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The infinite Brownian loop on a
symmetric space

Jean–Philippe Anker, Philippe Bougerol and Thierry Jeulin

Abstract

The infinite Brownian loop {B0
t , t ≥ 0} on a Riemannian mani-

fold M is the limit in distribution of the Brownian bridge of length T
around a fixed origin 0, when T → +∞. It has no spectral gap. When
M has nonnegative Ricci curvature, B0 is the Brownian motion itself.
When M = G/K is a noncompact symmetric space, B0 is the rela-
tivized Φ0–process of the Brownian motion, where Φ0 denotes the ba-
sic spherical function of Harish–Chandra, i.e. the K–invariant ground
state of the Laplacian. In this case, we consider the polar decomposi-
tion B0

t = (Kt, Xt), where Kt ∈ K/M and Xt ∈ ā+, the positive Weyl
chamber. Then, as t → +∞, Kt converges and d(0, Xt)/t → 0 almost
surely. Moreover the processes {XtT /

√
T , t ≥ 0} converge in distri-

bution, as T → +∞, to the intrinsic Brownian motion of the Weyl
chamber. This implies in particular that d(0, XtT )/

√
T converges to

a Bessel process of dimension D = rank M + 2j, where j denotes the
number of positive indivisible roots. An ingredient of the proof is a
new estimate on Φ0.

1. Introduction

In order to get some insight into the geometry at infinity of a Riemannian
manifold M, it is natural to look at the asymptotic properties of its Brownian
motion {Bt, t ≥ 0}, i.e. the Markov process with generator ∆/2, where ∆ is
the Laplace Beltrami operator on M. On manifolds with a spectral gap this
can be disappointing. Consider the two following examples of manifolds with
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nonpositive curvature, either M is the universal cover of a compact mani-
fold with negative curvature or M is a Riemannian symmetric space of the
noncompact type. In these cases the asymptotic behavior of the Brownian
motion is completely understood. Let us consider for instance the distance
d(x,Bt) from a fixed point x ∈ M. Then there exists � > 0, σ > 0 such that
1
t
d(x,Bt) → � almost surely and 1

σ
√

t
(d(x,Bt)− t�) converges in distribution

to a Gaussian law N(0, 1) when t → ∞ (see Virtser [54], Orihara [45], Malli-
avin & Malliavin [38], Taylor [53], Babillot [4] for symmetric spaces, Pinsky
[47], Ledrappier [35] for manifolds). The dependence of this result on the
geometry in the large of M is rather poor. This can be intuitively explained:
since Bt goes to infinity with a linear rate it goes too fast to be able to see
the geometry of M.

On the other hand, the so-called central local limit theorem is more
precise. It associates to a symmetric space M an integer D ≥ 3 with the
following property: let m be the Riemannian measure and λ0 > 0 be the
spectral gap, then there is a positive function ϕ on M such that, as t → +∞,

P(Bt ∈ C) ∼ e−tλ0

tD/2

∫
C

ϕdm

for any compact set C with negligible boundary (see [6, 7]). This integer
D is equal to d + 2j, where d is the rank of M and j is the number of
positive indivisible roots. It depends only on the geometry of the Weyl
chamber. Thus it is natural to look for a random process on M such that
the asymptotic behavior of its paths is clearly related to D. Intuitively, this
process should be connected with the Brownian motion, but should go to
infinity slowly and have no spectral gap. This has led us to introduce the
infinite Brownian loop (I.B.L.), which is roughly speaking the limit of the
Brownian motion constrained to come back to its starting point at a very
large time. We will show that the behavior of the radial part of this process
at infinity is the same as the one of the Brownian motion in a D-dimensional
Euclidean space.

Firstly, it is worth defining the infinite Brownian loop on a general Rie-
mannian manifold M. We fix a point a ∈ M. The Brownian bridge B(L)

around a of length L > 0 is the Brownian motion {Bt, 0 ≤ t ≤ L} on M

conditioned by B0 = BL = a.

Definition 1.1 The infinite Brownian loop (B0
t ) around a is, when it exists,

the limit in distribution of the Brownian bridge B(L) as L → +∞.

For any T > 0, the process {B0
t , 0 ≤ t ≤ T} is the limit of {B(L)

t , 0 ≤ t ≤ T}
when L tends to infinity. Thus, this infinite Brownian loop can be seen as
the limit of the beginning of the Brownian bridge.
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We will first show the following theorem. Let pt(x, y) be the heat kernel
and λ0 be the bottom of the spectrum of −∆/2 on L2(M,m) where m is the
Riemannian measure.

Theorem 1.2 On a Riemannian manifold M, the infinite Brownian loop
B0 around a ∈ M exists if and only if the following limit exists:

lim
t→+∞

pt(x, a)

pt(a, a)
= ϕ(x).

In this case ϕ is of class C2, (∆ + 2λ0)ϕ = 0 and B0 is the relativized
ϕ-process, i.e. the Markov process starting from a ∈ M with semigroup P 0

t

given by

P 0
t f(x) = eλ0t

∫
pt(x, y)ϕ(y)

ϕ(x)
f(y) dm(y),

for any measurable f : M �→ R+. Its generator is ∆0/2 where

∆0f =
1

ϕ
∆(fϕ) + 2λ0f = ∆f + 2∇ log ϕ · ∇f.

A positive solution of (∆ + 2λ0)ϕ = 0 is usually called a ground state.
The relativized ϕ-process is a generalized h-process in the sense of Doob.
The processes relativized by a ground state were introduced on general Rie-
mannian manifolds by Sullivan in [51] and [52]. In general there are many
positive ground states. The interesting feature of the infinite Brownian loop
is that it chooses in a canonical way one of them, which is arguably in a
sense the most symmetric one. According to Davies [15], the idea of study-
ing the heat kernel by using ∆0 goes back to Nelson [43] and Gross [25], at
least when there is a unique ground state. It plays a major role in Davies &
Simon [16] for instance.

Often, the infinite Brownian loop is the Brownian motion itself. This
is the case when M = Rn or more generally when the Ricci curvature is
nonnegative. This follows from the following proposition and from Li & Yau
[37]. Notice also that the hypotheses of this proposition are fulfilled for re-
current manifolds. This generalizes Theorem 28 in Davies [15] as conjectured
by himself.

Proposition 1.3 If λ0 = 0 and if the positive harmonic functions are con-
stant, then

lim
t→+∞

pt+s(x, y)

pt(a, a)
= 1

and the infinite Brownian loop is the Brownian motion itself.
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The purpose of this paper is to study in details a class of manifolds with
nonpositive curvature, namely symmetric spaces M = G/K associated with
a noncompact semisimple Lie group G. The infinite Brownian loop in this
case is the relativized ϕ-process, where ϕ is the basic spherical function Φ0

of Harish-Chandra, i.e. the unique K-invariant ground state. Its generator
is

∆0

2
=

∆

2
+ ∇ log Φ0 · ∇.

We will show that its asymptotic behavior depends on the geometry of M

in a more interesting way that the Brownian motion itself. Let us recall the
generalized polar decomposition of M associated with a Cartan decomposi-
tion G = KAK and with a Weyl chamber a+ in a. Let M be the centralizer
of A in K. For any x ∈ M we define k̇(x) ∈ K/M and C(x) ∈ ā+ by the
fact that if k(x) ∈ K is a representative of k̇(x) then

k(x) exp C(x).o = x

where o is the origin in M, i.e. the class K in G/K, C(x) is called the radial
part of x. The main result of this paper is the following. Since the action of
G is transitive on M, there is no restriction to study the I.B.L. only around
o.

Theorem 1.4 Consider the infinite Brownian loop (B0
t ) around o on the

symmetric space M. Then, as T → +∞,

a. Almost surely, k̇(B0
T ) converges in K/M and 1

T
C(B0

T ) → 0.

b. The processes { 1√
T

C(B0
tT ), t ≥ 0} converge in distribution to the in-

trinsic Brownian motion of the Weyl chamber a+.

c. {k̇(B
(0)
tT ), t > 0} and { 1√

T
C(B0

tT ), t ≥ 0} are asymptotically indepen-
dent.

The intrinsic Brownian motion of the Weyl chamber a+ has several equivalent
definitions which will be given in Section 3. Roughly speaking, it is the
usual Euclidean Brownian motion inside the Weyl chamber with Dirichlet
conditions on the walls, conditioned to have infinite lifetime, starting from
0.

The local central limit theorem of [7] appears to be the “local” version
of the “central limit theorem” given by Theorem 1.4. We will also obtain
the following corollary.

Corollary 1.5 As T → +∞, 1
T
d(x,B0

T ) converges almost surely to 0 and
the processes { 1√

T
d(x,B0

tT ), t ≥ 0} converge in distribution to the Bessel
process of dimension D.



The infinite Brownian loop on a symmetric space 45

These results show that the I.B.L. is deeply connected with a process
of dimension D. In a sense, for the infinite Brownian loop D plays the
role of a dimension at infinity of the manifold. This integer D is called
the pseudo-dimension of M by Cowling, Giulini & Meda in [14]. Another
interpretation is available: we will see that the situation is almost trivial
when the group of isometries G of M is complex. In this case D = dim M,
and C(B0

t ) is equal to the intrinsic Brownian motion of the Weyl chamber a+

(without any normalization). Thus Theorem 1.4 shows that complex groups
are models for the general situation. The asymptotic behavior of the radial
part of the I.B.L. is the same for all the symmetric spaces with the same
Weyl chamber. It is the behavior of the radial part of the I.B.L. for the
unique complex group corresponding to this Weyl chamber. For instance
Sl(2, C) is the complex group associated to all rank-one symmetric spaces,
and the limit process is the 3-dimensional Bessel process.

One can also consider simultaneously the two ends of the Brownian bridge
{B(L), 0 ≤ t ≤ L} around a. More generally, given two points a, b ∈ M, it is

also interesting to look at the two ends of the Brownian bridge {B(L,a,b)
t , 0 ≤

t ≤ L} which is the Brownian motion {Bt, 0 ≤ t ≤ L} conditioned by
B0 = a,BL = b.

Definition 1.6 The double-ended infinite Brownian loop (B0
t , B̃

0
t ) from a to

b is, when it exists, the limit in distribution of {(B(L,a,b)
t , B

(L,a,b)
L−t ), 0 ≤ t ≤ L}

as L → +∞.

We will describe its asymptotic behavior on symmetric spaces in Theorem
7.1. We will see that the two ends B0 and B̃0 are not asymptotically inde-
pendent, and that the asymptotic behavior of the first one does depend on
the extremity b of the other one. In a sense, this reflects the importance of
boundaries for these manifolds with nonpositive curvature.

This paper is organized as follows. In Section 2 we present some general
considerations on the infinite Brownian loop and the double-ended infinite
Brownian loop and we prove Theorem 1.2. In Section 3 we present the in-
trinsic Brownian motion of the Weyl chamber, considered by Biane [5] and
Grabiner [23] (after Dyson [19]). We show its relation with the I.B.L. on
symmetric spaces associated with complex groups. Theorem 1.4, which is
the heart of this paper, is proved in Section 5. The almost sure behavior of
the “angular” part follows from the description of the Martin boundary at
the bottom of the spectrum given by Guivarc’h, Ji & Taylor in [27]. For each
fixed t > 0, the convergence of the distribution of C(B0

tT )/
√

T , as T → +∞,
follows easily from the asymptotics of the heat kernel in Anker & Ji [2] for
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instance. But the behavior of the process itself is more difficult since its
generator becomes singular on the walls of the Weyl chamber. To study
this process, we use on the one hand stochastic calculus and in particular
Girsanov’s theorem and, on the other hand, a new estimate on the Harish–
Chandra’s function Φ0 . Specifically we establish in the appendix (Section
8) the boundedness of the derivative E log(δ1/2Φ0) with respect to the Euler
operator E , where δ is the density function in the Cartan decomposition. Its
proof follows Harish–Chandra’s induction argument, i.e. the analysis along
faces of the Weyl chamber is performed by reduction to symmetric subspaces
of lower rank. In Section 6, we describe the behavior of all the relativized
processes at the bottom of spectrum. We shall see that they satisfy a theo-
rem similar to Theorem 1.4, as a straightforward application of our study of
the I.B.L.. Section 7 is devoted to the double-ended infinite Brownian loop.

Notice that the generalization to arbitrary simply connected symmetric
space of the results of this paper is straightforward.

Let us indicate some open questions related to this work. As mentioned
above, Ledrappier [35] has proved the central limit theorem on the universal
covering of a compact manifold with negative curvature. In that context the
local limit theorem is not known. One can ask for conditions ensuring that
the I.B.L. exists and then that its normalized distance to a fixed point con-
verges to a three dimensional Bessel process. In a recent work, Hamenstädt
studies the set of ground states on these manifolds in [28].

Let us consider again the Brownian bridge {B(L)
t , 0 ≤ t ≤ L} of length

L. In this paper we let L → +∞ and then look at the normalized process.
It is also natural to first normalize and then let L → +∞. More precisely
one may study the behavior of {B(L)

tL /
√

L, 0 ≤ t ≤ 1} as L → +∞. With
physical motivations, this question has been considered in Nechaev & Sinäı
[42], Nechaev, Grosberg & Vershik [41], Nechaev [40], Letchikov [36]. It is
shown in [9] that in the rank-one case, the limit of the radial part is the
Brownian excursion. It is natural to conjecture that in the general case the
limit will be the excursion in the Weyl chamber, i.e., roughly speaking, the
Brownian motion in the Weyl chamber conditioned to be at 0 at the times
0 and 1, and inside the chamber between 0 and 1. It is straightforward to
check that this conjecture is true when G is complex, see Remark 4.6. This
problem will be dealt with in a future work (see [10]).
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2. The infinite Brownian loop on a Riemannian mani-
fold

Let M be a Riemannian manifold, not necessarily complete, ∆ its Laplace
Beltrami operator and let {Bt, t ≥ 0} be the associated Brownian motion on
M. By definition (Bt) is the minimal Markov process on M with generator
∆/2. It takes its values in the set Ĉ(R+, M ∪ {∞}) of continuous paths in
the Alexandrov compactification M ∪ {∞} of M which remain in ∞ once
they meet it. Its transition semigroup Pt has a smooth symmetric positive
density pt(x, y) with respect to the Riemannian measure m, when t > 0.
We denote by λ0 the bottom of the spectrum of −∆/2 on L2(M,m). The
purpose of this section is to prove Theorem 1.2 and its analogue for the
double-ended I.B.L. (see Proposition 2.6).

Let us establish some preliminary results. The following lemma occurs
in the proof of Theorem 25 in Davies [15].

Lemma 2.1 For any f ∈ L2 and any x ∈ M,

lim
s→+∞

〈Ps+tf, f〉
〈Psf, f〉 = lim

s→+∞
ps+t(x, x)

ps(x, x)
= e−λ0t.

The next theorem is of general interest. It is inspired by a quotient theorem
of Guivarc’h on Lie groups [26] and by Collet, Martinez & San Martin [11].

Theorem 2.2 For all a ∈ M, the family of functions

{(t, x, y) �→ ps+t(x, y)

ps(a, a)
, s ≥ 1}

is relatively compact for the topology of C1,2 uniform convergence on compact
subsets of R+ × M2. As s → +∞, each limit point Ψ satisfies

Ψ(t, x, y) = e−λ0tψ(x, y)

where
(∆x + 2λ0)ψ = (∆y + 2λ0)ψ = 0.

