. By (5.13) and (5.14), (1/2)Nµ ≤ νN ≤ µ. Hence by (5.10),
ψνN

(zn,k) → 0 as k → ∞ for every n.
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Therefore for each t, 1 ≤ t ≤ N + 1, there exists a positive integer nt,N+1

such that nt,N < nt,N+1 and |ψνN
(zt,s)| ≤ (1/2)N+1 for s ≥ nt,N+1. Then

there exists a positive integer kN+1 such that kN < kN+1 and |ψν′
N+1

(zt,s)| ≤
2|ψνN

(zt,s)| for 1 ≤ t ≤ N +1, 1 ≤ s ≤ nt,N+1. This completes the induction.

Now we define λ as

(5.15) λ =

∞∑
i=0

( ki+1∑
j=ki+1

(1/2)iµj

)
, where k0 = 0.

Put cj = (1/2)i for ki + 1 ≤ j ≤ ki+1. Then (5.2) is satisfied.

To show (5.9) for this λ, by Lemma 2.3 it is sufficient to prove

(5.16) ψλ(zt,k) → 0 as k → ∞ for every t.

Fix a positive integer t. Suppose that k is a sufficiently large integer. Then
there exists a positive integer N , depends on k, such that t < N and

(5.17) nt,N ≤ k < nt,N+1.

By (5.13) and (5.15), ν ′
N+1 ≤ λ. Hence by (5.11) we have

(5.18) |ψλ(zt,k)| ≤ |ψν′
N+1

(zt,k)| ≤ 2|ψνN
(zt,k)|.

By (5.13) and (5.14), we have νN−1 ≤ 2νN , so that |ψνN
|2 ≤ |ψνN−1

| on
M(H∞). Hence by (5.18), we have |ψλ(zt,k)| ≤ 2|ψνN−1

(zt,k)|1/2. Therefore
by (5.12) and (5.17), |ψλ(zt,k)| ≤ 2(1/2)N/2. When k → ∞, we have N → ∞.
Hence ψλ(zt,k) → 0 as k → ∞. Thus we get (5.16). This completes the proof.

�

Proof of Theorem 5.1. (i) ⇒ (ii) Let f ∈ H∞ + C satisfying |f | ≤ |ψµ|
on M(H∞ + C). By Lemma 5.2,

(5.19) ψµ = 0 on M(H∞ + C) \ M(H∞[f/ψµ]).

By [10], there is a sequence of interpolating Blaschke products {bn}n such
that

(5.20)

∞⋃
n=1

{|bn| < 1} = M(H∞ + C) \ M(H∞[f/ψµ]).

By Lemma 5.4, there is a sequence of measures {µn}n in L1
+(µ) such that

µα =
∑∞

n=1 µn and {|ψµn | < 1} ⊂ Z(ψµ) for every n. Since Z(ψµα) = Z(ψµ),
we have {|ψµn | < 1} ⊂ Z(ψµα) for every n. By (5.19) and (5.20), we have⋃∞

n=1{|bn| < 1} ⊂ Z(ψµα). Then by Lemma 5.6, there exists a measure λ
such that 0 ≤ λ ≤ µα and

(5.21)

∞⋃
n=1

{|bn| < 1} ⊂ Z(ψλ) ⊂ {|ψλ| < 1} ⊂ Z(ψµα).
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Since λ/2 also satisfies (5.21) instead of λ, we may assume that

(5.22) 0 ≤ λ ≤ µα/2.

Put ν = µ−λ. Then ν ∈ M+
s . By (5.20), (5.21), and Lemma 5.1, ψλ(f/ψµ) ∈

H∞ + C. Thus we get f/ψν ∈ H∞ + C. By (5.22), µ/2 ≤ ν ≤ µ. Hence
Z(ψν) = Z(ψµ) = Z(µα). By (5.21), we have {|ψλ| < 1} ⊂ Z(ψµα) = Z(ψν).
Therefore we obtain |ψµ| = |ψν ||ψλ| = |ψν | on M(H∞ + C). Thus we get
(ii).

