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quality within mappings

Stephen Semmes

Abstract� In ���� Guy David introduced some methods for �nding
controlled behavior in Lipschitz mappings with substantial images �in
terms of measure�	 Under suitable conditions� David produces subsets
on which the given mapping is bilipschitz� with uniform bounds for the
bilipschitz constant and the size of the subset	 This has applications for
boundedness of singular integral operators and 
uniform recti�ability�
of sets� as in ���� ���� ��� ���	 Some special cases of David�s results�
concerning projections of subsets of Euclidean spaces of codimension
� or mappings de�ned on Euclidean spaces �rather than sets or met�
ric spaces of less simple nature�� have been given alternate and much
simpler proofs� as in ���� ���� ���	 In general this has not occurred	

Here we shall present a variation on David�s method which breaks
down into simpler pieces	 We shall also take advantage of some com�
ponents of the work of Peter Jones ���	 Jones� approach uses some
Littlewood�Paley theory� and one of the important features of David�s
method was to avoid this� operating in a more directly geometric way
which could be applied more broadly	 To some extent� the present or�
ganization gives a reconciliation between the two� and between David�s
stopping�time argument and techniques related to Carleson measures
and Carleson�s Corona construction	

���
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�� Introduction�

Let �M�d�x� y�� and �N� ��u� v�� be metric spaces	 Thus M is a
nonempty set� d�x� y� is a symmetric nonnegative function on M �M
that vanishes exactly when x � y and satis�es the triangle inequality�
and similarly for �N� ��u� v��	 If E is a subset of M and f � E �� N is
a mapping� then f is said to be Lipschitz if there is a constant C such
that

�	� ��f�x�� f�y�� � C d�x� y� � for all x� y � E �

Similarly� f is bilipschitz if there is a constant C so that

�	�� C��d�x� y� � ��f�x�� f�y�� � C d�x� y� � for all x� y � E �

Lipschitz and bilipschitz mappings provide basic ways of making com�
parisons between metric spaces	 In particular� two metric spaces are
practically the same for many purposes when they are bilipschitz equiv�
alent �i�e�� when there is a bilipschitz mapping from one onto the other�	

On the other hand� bilipschitz parameterizations can also be hard
to come by� even in situations in which it might appear as though they
ought to exist	 This is discussed further in ����� ����� ����� ����	

In practice it is often much easier to �nd 
pieces� of bilipschitz
equivalence� rather than whole parameterizations	 That is� one might
be able to �nd bilipschitz mappings between sets of signi�cant size in
terms of measure� if not between sets which are open� or large enough
to contain a given ball� etc	 Some basic tools for doing this are given in
���� ���	 Here we shall describe a kind of reorganization of these tools�
which work in the same contexts as David�s method in ���� but do so
in a more relaxed way� and with the same type of �slightly stronger�
conclusions as in ���	

An important simpli�cation that comes from Jones� method ���
is that� instead of looking directly for bilipschitz pieces� it is enough
to �nd approximate bilipschitz behavior at many locations and scales	
This permits one to have 
gaps� in the information about bilipschitz
behavior� gaps that are sorted out at the end through a coding argument
�from ����� and it enables one to concentrate on estimates which are
more local �and much simpler� than the ones in ���	 This part of the
story is reviewed in Section �� in terms of 
weak bilipschitz� conditions�
as in ���	 �This is really just a reformulation of part of Jones� argument
from ���	�
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The basic starting point in both ��� and ��� is a Lipschitz mapping
whose image is reasonably large in the sense of measure	 The bilipschitz
pieces are then extracted from the given mapping� at least under some
conditions	 In ��� the given Lipschitz mapping f is de�ned on a cube
in a Euclidean space� for instance� and one is able to use Littlewood�
Paley theory to say that f is well�approximated by a�ne mappings at

most� scales and locations� with uniform bounds	 Here 
most� can be
made precise through the use of Carleson measures	 A�ne mappings
�with bounded gradient� are very nice to work with� because they are
always either bilipschitz in a controlled way or quite degenerate� and
one can account for the degeneracies through the behavior of f in terms
of measure �as in ����	

David�s approach is more complicated	 A basic feature of his ar�
gument is to be able to focus on ranges of scales and locations where
the mapping f is almost measure�preserving	 This provides a degree of
rigidity which is not as directly potent as a�ne approximations would
be� but which is quite useful nonetheless� and more readily accessible in
a broader range of situations	 �When a�ne approximations are avail�
able� Jones� method can be extended easily� as in ���	�

Here we shall take the issues of approximate measure�preserving
behavior and treat them separately from the rest� in sections ���	 In
the end we shall only need a kind of 
weak� condition� in the spirit of
the 
weak geometric lemma� �WGL� and other 
weak� conditions� as
discussed in ��	 This is analogous to the kind of 
weak� conditions of
a�ne approximate used in Jones� argument	 �See also ���	� Stronger
conditions are also available� in the spirit of Carleson�s Corona con�
struction �just as for approximation of Lipschitz functions by a�ne
functions� or for the approximation of uniformly�recti�able sets by �at
pieces�	

The passage from near�preservation of measure to bilipschitz con�
ditions does not work abstractly� but requires extra information	 In
this we shall follow ���� for an auxiliary condition which is su�cient	
Note� however� that the extraction of pieces which are almost measure�
preserving is extremely general	 It came up in slightly di�erent ways in
���� e�g�� in the extraction of measure�preserving weak tangents� as in
��� Proposition �	���	 �To some extent� ��� is exactly about the kind
of structure and rigidities one can get when bilipschitz behavior is not
available	 Part of the point of the present paper is to make a better �t
between ���� ��� and other contexts� like the ones in ���	� One could
also use the construction in ��� to extract measure�preserving behavior�
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simply dropping the issue of signi�cant bilipschitz pieces �and one of
the steps in the stopping�time argument�� as well as the extra condi�
tion needed to get the bilipschitz pieces	 This would give a bit more
information than we shall derive or use here	 �See Remark �	�	�

David�s condition is reviewed and used in Section �	 The basic
result� a kind of conglomeration of the theorems of David and Jones�
is given in Section �	 Section � covers some background information
and basic lemmas� and Section  mentions some modest re�nements
of the material in this paper which are useful in certain contexts	

We should emphasize that many of the steps here have clear coun�
terparts in ���	 �Otherwise they are close to ���� or to standard ideas
related to Carleson measures or Carleson�s Corona construction	� In
some cases we perhaps gain some advantage in needing only relatively

local� computations or arguments	 At any rate� it is also pleasant to
have a better reconciliation between the methods of ��� and ���	

�� Some background information�

���� Hausdor� measure�

Let us begin by recalling the de�nition of Hausdor� measure	 Let
�M�d�x� y�� be a metric space� and �x a positive number n	 Note that
n need not be an integer for this discussion� although integer values will
be of particular importance in this paper	 Given � � � and a subset E
of M � de�ne Hn

� �E� by

Hn
� �E� � inf

nX
j

�diamAj�
n � fAjg is a sequence of sets in M

which covers E and satis�es��	�

diamAj � � for all j
o
�

It is easy to see that Hn
� �E� can only become larger as � gets smaller�

so that the limit

��	�� Hn�E� � lim
���

Hn
� �E�

exists �but may be in�nite�	 This is the n�dimensional Hausdor� mea�
sure of E	 �See ���� ���� ���� for more information	�
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A simple and basic fact about Hausdor� measure is that if
�M�d�x� y�� and �N� ��u� v�� are metric spaces and f � M �� N is
Lipschitz with constant K� then

��	�� Hn�f�E�� � KnHn�E� �

This follows easily from the de�nitions	 �Note that the Hn on the left
side of ��	�� is de�ned using the metric on N � while the Hn on the right
is de�ned on M 	�

We shall often write jEj for Hn�E�� for simplicity	
It is well�known that Borel sets and sets ofHn�measure � are 
mea�

surable� forHn� so that one has the usual additivity properties for these
sets �beyond the subadditivity which works for arbitrary sets�	 See ����
���� ����� for instance	 Let us mention one other technical fact related
to measurability� which will sometimes be needed in this paper	

Lemma ���� Let M and N be metric spaces� and assume that M is a

countable union of compact sets with �nite Hn�measure� Suppose that

D is a subset of M which is Hn�measurable� and let f be a Lipschitz

mapping from D into N � Then f�D� is Hn�measurable�

This is pretty standard� but we include a proof for the sake of
completeness	 One could weaken the hypotheses a bit� but we shall
not bother with this	 �For the main purposes of this paper� one might
as well make the stronger assumption that M be 
Ahlfors�regular�� as
de�ned in Section �	�	�

To prove Lemma �	�� it su�ces to show the following	

Claim ���� Under the assumptions of the lemma� there is a sequence

of compact sets fKjg such that each Kj is contained in D and

��	�� Hn
�
Dn
�
j

Kj

�
� � �

If Claim �	� is true� then we can write f�D� as

��	�� f�D� �
��

j

f�Kj�
�
� f
�
Dn
�
j

Kj

�
�

with the Kj �s as above	 Each f�Kj� is a compact subset of N � since the
Kj �s are compact subsets ofM and f is continuous� and thus each f�Dj�
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is Hn�measurable in N 	 The last piece� f�Dn
S
jKj�� has measure ��

because of ��	�� and ��	��	 This implies that f�D� is measurable� which
is what we want for Lemma �	�	

It remains to verify Claim �	�	 We may as well assume that M is
compact and of �nite Hn�measure� because if we can prove Claim �	�
in this restricted situation� then the general case follows automatically	
This uses the assumption from Lemma �	� thatM be a countable union
of compact sets of �nite measure	 �In other words� if M is the union
of a countable family fJ�g of compact sets of �nite measure� and if we
know �from the restricted version of Claim �	�� that the intersection
of D with each J� can be realized as the countable union of compact
subsets together with a set of measure �� then the same follows for D
itself by taking the �countable� union over �	�

Thus we assume now that M is compact and has �nite measure	
Set E � MnD	 We want to show that there is a subset G of M such
that G � E� G is a countable intersection of open sets� and

��	�� Hn�G� � Hn�E� �

If we can do this� then we are �nished� because

��	�� D � MnE � �MnG� � �GnE� �

where MnG is a countable union of compact sets �since M is compact
and G is a countable intersection of open sets�� while GnE has measure
�� by ��	��	 For this last we also use the fact that E is contained in G
and is measurable �since D is� by the hypotheses of Lemma �	��� and
that the measure of G is �nite �because M has �nite measure�	

To produce G� we use the following standard argument	 �See ����
for more information and results along these lines	� Let � � � be
arbitrary� and let fAjg be a sequence of subsets of M which covers E
and satis�es diamAj � � for all j and

��	��
X
j

�diamAj�
n � Hn

� �E� � � �

as in ��	�	 We may assume that the Aj �s are all open sets� because
we can expand each of them by a tiny amount to make this true� and
without disturbing the inequalities above	 Let U��� be the open set
which is the union of the Aj�s	 Notice that U��� � E� and that

��	� Hn
� �U���� �

X
j

�diamAj�
n � Hn

� �E� � � �
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The �rst inequality comes from ��	� and the fact that U��� is covered
by the Aj �s� and the second is just ��	��	

We can do this for every � � �� and then put

��	�� G �
��
���

U
�
�

�
�

Thus G is a countable intersection of open sets by construction� and G
contains E as a subset because each U��� does	 It remains to check that
��	�� holds	 Of course Hn�E� � Hn�G� automatically� since G � E	
For each � � 	� we have that

��	�� Hn
� �G� � Hn

� �U���� � Hn
� �E� � � �

by ��	�	 This is enough to ensure that Hn�G� � Hn�E�� by the
de�nition ��	�� of Hn �and because the limit in � in ��	�� always exists�	

This completes the proof of Claim �	�� and hence of Lemma �	�
too	

���� Ahlfors regularity�

A metric space �M�d�x� y�� is said to be Ahlfors regular of dimen�

sion n� � � n � �� if it is complete� and if there is a constant C such
that

��	�� C�� rn � Hn�B�x� r�� � C rn �

for all x �M and � � r � diamM 	 Here B�x� r� denotes the closed ball
with center x and radius r in M � sometimes we may write BM �x� r� to
emphasize the metric space in question	 We write B�x� r� for the open
ball with center x and radius r� and in general 
ball� will be used to
mean 
open ball�	 Let us make the standing assumption that Ahlfors�
regular metric spaces be nondegenerate in the sense of having positive
diameter	

If �M�d�x� y�� is the same as Rn with the standard metric� for
instance� then Hn is a constant multiple of Lebesgue measure� and
��	�� holds because Hn�B�x� r�� is simply the product of rn with a
positive constant that depends only on n �namely� the volume of the
unit ball�	
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Ahlfors�regular metric spaces are automatically doubling� which
means that there is a constant L so that every ball in the metric space
can be covered by at most L balls of half the radius	 This is well�known�
and not very di�cult to prove	 As a consequence� closed and bounded
subsets of an Ahlfors�regular metric space are always compact	 Indeed�
the doubling property implies that every bounded set is totally bounded
� covered by a �nite number of balls of arbitrarily small radius � and
then compactness follows from this and completeness� by a standard
characterization of compact sets in metric spaces	

In particular� if M is Ahlfors�regular of dimension n� then M is
a countable union of compact sets of �nite Hn�measure� and therefore
satis�es the hypothesis of Lemma �	�	

���� Cubes�

A nice feature of Euclidean spaces is the existence of standard par�
titions into dyadic cubes	 Ahlfors�regular metric spaces admit similar
partitions� of the following nature	

Fix �M�d�x� y��� an n�dimensional Ahlfors�regular metric space	
Set j� � � if M is unbounded� and otherwise choose j� to be the
integer such that

��	�� �j� � diamM � �j��� �

Instead of ordinary dyadic cubes we shall be interested in having a
family f�jgj�j� � j � Z� of measurable subsets of M � with the following
properties�

each �j is a partition of M � i�e�� M �
�

Q��j

Q for any j�

and Q 	Q� � � whenever Q�Q� � �j and Q 
� Q� �

��	��

if Q � �j and Q� � �k for some k � j�

then either Q � Q� or Q 	Q� � � �
��	��

C�� �j � diamQ � C �j and C�� �jn � jQj � C �jn�

for all j and all Q � �j �
��	��
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given any j� Q � �j � and 
 � �� we have that

jfx � Q � dist �x�MnQ� � 
 �jgj � C 
��C jQj � and

jfx �MnQ � dist �x�Q� � 
 �jgj � C 
��C jQj �

��	��

This last condition says that the boundary of Q � �j is reasonably
tame� just as for ordinary dyadic cubes in a Euclidean space	 Note
that all of ��	�����	�� are valid for the standard partitions of Rn into
dyadic cubes� i�e�� with �j taken to be the collection of dyadic cubes
of sidelength �j	 �For ordinary cubes one can take the exponent of 
 in
��	�� to be equal to 	�

If M is actually a subset of some RN � equipped with the ordinary
Euclidean distance� then the existence of such a family f�jgj�j� has
been established by David ���� ���	 For this the formulation in ��� is closer
to the present discussion	 Note that in ��� the set M was assumed to
be unbounded	 This was not a serious requirement� and one can reduce
to that case anyway by adding to M an unbounded Ahlfors�regular set
E such that dist �E�M� is approximately equal to the diameter of M 	
�When n is an integer� for instance� one can take E to be a n�plane�
but all of this works when n is not an integer too	�

The existence of f�jgj�j� for a general Ahlfors�regular metric
space can be derived from the special case of subsets of Euclidean
spaces� as follows	 Given s � ��� �� considerM with the metric d�x� y�s	
This is indeed a metric� satisfying the triangle inequality in particular�
as is well�known �and not hard to verify�	 A result of Assouad ���
���� ��� implies that �M�d�x� y�s� is bilipschitz equivalent to a subset of
some RN for each s � ��� �� with the dimension N depending on s	
More precisely� Assouad shows that such embeddings exist as soon as
�M�d�x� y�� is doubling� and the doubling property holds automatically
when M is Ahlfors regular� as mentioned earlier	

Since �M�d�x� y�s� is bilipschitz equivalent to a subset of some RN �
the existence of a family f�jgj�j� for it follows from the construction
of David	 In other words� the properties ��	�����	�� are not disturbed
by bilipschitz equivalence� except for changing the constant C	 This
also uses the fact that �M�d�x� y�s� is Ahlfors�regular in its own right�
with dimension n	s� as one can check	 �Note that n�dimensional Haus�
dor� measure for �M�d�x� y�� is exactly the same as n	s�dimensional
Hausdor� measure for �M�d�x� y�s�� by de�nitions	 Thus the measures
stay the same� and the subsets of M which are balls remain the same	
It is only the radii of the balls which change� but this washes out for
the Ahlfors�regularity property	�
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Given such a family f�jgj�j� for �M�d�x� y�s�� it is not hard to
make minor modi�cations to get a family that works for �M�d�x� y��
itself	 One has to adjust the parameters slightly� to compensate for the
di�erent dimensions of Ahlfors regularity and di�erent measurements
of diameter� but this does not create signi�cant di�culties	 �Keep in
mind that the measures for �M�d�x� y�s� and �M�d�x� y�� remain the
same� even if they are given slightly di�erent names	�

In short� an Ahlfors�regular metric space �M�d�x� y�� always ad�
mits a family of partitions f�jgj�j� as above	 The constant C in ��	��
and ��	�� can be chosen so that it depends only on the dimension n
and the Ahlfors�regularity constant for M 	

Normally� when we have an Ahlfors�regular metric space
�M�d�x� y�� in hand� we shall �x a family of partitions f�jgj�j� as
above� and we shall refer to the elements of the �j �s as cubes	 �One
might also say pseudocubes� to avoid confusion with ordinary cubes in
Euclidean spaces	� We shall also typically set

��	��� � �
�
j�j�

�j �

This is like looking at the totality of all dyadic cubes� rather than just
ones of a �xed size	

Note that a single cube Q may lie in �j for more than one choice
of j� i�e�� there is nothing in the conditions above to prevent this	 This
could not happen for more than a bounded number of consecutive j�s�
because of ��	��	 In any case� this will not cause any serious di�culties	

Given cubes Q and Q� in �� we shall refer to Q� as a child of Q if
there is an integer j � j� such that Q � �j � Q

� � �j��� and Q� � Q	
We shall also call Q the parent of Q�	

If Q�Q� � �� then either Q and Q� are disjoint from each other� or
one contains the other	 This follows from ��	��	

���� Stopping	time regions�

Let �M�d�x� y�� be a n�dimensional Ahlfors�regular metric space�
and let f�jgj�j� � � be as in Section �	�	 A collection S of cubes in �
will be called a stopping�time region if it is nonempty and satis�es the
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following conditions�

S contains a top cube Q�S� that contains

all other cubes in S as subsets �
��	��

if Q�Q� are elements of � such that Q � S

and Q � Q� � Q�S�� then Q� � S too �
��	���

In practice� stopping�time regions come about from stopping�time ar�
guments� of roughly the following form	 One has some property P of
cubes that one is interested in� and one starts with a cube Q� which
enjoys this property	 To de�ne S� one �rst takes Q� as the top cube
Q�S�	 For each of the children of Q�� one asks whether it has the prop�
erty P as well	 If so� then one puts that child into S and repeats the
process for each of its children	 If not� then one stops� and does not
worry about the progeny of that cube	 In the end� one gets a collection
S which satis�es ��	�� and ��	���� and every cube Q in S satis�es the
property P under consideration	 Also� if a cube Q is contained in Q��
and if Q does not lie in S but the parent of Q does� then Q does not
satisfy P � by construction	

Here is a simple example of a stopping�time region	 Fix a cube
Q� � �� and also a nonempty subset E of Q�	 Put

��	��� ��Q�� E� � fQ � � � Q � Q� and Q� 	E 
� �g �

This clearly satis�es ��	�� and ��	���	 In general the cubes in a
stopping�time region may not 
go all the way to the bottom�� down
to individual points� as they do in ��	���	

Often one is concerned not just with individual stopping�time re�
gions� but with disjoint families of them� obtained by repeating the
same kind of construction as above	 That is� after having to 
stop�
in the construction of one stopping�time region S� one starts all over
again� perhaps with an adjustment in the property P under considera�
tion	 This will come up in sections � and �	

Sometimes one derives decompositions of all of �� or nearly all of
�� into stopping�time regions	 A basic paradigm for this is provided by
Carleson�s Corona construction� as in ��� Chapter VIII�	 An important
point then is to know that one does not have to 
stop� too often� and
this is often made precise by the notions of Carleson measures and
Carleson sets	 We shall discuss the latter in the next section	
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���� Packing conditions and Carleson sets�

Let �M�d�x� y��� f�jgj�j� � and � be as before	 Fix a cube Q� in
�� and imagine that we have a collection E of cubes in �	 We shall be
interested in packing conditions of the form

��	���
X
R�E
R�Q�

jRj � C jQ�j �

Here C is some constant �over which one would hope to have some
control�� and jRj denotes the measure of the cube R �with respect to
n�dimensional Hausdor� measure�	

De
nition ���� �Carleson sets�� If there is a constant C so that ������
holds for all Q� � �� then E is called a Carleson set�

Note that �nite unions of Carleson sets are automatically Carleson
sets	 For the record� let us mention also the following simple observa�
tion	

Lemma ����� If the elements of E are pairwise disjoint� then E is a

Carleson set with constant equal to �

This is easy to verify	
It is helpful to reformulate ��	��� as follows	 With Q� and E as

above� let N�x� � NQ�
�x� be equal to the number of cubes R � E such

that x � R and R � Q�	 It is not hard to see that this function is
measurable� and that

��	���
X
R�E
R�Q�

jRj �

Z
Q�

N�x� dx �

by Fubini�s theorem	 Here dx denotes n�dimensional Hausdor� measure
on M 	

With this identity� we see that ��	��� is equivalent to asking that
the average of N�x� over Q� be bounded by C	 In particular� ��	��� is
automatic when N�x� is pointwise bounded by C on Q�� and it implies
that N�x� is bounded by �C on at least half of the points in Q�	 For
Carleson sets one can take this further� as follows	
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Lemma ����� Let E be a family of cubes in �� and suppose that there

are positive constants K� � such that

��	��� jfx � Q� � NQ�
�x� � Kgj � � jQ�j �

for every cube Q� � �� Then E is a Carleson set� with constants which

depend only on K and ��

This is a version of well�known results of John� Nirenberg� and
Str omberg in the context of BMO functions� as in ���	 The proof
shows not only that the average of NQ�

on Q� is bounded� but also
gives exponential�integrability as well� as in the original John�Nirenberg
theorem	

Lemma �	�� is quite standard� and given in �� Part IV� Lem�
ma 	��	 Let us brie�y review the main steps in the proof	 Let Q�

be any cube in �� and let E� denote the set of points x � Q� such
that NQ�

�x� � K	 Thus jQ�nE�j � � � �� jQ�j� by ��	���	 Using
the de�nition of E�� it is not hard to see that Q�nE� is a union of
subcubes of Q�	 �That is� if NQ�

�y� � K for some point y� then there
is a cube which contains y so that NQ�

� K for every point in the
cube	� One can realize Q�nE� as a union of maximal cubes �maximal
among ones contained in Q�nE��� and these are automatically disjoint
�by ��	���	 If Q� is one of these maximal cubes� then we can repeat
the argument and take E�Q�� to be the set of points x � Q� such that
NQ�

�x� � K	 When x � E�Q��� we also have that NQ�
�x� � �K�

indeed� there are at most K cubes Q in E which contain x and lie in
Q�� since NQ�

�x� � K� and there are at most K cubes Q in E which
contain Q� as a proper subset� are contained in Q�� and lie in E 	 This
follows from the maximality of Q� as a cube contained in Q�nE�� i�e��
the next larger cube containing Q� must also contain an element of E�	

Let E� denote the union of E� with the sets E�Q��� where Q�

ranges over the maximal cubes contained in Q�nE�	 Then NQ�
� �K

on E�� and jQ�nE�j � � � ��� jQ�j	 This last comes from jQ�nE�j �
���� jQ�j and its analogue jQ�nE�Q��j � ���� jQ�j for the maximal
cubes Q�	

Again Q�nE� is a union of cubes� and a union of �maximal� sub�
cubes of the maximal cubes Q�� as before	 This permits one to repeat
the argument	 In general one obtains for each positive integer j a subset
Ej of Q� such that Q�nEj is a union of cubes� NQ�

� jK on Ej � each
of the constituent cubes in Q�nEj is properly contained in at most jK
cubes in E which are subcubes of Q�� and jQ�nEjj � �� ��j jQ�j	 The
passage from j to j �  is very much like the argument above	
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Thus we have exponential decay for the distribution function of
NQ�

� and in particular the �niteness of the average of NQ�
over Q��

with uniform bounds	 This gives Lemma �	��	

Keep in mind that there are always in�nitely many cubes R � �
which contain a given point x� about one for each 
scale�	 The packing
and Carleson conditions imply a bound on average for the number of
scales involved in E above a given x� and hence a precise sense in which
E is 
small� as a subset of �	 However� the particular choice of scales
may vary from point to point� and with little control or pattern	

A basic scenario which comes up in this paper is to have a family
F of stopping�time regions in �� and for E to be the collection of their
top cubes	 The packing and Carleson conditions then have the e�ect of
saying that� on average� one did not have to stop more than a bounded
number of times in the stopping�time argument which produced F 	
This is exactly what happens in Carleson�s Corona construction	 �See
also �� Part I� Section �	��� especially the notion of a 
coronization�	�

���� Some lemmas�

There is a simple 
stability� property of the packing and Carleson
conditions that we should record	 Fix an �arbitrary� number A � �
and let us say that two cubes Q�Q� � � are neighbors �with constant
A� if

��	��� dist �Q�Q�� � A �diamQ� diamQ��

and

��	�� A��diamQ � diamQ� � A diamQ �

If one thinks of � as providing a discrete model for the 
upper half�
space� M � ��� diamM�� then ��	��� and ��	�� correspond to the idea
that Q and Q� lay at bounded distance from each other in a �quasi��
hyperbolic distance	

Suppose that we are given E � Q� as above� and let EA denote the
set of all cubes Q � � such that Q is a neighbor �in the sense of ��	���
and ��	��� of a cube Q� � E 	

Lemma ����� Notation and assumptions as above� If E satis�es the

packing condition ������ with the constant C� and if every cube in E is a
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subcube of the �xed cube Q�� then EA satis�es ������ with C increased by

a factor that depends only on A� n� and the Ahlfors regularity constant

for M �

If E is a Carleson set �and without restriction on where the cubes

in E might lie�� then EA is too� and with the same type of bound for the

Carleson constant�

This is not hard to check� and we omit the details	 �Remember
that our partitions �j are chosen so that the constants in ��	�� and
��	�� depend only on n and the Ahlfors regularity constant for M 	�

Although the passage from E to EA preserves the packing condition
��	��� to within a bounded factor� this is not always true for the stronger
requirement that multiplicity function N�x� be bounded	 For instance�
the cubes in E might be pairwise disjoint� so that N�x� is uniformly
bounded by � but it could also happen �at the same time� that EA
contains all cubes Q which contain some �xed point z �M 	 This is not
di�cult to arrange� and it leads to logarithmic blow�up for the analogue
of N�x� for EA around z	

In many situations� packing or Carleson conditions are used to
say that some 
bad� or inconvenient event does not occur too often	
Lemma �	�� permits one to automatically extend this� to say that even
being remotely close to a bad event does not occur too often	 This can
be very convenient for making proofs� in that one is free to take A to
be as large as one wants� with the 
price� for doing this not coming
until the very end	 This is because one often does not care what the
bad sets look like� as long as they are suitably controlled by packing or
Carleson conditions	 �These were recurring themes in ��	�

On the other hand� stopping�time regions in � are often used to
represent ranges of cubes where something good happens	 In practice�
one may wish to avoid the boundaries of stopping�time regions� and our
next task is to provide some lemmas which facilitate this	

We begin with the following simpli�ed situation	 Fix a cube T � ��
and de�ne CA�T � by

CA�T � � fQ � � � there is a cube Q� � � such that

Q and Q� are neighbors � and either��	���

Q � T� Q� 
� T� or Q� � T� Q 
� Tg �
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Lemma ����� There is a constant D so that

��	���
X

Q�CA�T �

jQj � D jT j �

where D depends only on n� A� and the Ahlfors�regularity constant for

M �

To prove this� we shall use the small boundary property ��	�� of
the cubes in �	 Fix j � Z so that T � �j 	

Notice �rst that

��	��� diamQ � A diamT � when Q � CA�T � �

This is not hard to derive� from the de�nitions	 From this it follows
that there are only boundedly many cubes Q � CA�T � such that Q � ��

with � � j	 The contribution of these cubes to ��	��� is bounded by
a constant times jT j� because of ��	��� and so we may forget about
them	 Thus we set

��	��� C�A�T � � fQ � CA�T � � Q � �k for some k � jg �

and it su�ces to check ��	��� for C�A�T � instead of CA�T �	
Let Q� be another cube in �j � and let us show that

��	���
X

R�C�A�T �

R�Q�

jRj � C jQ�j �

for a suitable constant C	 If we can do this� then ��	��� will follow	 This
is because any cube R in C�A�T � must lie either in T itself or a cube
Q� � �j which is not too far from T �by ��	��� ��	��� and ��	�����
and there are only boundedly many such cubes Q�	 Notice also that
jQ�j is bounded by a constant multiple of jT j� by ��	��	

Fix Q� � �j 	 Because of ��	��� Q� must either be equal to T � or
disjoint from T 	

Given k � j� let Tk denote the set of cubes R � �k such that
R � C�A�T � and R � Q�	 Thus

��	���
�
k�j

Tk � fR � C�A�T � � R � Q�g �
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by ��	���	 The elements of Tk are pairwise disjoint� because of ��	���
and so

��	���
X
R�Tk

jRj �
��� �
R�Tk

R
��� �

On the other hand� if R � Tk� then there is a cube R� � � such that
R and R� are neighbors and either R is contained in T and R� is not�
or the other way around	 �See ��	���	� In both cases we have that
R� 
� Q�� because R � Q�� and because Q� is itself either equal to T
or disjoint from T 	 �If Q� � T � then R � T and R� 
� T � Q�� if Q�

is disjoint from T � then R 
� T � R� � T � and so R� 
� Q� because Q�

and T are disjoint from each other	� Since R� 
� Q�� we must either
have that R� contains Q�� or is disjoint from Q�	 This can be derived
from ��	��	 Each of these possibilities implies that the distance from
R to the complement of Q� is bounded by a constant �depending on A�
times the diameter of R� because R and R� are neighbors	

The diameter of R is bounded by a constant times �k� by ��	���
and therefore

��	��
�
R�Tk

R � fx � Q� � dist �x�MnQ�� � C�A� �kg �

This constant C�A� may depend on n and the Ahlfors�regularity con�
stant for M in addition to A� but not on anything else	 Combining
��	�� and ��	��� with the small boundary condition ��	�� we obtain
that

��	���
X
R�Tk

jRj � C ���k�j� jQ�j �

where C and � are positive constants which may depend on n� A� and
the Ahlfors�regularity constant for M 	 We can sum in k to get

��	���
X
k�j

X
R�Tk

jRj � C � jQ�j �

where C � depends only on n� A� and the Ahlfors�regularity constant for
M 	 This implies ��	���� as desired� and Lemma �	�� follows	

Lemma ����� Let X be a collection of cubes in � which is a Carleson

set� and de�ne bXA by

��	��� bXA �
�
T�X

CA�T � �
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Then bXA is also a Carleson set� with a constant that depends only on

n� A� the Ahlfors�regularity constant for M � and the Carleson constant

for X �

This is fairly easy to prove� because Carleson conditions 
compose�
with each other in a nice way	 To make this precise� �x a cube Q� � ��
and let us verify the packing condition ��	��� with E � bXA	

We �rst would like to verify that

��	��� fR � bXA � R � Q�g � CA�Q�� �
� �

T�X
T�Q�

CA�T �
�
�

If R lies in the left side of ��	���� then R � Q�� and there is a T � X
such that R � CA�T �	 We may as well assume that T is not a subset
of Q�� since otherwise R lies in the last part of ��	��� automatically	
In this case� T must either contain Q�� or be disjoint from it� because
of ��	��	 If T � Q�� then the fact that R � CA�T � and R � Q� � T
implies that R has a neighbor R� which is not contained in T 	 This
means that R� cannot be contained in Q� either� so that R � CA�Q��	
If T is disjoint from Q�� then R is not contained in T � and so R has a
neighbor R� which is contained in T 	 Thus R� is disjoint from Q�� and
not contained in Q� in particular� so that again R � CA�Q��	

Thus we have ��	���	 This implies that

��	���
X
R� bXA
R�Q�

jRj �
X

R�CA�Q��

jRj�
X

T�X �Q��

X
R�CA�T �

jRj �

where X �Q�� denotes the set of T � X with T � Q�	 Using Lemma
�	�� we may convert this into

��	���
X
R� bXA
R�Q�

jRj � C jQ�j� C
X

T�X �Q��

jT j �

for a suitable constant C	 This reduces further to

��	���
X
R� bXA
R�Q�

jRj � C � jQ�j �

because of the requirement that X be a Carleson set	 This completes
the proof of Lemma �	��	
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Here is another version of 
composing� Carleson conditions	