Proof. Let sn → +∞, sn ≥ 1, and let

un(t, x, y) =
psn+t(x, y)

psn(a, a)
.

It follows from the local parabolic Harnack inequality of Moser [39] that for
each compact set K in M, there exists R > 0 such that

psn+t(x, y) ≤ R psn+t(a, a)
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for any n ∈ N, t ≥ 0, x, y ∈ K (see Theorem 10 of Davies [15]). Since
s �→ ps(a, a) is non increasing (see [15]), this implies that

(2.1) un(t, x, y) ≤ R.

Since sn ≥ 1, un is a solution of the heat equation on (−1, +∞) × M2:(
4

∂

∂t
− ∆x − ∆y

)
un = 0.

It thus follows from the Schauder parabolic estimates (see, e.g., Theorem
3.3.5 in Friedman [21]) and from (2.1) that for each 0 < α < 1 and each
compact set K0 of R+ × M2, there is C0 > 0 and C ′

0 > 0 such that (using
local coordinates and Di equal first to ∂

∂xi
and then to ∂

∂yi
),

‖∂un

∂t
‖α,K0 + ‖un‖α,K0 +

∑
i

‖Diun‖α,K0 +
∑
i,j

‖DiDjun‖α,K0

≤ C0 sup
(t,x,y)∈K0

un(t, x, y) ≤ C ′
0,(2.2)

where ‖ · ‖α,K0 is the Hölder norm of order α on K0 for the distance

d̃((t, x, y), (t′, x′, y′)) = (d(x, x′)2 + d(y, y′)2 + |t − t′|)1/2.

This implies (by a diagonal argument) that there is a subsequence nk such
that the functions (t, x, y) �→ unk

(t, x, y) and their derivatives (up to the
first order in t and second order in x, y) converge uniformly on the compact
subsets of R+×M2. Let Ψ(t, x, y) be the limit of this subsequence. For each
x ∈ M, (t, y) �→ Ψ(t, x, y) is a smooth solution of the heat equation:

(2.3) (
∂

∂t
− ∆y

2
)Ψ = 0.

Let f and g be two continuous functions with compact support on M and
let rk = 1/psnk

(a, a). Then

lim
k→+∞

rk〈Psnk
+tf, f〉 = lim

k→+∞

∫∫
f(x)f(y)unk

(t, x, y)dm(x)dm(y)

=

∫∫
f(x)f(y)Ψ(t, x, y) dm(x) dm(y),

hence if
∫∫

f(x)f(y)Ψ(0, x, y)dm(x)dm(y) �= 0,

lim
k→+∞

〈Psnk
+tf, f〉

〈Psnk
f, f〉 =

∫∫
f(x)f(y)Ψ(t, x, y)dm(x)dm(y)∫∫
f(x)f(y)Ψ(0, x, y)dm(x)dm(y)

.



The infinite Brownian loop on a symmetric space 49

It follows from Lemma 2.1 that∫∫
f(x)f(y)Ψ(t, x, y)dm(x)dm(y) = e−λ0t

∫∫
f(x)f(y)Ψ(0, x, y)dm(x)dm(y)

and by polarization∫∫
f(x)g(y)Ψ(t, x, y)dm(x)dm(y) = e−λ0t

∫∫
f(x)g(y)Ψ(0, x, y)dm(x)dm(y)

hence Ψ(t, x, y) = e−λ0tψ(x, y) if ψ(x, y) = Ψ(0, x, y). Now ψ(x, y) = ψ(y, x)
and

(2
∂

∂t
− ∆y)Ψ(t, x, y) = −e−λ0t(2λ0 + ∆y)ψ(x, y)

hence (2λ0 + ∆y)ψ(x, y) = (2λ0 + ∆y)ψ(y, x) = 0 by (2.3). �

We will also use the following lemma, which is Theorem 4.1.1 of Pinsky
[49] adapted to our setting. It introduces the notion of relativized ϕ-process
which is coincides with the notion of h-process due to Doob when λ0 = 0.

Lemma 2.3 Let ϕ be a positive C2 function on M such that (∆+2λ0)ϕ = 0.
Consider the second order elliptic operator Lϕ defined by

Lϕf =
1

2ϕ
∆(fϕ) + λ0f =

1

2
∆f + ∇ log ϕ · ∇f.

The semigroup of the minimal Markov process associated with Lϕ has the
transition semigroup (Pϕ

t ) defined by

Pϕ
t f(x) =

∫
eλ0tpt(x, y)ϕ(y)

ϕ(x)
f(y) dm(y),

for all measurable f : M → R+ and all x ∈ M. We call it the relativized
ϕ-process.

The relativized ϕ-process takes its values in Ĉ(R+, M∪ {∞}), see Azencott
[3] or Ikeda & Watanabe [33], Theorem 5.1.1. It is nonexploding and thus
C(R+, M)-valued if and only if Ptϕ = e−λ0tϕ for some t > 0.

For a fixed point a ∈ M, the Brownian bridge of length L around a is
intuitively the Brownian motion {Bt, 0 ≤ t ≤ L} conditioned by {B0 =
BL = a}. It is rigorously defined as the non-homogeneous Markov process
{B(L), 0 ≤ t ≤ L} on M with generator

∆

2
+ ∇(log pL−t(·, a)) · ∇
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starting from a. Its transition kernel P
(L)
s,t is given when 0 < s < t < L by

(2.4) P
(L)
s,t f(x) =

∫
M

ps(a, x)pt−s(x, y)pL−t(y, a)

pL(a, a)
f(y) dm(y).

We equip Ĉ(R+, M∪{∞}) with the topology of uniform convergence on
compact sets. We define the infinite Brownian loop around a as the limit of
B(L) in distribution in Ĉ(R+, M∪{∞}) as L → +∞, when this limit exists.

Proof of Theorem 1.2. Let Ft be the σ-algebra generated by the eval-
uation maps ωs, 0 ≤ s ≤ t, on Ĉ(R+, M ∪ {∞}). We denote by Pa the

distribution of the Brownian motion B starting at a and by P
(L)
a the dis-

tribution of the Brownian bridge B(L) around a. The distribution Q of the
infinite Brownian loop around a is the weak limit of P

(L)
a as L → +∞. By

definition, this means that for any t > 0 and any Ft-measurable continuous
bounded function F on Ĉ(R+, M ∪ {∞}), ∫ F dP

(L)
a converges to

∫
F dQ,

i.e.

(2.5) lim
L→+∞

Ea

[
F

pL−t(Bt, a)

pL(a, a)

]
=

∫
F dQ

since it follows from (2.4) that∫
F dP(L)

a = Ea

[
F

pL−t(Bt, a)

pL(a, a)

]
.

Let us first suppose that the I.B.L. around a exists. By Theorem 2.2, the
set of functions x �→ pL(x, a)/pL(a, a) is relatively compact for the topology
of uniform convergence on compact sets. Let ϕ be a limit point of this set as
L tends to infinity along a suitable sequence (Ln). It follows from Lemma
2.1 that, for all t ≥ 0

lim
n→+∞

pLn(x, a)

pLn+t(a, a)
= lim

n→+∞
pLn(x, a)

pLn(a, a)

pLn(a, a)

pLn+t(a, a)
= eλ0tϕ(x).

We deduce from (2.5) that for any continuous function f : M �→ R with
compact support,∫

f(ωt) dQ(ω) = lim
n→+∞

Ea

[
f(Bt)

p(Ln+t)−t(Bt, a)

pLn+t(a, a)

]
= Ea

[
f(Bt)ϕ(Bt)e

λ0t
]
.

This formula determines ϕ, hence the functions pL(·, a)/pL(a, a) do indeed
converge to ϕ as L → +∞.
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Conversely, let us suppose that pL(·, a)/pL(a, a) converges to some func-
tion ϕ and let us show that the I.B.L. converges to the relativized ϕ-process.
It follows from Lemma 2.1 and Theorem 2.2 that pL−t(x, a)/pL(a, a) con-
verges to eλ0tϕ(x) uniformly on compact sets and that (∆ + 2λ0)ϕ = 0.

We first suppose that the relativized ϕ-process does not explode. In this
case Ptϕ = e−λ0tϕ, thus

Ea[e
λ0tϕ(Bt)] = eλ0tPtϕ(a) = ϕ(a) = 1.

Therefore, for any L > t,

Ea

[
pL−t(Bt, a)

pL(a, a)

]
= 1 = Ea[e

λ0tϕ(Bt)].

Hence pL−t(Bt,a)

pL(a,a)
converges to eλ0tϕ(Bt) in L1(Pa) by Scheffe’s theorem. Thus,

for any Ft-measurable bounded function F ,

lim
L→+∞

Ea

[
F

pL−t(Bt, a)

pL(a, a)

]
= Ea

[
Feλ0tϕ(Bt)

]
=

∫
F dQ,

and (2.5) holds.
If there is explosion, the proof is more delicate (there is no explosion on

symmetric spaces, thus this proof will not be used in other sections). Let
Q be the distribution on Ĉ(R+, M ∪ {∞}) of the relativized ϕ-process. Let
ζ(ω) = inf{t ≥ 0; ωt = ∞}. For all stopping time σ, if F is a bounded
Fσ-measurable bounded random variable

(2.6) Ea

[
Feλ0σϕ (Bσ) ; σ < ζ

]
= Q [F ; σ < ζ] .

We first verify this formula when σ takes its values in a finite set {tk, 1 ≤
k ≤ n}. In this case,

Ea

[
Feλ0σϕ (Bσ) ; σ < ζ

]
=

n∑
i=1

Ea

[
Feλ0tiϕ (Bti) ; σ = ti, Bti ∈ M

]
=

n∑
i=1

Q [F ; σ = ti, ωti ∈ M] = Q [F ; σ < ζ] .

One then uses the fact that every stopping time σ is the limit of a decreasing
sequence (σn) of such finite valued stopping times (notice that eλ0σnϕ (Bσn)
is a supermartingale and thus converges to eλ0σϕ (Bσ) in L1). Actually
this formula is well known and characterizes Q as the Föllmer’s measure
associated with the supermartingale eλ0tϕ (Bt) under Pa (see Föllmer [20] or
Dellacherie & Meyer [18], XVI.2.29), however we will only use (2.6).
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Let T > 0. We have to prove that, for any bounded FT -measurable
uniformly continuous function Ψ on Ĉ (R+, M ∪ {∞}),

lim
L→+∞

E(L)
a [Ψ] = Q [Ψ] .(2.7)

Let K be some compact set in M with a ∈ K. Define

� = sup {t ≤ T | Bt ∈ K} .

Let also B
(t)
s = Bs∧t. When � < u ≤ T , Bu is in Kc, hence

∣∣Ψ (B(�)
)− Ψ(B)

∣∣
is uniformly controlled by the distance of ∞ to K and can be made arbitrary
small by an appropriate choice of K. Thus it remains to prove that

lim
L→+∞

E(L)
a [J�] = Q [J�](2.8)

where Jt = Ψ
(
B(t)
)
. Let (Vt) be some adapted bounded increasing process.

Let us first show that

(2.9) lim
L→+∞

E(L)
a [V�] = Q[V�].

For s ∈ [0, T ], let
σ (s) = inf {t ≥ s | Bt ∈ K} ,

one has,
{s ≤ �} = {σ (s) ≤ T} .

Using Theorem 2.2 we can choose a C > 0 such that

pL−t (x, a)

pL (a, a)
≤ C

for all t ∈ [0, T ], x ∈ K,L ≥ 2T . We have

E
(L)
a [V�] = Ea

[
pL−T (BT ,a)

pL(a,a)

∫
[0,T ]

1{s≤�} dVs

]
= Ea

[∫
[0,T ]

Ea

[
pL−T (BT ,a)

pL(a,a)
1{σ(s)≤T} | Fσ(s)

]
dVs

]
= Ea

[∫
[0,T ]

pL−σ(s)(Bσ(s),a)
pL(a,a)

1{σ(s)≤T} dVs

]
≤ C Ea

[∫
[0,T ]

1{σ(s)≤T} dVs

]
= CEa[V�].

Thus

(2.10) E(L)
a [V�] ≤ C Ea[V�].
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On the other hand, using Lebesgue’s theorem,

E
(L)
a [V�] = Ea

[∫
[0,T ]

pL−σ(s)(Bσ(s),a)
pL(a,a)

1{σ(s)≤T} dVs

]
−→

L→+∞
Ea

[∫
[0,T ]

eλ0σ(s)ϕ
(
Bσ(s)

)
1{σ(s)≤T} dVs

]
.

Now, let v be the right-continuous inverse of V . One has, using (2.6),

Ea

[∫
[0,T ]

eλ0σ(s) ϕ
(
Bσ(s)

)
1{σ(s)≤T} dVs

]
=

∫ +∞

0

Ea

[
eλ0σ(v(y))ϕ

(
Bσ(v(y))

)
; σ (v (y)) ≤ T

]
dy

=

∫ +∞

0

Ea

[
eλ0σ(v(y))ϕ

(
Bσ(v(y))

)
; σ (v (y)) ≤ T, σ (v (y)) < ζ

]
dy

=

∫ +∞

0

Q [ σ (v (y)) ≤ T, σ (v (y)) < ζ] dy

= Q

[∫ +∞

0

1{σ(v(y))<ζ, σ(v(y))≤T} dy

]
= Q

[∫ +∞

0

1{σ(s)<ζ, σ(s)≤T} dVs

]
= Q

[∫ +∞

0

1{s≤�} dVs

]
= Q [V�] ,

since Q [σ(s) < ζ] = 1. This shows (2.9). Let us now prove (2.8). The
process J is continuous, adapted and bounded. Define for ε > 0,

J
(ε)
t =

∫ t

−∞
J (t − x)

1

ε
g
(x

ε

)
dx,

where g is a smooth nonnegative bounded function on R, with support in
]0, 1[ such that

∫
R

g (x) dx = 1. The map t → J
(ε)
t is C1, with a bounded

derivative when 0 ≤ t ≤ T . Therefore J (ε) is the difference of two bounded
increasing processes, and it follows from (2.9) that

(2.11) lim
L→+∞

E(L)
a

[
J

(ε)
�

]
= Q
[
J

(ε)
�

]
.

Since |J (ε)
t − Jt| ≤ supa,b≤t,|a−b|<ε |Ja − Jb| , one also has for all L > 0, by

(2.10),

E(L)
a

[
|J (ε)

� − J�|
]
≤ C Ea

[
supa,b≤�,|a−b|<ε |Ja − Jb|

] →
ε→0

0,

thus (2.11) implies that (2.8) holds. This concludes the proof. �
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The following proposition is straightforward. Notice that it implies that
the infinite Brownian loop has no spectral gap on L2(ϕ2.m) and that it is
its own I.B.L.

Proposition 2.4 Let ϕ be the ground state associated with the I.B.L. around
a and let p0

t be the density of its semigroup with respect to the measure ϕ2.m.

Then p0
t (x, y) = p0

t (y, x) = eλ0tpt(x,y)
ϕ(x)ϕ(y)

for all x, y ∈ M and

lim
t→+∞

p0
t+s(b, a)

p0
t (a, a)

= 1

for all s > 0 and b ∈ M.

Let us give two examples. Consider first a complete model manifold M

in the sense of Grigor’yan [24], also called a spherically symmetric manifold
with a pole. Without loss of generality, one can take M = Rn with a
Riemannian metric which can be written in polar coordinates as

ds2 = dr2 + σ2(r)dθ2

where dθ2 is the standard metric on the sphere Sn−1. Necessarily the function
σ is a smooth positive function on R+ and σ(0) = 0, σ′(0) = 1.