(i) ⇒ (iii) Let ψ be an inner function such that |ψµ| ≤ |ψ| on M(H∞+C).
By Lemma 5.2, ψ = 0 on M(H∞+C)\M(H∞[ψµ/ψ]). Since Z(ψ) ⊂ Z(ψµ),
we have ψµ = 0 on M(H∞ + C) \ M(H∞[ψµ/ψ]). So that by the proof of
(i) ⇒ (ii), there exists a measure λ such that 0 ≤ λ ≤ µα/2 and

(5.23)
M(H∞ + C) \ M(H∞[ψµ/ψ]) ⊂ Z(ψλ) ⊂ {|ψλ| < 1}

⊂ Z(ψµα) = Z(ψµ).

Put ν = λ + µ. Then by (5.23) and Lemma 5.1, ψν/ψ = ψλ(ψµ/ψ) ∈
H∞ + C. We have µ ≤ ν ≤ µ + (µα/2) ≤ 2µ. By (5.23) again, we have
|ψν | = |ψλ||ψµ| = |ψµ|. Thus we get (iii).

Suppose that (i) does not hold. We shall prove that both (ii) and (iii) do
not hold. By Lemma 5.5, there is an interpolating Blaschke product b such
that ψµ/b ∈ H∞ +C, {|b| < 1} ⊂ Z(ψµ), |ψµ/b| = |ψµ| on M(H∞ +C), and

(5.24) ψν/b /∈ H∞ + C for every ν ∈ M+
s satisfying Z(ψν) ⊂ Z(ψµα).

First, to prove that (ii) does not hold, suppose that (ii) holds. Put
f = ψµ/b. Then f ∈ H∞ + C and |f | = |ψµ|. Since (ii) holds,

(5.25) f/ψν ∈ H∞ + C

for some ν ∈ M+
s such that 0 ≤ ν ≤ µ and

(5.26) |ψν | = |ψµ| on M(H∞ + C).

Put λ = µ− ν ≥ 0. Then by (5.26), |ψµ| = |ψν ||ψλ| = |ψλ||ψµ| on M(H∞ +
C). Hence λ is an inner vanishing measure, so that λ ≤ µα. Since Z(ψλ) ⊂
Z(ψµα), by (5.24) we have f/ψν = (ψµ/b)/ψν = ψλ/b /∈ H∞ + C. This
contradicts (5.25). Thus we get (ii) ⇒ (i).

Next, to prove that (iii) does not hold, suppose that (iii) holds. We put
ψ = bψµ. Since {|b| < 1} ⊂ Z(ψµ), we have |ψ| = |ψµ| on M(H∞ + C).
Since (iii) holds, there exists ν ∈ L1

+(µ) such that µ ≤ ν ≤ 2µ, |ψν | = |ψµ|
on M(H∞ + C), and ψν/ψ ∈ H∞ + C. Then we have

(5.27) ψ(ν−µ)/b = ψν/ψ ∈ H∞ + C.
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Put λ = ν −µ. Then λ ≤ µ and |ψµ| = |ψν | = |ψλ||ψµ| ≤ |ψµ|. Thus λ is an
inner vanishing measure for µ. Hence λ ≤ µα. Therefore Z(ψλ) ⊂ Z(ψµα).
Hence by (5.24), we get ψλ/b /∈ H∞ + C. This contradicts (5.27). �

Corollary 5.2 Let µ ∈ M+
s be an outer vanishing measure for some ν ∈

M+
s . Then µα = µ and µ satisfies conditions (A) and (B).

Proof. We have µ ∈ L1
+(ν) and {|ψν | < 1} ⊂ Z(ψµ). Suppose that µβ 	= 0.