Lemma ���� Let F be a family of stopping�time regions which are

pairwise disjoint �as subsets of ��� Assume that the collection of top

cubes

��	�� fQ�S� � S � Fg

�as in ������ is a Carleson set� with constant C�� Suppose that for each

S � F we have a collection of cubes E�S� which is contained in S and

which is a Carleson set with constant C�� Then the union

��	��� E� �
�
S�F

E�S�

is a Carleson set� with constant �C� � �  C��

To prove this� �x a cube Q�� and let us estimate

��	���
X
R�E�

R�Q�

jRj �

Put

��	��� E�� �
�
fE�S� � S � F � Q�S� � Q�g �

and

��	��� E�� � fR � E�nE�� � R � Q�g �

For E�� we have that

��	���

X
R�E��

jRj �
X
S�F

Q�S��Q�

X
R�E�S�

jRj

�
X
S�F

Q�S��Q�

C� jQ�S�j

� C�C� jQ�j �

The second inequality uses the Carleson condition for the E�S��s to�
gether with the fact that R � Q�S� when R � E�S�� since E�S� is a
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subset of S by assumption	 �This also uses the de�nition of the top
cube Q�S� in ��	��	� The third inequality uses the Carleson condition
for the collection ��	�� of top cubes	

Now consider E�� 	 Let R be a cube in E�� 	 Then R � Q�� and there
is an S � F such that R � E�S� but Q�S� 
� Q�	 We also have that
R � Q�S�� since E�S� � S� as above	 This implies that Q� and Q�S�
are not disjoint� because they both contain R	

Given any two cubes in �� either one contains the other� or they
are disjoint� by ��	��	 For Q� and Q�S� we have that Q� � Q�S��
since the other two possibilities have already been excluded	 From this
we conclude that Q� is an element of S� by ��	��� and the fact that
R � Q�	

The stopping�time regions S � F are pairwise disjoint� by hypoth�
esis� and so there is at most one S � F such that Q� � S	 This means
that there is a single S� � F such that E�� � E�S��	 Thus

��	���
X
R�E��

jRj �
X

R�E�S��
R�Q�

jRj � C� jQ�j �

by the Carleson condition for E�S��	
Combining ��	��� and ��	���� we obtain that the sum in ��	��� is

bounded by �C�C��C�� jQ�j� which is what we wanted	 This completes
the proof of Lemma �	��	

Lemma ����� Let F be a family of pairwise�disjoint stopping�time

regions in �� For each S � F � put

��	��� SA � fQ � S � Q� � S whenever Q and Q� are neighborsg �

and set

��	��� BA �
�
S�F

�SnSA� �

�Thus BA consists of the cubes in � which lie in S for some S � F �
but which are not so far from cubes outside of S�� If the collection of

top cubes Q�S�� S � F � is a Carleson set� then so is BA� with a bound

for the Carleson constant for BA which depends only on the Carleson

constant for ������ n� A� and the Ahlfors�regularity constant for M �
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It su�ces to show that SnSA is a Carleson set for any �xed stopping
time region S� with uniform bounds �which are independent of S in
particular�	 If we can do this� then Lemma �	�� will follow� by Lemma
�	��	

We want to give another description of SnSA in terms of the 
func�
tor� CA��� and then reduce to lemmas �	�� and �	��	

Fix a cube Q in SnSA	 Thus there is a cube Q� � 
�Q� such that Q
and 
�Q� are neighbors� Q � S� and 
�Q� 
� S	 Let us say that Q is of
type � �� or �� according to whether 
�Q� � Q�S�� 
�Q� 	Q�S� � ��
or 
�Q� � Q�S�� respectively	 These three alternatives exhaust all
possibilities� because of ��	��	 Put

��	�� �SnSA�i � fQ � SnSA � Q is of type ig � i � � �� � �

It su�ces to show that each �SnSA�i is a Carleson set� with bounds for
the Carleson constants	

If 
�Q� � Q�S�� then Q and Q�S� must be neighbors	 This is
not hard to check� since Q � Q�S� � 
�Q�	 From this it follows that
�SnSA�� has only a bounded number of elements� and hence is a Car�
leson set with a bounded constant	

If 
�Q� is disjoint from Q�S�� then Q lies in CA�Q�S��	 That is�
Q � Q�S� automatically �since Q � S�� 
�Q� is not contained in Q�S�
�since it is disjoint from Q�S��� and Q� 
�Q� are neighbors� as above	
Thus Q� Q� � 
�Q� meet the requirements of the de�nition ��	��� of
CA�Q�S��� and we conclude that

��	��� �SnSA�� � CA�Q�S�� �

The Carleson condition for �SnSA�� now follows from the one for
CA�Q�S��	 �The latter corresponds to Lemma �	��� with X consist�
ing of the single cube Q�S�	�

We are left with the case of type � cubes	 Set

��	���
b�S� � fQ � � � Q � Q�S�� Q 
� S� and

Q is maximal with these propertiesg �

Thus b�S� consists of cubes 
at the bottom�� just below S	 Notice that

��	��� the elements of b�S� are pairwise disjoint �

This follows from maximality� and ��	��	 If Q is an element of �SnSA�	�
then 
�Q� � Q�S� but 
�Q� 
� S� and hence 
�Q� � T for some T �
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b�S�	 That is� one simply takes T to be the maximal subcube of Q�S�
which contains 
�Q� and does not lie in S	 We also have that Q 
� T �
because otherwise T would have to lie in S� since S is a stopping�time
region	 �See ��	��	� This shows that Q � CA�T �� since Q and 
�Q� are
neighbors	 Thus we get that

��	��� �SnSA�	 �
�

T�b�S�

CA�T � �

On the other hand� b�S� is a Carleson set� with constant equal to �
since the elements of b�S� are pairwise disjoint	 Lemma �	�� now applies
to say that the right side of ��	��� is a Carleson set� as desired	 This
completes the proof of Lemma �	��	

The lemmas in this subsection are similar to ones in ��� especially
�� Part I� Section �	��	 We have gone through them in some detail for
the sake of clarity and completeness	

�� Measure	preserving behavior�

Standing Assumptions ���� Let �M�d�x� y�� be a n�dimensional

Ahlfors�regular metric space� and let f�jgj�j� � � be as in Section ����
In particular� the constants in ����� and ����� depend only on the

dimension n and the Ahlfors regularity constant for M � Fix L � �� let
Q� be a cube in �� and let h be a mapping from Q� into another metric

space N � We require that

��	�� h is Lipschitz with constant L �

For Proposition �	� below� we also ask that

��	�� jh�Q��j � � jQ�j �

where � is some ��xed� positive number	 Here we use jAj to denote
the n�dimensional Hausdor� measure of A� whether A lies in M or N 	
Note that

��	�� � � Ln �

because of ��	��� ��	�� and ��	��	
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Remark ���� Although everything is being stated �for simplicity� in
this paper in terms of Hausdor� measures� one can allow slightly more
general measures� like 
Ahlfors�regular measures� on M and 
Ahlfors�
sub�regular� measures for the image space N 	 The main points are to
have Ahlfors�regularity inequalities as in ��	�� forM � and to know that
Lipschitz mappings fromM to N do not expand measures too much� as
in ��	��	 �There are also minor technical issues of something like Borel
regularity	� For this section even the Ahlfors�regularity does not really
matter� and we shall say more about this later	 In Section  we shall
also discuss weakening the Lipschitz condition on h	

Proposition �	� is concerned with �nding substantial regions in
� where h behaves approximately like a measure�preserving mapping�
and in a nondegenerate way	 Here and later we shall want to have
estimates which do not depend on Q� or h� but which may depend on
the constants above	

Proposition ���� Notation and assumptions as above� Let 
 � �
be given �normally small �� There exist positive constants k and �
depending only on 
 and the constants n� L� and � above� so that the

following is true� There is a family F of pairwise�disjoint stopping�

time regions in �� and a measurable subset E of Q�� with the following

properties �

a� jEj �  jQ�j�

b� if Q � � satis�es Q � Q� and Q 	E 
� �� then Q lies in S for

some stopping�time region S � F �

c� if Q � S and S � F � then Q � Q�� and

��	�� � � 
���
jh�Q�S��j

jQ�S�j
�
jh�Q�j

jQj
� � � 
�

jh�Q�S��j

jQ�S�j
�

d� jh�Q�S��j � � jQ�S�j for all S � F �

e� for each x �M � there are at most k choices of S � F such that

x � Q�S��

Recall that Q�S� denotes the top cube in the stopping�time region
S� as in ��	��	

To rephrase the conclusions of the proposition� a� says that E
contains a de�nite proportion of Q�� b� provides a precise sense in
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which the stopping�time regions in F contain a substantial part of the
cubes in � which are subsets of Q�� c� says that h is approximately
measure�preserving �up to a scale factor� on each stopping�time region
in F � d� gives a lower bound for the scale factors in c�� and e� implies
that there are not too many of the stopping�time regions in F 	 In
particular� the family of top cubes Q�S�� S � F � is a Carleson set� in
the sense of Section �	�	 This follows from ��	���	

The proposition would not be very interesting without e�� or some�
thing like a Carleson or packing condition� because then the stopping�
time regions would be able to 
stop� too often	 If S did not contain any
element besides the top cube Q�S�� for instance� c� would not contain
any information at all	 As it is� there have to be a lot of pretty big
stopping�time regions S in F � because of the properties a�� b�� and e�
above	

An important point here is that we are free to take 
 as small as we
wish� so that� in e�ect� the behavior of h on the stopping�time regions
S � F is as nice as we want	 The price for this comes in the constants k
and � but for the purposes of making proofs this is often very simple�
and causes no trouble	

For this proposition the Ahlfors regularity of M will not really
be important� nor the measure�theoretic properties of the cubes in �
�beyond the fact that they have �niteHn�measure�	 In other words� this
proposition really works at a 
martingale� level	 In the next sections
we shall give re�nements of it which do rely on the Ahlfors�regularity of
M � and the properties ��	��� ��	�� of cubes in � �and not just ��	���
��	���	

The remainder of this section will be devoted to the proof of Propo�
sition �	�	 Let 
 � � be given� as above	 To �nd F we run the obvious
stopping�time argument	 We begin with Q� itself� and we consider the
following two conditions for stopping at a cube Q � Q�

jh�Q�j

jQj
� � � 
���

jh�Q��j

jQ�j
���	��

jh�Q�j

jQj
� � � 
�

jh�Q��j

jQ�j
���	��

The �rst condition will be more serious for us� in that we shall really
stop when we reach a cube which satis�es it	 When we reach a cube
which satis�es the second condition� we shall stop the given stopping�
time region� but then start a new one	
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More precisely� to de�ne our �rst stopping�time region S�� we begin
by taking Q� to be the top cube of S�	 We then look at the children
of Q�� and keep �for S�� the ones that satisfy both ��	�� and ��	���
discarding the others� at least for the moment	 For the cubes that are
kept we repeat the process over and over again	 In the end we get a
collection S� of cubes which is indeed a stopping�time region �in the
sense of ��	�� and ��	���� with Q�S�� � Q��� and for which properties
c� and d� in Proposition �	� hold automatically	

Let b�S�� be as in ��	���� near the end of Section �	�	 By construc�
tion� each cube Q in b�S�� satis�es one of ��	�� and ��	��� i�e�� otherwise
we would not have stopped	 Let b��S�� denote the set of cubes Q in
b�S�� which satisfy ��	��� and let b��S�� be the remaining set of cubes in
b�S�� which satisfy ��	��	 Note that the cubes in b�S�� need not cover
all of Q�� i�e�� one may be able to go all the way down to individual
points without ever having to stop	

Let us write F� for the 
family� which consists of S� alone	 Next
we want to de�ne a family F� as follows	 Let Q� be an element of
b��S��� if there are any	 Using exactly the same procedure as before�
we can get a stopping�time region S� with Q�S�� � Q�	 That is� we
start with Q�� and proceed to its children� grandchildren� etc	� stopping
whenever we reach a cube Q which satis�es the analogue of one of ��	��
and ��	��� but with Q� in place of Q�	 We do this for every element Q�

of b��S��� ignoring the elements of b��S��	 We take for F� the family of
stopping�time regions produced in this way	

Similarly� we de�ne F� by applying the same procedure to elements
of b��S�� S � F�� where b��S� is de�ned exactly as before �the set of
cubes in b�S� for which the analogue of ��	�� holds�	 We repeat the
process� obtaining families F	� F
� etc	� until we run out of cubes from
which to start again	 In the end we take F to be the union of all the
Fj �s� j � �� which are produced in this manner	

If S � Fj � then

��	�� jh�Q�S��j � � � 
�j � jQ�S�j �

This follows from the construction� in proceeding from one generation
to the next� the mass ratio always went up by at least a factor of � 
 �
because we were careful to start new stopping�time regions only for
cubes which satis�ed ��	�� �and its counterparts in successive genera�
tions�	 When j � �� we have that Q�S� � Q�� and ��	�� reduces to
��	��	
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From this we may conclude that there is a constant k� depending
only on 
 � �� L� and n� so that

��	� Fj is empty when j � k �

To see this� remember that h is Lipschitz with constant at most L� by
assumption� so that

��	�� jh�Q�j � Ln jQj �

for all cubes Q on which h is de�ned	 �See ��	��	� This upper bound is
incompatible with ��	�� when j is su�ciently large	

Another basic feature of the Fj�s is that

��	�� the top cubes Q�S�� S � Fj � are pairwise disjoint �

It is important that j be �xed �but arbitrary� in ��	��� since the top
cubes certainly do intersect from one generation to the next	 To prove
��	��� one argues by induction	 When j � �� there is only one stopping�
time region in F�� and ��	�� is trivial	 Suppose now that ��	�� is true
for some value of j� and let us check it for j � 	 If S � Fj � then the

bottom� cubes in b�S� are pairwise disjoint� as in ��	���	 The totality
of all cubes Q which arise in some b�S�� S � Fj � are therefore pairwise
disjoint as well	 This is because ��	�� holds for j� by assumption� and
because the elements of b�S� are all contained �as subsets� in Q�S�	
This implies ��	�� for j � � since the top cubes of the stopping�time
regions in Fj�� are always chosen among the elements of b�S�� S � Fj	
Thus we have ��	�� for all j	

For future reference� let us record the fact that

��	�� the totality of cubes Q � b�S�� S � Fj � are pairwise disjoint �

Again it is important that j be �xed here	 This can be derived from the
same argument as above� or viewed as a consequence of ��	��� using
the pairwise disjointness of cubes in a �xed b�S� �as in ��	����� and the
fact that Q � Q�S� when Q � b�S�	

Property e� in Proposition �	� follows from ��	�� and ��	�	 Spe�
ci�cally� if x is any element ofM � and if j is a nonnegative integer� then
��	�� implies that x can lie in Q�S� for at most one choice of S � Fj	
This gives e�� since ��	� ensures that there are at most k values of j
to worry about anyway	
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From ��	�� we get d� in Proposition �	�	 Property c� was incorpo�
rated directly into the construction of the stopping�time regions	 It is
also easy to see that the stopping�time regions in F are pairwise disjoint
by construction �as subsets of ��� as required in the statement of the
proposition	

Let us now de�ne E � Q� by

��	�� Q�nE �
�
S�F

�
Q�b��S�

Q �

where b��S� is as above �i�e�� the set of cubes Q in b�S� such that the
reason for 
stopping� was ��	�� with Q� replaced by Q�S��	 Property
b� in Proposition �	� holds automatically� because of the de�nitions	
This uses the fact that it was only for the cubes in b��S� that we would
stop permanently� for the elements of b��S�� we always started a new
stopping�time region immediately	

It remains to establish a lower bound for the measure of E� as in
a� in Proposition �	�	 For this we use the following	

Lemma ����� Let Q be a cube in �� and suppose that f � Q �� N
is Lipschitz �say�� Let fQigi be a family of subcubes of Q which are

pairwise�disjoint and satisfy

��	��
jf�Qi�j

jQij
� � � 
���

jf�Q�j

jQj
�

for each i� Then

��	��
���f�Q n�

i

Qi�
��� � 


 � 

jf�Q�j �

In particular� if f is Lipschitz with constant L� then

��	��
���Q n�

i

Qi

��� � L�n



 � 

jf�Q�j �

This is quite straightforward	 For simple reasons of subadditivity
we have that

��	��� jf�Q�j �
���f�Q n�

i

Qi�
����X

i

jf�Qi�j �
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Using ��	�� we have that

��	��

X
i

jf�Qi�j � � � 
���
jf�Q�j

jQj

X
i

jQij

� � � 
���
jf�Q�j

jQj
jQj

� � � 
��� jf�Q�j �

Thus

��	��� jf�Q�j �
���f�Q n�

i

Qi�
���� � � 
��� jf�Q�j �

The requirement that f be Lipschitz ensures that jf�Q�j ��� so that
we may subtract the last term on right from both sides of the inequal�
ity	 This gives ��	��� and ��	�� follows from ��	�� and ��	��	 This
completes the proof of Lemma �	�	