Corollary 2.5 On a complete model manifold, the I.B.L. around 0 exists.
It is equal to its Brownian motion when λ0 = 0.

Proof. The heat kernel pt(x, 0) depends only on r = d(0, x). Therefore, if
for some tk → +∞,

ϕ(x) = lim
k→+∞

ptk(x, 0)

ptk(0, 0)
,

then ϕ is radial: there is a smooth positive function f on R+ such that
ϕ(x) = f(d(0, x)). It follows from Theorem 2.2 that (∆ + 2λ0)ϕ = 0. In
polar coordinates the Laplace Beltrami operator ∆ is given by

∆ =
∂2

∂r2
+ (n − 1)

σ′

σ

∂

∂r
+

1

σ2
∆θ

(see [24]), hence f ′′ + (n − 1)σ′
σ
f ′ = 2λ0f. By the theorems 1.2 and 2.2, we

are reduced to proving that all the smooth positive solutions of this equation
are proportional. If g is another solution and h = (g/f)′, then

h′ + [log(f 2σn−1)]′h = 0.
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Thus there is a c ≥ 0 such that h = cf−2σ1−n. This function is smooth
only if c = 0, i.e. when f and g are proportional. When λ0 = 0, g ≡ 1 is a
solution, hence ϕ ≡ 1. �

Another interesting example is the Brownian motion of M = R∗
+. This is

the usual Brownian motion on R+ killed when it reaches 0. If follows from
the reflexion principle that

pt(x, y) =
1√
2πt

[
exp(−(x − y)2

2t
) − exp(−(x + y)2

2t
)

]
which implies that, for all x, y, a, b > 0, s > 0,

lim
t→+∞

pt+s(x, y)

pt(a, b)
=

xy

ab
.

In this case λ0 = 0 and ϕ(x) = x. Thus B0 is the 3-dimensional Bessel
process. The intrinsic Brownian motion in a Weyl chamber considered in
Section 3 is a generalization of this example to some other cones.

One can also consider the simultaneous behavior of the two ends of the
Brownian bridge {B(L), 0 ≤ t ≤ L} around a as L → ∞. More generally,
given two points a, b ∈ M, it is interesting to look at the two ends of the
Brownian bridge {B(L,a,b)

t , 0 ≤ t ≤ L} which is the Brownian motion {Bt, 0 ≤
t ≤ L} conditioned by B0 = a,BL = b. We first observe that if F and G are
two bounded Ft-measurable functions on Ĉ(R+, M∪{∞}), then, as soon as
L > 2t,

E
[
F (B(L,a,b)

s , s ≤ t)G(B
(L,a,b)
L−s , s ≤ t)

]
= E

[
F (Bs, s ≤ t)

pL−2t(Bt, B̃t)

pL(a, b)
G(B̃s, s ≤ t)

]
,

where B and B̃ are two independent copies of the Brownian motion on M,
such that B0 = a, B̃0 = b (in other words (B, B̃) is the Brownian motion on
M2 starting from (a, b)). Using this representation, the proof of the following
proposition is the same as the proof of Theorem 1.2.

Proposition 2.6 As L → +∞, the processes {(B(L,a,b)
t , B

(L,a,b)
L−t ), 0 ≤ t ≤

L} converge in distribution if and only if the limit

(2.12) ψ(x, y) = lim
t→+∞

pt(x, y)

pt(a, b)

exists for all x, y ∈ M. The function ψ is a ground state for the Brownian
motion on M2. The limit process (B0, B̃0) is the relativized ψ-process, start-
ing from (a, b). We call it the double-ended infinite Brownian loop from a
to b.
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Notice that the two ends B0 and B̃0 are independent if and only if one can
write ψ as a product (i.e. ψ(x, y) = ϕ(x)ϕ(y)). Recently, Collet, Martinez
& San Martin [11] have given very interesting examples of domains in Rn

where (2.12) holds and where ψ is not a product.
Proposition 1.3 is a consequence of:

Corollary 2.7 Suppose that there is a unique ground state, i.e. a unique
C2 positive solution ϕ of (∆ + 2λ0)ϕ = 0, up to a multiplicative constant.
Then

(2.13) lim
s→+∞

ps+t(x, y)

ps(a, b)
= e−λ0t ϕ(x)ϕ(y)

ϕ(a)ϕ(b)

for all x, y, a, b ∈ M. The infinite Brownian loop is the relativized ϕ-process
and the double-ended infinite Brownian loop is given by two independent
copies of the relativized ϕ-process.

Proof. By Theorem 2.2, the set of functions {(x, y) �→ ps(x, y)/ps(a, a), s ≥
1} is relatively compact. Let ψ be a limit point of this set as s → +∞. For
each y ∈ M, x �→ ψ(x, y) is a ground state, hence there exists c(y) > 0 such
that ψ(x, y) = c(y)ϕ(x). Since y �→ ψ(x, y) is also a ground state, there
exists γ > 0 such that c(y) = γϕ(y). Thus ψ(x, y) = γϕ(x)ϕ(y). Noticing

that ψ(a, a) = 1 we obtain that ψ(x, y) = ϕ(y)ϕ(x)
ϕ(a)ϕ(a)

. One concludes easily the
proof by using Lemma 2.1. �
Example 1. Suppose that M is a λ0-recurrent manifold, i.e.∫ ∞

1

eλ0tpt(x, y) dt = +∞

for some x, y in M. Then there is a unique ground state (see Theorem 4.3.4
in Pinsky [49]). Hence the corollary holds in this situation. This generalizes
Theorem 28 in Davies [15].

Example 2. If M has a nonnegative Ricci curvature it follows from Li
& Yau [37] that the hypothesis of the corollary holds true with λ0 = 0.
This was already proved by Davies (see [15], Theorem 27). The same result
is obviously true for compact manifolds. In these cases the I.B.L. is the
Brownian motion itself.

Example 3. If M is a bounded connected open set in Rn with smooth
boundary, then it is well known that there is a unique ground state. Hence
the corollary holds. The I.B.L. is the same as the Euclidean Brownian motion
in M killed at the boundary and conditioned to have an infinite lifetime, see
Pinsky [48]. This is also the intrinsic process considered in Davies & Simon
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[16, 17]. Some unbounded domains are studied in Collet, Martinez & San
Martin [11, 12].

Example 4. It follows from Sullivan [52], Example 8.4, that the (double-
ended) I.B.L. does not explode when the geometry of M is bounded. On
the other hand, Pinchover has given in [46] an example of an exploding
Brownian motion on a Riemannian manifold such that λ0 = 0 and such that
the only positive harmonic functions are constant. In this case the I.B.L. is
the Brownian motion itself and thus is exploding.

Davies [15] has conjectured that

lim
t→+∞

pt(x, y)

pt(a, a)

exists on any Riemannian manifold. This amounts to the existence of the
double-ended I.B.L.

3. The intrinsic Brownian motion of a Weyl chamber

3.1. A definition of the intrinsic B.M. of a Weyl chamber

Let a be an Euclidean space of dimension d equipped with a reduced root
system Σ0 ⊂ a, see Helgason ([31], X.3.1). Recall that a root system is
reduced if the only roots proportional to a root α are α and −α. We choose
a Weyl chamber a+ in a, i.e. a connected component of {x ∈ a ; 〈α, x〉 �=
0,∀α ∈ Σ0}. This is an open convex cone. Let ā+ be its closure and
∂a+ = ā+ − a+ be its boundary. The set of positive roots is Σ+

0 = {α ∈
Σ0 ; 〈α, x〉 > 0,∀x ∈ a+}. The function

(3.1) π(x) =
∏

α∈Σ+
0

〈α, x〉, x ∈ a.

is harmonic for the Euclidean Laplacian ∆a on a, cf. Helgason ([32], Theorem
III.3.6). Biane [5] and Grabiner [23] have considered the following stochastic
process in a+ ∪ {0} which will play a major role in this paper.

Definition 3.1 The intrinsic Brownian motion of a+ is the continuous Mar-
kov process Zt such that Z0 = 0, and for all t > 0,

(i) Zt ∈ a+ and Zt is the relativized π-process of the Brownian motion on
a+ killed at the boundary ∂a+. We denote by ht(x, y), x, y ∈ a+, the
density of its semigroup with respect to the Lebesgue measure.

(ii) The distribution of Zt has the density ht(0, y) = limx→0 ht(x, y).
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By definition the generator of Zt inside a+ is

(3.2) Lπ =
1

2
∆a + ∇a log π · ∇a.

where ∆a is the Euclidean Laplacian on a and ∇a is its gradient. As noticed
by Biane, π is, up to a multiplicative constant, the unique positive harmonic
function on a+ equal to 0 on the boundary. Therefore, inside a+, the intrinsic
Brownian motion can be interpreted as the Brownian motion in a+, killed
at the boundary and conditioned to go to ∞, or equivalently conditioned to
remains alive. In some particular cases, this process inside a+ was already
considered by Dyson [19], see also Neveu [44]. The name “intrinsic” is
borrowed from Davies & Simon [16], [17].

The point 0 is singular in a+ ∪ {0}. This explain why the entry distri-
bution of the Markov process starting at 0 has to be specified by (ii). Since
the finite-dimensional distributions are given, the definition determines the
process. However, its existence is not completely obvious. We will show it in
the next subsection by an explicit construction as a generalized Bessel pro-
cess. The fact that Zt remains in a+ for all t > 0 is related to the following
lemma that we will need later.

Lemma 3.2 Let βt be a Brownian motion on a. For any x ∈ a+, the
solution of the stochastic integral equation

(3.3) Xt = x + βt +

∫ t

0

∇a log π (Xs) ds

is in a+ for all t > 0.

Proof. The function ∇a log π is C∞ on a+. Thus the equation (3.3) has a
unique maximal solution X in a+, defined on a time interval [0, ζ[ where ζ
is an explosion time or the exit time from a+. The function π is harmonic
and positive on a+, hence

∆aπ
−1 + 2

〈∇a log π,∇aπ
−1
〉

= 0.

By Ito’s formula, π−1 (Xt∧ζ) is a positive local martingale, thus it converges
a.s. when t → +∞. Since π = 0 on ∂a+, this implies that ‖Xt‖→+∞ when
t → ζ. On the other hand E log π = |Σ+

0 | where E =
∑d

i=1 xi
∂

∂xi
is the Euler

operator on a and d = dim a. Let D = d + 2|Σ+
0 |. By Ito’s formula,

‖Xt∧ζ‖2 = ‖x‖2 + 2

∫ t∧ζ

0

〈Xs, dβs〉 + 2

∫ t∧ζ

0

E (log π) (Xs) ds + ( t ∧ ζ)d

= ‖x‖2 + 2

∫ t∧ζ

0

‖Xs‖ dβ̃s + (t ∧ ζ)D.
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where β̃ is the stopped real Brownian motion

β̃t =

∫ t∧ζ

0

‖Xs‖−1 〈Xs, dβs〉 .

This shows that ‖Xt∧ζ‖2 is the square of a D-dimensional Bessel process,
stopped at time ζ (see Yamada [56] or Revuz & Yor [50], XI.1). Since
Xt → +∞ when t → ζ, one has ζ = +∞ almost surely. �

3.2. The intrinsic Brownian motion of a Weyl chamber as a gen-
eralized Bessel process

In this subsection we consider a complex semisimple Lie algebra g. Let J
be the complex structure, k be a compact real form of g and p = Jk. Then
g = k + p is a Cartan decomposition of g. The adjoint group K of k is
compact. We equip p with the Euclidean structure given by the Killing
form. For each k ∈ K, Ad(k)p = p and Ad(k) is a linear isometry of p.
Let a be a maximal Abelian subspace of p. Since g is complex, the root
system associated with the pair (g, a) is reduced, hence we denote it by
Σ0. Let a+ be a Weyl chamber in a. We can introduce a generalized polar
decomposition in p: for each x ∈ p there exists k ∈ K and R(x) ∈ ā+ such
that x = Ad(k)R(x). The element R(x) is uniquely determined.

Proposition 3.3 Let g be a complex semisimple Lie algebra. If Wt is the
Euclidean Brownian motion on p starting from 0, then R(Wt) is the intrinsic
Brownian motion of a+.

Proof. Let ∆p be the Euclidean Laplacian on p. Since g is complex, it
follows from Helgason ([32], Proposition II.3.13) that the radial part of 1

2
∆p

on a+ is the operator Lπ defined by (3.2). Therefore the generator of R(Wt)
inside a+ is Lπ. For all measurable f : p → R+,

(3.4)

∫
p

f(x) dx = c0

∫
K

∫
a+

f(Ad(k)y) π(y)2 dk dy

(see Helgason, [30], Proposition X.1.17, [32], Theorem I.5.17) where dx and
dy are the Lebesgue measures on p and a+, dk is the normalized Haar
measure on K, π(y) =

∏
α∈Σ+

0
〈α, y〉 and c0 = Vol(K/M). Let D = dim p.

The density of the semigroup of the Brownian motion Wt is gt(x1, x2) =
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(2πt)−D/2e−
‖x1−x2‖2

2t . Therefore if f is a bounded measurable function on ā2
+,

E[f(R(Ws), R(Ws+t))] =

∫
p2

f(R(x1), R(x2))gs(0, x1)gt(x1, x2) dx1dx2

=

∫
a2
+

f(y1, y2)c
2
0π(y1)

2π(y2)
2 ×

×
{∫

K2

gs(0, Ad(k1)y1)gt(Ad(k1)y1, Ad(k2)y2) dk1dk2

}
dy1dy2

=

∫
a2
+

f(y1, y2)c
2
0π(y1)

2π(y2)
2

{∫
K2

gs(0, y1)gt(y1, Ad(k−1
1 k2)y2) dk1dk2

}
dy1dy2

=

∫
a2
+

f(y1, y2)gs(0, y1)c0π(y1)
2

{∫
K

gt(y1, Ad(k)y2)c0π(y2)
2 dk

}
dy1dy2

This shows that the density ht(y1, y2) of the semigroup of R(Wt) is

ht(y1, y2) = c0π(y2)
2

∫
K

gt(y1, Ad(k)y2) dk

=
c0

(2πt)D/2
π(y2)

2

∫
K

exp(−‖y1 − Ad(k)y2‖2

2t
) dk,

and that

(3.5) hs(0, y) = c0(2πs)−(D/2) π2(y) e−
‖y‖2
2s

Thus ht(0, y2) = limy1→0 ht(y1, y2). This also implies that, for all t0 > 0
fixed, R(Wt0) ∈ a+ almost surely. For t > t0, Xt = R(Wt0+t) is a solution of
(3.3), hence R(Wt) ∈ a+ for all t ≥ t0, by Lemma 3.2. Since t0 is arbitrary,
R(Wt) ∈ a+ for all t > 0. We have verified that R(Wt) satisfies all the
properties of the intrinsic Brownian motion of a+. �

Of course, c0 can be computed:

c0 = (2π)|Σ
+
0 |π(ρ0)−1 where ρ0 =

1

2

∑
α∈Σ+

0

α .