Then ν ∧ µβ 	= 0. We have {|ψν∧µβ
| < 1} ⊂ {|ψν | < 1} ⊂ Z(ψµ). This

contradicts Lemma 5.3 (v). Hence µβ = 0 and µα = µ. By Theorem 5.1, µ
satisfies (A) and (B). �

By [17, Section 5], there exists a measure ν ∈ M+
s,d which has an outer

vanishing measure. Applying Corollary 5.2, we get a measure µ ∈ M+
s,d

satisfying conditions (A) and (B). In the same way, by Theorem 4.2 there
exists µ ∈ M+

s,c satisfying conditions (A), (B), and |S(µ)| = 0.

By Theorem 4.1 (iii), we show an existence of a measure µ ∈ M+
s,c such

that {|ψν | < 1} 	⊂ Z(ψµ) for every ν ∈ L1
+(µ). For this µ, we have µα = 0.

Hence µ does not satisfy conditions (A) and (B).

Relating to Theorem 5.1, we have the following problem.

Problem 5.1. Does there exist µ ∈ M+
s such that Z(ψµα) = Z(ψµ) and

µβ 	= 0?

In this paper, we have two decompositions µ = µa +µb = µα +µβ for
µ ∈ M+

s . We shall give an example of µ∈M+
s,d such that µa = µ and µα = 0.

Example 5.1. Let {ζj}j be a distinct sequence in ∂D such that {ζj}j

is dense in ∂D. Let {aj}j be a sequence of positive numbers such that∑∞
j=1 aj < ∞. Let µ =

∑∞
j=1 ajδζj

. Then µ ∈ M+
s,d, and by Corollary 2.2 we

have µa = µ.

We show the existence of {an}n such that µα = 0. Let ν1 =
∑∞

j=1(1/2)jδζj
.

Put a1 = 1/2. By [14, Theorem 4.3], there exists a sequence of positive
numbers {c2,j}j≥2 such that {|ψδζ1

| < 1} ∩ Z(ψν2) = ∅ and ν2 ≤ ν1, where
ν2 =

∑∞
j=2 c2,jδζj

. Put a2 = c2,2. Then there exists a sequence of positive
numbers {c3,j}j≥3 such that {|ψδζ2

| < 1} ∩ Z(ψν3) = ∅ and ν3 ≤ ν2, where
ν3 =

∑∞
j=3 c3,jδζj

. Put a3 = c3,3. Repeat the above argument. Then for each
positive integer n, there exists a sequence of positive numbers {cn,j}j≥n such
that

(5.28) {|ψδζn−1
| < 1} ∩ Z(ψνn) = ∅

and νn ≤ νn−1, where νn =
∑∞

j=n cn,jδζj
.
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Put an = cn,n. As a consequence, we have a sequence {an}n. Put

(5.29) µ =
∞∑

j=1

ajδζj
and µn =

( n∑
j=1

ajδζj

)
+ νn+1.

Since νn ≤ νn−1, we have µ ≤ µn for every n. To prove µα = 0, suppose not.
Then there exists ν ∈ M+

s such that 0 	= ν ≤ µ and {|ψν | < 1} ⊂ Z(ψµ).
Then there exists a positive integer n0 such that ν({ζn0}) > 0. Hence,
{|ψδζn0

| < 1} ⊂ {|ψν | < 1} ⊂ Z(ψµ) ⊂ Z(ψµn0
). Therefore we have

{|ψδζn0
| < 1} = {|ψδζn0

| < 1} ∩ Z(ψµn0
)

= {|ψδζn0
| < 1} ∩ (( n0⋃

j=1

Z(ψδζj
)
) ∪ Z(ψνn0+1)

)
by (5.29)

= {|ψδζn0
| < 1} ∩ Z(ψδζn0

) by (5.28)

= Z(ψδζn0
).

Thus we get {|ψδζn0
| < 1} = Z(ψδζn0

). This is a contradiction.

We have the following problem.

Problem 5.2. Does there exist µ ∈ M+
s,c such that µa = µ and µα = 0?
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