We want to apply this to the situation of h and E	 We begin with
the following basic step	 Fix an S � F � and let b��S� be as before� the
elements of b�S� for which the reason for stopping was ��	��� but with
Q� replaced by Q�S�	 Thus

��	���
jh�R�j

jRj
� � � 
���

jh�Q�S��j

jQ�S�j
�

for all R � b��S�	 We also have that the R�s in b��S� are pairwise
disjoint� as in ��	���	 If we set

��	��� E��S� � Q�S� n
�

R�b��S�

R �

then we get that

��	��� jE��S�j � L�n



 � 

jh�Q�S��j �

by Lemma �	�	 In particular

��	��� jE��S�j � L�n



 � 

� jQ�S�j �
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by d� in Proposition �	� �which was derived above� from ��	���	
Given a nonnegative integer j� de�ne Ej � Q� through the formula

��	��� Q�nEj �

j�
i��

�
S�Fi

�
R�b��S�

R �

Remember that F� consists of only the single stopping�time region S��
and that Q�S�� � Q�� thus E� is the same as E��S��� with the latter
de�ned as in ��	���	 Thus

��	��� jE�j � L�n



 � 

� jQ�j �

by ��	���	 We also have that the set E from ��	�� is the same as Ek���
because of ��	�	

We want to show that the measures of the Ej�s do not decrease
too fast as j increases	 Let us begin by converting the de�nition ��	���
into

��	��� Ej�� � Ej n
�

S�Fj��

�
R�b��S�

R �

Next we want to check that

��	��� Ej �
�
S�Fj

�
Q�b��S�

Q �

for each j � �	 We argue by induction	 When j � �� there is exactly
one stopping�time region S� in F�� and

��	�� E� � Q�S� n
�

R�b��S��

R �

This implies that E� contains every Q � b��S��� as in ��	���� because
b��S� and b��S� are always disjoint as subsets of b�S�� and because
the individual elements of b�S� are always disjoint from each other� as
subsets of M � by ��	���	

Now suppose that ��	��� holds for some j� and let us check it for
j � 	 If S � Fj��� then Q�S� lies in b��S

�� from some S� � Fj� by the
de�nition of the Fi�s	 In particular� Q�S� � Ej� by ��	���	 We want to
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show that the cubes Q in b��S� are subsets of Ej��	 From ��	��� and
the fact that Q�S� � Ej we have that

��	��� Ej�� � Q�S� n
�

bS�Fj��

�
R�b��bS�

R �

Fix Q � b��S�	 Thus Q � Q�S� �automatically�� and Q is disjoint from

every R � b��bS�� bS � Fj��� because of ��	�� �with j replaced by j��	
Using ��	��� we get that Ej�� � Q when Q � b��S�	 This implies ��	���
with j replaced by j � � since S � Fj�� and Q � b��S� are arbitrary	

This �nishes the proof that ��	��� holds for every j � �	 We can
rewrite ��	��� as

��	��� Ej �
�

S�Fj��

Q�S� �

Indeed� the collection of cubes Q�S�� S � Fj��� is identical to the collec�
tion of cubes Q such that Q � b��S

�� for some S� � Fj � by construction	
We want to show that

��	��� jEj��j � L�n



 � 

� jEjj �

for each j � � �although one could improve on this a bit�	 Notice �rst
that

��	��� Ej�� n
�

S�Fj��

Q�S� � Ej n
�

S�Fj��

Q�S� �

i�e�� Ej�� and Ej are the same outside the cubes Q�S�� S � Fj��	 This
follows from ��	���� since

��	���
�

S�Fj��

�
R�b��S�

R �
�

S�Fj��

Q�S�

automatically� so that the parts which are removed from Ej to make
Ej�� �as in ��	���� are contained inside the union of the Q�S��s� S �
Fj��	 �More precisely�

��	���
�

R�b��S�

R � Q�S� �
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for each S� i�e�� the elements of b��S� � b�S� are subcubes of S by
de�nition� as in ��	���	�

Because of ��	���� in order to establish ��	���� it su�ces to show
that

��	���
���Ej�� 	 �

S�Fj��

Q�S�
��� � L�n




 � 

�
���Ej 	 �

S�Fj��

Q�S�
��� �

This is the same as

��	���

��� �
S�Fj��

Q�S� n
�

bS�Fj��

�
R�b��bS�

R
���

� L�n



 � 

�
��� �
S�Fj��

Q�S�
��� �

by ��	��� and ��	���	 We can simplify this a bit further� through the
following remarks	 The Q�S��s with S � Fj�� are pairwise disjoint� as
in ��	��	 Thus ��	��� is equivalent to

��	���
X

S�Fj��

���Q�S� n
�

bS�Fj��

�
R�b��bS�

R
��� � L�n




 � 

�
X

S�Fj��

jQ�S�j �

and so it su�ces to show that

��	��
���Q�S� n

�
bS�Fj��

�
R�b��bS�

R
��� � L�n




 � 

� jQ�S�j �

for every S � Fj��	 Now� if S� bS � Fj��� and if S 
� bS� then
��	��� Q�S� 	Q�bS� � � �

by ��	��	 This implies that Q�S� 	 R � � for all R � b��bS� �and in

fact for all R � b�bS�� since R is then a subset of Q�bS�� by the de�nition

��	��� of b�bS��	 Thus ��	�� is equivalent to
��	���

���Q�S� n
�

R�b��S�

R
��� � L�n




 � 

� jQ�S�j �

We have already shown that this inequality holds for all S � F � as
in ��	���	 �Remember that E��S� is de�ned in ��	���� which exactly
matches with the left side of ��	���	�
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This completes the proof of ��	���	 Combining ��	��� with ��	���
we obtain that

��	��� jE�j �
�
L�n




 � 

�
����

jQ�j �

for all � � �	 We also mentioned before �just after ��	���� that our set
E �de�ned in ��	��� is equal to Ek��	 Therefore

��	��� jEj �
�
L�n




 � 

�
�k
jQ�j �

Thus we have a lower bound for the mass of E�� as required in a�
of Proposition �	�	 The proof of Proposition �	� is now completely
�nished	

Remark ����� Let F be as above� and set

��	��� G �
�
S�F

S �

Thus G is the collection of all of the cubes Q which occur in some
stopping�time region S	 From the construction we have that Q � Q� for
every Q � G� and that Q� lies in G	 In fact� G is itself a stopping�time
region� if Q and Q� are cubes in � such that Q � Q� � Q� and Q � G�
then Q� � G	 This is not hard to check from the construction either	
The point is that when we were choosing our stopping�time regions� we
started at Q�� and each time we 
stopped� for one stopping�time region
S� we either stopped for good �as for cubes in b��S��� or we started a
new stopping�time region again immediately �for cubes in b��S��� with
no gaps between the end of one stopping�time region and the beginning
of another	

To put this another way� if Q lies in G� then all of the successive
parents of Q lie in G as well� until we get to Q�	 Of course� in each
stopping�time region S � F successive parents of a cube in S also lie
in S until one gets to the top cube Q�S�	 If S is not the �rst stopping�
time region S�� then one can keep going �upwards�� because the parent
of Q�S� lies in some S� � F � by construction	 By repeating this� one
obtains that all of the ancestors of Q which are contained in Q� also lie
in G� as desired	 This observation will be useful in Section �	
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�� First improvement � more stopping	time regions�

We continue to use the notation and assumptions from Standing
Assumptions �		 �Note that ��	�� was not part of Standing Assump�
tions �		� Given Q � �� set

��	� ��Q� � fR � � � R � Qg �

In Proposition �	� we have good behavior of h� in terms of preser�
vation of measure� on a substantial subset of ��Q��	 Now we want to
expand this to a larger part of ��Q��� so that we do not 
stop� without
a good reason	

Proposition ���� Let Q�� h� etc�� be as in Standing Assumptions ���
and �x �� 
 � �� There exists a constant k�� depending only on n� L�
�� and 
 � as well as a family F� of stopping�time regions in � and a

collection fQigi�I of cubes in M � so that the following are true �

a� the Qi�s are pairwise disjoint subcubes of Q�� and the stopping�

time regions in F� are pairwise�disjoint subsets of ��Q���

b� if R � ��Q��� then either R � Qi for some i � I� or R � S for

some S � F� �and not both��

c� if Q � S and S � F�� then

��	�� � � 
���
jh�Q�S��j

jQ�S�j
�
jh�Q�j

jQj
� � � 
�

jh�Q�S��j

jQ�S�j
�

d� jh�Q�S��j � � jQ�S�j for all S � F��

e� the family of cubes

��	�� fQ�S� � S � F�g

is a Carleson set with constant k��

f� jh�Qi�j � �jQij for all i � I�

This is very similar to Proposition �	�� especially in the properties
c� and d� of the stopping�time regions	 The chief di�erence is that now
we account for every cube R contained in Q�� through b�� rather than

many� such cubes� as before	 Notice that f� implies that

��	��
���h��

i�I

Qi

���� � �
����
i�I

Qi

��� �
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at least if there are any Qi�s� so that the union is not empty	 In partic�
ular�

��	��
���Q�n

�
i�I

Qi

���
is of de�nite size if jh�Q��j � � � jQ�j� say	 �In this case ��	�� would
have measure at least L�n � jQ�j� because of ��	��	�

Note that if Q� itself satis�es jh�Q��j � � jQ�j� then Proposition
�	� is trivial	 We can simply take fQigi�I to consist only of Q�� and
F� to be empty	

The Carleson condition in e� provides a way to say that there are
not too many stopping�time regions in F�	 As such it is similar to e�
in Proposition �	�� but a bit weaker	 This re�ects the fact that we now
cover more of ��Q�� with our stopping�time regions than we did before	

In order to prove Proposition �	�� we basically just have to iterate
Proposition �	�	 We may as well assume that

��	�� jh�Q��j � � jQ�j �

since otherwise there is not much to do� as mentioned above	 This
permits us to apply Proposition �	�� to get a family F of stopping�time
regions in ��Q�� with the properties described there	

Let G denote the union of the stopping�time regions S � F � as
in ��	���	 In Remark �	��� we saw that G is itself a stopping�time
region� with top cube Q�	 Let b�G� be as in ��	���� i�e�� the collection
of maximal subcubes of Q� � Q�G� which do not lie in G	 Thus

��	�� ��Q�� � G �
�

R�b�G�

��R� �

and the union is a disjoint one� i�e�� G is disjoint from ��R� for every
R � b�G�� and the ��R��� ��R�� are disjoint from each other when R��
R� are distinct elements of b�G�	 These assertions are easy to derive
from the fact that G is a stopping�time region in ��Q��� with Q� for its
top cube� and from the de�nition of b�G�	 In particular� the elements
of b�G� are pairwise disjoint as subcubes of Q�� by maximality �as in
��	���	�

If Q � b�G� and

��	�� jh�Q�j � � jQj �
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then we stop there and place Q among the Qi�s	 If not� then we can
repeat the whole construction with Q instead of Q�	 This leads to
a family of stopping�time regions F�Q� with the properties given in
Proposition �	�� and a collection G�Q� � ��Q� as above	 We do this
for all of the Q�s in b�G� with

��	�� jh�Q�j � � jQj �

For each of the Q�s in this second class we can again look at the cubes
Q� in b�G�Q��� and separate them according to whether ��	�� or ��	��
hold �with Q� instead of Q�	 When the analogue of ��	�� holds� we
add the given cube Q� to the collection of Qi�s	 When the analogue of
��	�� holds� we repeat the process for Q�� i�e�� applying Proposition
�	� to obtain a family of stopping�time regions F�Q�� with the usual
properties	

We do this inde�nitely� going on forever or until no more new cubes
come about �as when a collection G�Q� contains all subcubes of Q� so
that b�G�Q�� is empty�	 In the end we take fQigi�I to be exactly the
set of cubes which satis�ed ��	�� in the process above� and we take
F� to be the union of all the families F�Q� that were produced above�
including F � F�Q��	

Clearly the Qi�s are all subcubes of Q�� and the stopping�time
regions S � F� are all contained in ��Q��� by construction	 It is not
hard to see that

��	� ��Q�� �
� �
S�F�

S
�
�
��
i�I

��Qi�
�
�

The �rst step for this was given by ��	��	 In ��	��� one can think of
separating the ��R��s� R � b�G�� into two groups� according to ��	��
and ��	��	 The R�s that satisfy ��	�� are included among the Qi�s�
and thus the corresponding ��R��s are taken into account in the right
side of ��	�	 For the R�s that satisfy ��	��� one feeds into a natural
recursion� in which ��R� is similarly decomposed as in ��	��	 Repeating
the process inde�nitely one gets ��	�� as desired	

The same type of argument also permits one to show that the union
in ��	� is a disjoint one� i�e�� the S�s in F� are pairwise disjoint� the
��Qi��s are pairwise disjoint� and the S�s are pairwise disjoint from the
��Qi��s	 One does not really have to worry about individual S�s here�
because the S�s in a single F�Q� are pairwise�disjoint� by the properties
of F in Proposition �	�	 Thus one may as well think in terms of the
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G�Q��s instead of individual S�s	 The �rst step in the proof of the
disjointness of the unions in ��	� is to realize that the unions in ��	���
are disjoint ones	 Indeed� the ��R��s� R � b�G�� are disjoint from
G because of the de�nition ��	��� of b�G�� and the fact that G is a
stopping�time region	 The disjointness of the ��R��s� R � b�G�� from
each other follows from the fact that distinct cubes in b�G� are pairwise
disjoint as subsets of Q�� as in ��	���	 Once one has disjointness of the
various pieces in ��	��� one can get similar disjointness at later steps
for the same reasons	 More precisely� in later steps one takes ��Q� for
certain cubes Q and decomposes it according to

��	��

��Q� � G�Q� �
�

R�b�G�Q��

��R�

�
� �
S�F�Q�

S
�
�
� �
R�b�G�Q��

��R�
�
�

These unions are disjoint� for exactly the same reasons as before	 This
permits one to preserve disjointness at each stage of the construction�
with disjointness for ��	� in the end	

We also need to know that the Qi�s� i � I� are pairwise disjoint as
subsets of Q�	 This can be shown in much the same way as above� with
the pairwise�disjointness of the cubes in b�G� or in any b�G�Q�� �as in
��	���� providing the information needed at each individual step in the
construction	 �Actually� one should also keep track at each stage of the
disjointness of the cubes in b�G� or the b�G�Q���s from the cubes which
have been placed among the Qi�s by that point	� One can also derive
this from the disjointness in ��	�� i�e�� two cubes Q�� Q� are disjoint
if and only if the corresponding ��Q��� ��Q�� are disjoint as subsets
of �	

From ��	� and these various considerations of disjointness we
obtain properties a� and b� in Proposition �	�	 We do not need to
do anything for c� and d�� because they are inherited directly from
Proposition �	�	 This also uses the fact that we applied Proposition
�	� only to cubes which satisfy ��	��	 Property f� also follows directly
from our construction� i�e�� the cubes that we set aside for fQigi�I were
the ones for which ��	�� was true	

It remains to show that e� holds� i�e�� that the top cubes of the
stopping�time regions S � F� form a Carleson set� with a suitably
bounded constant	 Let us �rst set some notation	 Let G denote the set
of cubes Q to which Proposition �	� was applied in the construction
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above	 Thus Q� is the �rst cube that we put into G� then we added all
of the Q�s in b�G� for which ��	�� was true� for each of these cubes Q�
we took the cubes R � b�G�Q�� for which the analogue of ��	�� for R
was true� and put them into G too� and so on	 By construction �and as
discussed above�� the G�Q��s� Q � G� are disjoint stopping�time regions
contained in ��Q��� and F� is exactly the union of the families F�Q��s�
Q � G �which came from the application of Proposition �	� to Q�	

We would like to show that G is a Carleson set	 We shall do this
using Lemma �	��� and the existence of the set E in Proposition �	� �to
verify the hypotheses of Lemma �	���	 We begin by reformulating the
latter for the present context	

For each cube Q � G� Proposition �	� provides a measurable set
E�Q� � Q such that

��	�� jE�Q�j �  jQj �

�where  is as in Proposition �	�� and depends only on 
 � �� n� and L��
and so that

��	�� Q� � G�Q� for every Q� � ��Q� such that Q� 	 E�Q� 
� � �

These properties correspond exactly to a� and b� in Proposition �	�	
We can reformulate ��	�� as saying that

��	��
for each x � E�Q�� Q is the only cube

in ��Q� which contains x and lies in G �

This is because Q is the only cube which is an element of both G�Q�
and G� by construction	 �This last can also be seen as part of the earlier
matter of disjointness	�

Let us extend ��	��� as in the next claim	

Claim ����� For each cube R � �� there is a measurable subset F �R�
of R such that jF �R�j �  jRj� and so that for each y � F �R� there is

at most one Q � G which contains y and is contained in R�

If R lies in G itself� then Claim �	� follows by taking F �R� to be
E�R�� as above	 Otherwise� let fTjg denote the collection of maximal
cubes contained in both ��R� and G	 Set

��	�� F �R� �
�
R n

�
j

Tj

�
�
��

j

E�Tj�
�
�
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Note that the Tj �s are disjoint� by maximality �and ��	���	 It is not
hard to check that jF �R�j �  jRj� because of the analogous property
for the E�Tj��s	 Now suppose that y lies in F �R�� and let us check that
there is at most one Q � G which contains y and is contained in R	 The
main point is that if Q � G and Q � R� then Q � Tj for some j� one
simply has to take Tj to be the maximal element of G which contains Q
and is contained in R	 Therefore� if y does not lie in any Tj � then there
can be no such Q� while if y lies in some E�Tj�� then there is exactly
one such Q� by ��	�� �with Tj instead of Q�	 This proves the claim	

From Lemma �	�� it now follows that G is a Carleson set with a
constant that depends only on � and hence only on 
 � �� n� and L �in
terms of our original constants�	 We want to go from this to a Carleson
condition for the top cubes Q�S� of the stopping�time regions S in our
family F�	

There are a couple of ways to do this� using property e� from
Proposition �	�	 In the present notation� this last asserts that for each
Q � G and each z �M �

��	��
there are at most k stopping�time regions S in

F�Q� such that z lies in the top cube Q�S� �

where k depends only on 
 � �� and L	 Keep in mind that our present
family F� is nothing but the union of the F�Q��s� Q � G	

One way to get the Carleson condition for the top cubes Q�S��
S � F�� is to use Lemma �	��� in much the same manner as above	
Now one would employ ��	�� in place of ��	��� and the analogue of
Claim �	� would be slightly more complicated� but not in a serious
way	

Alternatively� one can argue as follows	 If Q � G� then

��	�� fQ�S� � S � F�g 	G�Q� � fQ�S� � S � F�Q�g �

This follows from the construction and de�nitions� i�e�� F� is the union
of the F�Q��s� Q � G� while G�Q� is exactly the union of the S�s in
F�Q�� and the di�erent G�Q��s are pairwise disjoint	 On the other
hand� ��	�� implies that

��	��� fQ�S� � S � F�Q�g

is a Carleson set for each Q � G� with constant at most k	 �This uses
��	��� and the remarks that followed it	� Remember that the G�Q��s
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are themselves stopping�time regions� as in Remark �	�� at the end of
Section �	 These pieces of information� together with the disjointness
of the G�Q��s� the fact that

��	�� fQ�S� � S � F�g �
�
Q�G

G�Q� �

and the Carleson condition for G� permit us to apply Lemma �	�� from
Section �	� to conclude that the total collection of top cubes Q�S��
S � F�� is a Carleson set� with bounded constant	

This completes the proof of Proposition �	�	

Remark ����� If one happens to know that jh�Q�j � � jQj for all
cubes Q � ��Q�� then the collection of Qi�s in Proposition �	� is empty�
and one has a decomposition of all of ��Q� into stopping�time regions
on which h is approximately measure�preserving	 In particular� this
condition holds �for some � � �� when h is a 
regular� mapping in the
sense of ���	

Alternatively� the given mapping h may degenerate on some cubes�
but one might be in circumstances so that for each cube Q � � there
is a L�Lipschitz mapping hQ � Q �� N such that

��	��� jhQ�Q�j � � jQj �

This happens for the condition of 
big projections� �as in ���� ����
for instance� and something like this happens with the looking�down
relation in ��� �between spaces which have 
big pieces of themselves��
which is a self�similarity property�	 In such a situation one can get rid
of the Qi�s by permitting oneself to start over with a new mapping�
rather than always using the same h	 �This should be compared with
the various kinds of Corona conditions� as in ��	�

�� Second improvement � good stopping	time regions�

It will be useful later on to modify slightly the stopping�time re�
gions from Proposition �	�� as in the following notion	

De
nition ���� A stopping�time region S � � will be called good if

for each cube Q in S it is either true that all of the children of Q also

lie in S� or that none of them do�
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There is a general procedure for subdividing an arbitrary stopping�
time regions into ones which are 
good�� and we shall discuss that in
a moment	 First� let us give an indication of how this property can be
used	

Lemma ���� Suppose that S � � is a good stopping�time region� Let

Q be a cube in S� and let fTig be a �nite family of pairwise�disjoint

cubes in � such that Ti � S and Ti � Q for all i� Then there is a

�nite family fW�g of pairwise�disjoint cubes in � such that W� � S
and W� � Q for all �� the W��s are all disjoint from the Ti�s� and

��	�� Q �
��

i

Ti

�
�
��

�

W�

�
�

In other words� we have a lot of freedom in decomposing Q into
disjoint cubes from S	 To prove this� let S� Q� and fTig be given as
above� and let fW�g be the family of maximal subcubes of Q which are
disjoint from all of the Ti�s	 Thus the W��s are disjoint from the Ti�s
by de�nition� and they are disjoint from each other by maximality �and
��	���	 The equality ��	�� follows from the assumption that there are
only �nitely many Ti�s	 That is� if x � Q does not lie in any Ti� then
there is an entire cube in � which contains x and remains disjoint from
the Ti�s �as one can readily check�	 This ensures that x is contained in
a maximal such cube� which is then among the W��s	

It is not hard to see that there are only �nitely manyW��s	 Indeed�
if j� is an integer such that each Ti lies in �j for some j � j� �which
exists� since there are only �nitely many Ti�s�� then eachW� is contained
in a �j with j � j� too	 �In fact� one can initially realize Qn

S
i Ti as

a ��nite� union of cubes in �j� � and then the W��s are all supersets of
these 
elementary� complementary cubes in �j 	�

The remaining point is that the W��s are all contained in S	 To
see this� �x �� and let cW� denote the parent of W�	 Except in the
trivial case where fTig is empty� we must have that cW� is contained

in Q �since otherwise W� � Q�	 Also� cW� 	 Ti 
� � for at least one i�
since W� is supposed to be maximal	 By general properties of cubes
�namely� ��	���� either cW� � Ti� or Ti � cW�	 This �rst alternative is
not possible because W� is disjoint from Ti� by construction	 Thus Ti
is contained in cW�	 Let R denote the child of cW� which contains Ti	
Then R and cW� lie in S� because

��	�� Ti � R � cW� � Q
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and because both Q and Ti lie in S by hypothesis	 This uses the
property ��	��� of stopping�time regions	 From here we obtain that

W� also lies in S� since S is a good stopping�time region� and since cW�

is the parent of both R and W�	 This proves Lemma �	�	

Let us now give a modi�ed version of Proposition �	�� in which the
stopping�time regions are all 
good�	

Proposition ���� Let Q�� h� etc�� be as in Standing Assumptions ���
and �x �� 
 � �� There exists a constant k�� depending only on L� �� and

 � as well as a family F� of stopping�time regions in � and a collection

fQigi�I of cubes in M � so that the following are true �

a� the Qi�s are pairwise disjoint subcubes of Q�� and the stopping�

time regions in F� are pairwise�disjoint subsets of ��Q���

b� if R � ��Q��� then either R � Qi for some i � I� or R � S for

some S � F� �and not both��

c� if Q� eQ � S and S � F�� then

��	�� � � 
���
jh�Q�j

jQj
�
jh� eQ�j

j eQj � � � 
��
jh�Q�j

jQj
�

d� jh�Q�j � � � 
��� � jQj when Q � S� S � F��

e� the family of cubes

��	�� fQ�S� � S � F�g

is a Carleson set with constant k��

f� jh�Qi�j � �jQij for all i � I�

g� each S � F� is a good stopping�time region� in the sense of

De�nition ���

To prove this we shall use exactly the same family fQigi�I as in
Proposition �	�� and the stopping�time regions in F� will be obtained
by decomposing the ones in F� in a certain way	 In particular� every
stopping�time region in F� will be a subset of one in F�� and every
stopping�time region in F� will be the disjoint union of the stopping�
time regions in F� that it contains	 With this information alone we
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have that the properties a�� b�� c�� d�� and f� above follow from their
counterparts in Proposition �	�	 �In the case of c� and d� above� we
have to use the old version of c� an extra time for each	 The inequalities
have been adjusted slightly to re�ect the fact that the top cubes of the
stopping�time regions in F� do not have quite the same special status
as the top cubes of the stopping�time regions in F� did	�

It remains to decompose the stopping�time regions in F� into good
subsets� and to do this in such a way that we still have a Carleson
condition� as in e�	 Fix an S � F�	 To make the decomposition we shall
use a very simple stopping�time argument	 We �rst de�ne a subregion
S� of S as follows	 We automatically include Q�S� in S�� which is then
the top cube of S� too	 If all of the children of Q�S� in � lie in S�
then we put all of them into S� as well	 Otherwise� we stop� so that S�
consists only of Q�S�	 If we do not stop� then we do the same thing for
each of the children of Q�S�	 That is� for each child Q of Q�S�� we ask
if the children of Q all lie in S� and if they do� we include them all in
S�� and when they do not� we stop� and do not proceed further below
Q	

We repeat the process for as long as possible� perhaps inde�nitely in
some directions �down from Q�S� towards cubes of smaller and smaller
diameter�	 This de�nes S�	 If it was necessary to stop at some time
inside S� so that S� is a proper subset of S� then we do the same thing
all over again at the places where we had to stop before	 That is� if Q
is some cube which lies in S�� and if Q� is a child of Q which lies in S
but not in S�� then we begin a new stopping�time region at Q� �i�e��
with top cube Q��� with the same rules for stopping as before	

One does this as often as necessary� perhaps in�nitely often� until
all of S is exhausted in this manner	 In the end we obtain a realization
of S as the disjoint union of stopping�time subregions of S� and these
subregions are all good in the sense of De�nition �	 by construction	

Let F� denote the collection of all stopping�time regions derived
from the ones in F� in this manner	 This is consistent with the princi�
ples mentioned at the beginning of the proof	 The only remaining issue
is to show that the top cubes of the elements of F� satisfy a Carleson
packing condition	

When does a cube Q in � arise as the top cube of a stopping�
time region in F�! There are two conditions under which this happens�
namely when

��	�� Q is the top cube of some S � F� �
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and when

��	��

Q and its parent belong to some S � F��

but one of the other children of the parent

�siblings of Q� does not belong to S �

This is not hard to check� and in fact one could use this to give an
alternative description of the stopping�time regions in F� starting from
the ones in F� �i�e�� in a sense it is easier to produce the stopping�time
regions in F� when one knows in advance a complete list of where the
regions should start	 In the present case this also gives a complete list
in advance of where the stopping�time regions in F� should end	�

We already know from part e� of Proposition �	� that the cubes
which satisfy ��	�� satisfy a Carleson condition� and so we only need to
worry about ��	��	 If ��	�� holds� then either

��	�� one of the siblings of Q is the top cube of some eS � F� �

or

��	� one of the siblings of Q is a cube in the family fQigi�I �

Indeed� if S is as in ��	��� then Q has to have a sibling Q� which does
not lie in S	 According to b� in Proposition �	�� we must either have

Q� � eS for some eS � F�� eS 
� S� or Q� � Qi for some i � I	 In the �rst
case we must have that Q� is the top cube of eS� because the common
parent of Q� and Q is contained in S 
� eS by assumption	 �Remember
that the stopping�time regions in F� are disjoint subsets of �� as in
part a� of Proposition �	�	� Similarly� if Q� � Qi for some i � I� then
Q� � Qi� because otherwise Qi would contain the common parent of Q�

and Q as a subcube� and this is ruled out by part b� in Proposition �	�
and the fact that the parent already lies in S � F�	

Thus ��	�� implies that one of ��	�� and ��	� holds	 The re�
maining point is that each of ��	�� and ��	� describes a collection of
cubes which is a Carleson set	 To see this� remember that the set of
top cubes of elements of F� form a Carleson set� by e� in Proposition
�	�� and that the family fQigi�I forms a Carleson set� since the Qi�s
are pairwise disjoint �as in a� in Proposition �	��	 Thus we are reduced
to the assertion that if E is a subset of � which is a Carleson set� then
so is the collection Es of siblings of E 	 This is not hard to verify� and
one can also see it as a special case of Lemma �	�� in Section �	�	
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This completes the proof of Proposition �	�	

�� Third improvement � better preservation of measure�

We continue with the notation and assumptions in Standing As�
sumptions �	� and with the notation ��Q� from ��	�	

Suppose that we have a cube Q on which our mapping h is de�ned�
and that h is approximately measure�preserving on Q� in the sense that
the mass ratios

��	�
jh�T �j

jT j

are all nearly the same when T � Q as when T is a child of Q	 If this is
the case� then the images under h of the children of Q cannot overlap
very much	 To see this� note that

��	�� jh�Q�j �
X

R�c�Q�

jh�R�j �

where c�Q� denotes the set of children of Q� and that

��	�� jQj �
X

R�c�Q�

jRj �

If the mass ratios are all nearly the same� then both sides of ��	�� will be
approximately the same multiple of jQj� because of ��	��	 In particular�
the inequality in ��	�� will be very close to being an equality	 However�
if there is signi�cant overlap in the images of the children of Q� then
��	�� will not be too close to being an equality	 For instance� given any
two distinct children R�� R� of Q� we can strengthen ��	�� to get

��	�� jh�Q�j �
X

R�c�Q�

jh�R�j � jh�R�� 	 h�R��j �

so that the deviation from being an equality is at least jh�R��	h�R��j	
�This strengthening uses the general fact that

��	�� jE� �E�j � jE�j� jE�j � jE� 	E�j �
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whenever E� and E� are measurable	 In our case we apply this with
Ei � h�Ri� to get that

��	��
jh�R� � R��j � jh�R�� � h�R��j

� jh�R��j� jh�R��j � jh�R�� 	 h�R��j �

Note that h�R� is indeed measurable when h is Lipschitz and R is a
cube� as in Lemma �	� in Section �		�

This is all well and good� but in the context of propositions �	��
�	�� and �	�� we can do this in general only for cubes and their children�
rather than cubes which are close to each other but do not happen to
have the same parent �or grandparent� etc	�	 That is what we want to
correct in the present section	

Let us begin by setting some notation	 Let Q be a cube in �� and
let j � j�Q� be the largest integer such that Q � �j 	 �For ordinary
dyadic cubes in Rn there is never more than one such j anyway� but
in general there can be some ambiguity� as we have pointed out before	
The range of possible j�s is always bounded� though� because of ��	��	�
Set

��	�� �Q �
�
fT � �j�Q� � dist �T�Q� � diamQg �

Since we are taking our mapping h to be de�ned only on Q�� let us

truncate� �Q slightly by setting

��	�� bQ � �Q 	Q� �

In practice this truncation is not very signi�cant� in that 
most� cubes
Q � ��Q�� have �Q � Q�	 This is made precise by Lemma �	��
in Section �	�� and we shall use this type of observation later in the
section	

Let � be a small positive number	 It will have a role like that of

 in Propositions �	�� �	�� and �	�� but it will need to be moderately
larger than 
 for the results of this section	 We shall be interested in
cubes Q such that

��	�� � � ����
jh�Q�j

jQj
�
jh� bQ�j

j bQj � � � ��
jh�Q�j

jQj
�

When this is true� it will help us to make arguments like the one in�
dicated at the beginning of the section� for controlling the overlap of
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h�R�� and h�R�� when R� and R� are nearby cubes of similar size� even
when R�� R� do not have the same parent	

Put

��	�� G��� � fQ � ��Q�� � ��	�� holdsg �

Let 
 be a small number	 We shall specify it later� depending on �� but
we want to give it a name now� for the sake of applying Proposition
�	�	 Also let � � � be �xed �but arbitrary�	 Using 
 and � we may
apply Proposition �	� to get a family F� of stopping�time regions and a
family fQigi�I of cubes contained in Q�	 We shall refer to these freely
in this section	 Set

��	� G� �
�
S�F�

S �

This is the same as

��	�� G� � fQ � ��Q�� � Q 
� Qi for any i � Ig �

by b� in Proposition �	�	

Proposition ����� Notation and assumptions as above� This includes

Standing Assumptions ��� and the �notation of the� parameters 
 and

�� Let � � � be given �and arbitrary�� If 
 is su�ciently small� depend�

ing on �� n� and the Ahlfors�regularity constant for M � then G�nG���
is a Carleson set� with a constant that depends only on 
 � �� n� and the