By writing that h1(0, x) is the density of a probability measure, this formula
is equivalent to the relation

h1(0, x) =
1

π(ρ0)(2π)d/2
π(x)2e−

‖x‖2
2 .
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We will obtain it in the proof of Lemma 5.7. It can also be proved directly by
applying the differential operator π( ∂

∂λ
)2
∣∣
λ=0

to the classical Fourier trans-
form ∫

a

e−
‖x‖2

2 e i 〈λ,x〉 dx = (2π)
d
2 e−

‖λ‖2
2 .

The intrinsic Brownian motion R(Wt) is scale invariant: for any T > 0,
{ 1√

T
R(WtT ), t ≥ 0} has the same distribution as {R(Wt), t ≥ 0}. Since

R(Wt) is a generalized radial part of a standard Brownian motion, we can
consider it as a generalized Bessel process, notice that ‖R(Wt)‖ = ‖Wt‖.

Let us consider now a general Weyl chamber a+ in an Euclidean space a

as defined in 3.1. The integer

D = dim a + 2 |Σ+
0 |,

depends only on a+. It follows from Dynkin’s classification that there is
exactly one complex semisimple Lie algebra g with Weyl chamber a+ (see
Helgason [31], X.3.3). Thus the above proposition gives a realization of
the intrinsic Brownian motion for every Weyl chamber. When g is complex,
D = dim p = 1

2
dim g. Therefore we see that ‖R(Wt)‖ is also the norm of the

D-dimensional Brownian motion ‖Wt‖. In other words (see also Grabiner
[23] or the proof of Lemma 3.2)

Corollary 3.4 The norm of the intrinsic B.M. of a+ is a Bessel process of
dimension D.

For instance, when a = R, a+ = R∗
+ and the infinite Brownian loop is the

Bessel process of dimension 3. In this case π(x) = x and g = sl(2, C).

4. The infinite Brownian loop on symmetric spaces

In this section we study the I.B.L. on a Riemannian simply connected sym-
metric space. Any symmetric space M can be decomposed as the direct
product M = M1×M2×M3, where M1 is of the so-called noncompact type,
M2 is of the Euclidean type (i.e. M2 = Rd for some d > 0) and M3 is of
the compact type (i.e. M3 is compact). The metric is the product metric,
hence the Brownian motion W on M can be written as W = (B,B′, B′′),
where B,B′, B′′ are three independent Brownian motions. The processes
B′ and B′′ are their own I.B.L., hence the infinite Brownian loop on M is
W (0) = (B(0), B′, B′′), where B(0) is the I.B.L. of B. Thus we are reduce to
studying only the noncompact type component.

From now on, let us consider a symmetric space M of the noncompact
type. By definition, one can write M = G/K, where G is a semisimple
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noncompact connected group with finite center and K is a maximal compact
subgroup of G. Let g and k be the Lie algebras of G and K and let g = k+p

be the Cartan decomposition. We choose a maximal Abelian subspace a of
p. We equip it with the Euclidean structure given by the Killing form and
use it to identify a with its dual. Let Σ be the root system of (g, a), a+ an
open Weyl chamber and Σ+ the corresponding set of positive roots. The set
of indivisible roots Σ0 = {α ∈ Σ; 1

2
α /∈ Σ} is a reduced root system. We set

Σ+
0 = Σ+ ∩ Σ0 and |Σ+

0 | = Card Σ+
0 .

Let us recall the polar decomposition on M. We choose o = K to be
the origin in M. Let M be the centralizer of A in K. For any x ∈ M, let
k̇(x) ∈ K/M and C(x) ∈ ā+ be such that

k(x) exp C(x).o = x.

where k(x) ∈ K is a representative of k̇(x). Such a decomposition always
exists. The (generalized) radial component C(x) is uniquely determined. It
is also the case for k̇(x) provided C(x) ∈ a+. Let mα be the multiplicity of
the root α and

(4.1) ρ =
1

2

∑
α∈Σ+

mαα.

Although we do not need it, let us recall the asymptotic behavior of the
Brownian motion on M, see Virtser [54], Orihara [45], Malliavin & Malliavin
[38], Taylor [53], Babillot [4] (the convergence in distribution in C(R+, a) is
not explicitly stated in these papers however it follows immediately from the
approach given in Babillot [4]).

Theorem 4.1 Let Bt be the Brownian motion on M. Then

a. Almost surely, k̇(Bt) converges in K/M and limt→+∞
C(Bt)

t
= ρ.

b. In distribution in C(R+, a), the processes
{

C(BtT )−tTρ√
T

, t ≥ 0
}

converge

to the Euclidean Brownian motion in a when T → +∞.

For any g ∈ G, we denote by H[g] the a-component of g in the Iwasawa
decomposition G = K(exp a)N . Let us consider the basic spherical function
of Harish–Chandra

(4.2) Φ0(g) =

∫
K/M

e−〈ρ,H[g−1k]〉dν(k̇), g ∈ G,

where ν is the unique K-invariant probability measure on K/M . This func-
tion is K-biinvariant, thus it defines a K-invariant function on M, also de-
noted Φ0, by the formula

Φ0(g.o) = Φ0(g), for all g ∈ M.
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Let ∆ be the Laplace Beltrami operator on M. The bottom of the L2-
spectrum of −1

2
∆ is

(4.3) λ0 =
1

2
‖ρ‖2.

There exist many ground states, but the only one which is K-invariant is
Φ0. We first consider the I.B.L., the double-ended I.B.L. will be dealt with
in section 7. Since G acts on M transitively by isometries, it suffices to
consider the Brownian motion starting from o.

Proposition 4.2 Let pt be the heat kernel of ∆/2. For all g, h ∈ G,

lim
t→+∞

pt(g.o, h.o)

pt(o, o)
= Φ0(g

−1h.o).

The infinite Brownian loop B0 on M around o is the relativized Φ0-process
of the Brownian motion. Its generator is ∆0/2 where

(4.4) ∆0f = ∆f + 2∇ log Φ0 · ∇f.

Proof. The behavior of the quotients of pt follows from the precise estimates
of Anker & Ji [2] or from the local limit theorem in [6], (see also Guivarc’h
[26]). But it is also easy to prove it directly: the set of functions x �→
pt(x, o)/pt(o, o), when t ≥ 1, is relatively compact and each limit point ϕ
is a solution of (2λ0 + ∆)ϕ = 0 by Theorem 2.2. Since pt(k.x, o) = pt(x, o)
for all k ∈ K, ϕ is also invariant under K and satisfies ϕ(o) = 1. The
function Φ0 is the only one having these properties, hence pt(x, o)/pt(o, o)
must converge to Φ0(x). By invariance under isometry, pt(g.o, h.o)/pt(o.o) =
pt(h

−1g.o, o)/pt(o, o) converges to Φ0(h
−1g.o). The description of the I.B.L.

follows from Theorem 1.2. �
For x ∈ a, let

(4.5) δ(x) =
∏

α∈Σ+

sinhmα〈α, x〉.

One has the following decomposition of the Riemannian measure m, see [30],
Theorem X.1.17: if f : M → R+ is measurable∫

M

f(z) dm(z) =

∫
K/M×a+

f(kex.o) δ̃(x)dν(k̇) dx

where δ̃ = Vol(K/M)δ. Thus the radial component C(Bt) of the Brownian
motion B on M has a semigroup with the density qt with respect to the
Lebesgue measure on a+ given by

(4.6) qt(x, y) = δ̃ (y)

∫
K/M

pt (ex.o, key.o) dν(k̇)
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This can be verified as in the proof of Proposition 3.3. The radial part
Rad(∆) of ∆ on a+ is defined by: for any smooth function f on a+,

[Rad(∆)f ] ◦ C = ∆(f ◦ C).

It follows from Helgason [32], II.3, Remark 1, that

(4.7) Rad(∆) = ∆a + 2 ∇a log δ1/2 · ∇a.

We define ϕ0 : a → R by, for x ∈ a,

ϕ0(x) = Φ0(e
x.o).

Corollary 4.3 The radial part C(B0) on ā+ of the I.B.L. on M around o
is a continuous Markov process such that C(B0

0) = 0, and such that for all
t > 0, C(B0

t ) is inside a+ and has the generator

1

2
Rad(∆0) =

1

2
∆a + ∇a log(δ1/2ϕ0) · ∇a.

The semigroup of C(B0) has the density q0
t with respect to the Lebesgue

measure on a+ given by

q0
t (x, y) = e

1
2
‖ρ‖2t δ̃ (y)

ϕ0 (y)

ϕ0 (x)

∫
K/M

pt (ex.o, key.o) dν(k̇),

for all x ∈ a+ ∪ {0}, y ∈ a+, where (pt)t>0 is the heat kernel of 1
2
∆ on M.

Proof. It is well known that the radial part C(Bt) of the Brownian motion
B on M, starting from o, is for all t > 0 in a+ and has the generator 1

2
Rad(∆)

(see, for instance, Orihara [45], Taylor [53]). The function Φ0 is K-invariant.
Thus the radial part C(B0) of the relativized Φ0-process is the relativized
ϕ0-process of C(B). This implies that for all t > 0, the distribution of
{C(B0

s ), s ≤ t} is equivalent to the distribution of {C(Bs), s ≤ t} (the
Radon Nikodym derivative is eλ0tΦ0(Bt)). Therefore C(B0

s ) ∈ a+ for all
s > 0 and its generator is (see, e.g., Lemma 2.3 and (4.7))

1

2
∆a + ∇a log δ1/2 · ∇a + ∇a log ϕ0 · ∇a =

1

2
∆a + ∇a log(δ1/2ϕ0) · ∇a.

The expression of q0
t follows from Lemma 2.3 and from (4.6). �

Notice that the I.B.L. is nonexploding. When G is complex ϕ0 = δ−1/2π
(cf. Theorem IV.4.7 in Helgason [32]). As stated next, in this case C(B0) is
elementary and part (b) of Theorem 1.4 is trivial.
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Corollary 4.4 Assume that G is complex. Then the radial part in a+ of the
I.B.L. on M around o coincides with the intrinsic Brownian motion of the
Weyl chamber.

Remark 4.5 Let us pull back B0 via the diffeomorphism exp : p �→ M. It
follows from the corollary that exp−1(B0) has the same radial part on a as
the Euclidean Brownian motion on p when G is complex. However these
two processes are different on p since the K/M -component of the first one
converges a.s., which is not the case for second one.

Remark 4.6 One deduces immediately from the corollary that the radial
part of the Brownian bridge on M around o is the generalized radial compo-
nent on a+ of the Euclidean Brownian bridge on p around 0. It is natural to
consider this radial process as the Brownian excursion in the Weyl chamber.

5. Asymptotic behavior of the normalized I.B.L. on a
symmetric space

On a symmetric space of noncompact type M, we first consider the infinite
Brownian loop around o This particular case contains all essential difficulties.
It will be also the major step towards the double-ended I.B.L. which will be
dealt with in Section 7.

5.1. Asymptotic behavior of the K/M-component of the I.B.L.

We recall that ν is the K-invariant probability measure on K/M .

Proposition 5.1 Let B0 be the infinite Brownian loop around o on M. Al-
most surely, k̇(B0

t ) converges to a random variable with distribution ν on
K/M .

Proof. We will use the description of the Martin boundary of ∆λ0 = 1
2
∆+λ0

given in Guivarc’h, Ji & Taylor [27]. Let Gλ0 be the Green kernel of ∆λ0

and let Kλ0 be the corresponding Martin kernel with base point o, namely

Gλ0(x, y) =

∫ +∞

0

eλ0tpt(x, y) dt, Kλ0(x, y) =
Gλ0(x, y)

Gλ0(o, y)
.

The Green kernel G of ∆0

2
= Φ−1

0 (∆λ0 ◦Φ0) with respect to m is (see Lemma
2.3)

G(x, y) =

∫ +∞

0

eλ0tpt(x, y)Φ0(y)

Φ0(x)
dt = Gλ0(x, y)

Φ0(y)

Φ0(x)
,
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thus its Martin kernel K(x, y) = G(x,y)
G(o,y)

is given by

K(x, y) =
Kλ0(x, y)

Φ0(x)
.

For any b ∈ K/M , let hb be the ∆λ0-harmonic function on M defined by

hb(x) = e−〈ρ,H[g−1k]〉,

if x = g.o ∈ M and b = kM ∈ K/M . The set {hb, b ∈ K/M} is a compact
subset of the Martin boundary of (M, ∆λ0) and it is shown in Guivarc’h,
Taylor & Ji [27] that

lim
n→+∞

Kλ0(x, yn) = hb(x)

if and only if k̇(yn) converges to b in K/M and 〈α,C(yn)〉 → +∞ for all
α ∈ Σ+ (in order to give a precise reference for this claim, let us use the
notations of [27] and set h{∅}(x) = exp−〈ρ,H[g−1]〉 when x = gK. Then,
for b = kM ∈ K/M , hb = Skh{∅}, where Skf(x) = f(k−1.x) for any function
f on M. Thus, in the Martin topology for ∆λ0 , a sequence yn converges to hb

if it is C{∅}-fundamental in the sense of [27], that is if and only if k̇(yn) → b
and 〈α,C(yn)〉 → +∞ for all α ∈ Σ+, see [27], 7.27–7.33). The functions
h0

b = hb/Φ0 are ∆0-harmonic. The sequence yn converges to the functions h0
b

for the Martin topology of ∆0, i.e. K(x, yn) → h0
b(x), if and only if k̇(yn) → b

and 〈α,C(yn)〉 → +∞ for any α ∈ Σ+. Since Φ0(x) =
∫

K/M
hb(x) dν(b), the

∆0-harmonic function 1 has the representation

1 =

∫
K/M

h0
b(x) dν(b).

It follows from the Martin boundary theory that B0
t , starting from o, con-

verges almost surely in the Martin topology to a random point carried by
{h0

b , b ∈ K/M} with distribution ν (see, e.g., Kunita & Watanabe [34],
Pinsky [49], Theorem 7.2.2). This proves the proposition.

Remark 5.2 The proof of the proposition shows that 〈α,B0
t 〉 → +∞ a.s.

for each α ∈ Σ+, when t → +∞.

5.2. Asymptotic behavior of the radial component of the I.B.L.

We have seen in Corollary 4.3 that the radial part X = C (B0) on a+ ∪ {0}
of the infinite Brownian loop B0 around o is a a+ ∪ {0}-valued continuous
Markov process starting from 0, with generator

1

2
Rad
(
∆0
)

=
1

2
∆a + ∇a log(δ

1
2 ϕ0) · ∇a.
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Thus X0 = 0 and

(5.1)


∀t > 0, Xt ∈ a+,

Xt − X0 −
∫ t

0

∇a log(δ
1
2 ϕ0) (Xs) ds is a Brownian motion on a.

We will consider the behavior of this Markov process starting from any
point x ∈ a+ ∪ {0}. The case where x ∈ a+ will be needed to establish the
asymptotic independence of the radial and of the K/M -component of the
I.B.L. around o.

5.2.1. Almost sure behavior

Let us recall that the Bessel process of dimension n is the norm of an n-
dimensional Brownian motion.

Proposition 5.3 Let X be a continuous process satisfying (5.1) starting
from x ∈ a+ ∪ {0}. For some κ ∈ N, there exists two Bessel processes R(d)

and R(p), of dimension d and p, such that R
(d)
0 = ‖x‖ = R

(p)
0 and such that,

for all t ≥ 0
R

(d)
t ≤ ‖Xt‖ ≤ R

(p)
t .