Ahlfors�regularity constant for M �

More precisely� it will be enough to have 
 �  and 
 less than or
equal to a constant multiple of �� where the constant depends only on
n and the Ahlfors�regularity constant for M 	

In other words� ��	�� holds for nearly all the cubes in G�� at least
if the parameters are chosen correctly	 This gives an improvement of
the measure�preserving behavior in Proposition �	� that will be quite
useful	

One can take this a bit further and re�ne the stopping�time regions
so that they are wholly contained in G��� �modulo some exceptions
which could be contained in a Carleson set�	 We shall not need this
here� but similar re�nements are discussed in �� Part I� Section �	��	
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Remark ����� In David�s construction in ���� one derives stronger
measure�preserving behavior than in Proposition �	�� in terms of over�
laps of images of cubes which are in the same level �i�e�� same �j�� but
which are not necessarily too close to each other �e�g�� subcubes of somebQ of roughly the same size�	 See ��� Step D� p	 ���� for instance	 We
shall not need this stronger restriction here	

The rest of this section will be devoted to the proof of Proposition
�	�	 We begin with some simple reductions	

First reduction ����� It is enough to show that� for 
 is su�ciently

small �depending on �� n� and the Ahlfors�regularity constant for M��

��	�� S n G���

is a Carleson set for every S � F�� with a constant that depends only

on n and the Ahlfors�regularity constant for M �

This follows from Lemma �	�� in Section �	� and the fact that the
collection of top cubes

��	�� Q�S�� S � F� �

is a Carleson set� as in part e� of Proposition �	�	 Note that we
have dropped the dependence on 
 and � for the Carleson constant
for S n G���	 For an individual S the dependence on 
 � � is not needed�
but it reappears in the end through the Carleson condition for ��	��	

Given Q � �� write j�Q� for the largest value of j such that Q �
�j 	 For each S � F�� set

��	��
S� � fQ � S � T � S whenever T � �j�Q�

and dist �T�Q� � diamQg �

The cubes T on the right are the ones used in the de�nition ��	�� of
�Q� and it will be easier for us to be able to work inside of S� instead
of S	

Lemma ����� For each S � F�� S nS
� is a Carleson set� and with a

constant that depends only on n and the Ahlfors�regularity constant of

M �
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Indeed� if Q � S but Q 
� S�� then it means that Q has a neighbor
�in the sense of Section �	�� which is not contained in S� at least if
we take the parameter A in ��	���� ��	�� to be large enough	 Thus
the Carleson condition for SnS� follows from Lemma �	�� �which also
provides a Carleson condition for the union of SnS� for all S � F��	

Combining Lemma �	� with First Reduction �	� we get the fol�
lowing	

Second Reduction ���� To prove Proposition ���� it su�ces to

show that if 
 is small enough� depending on �� n� and the Ahlfors�

regularity constant for M � then

��	�� S� n G���

is a Carleson set for every S � F�� with a constant that depends only

on 
 � n� and the Ahlfors�regularity constant for M �

Let us now �x S � F�	

Third Reduction ����� It is enough to show that if 
 is su�ciently

small� depending on the usual parameters� then for every Q � S there

is a measurable subset D�Q� � Q such that

��	��� jD�Q�j � � jQj

and

��	���
for each x � D�Q�� there are at most m cubes

R � S� n G��� such that R � Q and x � R �

where m and � are positive constants that depend only on n and the

Ahlfors�regularity constant for M �

In other words� if we can always �nd such sets D�Q�� then S�nG���
is a Carleson set� and with bounded constant	 This follows from Lemma
�	��� modulo a minor point� for the statement of Lemma �	��� we should
have D�Q� as above for all Q � �� and not just for Q � S	 This more
limited range of Q�s is all that one ever really needs anyway� but we
can also check directly that suitable subsets D�Q� exist when Q 
� S�
as follows	 �Note that we use S here� rather than S�	 This is not a real
issue� but just a bit simpler	�
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Let Q � �� Q 
� S be given	 As usual� either Q is disjoint from
Q�S�� Q is contained in Q�S�� or Q contains Q�S� as a proper subset	
If Q is disjoint from Q�S�� then there are no cubes R � S such that
R � Q� and we can take D�Q� � Q	 If Q � Q�S�� then again there are
no cubes R � S such that R � Q� because Q does not lie in S and S is
a stopping�time region	 �See ��	��� in Section �	�	� If Q contains Q�S�
as a proper subset� then we can take D�Q� to be QnQ�S�	 With this
choice we have ��	��� �for a suitable �� because of the basic properties
of cubes �as in Section �	��� and ��	��� holds with m � � because cubes
in S are all contained in Q�S� �as in ��	���� and hence cannot intersect
D�Q� � QnQ�S�	

This shows the validity of the third reduction	 Let us now �x
Q � S� as in the third reduction	 We want to divide up the relevant
class of 
bad cubes� into two types� as follows	 Set

��	��� B� � fR � S� n G��� � �R � Qg

and

��	��� B� � fR � S� n G��� � R � Q but �R 
� Qg �

Note that B� � B� contains every R � S�nG��� such that R � Q	

Lemma ����� There is a constant C�� which depends only on n and

the Ahlfors�regularity constant for M � so that

��	���
X
R�B�

jRj � C� jQj �

This follows from Lemma �	�� in Section �	�	 More precisely� if
R � B�� then R � Q but �R 
� Q� and this implies that R has a
neighbor which is not contained in Q� at least if the constant A in
��	���� ��	�� is large enough	 This follows easily from the de�nition
��	�� of �R	 Thus R � CA�Q�� where the latter is de�ned in ��	���	 The
packing condition ��	��� then follows from the general one in Lemma
�	��	

In e�ect this means that we only have to worry about B�	 Here is
a more precise statement	
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Fourth Reduction ����� It su�ces to show that if 
 is small enough�

depending only on �� n� and the Ahlfors�regularity constant for M � then

there is a measurable subset E�Q� of Q such that

��	��� jE�Q�j �


�
jQj

and

��	�� there are no cubes in B� which intersect E�Q� �

To prove that this is su�cient� we use Lemma �	��	 Given x � Q�
let N��x� denote the number of cubes R � B� such that x � R	 As in
��	���� we have that

��	���
X
R�B�

jRj �

Z
Q

N��x� dx �

by Fubini�s theorem	 If C� is as in Lemma �	��� then

��	��� jfx � Q � N��x� � �C�gj �


�
jQj �

If there exists a subset E�Q� of Q as in the fourth reduction� then we
can set

��	��� D�Q� � fx � E�Q� � N��x� � �C�g �

and this does the job	 Speci�cally�

��	��� jD�Q�j �


�
jQj �

by ��	��� and ��	���	 Also� if x � D�Q�� then N��x� � �C�� by con�
struction� so that there are fewer than �C� cubes R � B� with x � R�
and there are no cubes R � B� which contain x� as in ��	��	 Thus we
get ��	��� and ��	���� with � � 	� and m � �C�	 This �nishes the
justi�cation of the fourth reduction	

Thus it remains to show that we can actually �nd E�Q� � Q as
in the fourth reduction	 This is really the heart of the matter� and
indeed the preceding reductions work in a very general way	 It is only
for this last part that we need to choose 
 carefully� or that we really
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use the mapping h� or the de�nition of G���� or the information about
the stopping�time region S from Proposition �	�	

Set

��	��� U �
�
R�B�

R �

According to the fourth reduction� we want to show that

��	��� jU j �


�
jQj

when 
 is small enough �i�e�� we can then take E�Q� � QnU 	�
Given a cube T � � and a number � � � put

��	��� �T � fx �M � dist �x� T � � ��� � diamTg �

We begin with the following covering lemma	

Lemma ����� There is a family fRjgj�J of elements of B� such that

��	��� �Rj 	 �Ri � � � when j 
� i �

and

��	��
�
R�B�

R �
�
j�J

�Rj �

where � depends only on n and the Ahlfors�regularity constant for M �

This is a version of the Vitali covering lemma� as in ����	 We
include a proof for the sake of completeness� following the usual 
greedy
algorithm� to choose the Rj�s	 First take R� to be an element of B�
whose diameter is as large as possible	 �Note that the possible diameters
are bounded from above� since the elements of B� are contained in Q by
de�nition	� If R�� � � � � R� have been selected already� choose R��� � B�
so that

��	��� �R��� 	 �Ri � � � when  � j � � �

and so that the diameter of R��� is as large as possible	 If there are
no cubes in B� which satisfy ��	���� then we simply stop and take
R�� � � � � R� for fRjgj�J 	 Otherwise we keep going	
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This de�nes the family fRjgj�J 	 If there are in�nitely many Rj�s�
then their diameters must tend to �	 This is because they are all sub�
cubes of Q� and because of the basic properties of cubes in Section �	�	
�There are only �nitely many subcubes of Q which can lie in any given
�k� for instance	�

The �rst condition ��	��� holds automatically� by construction	 As
for ��	��� let R be any cube in B�� and let us show that

��	��� R � �Rj �

for some j� at least if � is large enough	
We may as well assume that R is not itself among the Rj �s� since

otherwise ��	��� is trivially true	 Now� there must be some k � J so
that

��	��� �R 	 �Rk 
� � �

since otherwise R should have been chosen among the Rj�s eventually	
�The only other possibility is that R fails the competition for largest
diameter among the available cubes	 This cannot happen forever� since
the diameters of the Rj�s tends to zero when there are in�nitely many
of them� as indicated above	�

Let k be the smallest positive integer such that ��	��� holds	 Thus

��	��� �R 	 �Rj � � � when j � k �

This means that R was itself a competing choice for the cube Rk� and
so

��	��� diamR � diamRk �

since otherwise R should have been selected instead of Rk	
Because of ��	��� and ��	���� it is easy to see that R must be

contained in �Rk when � is su�ciently large �depending only on the
usual constants� through ��	���	 This uses the fact that diam �R is
bounded by a constant multiple of diamR� and similarly for Rk� by the
de�nition ��	�� of �R	 This completes the proof of Lemma �	��	

A simple consequence of Lemma �	�� is that

��	���
��� �
R�B�

R
��� � C�

X
j�J

jRjj �
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for a constant C� that depends only on n and the Ahlfors�regularity
constant ofM 	 What we really want to prove now is that

P
j�J jRjj can

be made as small as we like compared to jQj by choosing 
 su�ciently
small	

If R � B�� then R 
� G���� as in the de�nition ��	��� of B�	 This
is something that we have to use� and the next lemmas will facilitate
that	

Lemma ����� If R � B�� then bR � �R�

Remember that �R and bR are de�ned in ��	�� and ��	��� respec�
tively	 Since R � B�� we have that R lies in S�� as in ��	���	 The
de�nition ��	�� of S� ensures that �R � Q�S�� because it requires that
all of the cubes used to make up �R in ��	�� lie in S	 We also have that
Q�S� � Q�� because of the way that the stopping�time region S � F�

was chosen� in Proposition �	�	 �Indeed� property a� in Proposition
�	� guarantees that S � ��Q��� so that Q�S� � Q�	� Thus we get

that �R � Q�� which exactly says that bR � �R� by ��	��	 This proves
Lemma �	��	

Lemma ����� If 
 � min f� �	�g and R � B�� then

��	���
jh��R�j

j�Rj
� � � ����

jh�R�j

jRj
�

If R � B�� then R 
� G���� as in ��	���	 Remember that G���
consists of the subcubes of Q� such that ��	�� holds� as in ��	��	 We

know from Lemma �	�� that bR � �R� and so we conclude that either
��	��� is true� or

��	��
jh��R�j

j�Rj
� � � ��

jh�R�j

jRj
�

Let j�R� be the largest integer such that R � �j �as before�� and let
N�R� denote the collection of cubes T � �j�R� such that dist �T�R� �
diamR	 Thus

��	��� �R �
�

T�N�R�

T �
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by the de�nition ��	�� of �R	 We also have that R � S�� since R � B�
�see ��	����� and this means that each T � N�R� also lies in S� by the
de�nition ��	�� of S�	 In particular� R � S� and so

��	���
jh�T �j

jT j
� � � 
��

jh�R�j

jRj
�

for T � N�R�� as in property c� in Proposition �	�	 Thus

��	���

jh��R�j �
X

T�N�R�

jh�T �j

�
X

T�N�R�

� � 
��
jh�R�j

jRj
jT j

� � � 
��
jh�R�j

jRj
j�Rj �

This uses ��	���� and the fact that the T �s in N are pairwise disjoint
�for the last step�� since they all lie in the same �j 	 �See ��	��	�

We have assumed in Lemma �	�� that 
 � min f� �	�g� and this
guarantees that

��	��� � � 
�� �  � � �

Therefore ��	��� is incompatible with ��	��	 As before� this implies
that ��	��� must hold	 This completes the proof of Lemma �	��	

Lemma ����� If 
 � min f� �	�g and R � B�� then

��	���
jh��R�j

j�Rj
� � � ���� � � 
��

jh�Q�j

jQj
�

Indeed� if R � B�� then R and Q both lie in S� and we can use
property c� in Proposition �	� to obtain that

��	���
jh�R�j

jRj
� � � 
��

jh�Q�j

jQj
�

Thus we may convert ��	��� into ��	���� as desired	
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From now on we assume that 
 � min f� �	�g� as above	 Let
fRjgj�J be as Lemma �	��	 Thus Rj � B� for all j� and the sets �Rj

are pairwise disjoint	 Put

��	��� V �
�
j�J

�Rj �

From these features of the Rj �s and Lemma �	�� we conclude that

��	���

jh�V �j �
X
j�J

jh��Rj�j

� � � ���� � � 
��
jh�Q�j

jQj

X
j�J

j �Rjj

� � � ���� � � 
��
jh�Q�j

jQj
jV j �

In e�ect this means that
jh�V �j

jV j

is a bit small compared to
jh�Q�j

jQj
�

since we get to choose 
 to be small compared to �	 In the next lemma
we look at the complement of V in Q	

Lemma �����

jh�QnV �j � � � 
��
jh�Q�j

jQj
jQnV j �

Let J� be an arbitrary �nite subset of J � and set

��	��� V� �
�
j�J�

�Rj �

To prove Lemma �	� we shall derive a similar inequality for V�� and
then pass to the limit �for the case when J is in�nite�	

Let N�R� be as de�ned just before ��	���� so that N�R� is a �nite
collection of cubes and �R is the union of the cubes T in N�R�	 Each
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Rj � j � J � lies in B�� by construction� and this implies that the cubes
in N�Rj� lie in S for all j � J � as noted just after ��	���	 Thus V� is the
�nite union of pairwise�disjoint cubes which are all subcubes of Q and
which lie in S	 �For the disjointness we are using ��	��� �see Lemma
�	���� although one could get it for free by passing to maximal cubes	�

Remember that Q itself lies in S� by assumption �just before
��	����	 We may now apply Lemma �	� with this choice of Q� and
with fTig taken to be the family of cubes

��	��� T �
�
j�J�

N�Rj�

of which V� is composed	 This yields a �nite collection fW�g of pairwise�
disjoint subcubes of Q such that each W� lies in S� and

��	��� QnV� �
�
�

W� �

Because each W� lies in S� we have that

��	���
jh�W��j

jW�j
� � � 
��

jh�Q�j

jQj
�

for each �� by part c� of Proposition �	�	 Therefore

��	���

jh�QnV��j �
X
�

jh�W��j

� � � 
��
jh�Q�j

jQj

X
�

jW�j

� � � 
��
jh�Q�j

jQj
jQnV�j �

using the fact that the W��s are pairwise disjoint in the last step	 On
the other hand� V� � V by de�nition� and so we may convert this to

��	��� jh�QnV �j � � � 
��
jh�Q�j

jQj
jQnV�j �

Because this holds for any �nite subset J� of J � we can 
pass to the
limit� �if necessary� to obtain that

��	��� jh�QnV �j � � � 
��
jh�Q�j

jQj
jQnV j �



Measure	preserving quality within mappings �	�

This is exactly what we wanted for Lemma �	�	

We are now almost �nished	 We can combine Lemma �	� with
��	��� to conclude that

��	���

jh�Q�j � jh�V �j� jh�QnV �j

� � � ����� � 
��
jh�Q�j

jQj
jV j

� � � 
��
jh�Q�j

jQj
jQnV j �

Note that jh�Q�j � �� by d� in Proposition �	�� and since Q � S and
S � F� �by assumption�	 Thus we can divide through in ��	��� by
jh�Q�j	jQj to get that

��	��� jQj � � � ����� � 
�� jV j� � � 
�� jQnV j �

Substituting jQnV j � jQj � jV j we obtain that

��	�� jQj � �� � ���� � � � � 
�� jV j� � � 
�� jQj �

Note that ������� � �� ������	 Let us move the jQj on the left
side of ��	�� over to the right� and bring the jV j term from the right
to the left� to get that

��	���
�

 � �
� � 
�� jV j � �� 
 � 
�� jQj �

�This uses � � 
�� �  � � 
 � 
�	� Under the assumption that 
 � �
we can simplify this to obtain

��	��� jV j �



�
� � � �� jQj �

Remember that V is as in ��	���	 In particular�

��	���
X
j�J

jRj j � jV j �

since the Rj�s are pairwise disjoint� as in Lemma �	��	 Combining this
with ��	��� and ��	��� we conclude that

��	���
��� �
R�B�

R
��� � C� jV j � C�

� 

�

�
� � � �� jQj �
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where C� depends only on n and the Ahlfors�regularity constant for M 	
We assumed before that 
 � min f� �	�g	 We now require also

that 
 be small enough that

��	��� C�

� 

�

�
� � � �� �



�
�

Applying this to ��	��� yields

��	���
��� �
R�B�

R
��� � 

�
jQj �

This is exactly what we wanted for ��	���	 In other words� we have now
shown that the conditions described in the fourth reduction are true�
and this completes the proof of Proposition �	�	

�� �Weak� measure	preserving conditions�

We continue to use the notations and assumptions from Standing
Assumptions �	� with Q� � � and the Lipschitz mapping h � Q� �� N
in particular	 We shall also use the notations ��Q�� �Q� and bQ from
��	�� ��	��� and ��	��	

Let numbers � � � and A �  be �xed but arbitrary	 As usual� �
will be employed as a threshold for deciding when the image of a cube
has very small measure or not	 With the parameter A we have a notion
of cubes being 
neighbors�� as in ��	���� ��	�� in Section �	�� and we
shall use this notion freely in this section �with the implicit dependence
on the choice of A�	

De
nition ��� �The classM����� Let � be a positive number� normally

small� We letM��� �MA��� denote the collection of cubes Q � ��Q��
with the following properties �

a� jh�Q�j � � � ���� � jQj�

b� if R � � is a neighbor of Q� then R � Q�� and

��	�� � � ����
jh�Q�j

jQj
�
jh�R�j

jRj
� � � ��

jh�Q�j

jQj
�

c� if R � � is a neighbor of Q� then

��	�� � � ����
jh�Q�j

jQj
�
jh� bR�j
j bRj � � � ��

jh�Q�j

jQj
�



Measure	preserving quality within mappings �
	

Roughly speaking�M��� consists of the cubes Q � ��Q�� for which
one has good almost�measure�preserving behavior for cubes which are
not too far from Q	 In this section we shall be concerned with the
idea that M��� should contain many or even 
most� cubes in ��Q��	
This will be made precise in Proposition �	� below� after we account
for the cubes with small images in the next de�nition	 The information
that Proposition �	� provides is somewhat simpler and weaker than the
earlier stories with stopping�time regions� and we shall consider these
matters further after the proof of the proposition	

De
nition ��� �The class SI�� With � � � �xed� as above� we let

SI denote the collection of cubes Q � ��Q�� for which there is a W �
��Q�� such that Q �W and jh�W �j � � jW j�

Lemma ���� Put " �
S
Q�SI Q� Then

��	�� jh�"�j � � j"j � � jQ�j

�at least if SI is not empty��

The second inequality in ��	�� is trivial� since " � Q� by de�nition	
As for the �rst inequality� let fT�g denote the collection of maximal ele�
ments of SI	 Thus every Q � SI is a subcube of some T�� and the T��s
are pairwise disjoint� by maximality	 �This uses ��	��	� Maximality
also ensures that jh�T��j � � jT�j for all � �i�e�� if this inequality did not
hold� then T� � SI would be �properly� contained in a cube �in SI� for
which it did hold� contradicting maximality	� From these observations�
we have that " is the disjoint union of the T��s� and hence that

��	�� jh�"�j �
X
�

jh�T��j �
X
�

� jT�j � � j"j �

This proves Lemma �	�	

Proposition ���� For each � � �� the collection

��	�� B � ��Q��n�M��� � SI�

is a Carleson set� with a constant that depends only on �� �� A� n� and
the Ahlfors�regularity constant for M �
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We shall derive this from propositions �	� and �	�	 To do this�
�rst choose positive numbers � and 
 such that

��	�� � � �� � � 
�� �  � � �

and so that 
 is small enough compared to � for the hypothesis of
Proposition �	�	 These are the only conditions that we need to impose
on � and 
 � so that they may be selected in such a way as to depend
only on �� n� and the Ahlfors�regularity constant for M 	

Using this choice of 
 and the value of � �xed above� we can apply
Proposition �	� to get a certain family F� of stopping�time regions
contained in ��Q�� and a family fQigi�I of subcubes of Q	 Let G�

denote the union of the stopping�time regions S in F�� as in ��	�	

Lemma ����� ��Q��nG� � SI	

Indeed� if Q � ��Q��nG�� then Q � Qi for some i � I� by part
b� of Proposition �	�	 From f� in Proposition �	� we also have that
jh�Qi�j � � jQij	 This implies that Q � SI � from which Lemma �	
follows	

First Reduction ����� In order to prove Proposition ���� it su�ces

to show that G�nM��� is a Carleson set� with suitable bounds for the

Carleson constant�

This is an immediate consequence of Lemma �		
Let G��� be as in ��	��	 Proposition �	� tells us that

��	�� G�nG��� is a Carleson set

�with suitable bounds�	 For each stopping�time region S � F�� let SA
be as de�ned in ��	���� i�e�� as the set of cubes Q in S such that every
neighbor of Q lies in S as well	 Thus

��	��
�
S�F�

�SnSA� is a Carleson set �

with bounds for the Carleson constant� because of Lemma �	�� in Sec�
tion �	�� and part e� of Proposition �	�	

Second Reduction ����� In order to prove Proposition ���� it is

enough to show the following�
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Let Q be a cube in G� that satis�es

��	�� Q � SA for some S � F�

and

��	�� R � G��� whenever R � ��Q�� is a neighbor of Q �

Then Q � M����

To see that this is su�cient� notice �rst that the collection of cubes
Q � G� which do not satisfy ��	�� is a Carleson set	 This follows from
��	�� and the fact that G� is the union of the S�s in F�� by de�nition
��	�	 Similarly� the set of Q � G� which satisfy ��	�� but fail to
satisfy ��	�� is a Carleson set� because of ��	�� and Lemma �	�� in
Section �	�	 �More precisely� we use ��	�� to ensure that every neighbor
of Q lies in G�� and then the 
bad� cubes R associated to the failure of
��	�� are accounted for by ��	��	� In short� the collection of exceptions
to ��	�� and ��	�� among cubes in G� satis�es a Carleson condition	
If the assertion in the second reduction is true� so that the cubes in G�

which do ful�ll ��	�� and ��	�� lie in M���� then we may conclude
that G�nM��� is a Carleson set� as required in the �rst reduction	

It remains to establish the assertion in the second reduction	 Let
Q be a cube in G� such that ��	�� and ��	�� hold	 We want to show
that Q also satis�es conditions a�� b�� and c� from De�nition �		 To do
this we simply read o� the information that we have from propositions
�	� and �	�	 Speci�cally� a� in De�nition �	 is true because Q lies in
some S � F�� by ��	��� and hence satis�es d� in Proposition �	�	 As
for b� in De�nition �	� if R is a neighbor of Q� then Q and R both
lie in the same stopping�time region S � F�� because of ��	��	 This
implies that R � Q�� by a� in Proposition �	�� while ��	�� follows from
c� in Proposition �	� and ��	��	 This leaves c� in De�nition �		 Let R
be any neighbor of Q in �	 Thus R � Q�� as above� and Q� R satisfy
�c� in Proposition �	�� i�e��

��	�� � � 
���
jh�Q�j

jQj
�
jh�R�j

jRj
� � � 
��

jh�Q�j

jQj
�

On the other hand� R also lies in G���� because of ��	��	 This means
that R satis�es ��	��� i�e��

��	�� � � ����
jh�R�j

jRj
�
jh� bR�j
j bRj � � � ��

jh�R�j

jRj
�
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Combining ��	��� ��	��� and ��	�� we get ��	��� as desired	 This
proves that Q satis�es each of the conditions a�� b�� and c� in De�nition
�	� so that the assertion in the second reduction is true	

This completes the proof of Proposition �	�	

Let us compare the conclusions of Proposition �	� with the earlier
results with stopping�time regions	 It will be convenient to use the word

island� to refer to a subset of ��Q�� which consists of a single cube
Q � ��Q�� and all of the neighbors of Q in ��Q��	 In the context of
Proposition �	�� we are free to take the 
neighborly� parameter A �  in
��	���� ��	�� as large as we want� so that the corresponding islands are
also as large as we want	 No matter the choice of A� G�nM��� is always
small in the sense of a Carleson condition	 However� these islands are
always 
bounded�� e�g�� they never involve more than a �nite number
of scales or a �nite number of cubes	 By contrast� the stopping�time
regions in F� from Proposition �	� can generally be much bigger than
that	

To help make this precise� we begin with the following observation	

Lemma ���� Let S be a stopping�time region in �� and �x a point

x � Q�S�� Then either T � S whenever T � � satis�es x � T and

diamT � diamQ�S�� or there are only �nitely many cubes Q � S
which contain x�

Indeed� suppose that T is a cube in � such that x � T 	 Then either
T � Q�S� or Q�S� � T � because of ��	��	 Under the assumption that
diamT � diamQ�S�� we must have T � Q�S�	

If T 
� S� then no subcube of T lies in S� by ��	���	 On the other
hand� any other cube which contains x must either contain T or be
contained in T � by ��	��	 Therefore� if T 
� S� then every cube Q � S
which contains x as an element also contains T as a subcube	 This
implies that there are only �nitely many elements of S which contain
x �using also ��	�� and ��	���	 This proves Lemma �	��	

Now suppose that we are in the situation of Proposition �	�	 Let
fQigi�I be the family of cubes mentioned there� and set

��	�� D � Q� n
�
i�I

Qi �
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From f� in Proposition �	� we have that

��	���
���h��

i�I

Qi

���� �X
i�I

jh�Qi�j � �
X
i�I

jQij � �
����
i�I

Qi

��� �
using also the disjointness of the Qi�s	 If

��	��� jh�Q��j � � jQ�j �

then we get that jDj � �	
Given a stopping�time region S� let us write E�S� for the set of

points y � Q�S� such that T � S whenever T is a cube which satis�es
y � T and diamT � diamQ�S�	

Lemma ����� The set D is contained in the union of the E�S��s�
S � F�� except possibly for a set of measure ��

To prove this� let N�x� denote the number of top cubes Q�S��
S � F�� such that x � Q�S�� where x is an element of Q�	 The average
of N�x� over Q� is bounded� because of the Carleson condition e� in
Proposition �	� for the top cubes Q�S�� S � F�� and the identity ��	���
in Section �	�	 In particular� N�x� is �nite for almost all x	

Fix x � D with N�x� � �	 We want to show that x lies in E�S�
for some S � F�	

There are in�nitely many cubes Q � ��Q�� which contain x� and
none of these cubes are contained in a Qi� i � I� by the de�nition ��	��
of D	 Thus all of these cubes are contained in stopping�time regions in
F�� by b� in Proposition �	�	 If S� � F� contains a cube Q with x � Q�
then x � Q�S��� and there are only �nitely many possibilities for S��
since N�x� ��	

Thus there is an S � F� such that S contains in�nitely many cubes
which contain x as an element	 This implies that x � E�S�� by Lemma
�	��	 This completes the proof of Lemma �	��� since N�x� � � for
almost every x � D	

To summarize a bit� the assumption ��	��� implies that jDj � ��
and then Lemma �	�� tells us that D is covered� except for a set of
measure �� by the sets E�S�� S � F�	 In particular�

��	��� jE�S�j � � �

for at least one S � F�	
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When a stopping�time region S is in�nite� so that E�S� 
� �� it
is already a lot larger than any single 
island� �in the sense above��
at least in some directions	 The islands never reach all the way down
to individual points in that way� i�e�� containing all su�ciently small
cubes which contain a given point	 When ��	��� holds� it means that
the stopping�time region S is much larger still� going all the way down
to a lot of points	 Near points of density of E�S�� there will even be
small cubes Q such that E�S� contains nearly all of ��Q�	

What does this mean in the context of propositions �	�� �	�� and
�	�! In all cases� one has a lot of good behavior in terms of almost pre�
serving measure� and in about the same range of cubes �i�e�� the cubes
in G�� modulo perhaps some Carleson sets� which one can consider as
small�	 The main di�erence is in the scale factors associated to the ap�
proximate measure�preserving behavior	 In part c� of Proposition �	��
one has a single scale factor for each stopping�time region� while in the
context of Proposition �	�� each island can have its own scale factor	

The latter is signi�cantly weaker than the former	 As one starts
with some cube Q and shrinks down to individual points in Q�� one
can pass through in�nitely many islands� and although the change in
scale factors would normally be modest as one passes from one island to
another� one could still have in�nitely many oscillations of de�nite size
over the in�nitely many scales	 In the context of Proposition �	� this
cannot happen nearly as much� and indeed the number of oscillations
is controlled by functions like N�x� above� counting the number of top
cubes Q�S�� S � F�� which contain x	 As in the proof of Lemma �	���
this function is �nite almost everywhere� and the Carleson condition
for the collection of top cubes gives quantitative bounds	 One even has
exponential integrability for N�x�� for instance� as mentioned in Section
�	�	 �See Lemma �	�� and the discussion which follows it	�

This type of quantitative control for the oscillations is completely
analogous to some applications of Carleson�s Corona construction� as
on ��� p	 ����	 By contrast� the type of information provided by Propo�
sition �	� is closer in spirit to the Bloch space and the Zygmund class
in classical analysis	 It is also similar to conditions like the WGL �weak
geometric lemma� and WALA �weak approximation of Lipschitz func�
tions by a�ne functions� discussed in ��	 See �� for more about

weak� conditions like these� versus ones more like Carleson�s Corona
construction	

Although Proposition �	� does provide signi�cantly less informa�
tion than one gets from propositions �	� and �	�� it is exactly what we
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shall need for the applications to �nding big bilipschitz pieces� as in ����
���	 This is completely analogous to what happened in ��� �see also
����� i�e�� 
weak� conditions of approximation by a�ne mappings were
su�cient� even though stronger information is provided by Littlewood�
Paley theory �as in ���� and Carleson�s Corona construction	

With this section we �nish the treatment of almost measure�preser�
ving behavior in this paper	 In the next section we review some general
criteria for �nding big bilipschitz pieces� and we discuss applications
afterwards	

�� Weak bilipschitz conditions�

Roughly speaking� in 
weak bilipschitz conditions�� one asks for
approximate bilipschitz behavior at most locations and scales� where

most� is interpreted in terms of Carleson sets and packing conditions	
Before we give precise de�nitions� let us set some notation	

The notations and assumptions in Standing Assumptions �	 will
continue to be in force	 Given a cube Q in M and a number � � � put

��	� �Q � fx �M � dist �x�Q� � ��� � diamQg �

�This is the same as in ��	���� but we repeat it for convenience	�
If M has �nite diameter� then let us agree to treat M itself as

a cube in �	 For instance� if necessary we can add �j� � fMg to
the collections f�jgj�j� from Section �	�� or we can simply change
�j��� so that it consists exactly of M 	 This will not cause any trouble
for ��	�����	��� except perhaps for an adjustment to the constant in
��	��	

Lemma ���� There is a constant b � ��� 	��� depending only on

n and the Ahlfors�regularity constant for M � so that if x and y are

arbitrary distinct points in M � and Q is the smallest cube in M such

that x � Q and y � �Q� then

��	�� d�x� y� � � b diamQ �

This is easy to check	 To put it another way� if diamQ is too large
compared to d�x� y�� then one should be able to pass to a child Q� of Q
and still have x � Q� and y � �Q�� in contradiction to minimality	 This
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uses the fact that the diameter of Q� is not too much smaller than the
diameter of Q� because of ��	��	

Standing Assumption ���� The constant b is chosen as in Lemma

���� and �xed�

Let f be a mapping fromM into another metric space �N� ��u� v��	
Given a constant k � � let BL�k� denote the set of cubes Q � � such
that

��	��
k�� d�x� y� � ��f�x�� f�y��� k d�x� y� �

for all x� y � �Q with d�x� y� � b diamQ �

De
nition ��� �Weakly bilipschitz mappings�� A mapping f as above

is said to be weakly bilipschitz if there is a constant k so that �nBL�k�
is a Carleson set�

This is taken from ��� �speci�cally� ��� De�nition �	���	

If BL�k� � �� then it is easy to see that f is bilipschitz with
constant k in the usual sense of �	��	 That is� given any pair of distinct
points x� y � M � one could take Q to be the minimal cube such that
x � Q and y � �Q� and then apply ��	�� to get the bilipschitz condition
for this particular pair of points	