Proof. By assumption Bt = Xt−X0−
∫ t

0

∇a log(δ
1
2 ϕ0)(Xs) ds is a Brownian

motion. By Ito’s formula,

‖Xt‖2 = ‖X0‖2 + 2

∫ t

0

〈Xs, dBs〉 + t d + 2

∫ t

0

〈∇a log(δ
1
2 ϕ0)Xs, Xs〉 ds

= ‖X0‖2 + 2

∫ t

0

〈Xs, dBs〉 + t d + 2

∫ t

0

E log(δ
1
2 ϕ0)(Xs) ds

where d = dim(a) and E =
∑

1≤j≤d
xj

∂

∂xj

is the Euler operator on a. As

shown in the appendix (Theorem 8.3), there is some integer q such that on
a+,

0 ≤ E log(δ
1
2 ϕ0) ≤ q.

Let H(n) be the solution of the equation

H
(n)
t = ‖X0‖2 + 2

∫ t

0

√
H

(n)
s dβs + nt

where β is the real Brownian motion defined by βt =

∫ t

0

‖Xs‖−1〈Xs, dBs〉.
It is well known (see Yamada [56], Revuz & Yor [50], XI.1) that H(n) is the
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square of a Bessel process of dimension n. Let p = d + 2q. It follows from
the comparison theorem ([50], Theorem IX.3.7) that almost surely, for all
t ≥ 0,

(5.2) H
(d)
t ≤ ‖Xt‖2 ≤ H

(p)
t .

One obtains the proposition by setting R
(n)
t =

√
H

(n)
t for n = d, p. �

Corollary 5.4 Let B(0) be the I.B.L. around o. Then, almost surely,

lim
t→+∞

d(o,B
(0)
t )

t
= 0.

More precisely (law of iterated logarithm), a.s.

lim sup
t→+∞

d(o,B
(0)
t )√

2t log log t
= 1,

and for all 0 < ε < 1, there is Cε > 0 such that, for all t, η ≥ 1,

P
(

sup
εt≤s≤t

d(o,B
(0)
s )

s
≥ η
)
≤ Cε e−

η2ε2t
2p .

Proof. Since d(o,B
(0)
t ) = ‖Xt‖, where X is the solution of (5.1) starting

from 0, the result follows easily from the proposition and from classical
properties of the Brownian motion. �

5.2.2. Distributional behavior

In this part, we will prove the following theorem.

Theorem 5.5 Let X be a continuous process satisfying (5.1) starting from
some x ∈ a+ ∪ {0} and let, for T > 0, X(T ) be the rescaled process defined
by

X
(T )
t =

1√
T

XtT .

As T → +∞, X(T ) converges in distribution in C(R+, ā+) to the intrinsic
Brownian motion of the Weyl Chamber a+.

It can be useful to the reader to have a very sketchy and informal pre-
sentation of the strategy of our proof. Let GT (x) = (δ

1
2 ϕ0)(x

√
T ). We will

see that X
(T )
t is a solution of the equation

Xt = X0 + βt +

∫ t

0

∇a (log GT ) (Xs) ds
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where β is a Brownian motion on a+. On the other hand, the intrinsic
Brownian motion Zt of a+ is a solution of

(5.3) Zt = Bt +

∫ t

0

∇a (log π) (Zs) ds.

Imagine now that GT and π are bounded away from 0 and with bounded
derivatives on ā+ (this is actually obviously false). Then by using the fact
that for every smooth function h on a,

(5.4) ∆a (log h) − ∆ah

h
+ ‖∇a (log h)‖2 = 0

one sees that

NT
t =

π

GT

(Xt) exp

(
−1

2

∫ t

0

(
∆aπ

π
(Xs) − ∆aGT

GT

(Xs)

)
ds

)
is a martingale and that, for all b > 0, when 0 ≤ t ≤ b,

X
(T )
t = X

(T )
0 + βt +

∫ t

0

∇a (log π) (X(T )
s ) ds

where β is a Brownian motion on a+ under the probability NT
b (NT

0 )−1 ·
P (using Girsanov’s theorem). If, when T → +∞, NT

b tends to 1 in an

appropriate way, we will conclude that X
(T )
t converges in distribution to the

solution of (5.3).

Actually the behavior of the coefficients are singular near the walls of the
Weyl chamber and in particular near 0 which is the starting point (at least
of the limit) and thus cannot be avoided. The plan of the proof is now the
following. In Lemma 5.6 we show that the processes X(T ) are well behaved
in a short time t ≤ a. At a fixed time t = a, we will use the convergence of
the densities at time t (see Lemma 5.7). Then one localizes the processes in
compact subsets of the open cone a+. The convergence of (a localized variant
of) NT is dealt with in Lemma 5.8. The precise version of Girsanov’s type
argument alluded to above is given in Lemma 5.9. After these preliminaries
the proof is easy and presented at the end of this section.

We will suppose without loss of generality that the process X satisfy-
ing (5.1) is the coordinate process on Ω = C (R+, ā+) and we let Ft =
σ {Xs | 0 ≤ s ≤ t}. When X0 = x, we let Px be the distribution of X and

P
(T )
x be the distribution of X(T ). The distribution of the intrinsic Brownian

motion of the Weyl chamber is denoted by Q.
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Lemma 5.6 There exists κ > 0 such that for all T > 0, r > 0, t > 0,

Px

[
sups≤t ‖X(T )

s ‖ ≥ r
] ≤ 2

r2

(
‖x‖2

T
+ κt

)
.

Proof. It follows from Proposition 5.3 that, for some κ > 0,

Ex

[
sups≤t ‖X(T )

s ‖2
] ≤ 1

T
E
[
sups≤tT

(
R(κ)

s

)2] ≤ 2(
‖x‖2

T
+ κt).

This gives the lemma using Markov’s inequality. �

Lemma 5.7 For any starting point x, the density θ
(T )
t of X

(T )
t converges,

as T → +∞, to the density θt = ht(0, ·) at time t of the intrinsic Brownian
motion of the Weyl chamber.

Proof. It follows from Corollary 4.3 that θ
(T )
t (x, y) = T

d
2 q 0

tT (x,
√

Ty). We
must show that, for each fixed x ∈ ā+, y ∈ a+ and t > 0,

lim
T→+∞

T
d
2 q 0

tT (x,
√

Ty) = ht(0, y).

We may assume that t = 1 by scaling. Recall that

q0
T (x,

√
Ty) = e

‖ρ‖2
2

T δ̃(
√

Ty) ϕ0(
√

Ty)
ϕ0(x)

∫
K

pT

(
ex.o, ke

√
Ty.o
)
dk

where δ̃ = Vol(K/M)δ. We have

pT (ex.o, ke
√

Ty.o) = pT (ez.o, o)

if z = z(T, x, y, k) ∈ ā+ is the radial component of e−
√

Tyk−1ex. Notice that
z remains at bounded distance from

√
T (−w.y) ∈ a+, as T → +∞, where w

is the element in the Weyl group W , which interchanges a+ with −a+. We
have indeed

‖z +
√

Tw.y‖ ≤ d(e−
√

Tyk−1ex.o, e−
√

Ty.o) = d(ex.o, o)

(see for instance Lemma 2.1.2 in [2]). Since y ∈ a+, this implies in particular
that for every α ∈ Σ+, 〈α, z〉/√T stays within two positive constants as
T → +∞. The heat kernel analysis in Anker & Ji [2] (see Section 3, Step 6)
yields the following asymptotics

pT (ez.o, o) = c1 e−
‖y‖2

2 T−D
2 e−

‖ρ‖2
2

T ϕ0(z) + O
(

T−D
2
− 1

4 e−
‖ρ‖2

2
T ϕ0(z)

)
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as T → +∞, where c1 = 2n− 3d
2 π− d

2 Vol(K/M)−1 π(ρ0)b(0)−2 and n =
dim M. Notice that this estimate is uniform in the variable k ∈ K involved
in z. By integrating ϕ0(z) over K and by using the functional relation∫

K

Φ0

(
e−

√
Tyk−1ex

)
dk = Φ0

(
e±

√
Ty
)
Φ0

(
ex
)
,

we obtain∫
K

pT

(
ex.0, ke

√
Ty.0
)
dk = c1 ϕ0(x) e−

‖y‖2
2 T−D

2 e−
‖ρ‖2

2
T ϕ0(

√
Ty)

+ O
(

T−D
2
− 1

4 e−
‖ρ‖2

2
T ϕ0(

√
Ty)
)

∼ c1 ϕ0(x) e−
‖y‖2

2 T−D
2 e−

‖ρ‖2
2

T ϕ0(
√

Ty)

as T → +∞. By using the asymptotics

δ̃(
√

Ty) ∼ Vol(K/M)2 d−n e 2
√

T 〈ρ,y〉

and

ϕ0(
√

Ty) ∼ b(0)
π(ρ0)

T
|Σ+

0 |
2 π(y) e−

√
T 〈ρ,y〉

(see for instance [2], Proposition 2.2.12.ii), we further obtain

(5.5) q0
T (x,

√
Ty) ∼ (2π)−

d
2 π(ρ0)−1 π(y)2 e−

‖y‖2
2 T− d

2 ,

We now remark that the limit depends only on the Weyl chamber a+. Let us
consider the symmetric space G̃/K̃ where G̃ is a complex group, which has
this Weyl chamber. We have seen in Proposition 3.3 that in this case the
radial part of the I.B.L. around o is equal to the intrinsic Brownian motion
on a+. Thus, in this case q0

t = ht where ht is the density of the intrinsic
Brownian motion. This process has the scaling property:

hT (0, y
√

T ) = h1(0, y).

Thus, if we apply (5.5) to h with x = 0 we obtain that

h1(0, y) = lim
t→+∞

hT (0, y
√

T ) = (2π)−
d
2 π(ρ0)−1 π(y)2 e−

‖y‖2
2 T− d

2 .

Thus (5.5) proves the lemma. �
Let a > 0, η > 0, R > 0, we set

(5.6)
aη

+ = {x ∈ a+; 〈α, x〉 ≥ η, ∀α ∈ Σ+} ,

σ = inf
{
t ≥ a; Xt /∈ aη

+ or ‖Xt‖ > R
}

.
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Lemma 5.8 Let GT (x) = (δ
1
2 ϕ0)(x

√
T ) and, for b ≥ a > 0,

(5.7) M
(T )
b =

π (Xb∧σ) GT (Xa)

π (Xa) GT (Xb∧σ)
exp

(∫ b∧σ

a

∆aGT

2GT

(Xs) ds

)
.

Then, almost surely, M
(T )
b → 1 as T → ∞.

Proof. Recall that G = δ
1
2 ϕ0 and GT = G(

√
T · ). Obviously, for all x ∈ a+,

∆aGT

GT

(x) = T
∆aG

G
(
√

Tx).

On one hand, ∆Φ0 = −‖ρ‖2Φ0 hence Rad(∆)ϕ0 = −‖ρ‖2ϕ0. On the other

hand, ϕ−1
0 Rad(∆)ϕ0 = G−1∆aG− δ−

1
2 ∆aδ

1
2 . As a consequence, G−1∆aG =

δ−
1
2 ∆aδ

1
2 −‖ρ‖2. The latter expression occurs in the analysis of the Harish–

Chandra expansion (8.3), as performed by Gangolli. It follows immediately
from its expansion in [32], proof of Lemma IV.5.6, or from the following
explicit formula noticed by Wallach [55] (see also Heckman ([29], Theorem
2.1.1):

δ(x)−
1
2 ∆aδ

1
2 (x) − ‖ρ‖2 =

1

4

∑
α∈Σ+

(mα(mα − 2) + 2mαm2α) ‖α‖2 sinh−2〈α, x〉

(where m2α = 0 when α �∈ Σ+
0 ) that ∆aGT

GT
converges uniformly to 0 on aη

+.
Therefore

exp
(∫ b∧σ

a

∆aGT

2 GT
(Xs) ds

)
→ 1 as T → +∞ .

Besides, for every x ∈ a+, if n = dim M,

GT (x) = δ(
√

Tx)
1
2 ϕ0(

√
Tx) ∼ 2

d−n
2 e 〈ρ,

√
Tx〉ϕ0(

√
Tx) ∼ 2

d−n
2 γ T |Σ+

0 |/2π(x)

as T → +∞ (see for instance Theorem 8.1.ii). Thus

GT (x)

GT (y)
→ π(x)

π(y)
as T → +∞ ,

for all x, y ∈ a+. This concludes the proof of the Lemma. �
Recall that Q is the distribution of the intrinsic Brownian motion of the

Weyl chamber, θt is its density at time t and θ
(T )
t is the density of Xt under

P
(T )
x .

Lemma 5.9 Let b > a > 0 and let aX be the process defined by aXt =
Xsup(a,t). Then, for any Fb-measurable function Ψ on Ω and ε > η,
(5.8)

E(T )
x

[
Ψ (aX) 1{Xa∈aε

+,σ>b}
]

= EQ

[
θ

(T )
a (Xa)

θa (Xa)

1

M
(T )
b

Ψ (aX) 1{Xa∈aε
+,σ>b}

]
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Proof. The process X satisfies (5.1), thus we know that, for t ≥ a,

Xt − Xa −
∫ t

a

∇a log G(1)(Xs) ds

is a Brownian motion on a+ under Px starting from 0 at time a. Hence,

under the probability measure P
(T )
x ,

β
(T )
t = Xt − Xa −

∫ t

a

∇a log GT (Xs) ds

is also a Brownian motion for t ≥ a. Since (see (5.4))

‖∇a log GT‖2 + ∆a log GT =
∆aGT

GT

and ‖∇a log π‖2 + ∆a log π = 0,

it follows from Ito’s formula that M
(T )
b defined by (5.7) satisfies

M
(T )
b = exp

(∫ b∧σ

a

kT (Xs) dβ(T )
s − 1

2

∫ b∧σ

a

kT (Xs)
2 ds

)
where kT = ∇a log(π/GT ). This shows that M

(T )
b is a local martingale under

P
(T )
x , for b ≥ a. It is clear on (5.7) that it is bounded, hence

E(T )
x

[
M

(T )
b | Fa

]
= 1.

From now on we work conditionally on {Xa ∈ aε
+}. By Girsanov’s theorem,

under the probability M
(T )
b · P

(T )
x , when a ≤ t ≤ b,

Xt∧σ − Xa −
∫ t∧σ

a

∇a log π (Xs) ds

is a continuous local martingale with increasing process 1{t≥a} (t ∧ σ − a) Id.

This implies that there is a Brownian motion β̃ such that, for a ≤ t ≤ b,

(5.9) β̃t∧σ − β̃a = Xt∧σ − Xa −
∫ t∧σ

a

∇a log π (Xs) ds.

Since log π is C∞ inside a+, (Xt∧σ)t≥a is the unique solution of the stochastic
integral equation (5.9) starting at Xa and stopped at its first exit time from
aη

+ ∩ {x ∈ a+; ‖x‖ ≤ R}. The intrinsic Brownian motion satisfies the same
stochastic equation. Thus Xt∧σ, a ≤ t ≤ b, has the same distribution under
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the probability measure M
(T )
b .P

(T )
x and under Q, conditionally on Xa. This

implies that

E(T )
x

[
Ψ (aX) 1{Xa∈aε

+,σ>b} | σ(Xa)
]
=EQ

[
1

M
(T )
b

Ψ (aX) 1{Xa∈aε
+,σ>b} | σ(Xa)

]
,

which yields (5.8), using the Markov property. �

We can now prove Theorem 5.5. Let 0 < a < b, 0 < η < ε and aXt =
Xsup(a,t). We remark that

supt≤b ‖aXt − Xt‖ = supt≤a ‖Xa − Xt‖ ≤ 2 supt≤a ‖Xt‖ .

Let Ψ be a nonnegative function on C ([0, b] , ā+), uniformly continuous and
bounded by 1. Let δ > 0 and β > 0 such that |Ψ (X) − Ψ (X ′)| ≤ δ when
supt≤b ‖X ′

t − Xt‖ < β. We have:∣∣E(T )
x [Ψ (X)] − E(T )

x [Ψ (aX)]
∣∣ ≤ δ + 2 P(T )

x

[
supt≤a ‖Xt‖ >

1

2
β

]
and, applying Lemma 5.6,

E(T )
x [Ψ (X)] ≥ E(T )

x [Ψ (aX)] − τ,

if τ = δ + 16
β2 (

‖x‖2

T
+ κ a). Therefore, it follows from Lemma 5.9 that

E(T )
x [Ψ (X)] ≥ E(T )

x

[
Ψ (aX) 1{Xa∈aε

+,σ>b}
]
− τ

≥ EQ

[
θ

(T )
a (Xa)

θa (Xa)

1

M
(T )
b

Ψ (aX) 1{Xa∈aε
+,σ>b}

]
− τ.

Using the lemmas 5.7, 5.8 and Fatou’s lemma, we have:

lim inf
T→+∞

E(T )
x [Ψ (X)] ≥ EQ

[
Ψ (aX) 1{Xa∈aε

+,σ>b}
]
− δ − 16

β2
κ a

≥ EQ [Ψ (X)] − 2δ − 16

β2
κ a − Q

[
Xa /∈ aε

+

]
−Q [σ ≤ b] − 2Q

[
sups≤a ‖Xs‖ >

1

2
β

]
.

Recall that σ = inf
(
t ≥ a | Xt /∈ aη

+ or ‖Xt‖ > R
)
. As Q-a.s., Xt ∈ a+

for all t > 0, obviously Q [σ ≤ b] → 0 when η → 0 and R → +∞. It suffices
to let successively (η,R) goes to (0, +∞), ε to 0, a to 0 and δ to 0 to conclude
that

lim inf
T→+∞

E(T ) [Ψ (X)] ≥ EQ [Ψ (X)] .

Replacing Ψ with 1 − Ψ gives immediately that

lim
T→+∞

E(T ) [Ψ (X)] = EQ [Ψ (X)] . �
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5.3. Asymptotic independence

We will now (define and) prove the asymptotic independence of the radial
and of the K/M components of the I.B.L. This will be a consequence of the
following proposition.

Proposition 5.10 Let X be a continuous process satisfying (5.1), defined

on some probability space (Ω,F , P). Let P̃ be a probability on F , absolutely

continuous with respect to P. Under P̃, as T → +∞, X(T ) converges in
distribution to the intrinsic Brownian motion of the Weyl Chamber a+.

Proof. Let F∞ = σ {Xr; r ≥ 0} and Fa = σ {Xr; 0 ≤ r ≤ a} . We have
to show that for any Z ∈ L1 (Ω,F , P), for any s > 0 and any bounded
continuous function Ψ on C (R+, ā+), Fs-measurable,

(5.10) lim
T→+∞

E[Z Ψ(X(T ))] = E [Z] Q [Ψ] ,

where Q is the distribution of the intrinsic Brownian motion of a+. Since

E[Z Ψ(X(T ))] = E[Z∞ Ψ(X(T ))]

where Z∞ = E[Z | F∞] and since∣∣E[U Ψ(X(T ))] − E[V Ψ(X(T ))]
∣∣ ≤ ‖Ψ‖∞ E[|U − V |],

it suffices by density in L1(Ω,F∞, P) to consider the case where Z is bounded
and Fa-measurable for some a ≥ 0. Let

X(a,T ) : t �→ X
(a,T )
t =

1√
T

Xsup(Tt,a).

Since supt ‖X(a,T )
t − X

(T )
t ‖ ≤ 1√

T
supt≤a ‖Xt‖, we may also replace X(T ) by

X(a,T ). Using the Markov property at time a, we get

E[Z Ψ(X(a,T ))] = E
[
Z E[Ψ(X(a,T )) | Fa]

]
= E
[
Z EXa [Ψ(X̃(a,T ))]

]
,

where X̃t

(a,T )
= 1√

T
X(Tt−a)+ and where Px is the law of the solution of (5.1)

starting at x ∈ a+ ∪ {0}. By the dominated convergence theorem, it suffices
finally to show that, for all x ∈ a+ ∪ {0},

(5.11) lim
T→+∞

Ex[Ψ(X̃(a,T ))] = Q[Ψ].
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By Theorem 5.5 and Prokhorov’s criterion, the family of the distributions
of X(T ), T ≥ 1, under Px is tight: for all ε > 0, there exists a compact set
K in C(R+, ā+) such that for all T ≥ 1

Px[X
(T ) �∈ K] < ε.

Using the Ascoli’s criterion of compactness, we know that, uniformly in
T ≥ 1, when X(T ) ∈ K, the modulus of continuity

sup0≤u<v≤s,|u−v|≤η ‖X(T )
u − X(T )

v ‖

goes to 0 with η in Px-probability. Since

supt≤s ‖X̃t

(a,T ) − X
(T )
t ‖ = 1√

T
supt≤s ‖X(tT−a)+ − XtT‖

≤ sup0≤u<v≤s,|u−v|≤ a
T
‖X(T )

u − X
(T )
v ‖

and since Ψ is Fs-measurable, this implies that

lim
T→+∞

Ex[Ψ(X̃(a,T ))] = lim
T→+∞

Ex[Ψ(X(T ))]

thus (5.11) follows from Theorem 5.5. �

We have seen that k̇(B
(0)
t ) converges almost surely to some random limit

b∞ ∈ K/M . For b ∈ K/M let b̄ be the constant path b̄t = b for all t > 0.

The process {k̇(B
(0)
tT ), t > 0} converges in distribution in C((0,∞), K/M)

to the process b̄∞, where C((0,∞), K/M) is equipped with the uniform
convergence on compact subsets of (0,∞). Notice that 0 has to be excluded.

Corollary 5.11 The two processes {k̇(B
(0)
tT ), t > 0} and {C(B

(0)
tT )√
T

, t ≥ 0} are
asymptotically independent in the sense that their joint distribution on

C((0,∞), K/M) × C([0,∞), ā+)

converges to the distribution of two independent processes, as T → +∞.

Proof. Let us actually prove that, if F is a bounded continuous function on
C((0,∞), K/M) and G is a bounded continuous function on C(R+, a+∪{0}),
then

lim
T→+∞

E

[
F (k̇(B

(0)
tT ), t > 0)G(

C(B
(0)
tT )√
T

, t ≥ 0)

]
= E
[
F (b̄∞)

]
EQ[G]
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By density, one may suppose that, for ω ∈ C((0,∞), K/M), F (ω) does not
depends on ωt for t ≤ ε. Then

lim
T→+∞

F (k̇(B
(0)
tT ), t > 0) = F (b̄∞).

Thus ∣∣∣∣∣E
[
F (k̇(B

(0)
·T ))G(

C(B
(0)
·T )√
T

)

]
− E

[
F (b̄∞)G(

C(B
(0)
·T )√
T

)

]∣∣∣∣∣
≤ ‖G‖∞E

[∣∣∣F (k̇(B
(0)
·T )) − F (b̄∞)

∣∣∣]
converges to 0 as T → +∞ and one concludes with Proposition 5.9. �

6. The other ground state processes

Motivated by the infinite Brownian loop on the symmetric space M, we have
so far studied the relativized Φ0-process of the Brownian motion. The func-
tion Φ0 is the unique K-invariant ground state, but there are many others.
Recall that we call a ground state any positive solution ϕ of (∆+2λ0)ϕ = 0.
To every ground state ϕ corresponds a unique probability measure λ on
K/M such that

ϕ(x) = ϕ(o)

∫
K/M

hb(x) dλ(b)

(see, e.g., Guivarc’h, Ji & Taylor [27], 7.1).

Theorem 6.1 Let Bϕ be the relativized ϕ-process of the Brownian motion
on a noncompact symmetric space M, starting from o. Then, as T → +∞,

(i) Almost surely, 1
t
d(o,Bϕ

T ) → 0 and k̇(Bϕ
T ) converges to a random vari-

able with distribution λ on K/M .

(ii) { 1√
T
C(Bϕ

tT ), t ≥ 0} converges in distribution to the intrinsic Brownian
motion on the Weyl chamber.

(iii) {k̇(Bϕ
tT ), t > 0} and { 1√

T
C(Bϕ

tT ), t ≥ 0} are asymptotically indepen-
dent.

Proof. The proof of the almost sure convergence of k̇(Bϕ
T ) is the same

as the proof of Proposition 5.1. Let us consider the radial part. Let F :
C(R+, ā+) → R+ be a FT -measurable function for the canonical filtration.
Then, by definition of the ϕ-process,

E[F (C(Bϕ))] =
eλ0T

ϕ(o)
E[F (C(B))ϕ(BT )]
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where B is the Brownian motion on M starting from o. Notice that, if b = k̇0

and x = g.o ∫
K

hb(k.x) dk =

∫
K

e−〈ρ,H[g−1k−1k0]〉 dk = Φ0(x)

therefore∫
K

ϕ(k.x)dk = ϕ(o)

∫
K

∫
K/M

hb(k.x) dλ(b)dk = ϕ(o)Φ0(x).

We use this equality, the invariance invariance of the Brownian motion under
K and the relation C(k.x) = C(x) for k ∈ K and x ∈ M to write

E[F (C(Bϕ))] =
eλ0T

ϕ(o)

∫
K

E[F (C(B))ϕ(k.BT )] dk

= eλ0T E[F (C(B))Φ0(BT )]

= E[F (C(B0))].

This proves that the process C(Bϕ) has the same distribution as the radial
part of the I.B.L. Thus (ii) follows from Theorem 1.4 and (iii) is proved
exactly in the same way as Proposition 5.11 was.

Remark 6.2 Let us consider the case where λ is the Dirac measure on the
class M in K/M , i.e. the case where

ϕ(x) = e−〈ρ,H[g−1]〉, if x = g.o.

In this case the generator of the ϕ-process is the so-called distinguished
Laplacian on the solvable group AN , (see [8], Cowling, Giulini, Hulanicki &
Mauceri [13]). This generator is

1

2

∑
i

H2
i +
∑

k

N2
k

where (Hi) is an orthonormal basis of a and (Nk) is an orthonormal basis of n,
compatible with the root space decomposition. It is left invariant under AN
and the relativized ϕ-process is a symmetric continuous-time random walk
on AN (the distributions of Bϕ

t form a symmetric convolution semigroup on
the group AN). The above proposition thus gives a precise description of
this process (notice that k̇(Bϕ

T ) converges to the class M in this case).
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7. Asymptotic behavior of the double-ended I.B.L. on
a symmetric space

We now consider the double-ended infinite Brownian loop {(B0
t , B̃

0
t ), t ≥ 0}

from q ∈ M to p ∈ M. Without loss of generality we will suppose that q = o.
Let us define Ψ : M × M → R by

Ψ(g.o, h.o) = Φ0(h
−1g.o)

where Φ0 is the Harish–Chandra function. It follows immediately from
Proposition 2.6 and Proposition 4.2 that this double-ended I.B.L. (B0, B̃0) is
the relativized Ψ-process of the Brownian motion (B, B̃) on M×M, starting
from (o, p). Observe that B and B̃ are two independent Brownian motions
on M. Since Ψ(g.o, h.o) �= Φ0(g.o)Φ0(h.o), the two components B0 and B̃0

are not independent. Actually, loosely speaking, these two components re-
member that the K/M -component of the Brownian motion on M converges
almost surely. This is the intuitive explanation of the assertion (i) of the
following theorem. Observe also that it follows from this theorem that the
asymptotic behavior of the first component B0 itself does also depend on
the end p.

For each p ∈ M, let νp be the distribution on K/M defined by

νp(V ) =

∫
V

hb(p)

Φ0(p)
dν(b)

for all Borel set V in K/M , where ν is the K-invariant probability measure
on K/M and hb(g.o) = e−〈ρ,H[g−1k]〉 if b = kM, k ∈ K. We choose some
γ ∈ G such that γ.p = o. Notice that when p = o, the following theorem
(except (ii)) also follows from Theorem 6.1, since the double ended I.B.L is
a ground state process of the Brownian motion on M2.

Theorem 7.1 Let {(B0
t , B̃

0
t ), t ≥ 0} be the double-ended infinite Brownian

loop from o to p on the symmetric space M. Then

(i) The “angular parts” k̇(B0
t ) and k̇(B̃0

t ) converge almost surely to the
same limit b∞, which has the distribution νp on K/M .

(ii) The processes B0 and C(γ.B̃0) are independent.

(iii) The normalized radial parts { 1√
T
(C(B0

tT ), C(B̃0
tT )), t ≥ 0} converge in

distribution to two independent copies of the Brownian motion in the
Weyl chamber, as T → +∞.

(iv) The three processes 1√
T
C(B0

tT ), 1√
T
C(B̃0

tT ), and (k̇(B0
t ), k̇(B̃0

t )) are

asymptotically independent (in the sense similar to that of Corollary
5.11).
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Proof. The proof of (i) will use the same approach as Proposition 5.1 and
the following formula (see Helgason [32], Lemma IV.4.4), for all g, h ∈ G,

Φ0(h
−1g.o) =

∫
K/M

e−〈ρ,H[h−1k]〉e−〈ρ,H[g−1k]〉 dν(k̇),

which can be written: for all x1, x2 ∈ M,

(7.1) Ψ(x1, x2) =

∫
K/M

hb(x1)hb(x2) dν(b).

Let D = ∆x1 + ∆x2 be the Laplace Beltrami operator on M2. The bottom

of the spectrum of −D/2 is 2λ0. Let p
(2)
t be the heat kernel on M2 and

G
(2)
2λ0

=
∫ +∞

0
e2λ0p

(2)
t dt be the Green kernel of 1

2
D + 2λ0. Consider

D0 = Ψ−1 (
1

2
D + 2λ0) ◦ Ψ,

and its Green kernel G. We introduce the two following Martin kernels

K(2)(x, y) =
G

(2)
2λ0

(x, y)

G
(2)
2λ0

((o, o), y)
, Kp(x, y) =

G(x, y)

G((o, p), y)
, x, y ∈ M2.

For all (b1, b2) ∈ K/M × K/M , the functions

h̄(b1,b2)(x) =
hb1(x1)hb2(x2)Ψ(o, p)

hb2(p)Ψ(x1, x2)
, x = (x1, x2) ∈ M2

are D0-harmonic and equal to 1 at (o, p). The formula (7.1) can be written:

1 =

∫
K/M

h̄(b,b)(x)
hb(p)

Ψ(o, p)
dν(b) =

∫
K/M

h̄(b,b)(x) dνp(b)

for all x ∈ M2, or

1 =

∫
K/M×K/M

h̄(b1,b2)(x) dν̄p(b1, b2)

where ν̄p is the image on the diagonal of K/M ×K/M of νp by the map b �→
(b, b). It follows from Martin boundary theory and from this representation
formula of the harmonic function 1 that the diffusion (B0, B̃0) associated
with D0 starting from (o, p) converges almost surely in the Martin topology
of (D0, Kp) to a random limit (b∞, b∞) where b∞ has the distribution νp (see
[34]). By definition, this means that

lim
t→+∞

Kp(x, (B0
t , B̃

0
t )) = h̄b∞(x).
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Now, since G(x, y) = G
(2)
2λ0

(x, y)Ψ(y)/Ψ(x), it is easy to see that

K(2)(x, y) =
Kp(x, y)Ψ(x)

Kp(0, y)
.

Therefore, for all x1, x2 ∈ M,

(7.2) lim
t→+∞

K(2)((x1, x2), (B
0
t , B̃

0
t )) = hb∞(x1)hb∞(x2).

As in the proof of Proposition 5.1, we see, using the description of the Martin
boundary of 1

2
D + 2λ0 given by Guivarc’h, Ji & Taylor [27], that if

lim
n→+∞

K(2)((x1, x2), y
(n)) = hb(x1)hb(x2), ∀(x1, x2) ∈ M2,

then the two K/M -components k̇(y
(n)
1 ) and k̇(y

(n)
2 ) of yn = (y

(n)
1 , y

(n)
2 ) ∈ M2

both converge to b ∈ K/M . Thus (i) follows from (7.2).

Let us prove (ii). Let f : M2 �→ R and g : a+ × a+ �→ R be measurable
bounded functions. One has, for all t, s ≥ 0,

E[f(B0
s , B

0
s+t)g(C(γ.B̃0

s ), C(γ.B̃0
s+t))] =

= E[f(Bs, Bs+t)g(C(γ.B̃s), C(γ.B̃s+t))e
−(s+t)2λ0Ψ(Bs+t, B̃s+t)]

= e−(s+t)2λ0

∫
f(x1, x2)g(C(γ.x3), C(γ.x4))ps(o, x1)pt(x1, x2)

×ps(γ
−1.o, x3)pt(x3, x4)Ψ(x2, x4)dm(x1)dm(x2)dm(x3)dm(x4)

where m is the Riemannian measure on M. Since both m and pt are invariant
under the action of G, one has∫

g(C(γ.x3), C(γ.x4))ps(γ
−1.o, x3)pt(x3, x4)Ψ(x2, x4)dm(x3)dm(x4)

=

∫
g(C(x3), C(x4))ps(o, x3)pt(γ

−1.x3, γ
−1.x4)Ψ(x2, γ

−1.x4)dm(x3)dm(x4)

=

∫
g(C(x3), C(x4))ps(o, x3)pt(x3, x4)Ψ(x2, γ

−1.x4)dm(x3)dm(x4)

=

∫
g(C(x3), r4)ps(o, x3)pt(x3, k4e

r4 .o)Ψ(x2, γ
−1k4e

r4 .o)dm(x3)dk4δ̃(r4)dr4

=

∫
g(C(k4.x3), r4)ps(k4.o, k4.x3)pt(k4.x3, k4e

r4 .o)

× Ψ(x2, γ
−1k4e

r4 .o)dm(x3)dk4δ̃(r4)dr4

=

∫
g(C(x3), r4)ps(o, x3)pt(x3, e

r4 .o)Ψ(x2, γ
−1k4e

r4 .o)dm(x3)dk4δ̃(r4)dr4
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where we have used the expression of m in polar coordinates (if x = ker.o,
dm(x) = dkδ̃(r)dr).

On the other hand, since Φ0 as a function on G is spherical,∫
K

Φ0(gkh) dk = Ψ0(g)Φ0(h) ,

and symmetric (Φ0(g) = Φ0(g
−1)) one has∫

Ψ(x2, γ
−1k4e

r4 .o) dk4 =

∫
Φ0(e

−r4k−1
4 γ.x2) dk4 = Φ0(γ.x2)Φ0(e

r4 .o)

hence,

E[f(B0
s , B

0
s+t)g(C(γ.B̃0

s ), C(γ.B̃0
s+t))] = e−2λ0(s+t)×

×
∫

f(x1, x2)ps(o, x1)pt(x1, x2)Φ0(γ.x2)dm(x1)dm(x2)

×
∫

g(r3, r4)ps(o, e
r3 .o)pt(k3e

r3 .o, er4 .o)Φ0(e
r4 .o) δ̃(r3)δ̃(r4) dr3dr4dk3.

= e−λ0(s+t)

∫
f(x1, x2)ps(o, x1)pt(x1, x2)Φ0(γ.x2)dm(x1)dm(x2)

× e−λ0(s+t)

∫
g(C(x3), C(x4))ps(o, x3)pt(x3, x4)Φ0(x4)dm(x3)dm(x4).

The same proof applies for f and g depending on an arbitrary finite number
of coordinates of the processes B0, B̃0. We first deduce from this formula
that the process C(γ.B̃0) has the same distribution as the radial part of the
I.B.L. around o, and then that B0 and (C(B̃0) are independent. This proves
(ii).

To prove (iii) one first observes that C(B0) and C(γ.B̃0) are indepen-
dent and have the same distribution as the radial component of the I.B.L.
around o. Hence, the processes { 1√

T
(C(B0

tT ), C(γ.B̃0
tT )), t ≥ 0} converge in

distribution to two independent copies of the Brownian motion in the Weyl
chamber, as T → +∞. It follows from the next lemma that C(γ.B̃0

t )−C(B̃0
t )

is bounded when t → +∞. This implies (iii).

In order to show (iv), let us prove that if F is a bounded continuous
function on C((0,∞), (K/M)2) and G1, G2 are bounded continuous function
on C(R+, a+ ∪ {0}), then, as T → +∞,

E

[
F (k̇(B

(0)
·T , k̇(B̃

(0)
·T )) G1(

C(B
(0)
·T )√
T

) G2(
C(B̃

(0)
·T )√
T

)

]
→ E[F (b̄∞)]EQ(G1)EQ(G2)
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where b̄ is the constant function b̄(t) = b. One may suppose that, for some
ε > 0, F (ω) does not depend on ωs, s ≤ ε. It follows from (i) that

lim
T→+∞

F (k̇(B
(0)
tT ), k̇(B̃

(0)
tT ), t > 0)) = F (b̄∞).

This implies that

E

[
F (k̇(B

(0)
·T , k̇(B̃

(0)
·T )) G1(

C(B
(0)
·T )√
T

) G2(
C(B̃

(0)
·T )√
T

)

]

= lim
T→+∞

E

[
F (b̄∞) G1(

C(B
(0)
·T )√
T

) G2(
C(B̃

(0)
·T )√
T

)

]

= lim
T→+∞

E

[
F (b̄∞) G1(

C(B
(0)
·T )√
T

) G2(
C(γ.B̃

(0)
·T )√

T
)

]

where we use Lemma 7.2 to replace C(B̃(0)) by C(γ.B̃(0)). Since b∞ is
σ(B0

t , t ≥ 0)-measurable, this is equal to

lim
T→+∞

E

[
F (b̄∞) G1(

C(B
(0)
·T√

T
)

]
E

[
G2(

C(γ.B̃
(0)
·T )√

T
)

]

by (ii) and one concludes with Corollary 5.11. �

Lemma 7.2 Let xj be a sequence in ā+, and let g, h ∈ G. Denote by
yj ∈ ā+ the radial component of g exjh in the Cartan decomposition G =
K(exp ā+)K. Then yj remains at bounded distance from xj, as j → +∞.

Proof. Let kj, k
′
j ∈ K such that g exjh = kj eyjk′

j and let us decompose
g = k ezn in the Iwasawa decomposition G = K(exp a)N . Since

‖yj − xj‖ = d(Keyj .o,Kexj .o)

(see for instance Lemma 2.1.2 in [2]), we have

‖yj − xj‖ ≤ d(k−1kje
yj .o, exj .o) = d(ezn exjh.o, exj .o)

≤ d(ezn exjh.o, ezn exj .o) + d(ezn exj .o, exj .o)

= d(h.o, o) + d(e−xjn exj .o, e−z.o)

≤ d(h.o, o) + d(e−xjn exj .o, o) + ‖z‖ ,

which remains bounded, since Ad(e−xj) = e− ad xj acts by contractions on n.
�
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8. Appendix. Some estimates of ϕ0

We consider a symmetric space M = G/K of the noncompact type. The
ground spherical function

Φ0(g) =

∫
K

e−〈ρ,H[g±1k]〉 dk =

∫
K/M

e−〈ρ,H[g−1k]〉 dν(k̇)

plays a fundamental role in harmonic analysis on semisimple Lie groups. Let
us recall its behavior, which was fully determined in Anker [1] and in Anker
& Ji [2] (see Proposition 2.2.12), by resuming carefully Harish–Chandra’s
analysis (see Gangolli & Varadarajan [22], Section 4.6 & Theorem 5.9.5).
We use the notation of these references with a few modifications: Σ+

0 is
the set of indivisible positive roots, S is the set of simple positive roots,
ρ0 = 1

2

∑
α∈Σ+

0
α and d = rank(M). Recall that ϕ0(x) = Φ0(e

x), x ∈ a.

Theorem 8.1 (i) Global estimate1 :

ϕ0(x) �
{ ∏

α∈Σ+
0

(1 + 〈α, x〉)
}

e−〈ρ,x〉 ∀ x ∈ ā+ .

(ii) Asymptotics away from the walls :

ϕ0(x) ∼ γ π(x) e−〈ρ,x〉

when 〈α, x〉 → +∞ ∀ α ∈ Σ+. The positive constant γ is equal to b(0)
π(ρ0)

,

where b(λ) = π(iλ) c(λ),π(x) =
∏

α∈Σ+
0
〈α, λ〉, and c is the Harish–Chandra

function.
(iii) Asymptotics along a face :

ϕ0(x)

γ π(x) e−〈ρ,x〉 ∼
ϕF,0(x)

γF πF (x) e−〈ρF ,x〉 i.e. ϕ0(x) ∼ γF πF(x) ϕF,0(x) e−〈ρF,x〉

when x ∈ ā+ , ωF(x) = minα∈S�F 〈α, x〉 → +∞ , while ωF (x) = maxα∈F 〈α, x〉
remains o

(
ωF(x)

)
.

Recall that subsets F of S are in one–to–one correspondence with faces

a+
F = {x ∈ a | 〈α, x〉 = 0 ∀ α ∈ F and 〈α, x〉 > 0 ∀ α ∈ S �F }

of ā+ and with standard parabolic subgroups P F = GF AFNF of G. We
use F as a subscript for quantities attached to the reductive component GF ,

1The symbol � between two positive expressions means that there ratio is bounded
above and below
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and as a superscript for complementary quantities, which are most generally
attached to the split component AF . For instance

ρF =
1

2

∑
α∈Σ+

F

mα α ∈ aF , γF =
bF (0)

πF (ρ0
F )

, . . .

while

ρF = ρ − ρF =
1

2

∑
α∈Σ+

�Σ+
F

mα α ∈ aF , γF =
γ

γF

=
bF (0)

πF (ρ0)
, . . .

In this appendix, we analyze some logarithmic derivatives of ϕ0, which are
used in Proposition 5.3. Consider the Euler operator

Ef(x) = ∂xf(x) =
∂

∂t

∣∣∣∣
t=1

f(tx)

on a , which writes

Ef(x) =
d∑

j=1

xj
∂

∂xj

f(x)

in Euclidean coordinates or, after a short calculation,

Ef(x) =
∑
α∈Σ

mα 〈α, x〉 ∂αf(x) = 2
∑

α∈Σ+

mα 〈α, x〉 ∂αf(x)

with respect to Σ (we will not use this one). The expression we are interested
in is

(8.1) χ = E log (δ
1
2 ϕ0) .

It is well–known that spherical analysis is elementary when G is complex.
In this case, Σ is reduced, all roots have multiplicity 2, and δ

1
2 ϕ0 = π is a

homogeneous polynomial of degree |Σ+|. Consequently

(8.2) χ(x) ≡ |Σ+| .

In general, since, if n = dim M and d = dim a,

δ(x) ∼ 2d−ne 2〈ρ,x〉 and ϕ0(x) ∼ γ π(x) e−〈ρ,x〉

when x ∈ a+ tends to infinity away from the walls, it is conceivable that
(8.2) holds asymptotically. This will be established next.
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Proposition 8.2 The expression χ(x) tends to |Σ+
0 | when 〈α, x〉 → +∞

for all α ∈ Σ+.

Proof. Since we are working away from the walls, we can expand the
spherical functions

Φλ(g) =

∫
K

e 〈iλ−ρ,H[gk]〉 dk

according to Harish–Chandra, actually in the following modified way, due
to Gangolli : if ϕλ(x) = Φλ(e

x), x ∈ a+,

(8.3) δ(x)
1
2 π(iλ) ϕλ(x) =

∑
w∈W

∑
q∈2Q

(det w)b(w.λ) aq(w.λ) e 〈i w.λ−q, x〉

(see for instance Gangolli & Varadarajan [22], Section 4.5). Here W is the
Weyl group, Q is the positive lattice generated by the (simple) positive roots,
b(λ) = π(iλ) c(λ) is an analytic function on a with polynomial growth,
a0(λ) ≡ 1 and the other aq(λ) are rational functions with no singularities
on a, which can be estimated as follows, together with their derivatives :∣∣( ∂

∂λ

)j
aq(λ)

∣∣ ≤ Cj (1 + ‖q‖)N ∀ λ ∈ a .

As a consequence, the series in (8.3) converges for λ ∈ a and x ∈ a+,
and it can be differentiated term by term in both variables. By applying
successively π

(−i ∂
∂λ

)∣∣
λ=0

and the Euler operator, we deduce from (8.3) the
expansions

δ(x)
1
2 ϕ0(x) = 1

c
π
(−i ∂

∂λ

)∣∣
λ=0

{ δ(x)
1
2 π(iλ) ϕλ(x) }(8.4)

=
∑

R⊂Σ+
0

∑
q∈2Q

cR,q

{ ∏
α∈R

〈α, x〉
}

e−〈q, x〉

where c = ∂(π) π = |W |π(ρ0) (for the last equality see for instance [2],
Proof of Proposition 2.2.12.ii.), and

(8.5) E(δ
1
2 ϕ0)(x) =

∑
R⊂Σ+

0

∑
q∈2Q

cR,q (|R| − 〈q, x〉)
{ ∏

α∈R

〈α, x〉
}

e−〈q, x〉 .

The constant c is positive, as well as the leading coefficient cΣ+
0 ,0 = b(0)

π(ρ0)
.

The other cR,q are O
(
1 + ‖q‖N

)
. Thus we deduce from (8.4) and (8.5) that

(8.6) δ(x)
1
2 ϕ0(x) =

{
cΣ+

0 ,0 + o (1)
}

π(x)

and

(8.7) E(δ
1
2 ϕ0)(x) =

{
cΣ+

0 ,0 |Σ+
0 | + o (1)

}
π(x)
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when 〈α, x〉 → +∞ ∀ α ∈ Σ+, hence

χ(x) =
E(δ

1
2 ϕ0)(x)

δ(x)
1
2 ϕ0(x)

→ |Σ+
0 | . �

Remarks :

(a) Notice that (8.6) reproves Theorem 8.1.ii.

(b) By combining (8.7) with Theorem 8.1.i, we see that χ is bounded in
every aη

+.

The rest of this appendix is devoted to the proof of the following result,
which requires to analyze the expression χ(x) along the various faces a+

F

of ā+.

Theorem 8.3 On ā+, χ is positive and bounded, both above and below.
Moreover

χ(x) → |Σ+
0 �Σ+

F,0 | +
∑

α∈Σ+
F

mα

2

when x ∈ ā+ tends to infinity tangentially to the face a+
F i.e.

(8.8)

{ 〈α, x〉 → 0 ∀ α ∈ F,
〈α, x〉 → +∞ ∀ α ∈ S �F.

We shall first replace the factor δ(x)
1
2 by e 〈ρ,x〉 in the definition (8.1) of χ .

Lemma 8.4 (i) The expression χ1 = E log(δ
1
2 e−ρ) is positive and bounded

above on ā+ .

(ii) χ1(x) tends to
∑

α∈Σ+
F

mα

2
under the assumption (8.8).

(iii) χ1(x) tends to 0 if and only if 〈α, x〉 → ∞ ∀ α ∈ Σ+.

Proof. Everything follows from the explicit formula

χ1(x) =
∑

α∈Σ+

mα
〈α,x〉

e 2〈α,x〉−1

and from the behavior of the function x �→ x
ex−1

for x ≥ 0 .

In order to prove Theorem 8.3, it remains for us to establish the following
properties of the expression

(8.9) χ2 = χ − χ1 = E log(eρϕ0) .
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Proposition 8.5 On ā+, χ2 is nonnegative and bounded above. Moreover
χ2(x) tends to |Σ+

0 �Σ+
F,0 | under the assumption (8.8).

Apart maybe from the lower bound, Theorem 8.3 follows obviously from
Lemma 8.4 and Proposition 8.5. If χ were not bounded below, there would
be a sequence xn ∈ ā+ such that χ(xn) → 0 . Since χ1 and χ2 are nonnega-
tive, according to Lemma 8.4 and Proposition 8.5, this implies successively
χ2(xn) → 0 , 〈α, xn〉 → 0 ∀ α ∈ Σ+ and χ(xn) → |Σ+

0 | , by Lemma 8.4 and
Proposition 8.2. Hence a contradiction.

Proposition 8.5 will be proved in several steps. After the first step, which
is independent of the rest, we shall follow Harish–Chandra’s strategy, using
his constant term theory for ϕ0 along faces, which consists in first order
asymptotics, and reducing this way to semisimple symmetric subspaces of
lower rank. Thus, beginning with Step 2, we shall argue by induction over
the semisimple split rank and assume that Proposition 8.5 holds for every
proper symmetric subspace MF = GF /KF of M = G/K . Notice that the
rank zero case F = Ø is trivial and that the rank one case |F | = 1 is already
covered by Proposition 8.2.

Step 1 : Let us first show that χ2 ≥ 0 .

When applying the Euler operator E to the expression

e 〈ρ,x〉 ϕ0(x) =

∫
K

e 〈ρ, x−H[exk]〉 dk

one is essentially reduced to differentiating the Iwasawa map

x �→ H[exk] = H[eAd k−1.x]

Recall that the derivative at the origin of the Iwasawa projection H◦ exp :
p �→ a is the orthogonal projection pra : p �→ a . Setting y = Ad k−1.x and
g = ey = k−1exk, we have

d

dt

∣∣∣∣
t=1

H[etxk] =
d

dt

∣∣∣∣
t=1

H◦ exp (ty) =
d

dt

∣∣∣∣
t=0

H[etyg]

=
d

dt

∣∣∣∣
t=0

H
[
etyk[g]eH[g]n[g]

]
,

which is equal to

d

dt

∣∣∣∣
t=0

H◦ exp (t Ad k[g]−1.y) = pra(Ad k[g]−1.y)(8.10)

= pra(Ad k[exk]−1.x) ,
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since H
[
etyk[g]eH[g]n[g]

]
= H
[
etyk[g]

]
+ H[g] . Thus

(8.11) E(eρϕ0)(x) =

∫
K

〈ρ, x − pra(Ad k[exk]−1.x) 〉 e 〈ρ, x−H[exk]〉 dk .

According to Kostant’s convexity theorem in the flat case (see for instance
Helgason [32], Theorem IV.10.2), pra(Ad K.x) coincides with the convex hull
of W.x . In particular,

〈ρ, pra(Ad k[exk]−1.x)〉 ≤ 〈ρ, x〉 ∀ k ∈ K , ∀ x ∈ ā+ .

As a consequence, the expression (8.11) hence χ2(x) = E(eρϕ0)(x)

e 〈ρ,x〉ϕ0(x)
is nonneg-

ative.

Step 2 : Analysis along a face

This is the actual induction step. Assume that x tends to infinity in ā+ in
the following way :

(8.12)

{ 〈α, x〉 = o (‖x‖) ∀ α ∈ F,
〈α, x〉 � ‖x‖ ∀ α ∈ S �F,

where F is a proper subset of S . Then

(8.13) ϕ0(x) = ψF
0 (x) e−〈ρF,xF 〉 + O

(
e−〈ρ,x〉−2 ωF(x)

)
,

where ψF
0 is the constant term of ϕ0 at infinity along the face a+

F (see
for instance Gangolli & Varadarajan [22], Theorem 5.9.3.a) and ωF(x) =
minα∈S�F 〈α, x〉 � ‖x‖ . Specifically,

ψF
0 (x) = pF

(
∂
∂λ

)∣∣
λ=0

ϕF
λ (x) =

∫
KF

pF(HF [exF kF ] + xF ) e−〈ρF ,HF [exF kF ]〉 dk,

where

pF (x) =
∑

R⊂Σ+
0

|R|≤|Σ+
0�Σ+

F,0|

γF
R

{ ∏
α∈R

〈α, x〉}

is a polynomial with leading coefficient γ F
Σ+

0�Σ+
F,0

= γF = bF (0)
πF (ρ0)

> 0 (see

Gangolli & Varadarajan [22], Corollary 5.8.12 and Anker & Ji [2], proof of
Proposition 2.2.12.ii), and

ϕF
λ (x) =

∫
KF

e 〈iλ−ρF , H[exkF ]〉 dkF =

∫
KF

e 〈iλF−ρF , HF [exF kF ]〉e 〈iλF,xF 〉 dkF
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denotes the spherical function of index λ = λF +λF on GF = GF AF . Hence

e 〈ρF , xF 〉 ψF
0 (x) =

∑
R⊂Σ+

0�Σ+
F,0, R′⊂Σ+

0�R

|R|+|R′| ≤ |Σ+
0�Σ+

F,0|

γ F
R,R′
{ ∏

α∈R

〈α, xF 〉} ×(8.14)

×
∫

KF

{ ∏
β∈R′

〈β,HF [exF kF ]〉} e 〈ρF , xF−HF [exF kF ]〉 dkF ,

with γ F
Σ+

0�Σ+
F,0, ∅ = γ F

Σ+
0�Σ+

F,0

= γF . As shown in Anker & Ji [2] (see Proof of

Proposition 2.2.12.ii), the leading term

γF πF(xF )

∫
KF

e 〈ρF , xF−HF [exF kF ]〉 dkF(8.15)

= γF πF(x) e 〈ρF , xF 〉 ϕF,0(xF ) + o
{ ∏

α∈Σ+
0

(1 + 〈α, x〉)
}

� ∏
α∈Σ+

0

(1 + 〈α, x〉)

in (8.14) is obtained by taking R = Σ+
0 �Σ+

F,0 and R′ = Ø , while the other
terms are

o
{ ∏

α∈Σ+
0

(1 + 〈α, x〉)
}

.

This yields the behavior

e 〈ρ,x〉 ϕ0(x) = e 〈ρF , xF 〉 ψF
0 (x) + O

( ‖x‖−∞)
= γF πF(x) e 〈ρF , xF 〉 ϕF,0(xF ) + o

{ ∏
α∈Σ+

0

(1 + 〈α, x〉)
}

� ∏
α∈Σ+

0

(1 + 〈α, x〉)

stated in Theorem 8.1. Here ‖x‖−∞ denotes an arbitrary negative power of
‖x‖ . The expression E(eρϕ0)(x) can be analyzed in a similar way. Since the
asymptotic (8.13) holds also for derivatives : for each polynomial P there is
NP > 0 such that

P
(

∂
∂x

){
e 〈ρ,x〉ϕ0(x)

}
= P
(

∂
∂x

){
e 〈ρF , x〉ψF

0 (x)
}

+ O
{
(1 + ‖x‖)NP e−2 ωF(x)

}
(see Gangolli & Varadarajan [22], Theorem 5.9.3.a), we have

E(eρϕ0)(x) = E(eρF ψF
0 )(x) + O

{
(1 + ‖x‖)Ne−2 ωF(x)

}
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and are thus reduced to studying E(eρF ψF
0 )(x) . When the Euler operator is

applied to the right hand side of (8.14), one obtains three kinds of expres-
sions, depending whether E acts on

∏
α∈R

〈α, xF 〉, on
∏

β∈R′
〈β,HF [exF kF ]〉 or on

e 〈ρF , xF−HF [exF kF ]〉, namely

I F
R,R′ = γ F

R,R′ |R| { ∏
α∈R

〈α, xF 〉} ×(8.16)

×
∫

KF

{ ∏
β∈R′

〈β,HF [exF kF ]〉} e 〈ρF , xF−HF [exF kF ]〉 dkF ,

II F
R,R′ = γ F

R,R′
{ ∏

α∈R

〈α, xF 〉} ×(8.17)

×
∫

KF

[ ∑
β∈R′

〈β, praF
(Ad kF [exF kF ]−1. xF )〉 ×

× { ∏
β′∈R′�{β}

〈β′, HF [exF kF ]〉} e 〈ρF , xF−HF [exF kF ]〉] dkF

and

III F
R,R′ = γ F

R,R′
{ ∏

α∈R

〈α, xF 〉} ∫
KF

[{ ∏
β∈R′

〈β,HF [exF kF ]〉}×(8.18)

× 〈ρF , xF − praF
(Ad kF [exF kF ]−1. xF )〉 e 〈ρF , xF−HF [exF kF ]〉] dkF

using (8.10) in the last two cases. Let us analyze all these expressions.
First of all, I F

Σ+
0�Σ+

F,0, ∅ is equal to the left hand side of (8.15), multiplied by

|Σ+
0 �Σ+

F,0 | . The other expressions (8.16) are smaller :

|I F
R,R′ | ≤ C

∫
KF

‖xF‖|R| ‖xF‖|R′|
∫

KF

e 〈ρF , xF−HF [exF kF ]〉 dkF

= o
{ ∏

α∈Σ+
0

(1 + 〈α, x〉)
}

.

since ‖xF‖ � ‖x‖ and ‖xF‖ = o (‖x‖). Same for the expressions (8.17). The
expressions (8.18) are more delicate to handle and will require the induction
hypothesis. Consider first

III F
Σ+

0�Σ+
F,0, ∅ = γF πF(xF )×

×
∫

KF

〈ρF , xF − praF
(Ad kF [exF kF ]−1. xF )〉 e 〈ρF , xF−HF [exF kF ]〉 dkF
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and observe that this integral coincides with EF (eρF ϕF,0)(xF ) , which is the
expression under investigation for the symmetric subspace MF = GF /KF .
Thus, by induction,

III F
Σ+

0�Σ+
F,0, ∅ = γF πF(x) EF (eρF ϕF,0)(xF ) + o

{ ∏
α∈Σ+

0

(1 + 〈α, x〉)
}

≤ C πF(x) e 〈ρF , xF 〉 ϕF,0(xF )

� ∏
α∈Σ+

0

(1 + 〈α, x〉) .

For the other expressions (8.18), we use in addition the nonnegativity of

〈ρF , xF − praF
(Ad kF [exF kF ]−1. xF )〉

(see Step 1) to estimate

|III F
R,R′ | ≤ C ‖xF‖|R| ‖xF‖|R′| ×

×
∫

KF

〈ρF , xF − praF
(Ad kF [exF kF ]−1. xF )〉 e 〈ρF , xF−HF [exF kF ]〉 dkF .

Notice that the last integral is equal to EF (eρF ϕF,0)(xF ). Thus |III F
R,R′ | =

o
{∏

α∈Σ+
0
(1+〈α, x〉)} , again by induction. By putting everything together,

we obtain eventually that

E(eρϕ0)(x) = I F
Σ+

0�Σ+
F,0, ∅ + III F

Σ+
0�Σ+

F,0, ∅ + o
{ ∏

α∈Σ+
0

(1 + 〈α, x〉)
}

(8.19)

= |Σ+
0 �Σ+

F,0 | γF πF(x) e 〈ρF , xF 〉 ϕF,0(xF ) +

+ γF πF(x) EF (eρF ϕF,0)(xF ) + o
{ ∏

α∈Σ+
0

(1 + 〈α, x〉)
}

is bounded above by

e 〈ρ,x〉 ϕ0(x) �
∏

α∈Σ+
0

(1 + 〈α, x〉) ,

see Theorem 8.1.ii.

Moreover, by induction, (8.19) behaves asymptotically like

|Σ+
0 �Σ+

F ′,0 | γF πF(x) e 〈ρF , xF 〉 ϕF,0(xF ) ∼ |Σ+
0 �Σ+

F ′,0 | e 〈ρ,x〉 ϕ0(x) ,

if for some F ′ ⊂ F , 〈α, x〉 → 0 for all α ∈ F ′ and 〈α, x〉 → +∞ for all
α ∈ F � F ′.
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Step 3 : Conclusion

We argue by contradiction.

(i) If the expression (8.9)

χ2(x) = E log(eρϕ0)(x) = E(eρϕ0)(x)

e 〈ρ,x〉ϕ0(x)

were unbounded on ā+ , there would be a sequence xn ∈ ā+ such that
χ2(xn) → +∞ . Since χ2 is analytic on a , hence locally bounded, the
sequence ‖xn‖ must tend to +∞ . By passing to a subsequence, we may
assume that xn

‖xn‖ tends to a unit vector x∞ in ā+ , which lies in some face a+
F ,

with F � S . Thus { 〈α, xn〉 = o (‖xn‖) ∀ α ∈ F

〈α, xn〉 � ‖xn‖ ∀ α ∈ S �F

as in (8.12). According to Step 2 (or Proposition 8.2 when F = Ø ), the
sequence χ2(xn) is bounded. Hence a contradiction.

(ii) Similarly, if χ2(x) would not tend to |Σ+
0 � Σ+

F,0 | under the assump-
tion (8.8), there would be a sequence xn ∈ ā+ such that

〈α, xn〉 → 0 ∀ α ∈ F ,

〈α, xn〉 → +∞ ∀ α ∈ S �F ,

inf
n

∣∣χ2(xn) − |Σ+
0 �Σ+

F,0 |
∣∣ > 0 .

We may assume again the existence of a limit direction xn

‖xn‖ → x∞ in some

face CF ′
, with F ⊂ F ′ � S . Hence again{ 〈α, xn〉 = o (‖xn‖) ∀ α ∈ F ′

〈α, xn〉 � ‖xn‖ ∀ α ∈ S � F ′

and a contradiction with the convergence χ2(xn) → |Σ+
0 �Σ+

F,0 | established
in Step 2 (or in Proposition 8.2 when F = Ø ).

This concludes the proof of Proposition 8.5. �

Remark : All these results extend trivially to reductive symmetric spaces in
the Harish–Chandra class. Except of course the lower bound on E log δ1/2ϕ0

in the purely Euclidean case, where all expressions ϕ0, δ, eρ are identically
equal to 1.
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