In general a mapping could have a �limited� amount of singularities
or folds and still be weakly bilipschitz� as in the examples discussed in
���	 Conversely� if a mapping f � M �� N is weakly bilipschitz� then
the following is true	 Fix � � � and a cube Q	 One can then �nd a
bounded number of subsets F�� � � � � F� of Q such that the restriction of
f to each Fi is bilipschitz with constant k� and so that Qn

S
i Fi has

measure less than � jQj	 One can take � to be bounded by a constant
that depend only on �� n� the Ahlfors�regularity constant for M � and
the Carleson constant for �nBL�k� in De�nition �	�	

This assertion is given in ��� Proposition �	�	 It is really just
an abstraction of part of the argument in ���	 In the formulation in
��� the metric spaces M and N were taken to be subsets of Euclidean
spaces� but this was not really needed	 We shall say a bit about the
proof in a moment� but let us �rst give another version of the same
concepts which will be more directly applicable in this paper	

Fix a cube T in M � and suppose now that f is a mapping from T
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into N 	 Let BL��k� be the set of cubes Q � � such that Q � T and

��	��
k�� d�x� y� � ��f�x�� f�y��� k d�x� y�

for all x� y � �Q 	 T with d�x� y� � b diamQ �

This is practically the same as before� except that we take the localiza�
tion to T into account	

Let D be a measurable subset of T � and let ��T�D� denote the
collection of cubes Q in � such that Q � T and Q 	 D 
� � �as in
��	����	

De
nition ��� ��T�D��weakly bilipschitz mappings�� Notations as

above� We say that f � T �� N is �T�D��weakly bilipschitz if there is

a constant k so that

��	�� E � ��T�D� nBL��k�

satis�es a packing condition� i�e��

��	��
X
Q�E

jQj � C� jT j �

for some constant C��

In other words� f behaves roughly like a weakly bilipschitz mapping
from the perspective of the subset D	 The substitution of the packing
condition ��	�� for the stronger requirement of being a Carleson set is
not serious� and �ts better with the conclusion that we are about to
draw	 It is also more compatible with the localization to �T�D� which
is being made anyway �i�e�� which is already connected to focussing
on a particular location and scale�	 For that matter� one could always
replace D by a slightly smaller set to get a Carleson condition �and
even a bit more than that�� by throwing away the �small� set of points
in D which are contained in a large number of cubes Q � E 	 �Compare
with ��	��� in Section �	� and the related remarks there	�

Proposition ����� Let f � T �� N and D be as above� with f a

�T�D��weakly bilipschitz mapping in particular� For each � � � there

exists a �nite collection F�� � � � � F� of measurable subsets of D such that

��	��
���D n

��
i��

Fi

��� � � jT j
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and so that the restriction of f to each Fi is k�bilipschitz� where k is as

in De�nition ���� and where � is bounded by a constant which depends

only on �� n� the Ahlfors�regularity constant for M � and the constant

C� from De�nition ����

One might say that f � T �� N behaves roughly like a branched
covering on D� at least in measure�theoretic terms	

Proposition �	 is a minor variation on the themes of ���� ����
but we shall sketch some of the elements of the proof for the sake of
clarity and completeness	

Given a cube Q � �� Q � T � let j�Q� denote the largest value of

j such that Q � �j 	 Let bQ denote the union of the cubes R � �j�Q�

such that R � T and R 	 �Q 
� �	 �Note that this is slightly di�erent
from the notation in ��	��� but only slightly	�

De�ne bN�x� for x � T by

��	�� bN�x� � the number of cubes Q � E such that x � bQ�

This is a measurable function� and Fubini�s theorem yields

��	��

Z
T

bN�x� dx �
X
Q�E

j bQj �
as in ��	��� in Section �	�	 Here dx denotes Hn�measure on M 	 Com�
bining this with ��	�� we get that

��	��

Z
T

bN�x� dx � C C� jT j �

where C depends only on n and the Ahlfors�regularity constant for M 	
This also uses the properties ��	�� and ��	�� of cubes� from Section

�	�� i�e�� to know that j bQj � C jQj for any cube Q	
Put

��	�� E� � fx � T � bN�x� � �g �

� � �	 Thus

��	�� jE�j �
C C�

�
jT j �
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by ��	�� and the Tchebytchev inequality	 In particular�

��	�� jE�j � � jT j

if � is large enough� i�e�� � � ���C C�	 We choose � once and for all so
that this is true� e�g�� � � ���C C� � 	

It su�ces now to �nd sets F�� � � � � F� � T � with � bounded as in
the statement of Proposition �	� such that

��	�� DnE� �
��
i��

Fi

and so that the restriction of f to each Fi is k�bilipschitz	 In other
words� ��	�� implies ��	��	

To get the bilipschitz condition� it is enough to show that

��	���
if x� y are distinct points in some Fi� and if Q is the smallest

cube in � such that x � Q and y � �Q� then Q � BL��k� �

This follows from the de�nition ��	�� of BL��k�	
The rest of the proof consists of a coding argument for decomposing

DnE� into a bounded number of subsets F�� � � � � F� which satisfy ��	���	
The mapping f � T �� N and the underlying measure theory play
no further role� and all that really matters are the cubes Q � E �
��T�D� nBL��k� and the information that

��	�� bN�x� � � � when x � DnE� �

The latter provides e�ective control on the way that the 
bad cubes�
in E can pile up around points that matter� i�e�� the elements of DnE�	
The required coding argument is practically the same as in ���� and it
is reviewed also in ��� �at the end of Section ��	 We omit the details�
which involve only cosmetic di�erences from the treatments in ���� ���	

�� David�s condition�

Standing Assumptions �	 continue to be in force in this section�
with the Lipschitz mapping h � Q� �� N in particular	

David�s condition is a slightly complicated assumption about h �
Q� �� N � and implicitly about the metric spaces M and N � which is
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su�cient to enable one to �nd subsets of Q� of de�nite size �in terms
of measure� on which h is bilipschitz� with uniform bounds� at least if
one has a lower bound for the measure of the image of h at the start	
This was one of the main results of ���� for which an alternate proof will
be indicated in Section �	 In this section we shall show how almost�
measure�preserving behavior in h can be converted into weak bilipschitz
behavior �in the sense of Section �� under the assumption of David�s
condition� which is a key portion of the argument described here	

The precise statement of David�s condition is given below	 Note
that we use the notation BM �x� r� and BN �u� t� for balls in the metric
spaces M and N � respectively	 Keep in mind that we are using jEj to
denote Hn�E� for subsets E of both M and N 	

Condition ��� �David�s condition�� For every C� � � �perhaps large�
and � � � �perhaps small �� there exist C� � � �large� and � � � �small �
so that the following is true�

Let x � Q� and j � j� be given� Set

��	�� Tj�x� �
�
fQ � �j � Q 	BM �x�C� �

j� 
� �g �

Assume that Tj�x� � Q�� and that

��	�� jh�Tj�x��j � � jTj�x�j �

Under these assumptions� we should either have that

��	�� h�Tj�x�� � BN �h�x�� C� �
j� �

or that

��	��
there is a cube W � �j such that W � Tj�x�� and

jh�W �j jW j�� � � � � �� jh�Tj�x��j jTj�x�j
�� �

Condition �	 is by no means true in a general way� and indeed
there are plenty of examples of Lipschitz mappings between Ahlfors�
regular spaces of the same dimension such that the mappings have
images with positive measure but are not bilipschitz on any subsets of
positive measure	 See ��� for some examples and more information
about related topics	 However� there are some signi�cant situations in
which one can show that Condition �	 holds� as in ���� ��� ���	
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One of the basic scenarios for verifying Condition �	 is to take
N � R

n � and to show that if the condition failed� then M would have
a kind of topological degeneracy �in dimension n�	 Some methods for
doing this are given in ���� including the derivation of controlled defor�
mations in which a substantial piece ofM is displaced into a set of lower
dimension	 This is also discussed �and with somewhat more detail� in
��� Section ��	

Condition �	 is given as item ��� on ��� p	 ���� and implicitly in
��� Main Lemma �	��	 A modestly di�erent version comes up in ��
Part II� Lemma �	���	 Each of these formulations are slightly di�erent
from the others� and from the one above� in terms of the setting and
background assumptions	

Remark 	��� As in �� Part II� Lemma �	���� it is sometimes con�
venient to weaken Condition �	 slightly by replacing ��	�� with a re�
quirement like

��	�� jBN �h�x�� C� �
j� nh�Tj�x��j � a �jn �

where a is a small number	 This weaker version would work just as well
for our arguments as ��	��� at least if a is small enough� depending on
n� L �the bound for the Lipschitz constant of h from Standing Assump�
tions �	�� the Ahlfors�regularity constant for M � and the parameter �
which is �xed in Standing Assumptions �	� below	 We shall explain
this further in Remark �	�� �just after we use ��	�� in a proof�	

Let now us turn to the main arguments of this section� in which
we assume Condition �	� and see what we can get from it	

Standing Assumptions ���� Let � � � be given� arbitrary� but �xed�

This will be the choice of � that we shall always use for De�nition ���
and eventually for Proposition ���� Set

��	�� � �
�

�
and C� �  �

We assume that Condition �� is true� and apply it with these choices

of � and C�� This yields positive constants C�� �� which are now �xed

as well�

Given � � � and A � � letM��� �MA��� be as in De�nition �		
Remember that A is used for deciding when two cubes are 
neighbors��
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as in ��	���� ��	��	 In this section we shall generally write MA���
instead of M���� to make explicit the dependence on A	 Note that
MA��� implicitly involves � too� but we shall not worry about that too
much� since � is �xed as above	

We want to show that if a cube Q � Q� lies in MA���� and if
A is large enough and � is small enough� then we have approximate
bilipschitz behavior of our mapping h � Q� �� N at the location and
scale of Q� in the sense of ��	��	 Our �rst task will be to establish some
lemmas which will give us access to the information in Condition �	
�i�e�� showing that its hypotheses are met�	

In this endeavor� we shall be free to take A as large as we want�
and � as small as we want	 In particular� they may depend on C� and
�	 The price for this will come in the Carleson constant when we apply
Proposition �	� at the end� in Section �	

As before� we shall use the notation ��T � to denote the collection
of cubes in � which are contained in a given cube T 	

Lemma ���� Let R be a cube in ��Q��� with R � �j� j � j�� and let

x be an element of R� If R � MA���� with A large enough� depending

only on n� C�� and the Ahlfors�regularity constant for M �and not on

R or j�� then Tj�x� � Q��

This was one of the basic requirements in Condition �	 �just after
��	���	

To prove the lemma� �x R and x � R� and let Q be any cube in �j

which is contained in Tj�x�	 If A is large enough� depending on C�� n�
and the Ahlfors�regularity constant for M � then Q and R are neighbors
in the sense of ��	���� ��	��	 This is easy to see	 Part b� of De�nition
�	 then implies that Q � Q�	 �Note that Q and R have opposite roles
here from what they were in De�nition �	� with R now the element of
MA���	� Since this is true for all such Q� we have that Tj�x� � Q�� as
desired	

Next we want to show that ��	�� holds in the basic situations of
concern	

Lemma ����� Let R be a cube in ��Q��� with R � �j� j � j�� and
let x be a point in R� If R � MA���� with A large enough and � small

enough� depending only on n� C�� and the Ahlfors�regularity constant

for M �and not on R or j�� then ����� holds �with � � �	�� as in �������
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Let R� j� and x be given as in the statement of the lemma	 For each
cube R�� let bR� be as de�ned in ��	��	 We are interested in choosing
R� so that

��	�� R � R� � Q� and bR� � Tj�x� �

Because Tj�x� � Q�� R� � Q� satis�es these conditions� but we would
like to have R� be smaller than that	 In fact we can �and do� choose
R� so that ��	�� holds� and also

��	�� diamR� � C C� diamR �

where C depends only on n and the Ahlfors�regularity constant for M
�through the constants in ��	���	 That this is possible is easy to verify�
using the assumption Tj�x� � Q�� the de�nition ��	�� of Tj�x�� and the

de�nition ��	�� of bR� �which also relies on ��	���	
If A is large enough� then R� is a neighbor of R	 �See ��	����

��	��	� The assumption that R � MA��� then ensures that

��	��
jh� bR��j

j bR�j
� � � ����

jh�R�j

jRj
�

as in ��	��	 This is pretty good� but we need to account for the image

of bR�nTj�x� under h too� in order to get the desired lower bound ��	��
for jh�Tj�x��j	

What does bR�nTj�x� look like! Let us �rst check that

��	�� bR� is a union of cubes in �j �

Let j�R�� denote the largest integer such that R� � �j�R��	 By de�ni�
tion� �R� �as de�ned in ��	��� is a union of cubes in �j�R��	 This is also

true of bR�� which is simply the intersection of �R� with Q�� because
of the usual property ��	�� of cubes and the fact that R� � Q�� as in
��	��	 �The latter implies that j�R�� � j�Q��	� Thus ��	�� holds with
j replaced by j�R��	 This implies ��	�� for j itself� since j � j�R��
�because R � R��� and using ��	��� ��	�� to say that cubes in �k can
always be realized as unions of cubes in �j when j � k	

From ��	�� we conclude that

��	�� bR�nTj�x� is a union of cubes in �j �
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That is� Tj�x� is a union of cubes in �j by de�nition �see ��	���� and
we know from ��	�� that distinct cubes in �j are necessarily disjoint	
This permits us to derive ��	�� from ��	��	

If A is large enough� again depending only on n� C�� and the
Ahlfors�regularity constant for M � then every cube Q in �j with Q �bR� is a neighbor of R	 This is the last condition on A that we shall
impose	 Since R � MA���� we conclude that

��	��
jh�Q�j

jQj
� � � ��

jh�R�j

jRj
�

for all such Q� by b� in De�nition �		 �Note that the roles of R and Q
here are again backwards from what they were in De�nition �		 This
does not matter for ��	��� which is symmetric in Q and R	�

Let Z denote the set of cubes Q � �j such that Q � bR�nTj�x�	

Thus bR�nTj�x� is the union of the cubes in Z� by ��	��� and these cubes
are pairwise disjoint� because of ��	��	 Combining this with ��	�� we
obtain that

��	��

jh� bR�nTj�x��j �
X
Q�Z

jh�Q�j

� � � ��
jh�R�j

jRj

X
Q�Z

jQj

� � � ��
jh�R�j

jRj
j bR�nTj�x�j �

On the other hand� ��	�� implies that

��	�� � � ����
jh�R�j

jRj
j bR�j � jh� bR��j � jh�Tj�x��j� jh� bR�nTj�x��j �

This yields

��	��� � � ����
jh�R�j

jRj
j bR�j � jh�Tj�x��j� � � ��

jh�R�j

jRj
j bR�nTj�x�j �

by ��	��	 We can rewrite this as

��	�� � � ����
jh�R�j

jRj
�j bR�j � � � ��� j bR�nTj�x�j� � jh�Tj�x��j �
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and then as

��	��� � � ����
jh�R�j

jRj
�jTj�x�j � �� � � ��� j bR�nTj�x�j� � jh�Tj�x��j �

since

��	��� j bR�j � jTj�x�j� j bR�nTj�x�j

�because Tj�x� � bR�� as in ��	��	
We are assuming that R � MA���� and this implies that

��	��� jh�R�j � � � ���� � jRj �

by a� in De�nition �		 This permits us to simplify ��	��� to

��	��� � � ���� � �jTj�x�j � �� � � ��� j bR�nTj�x�j� � jh�Tj�x��j �

Next� there is a constant C � � so that

��	��� j bR�nTj�x�j � j bR�j � C jTj�x�j �

where C depends only on n and the Ahlfors�regularity constant for M 	
To see this� let us �rst check that

��	��� diamR� � C � C� �
j �

for some constant C � which depends only on n and the Ahlfors�regula�
rity constant for M 	 This follows from ��	�� and the fact that diamR
is bounded by a constant times �j � since R � �j by assumption	 �See
��	��	� We also have that

��	��� diam bR� � C ��diamR� �

where C �� depends only on n and the Ahlfors�regularity constant forM �
by the de�nition ��	��� ��	�� of bR� �and the usual properties of cubes�	

Thus the diameter of bR� is bounded by a �geometric� constant times
C� �

j� and ��	��� then follows from the de�nition ��	�� of Tj�x� and the
Ahlfors regularity of M 	

If � is su�ciently small� depending on n and the Ahlfors�regularity
constant for M � then

��	��� � � ���� �jTj�x�j � �� � � ��� j bR�nTj�x�j� �


�
jTj�x�j �
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because of ��	���	 Plugging this into ��	���� we get that

��	���


�
� jTj�x�j � jh�Tj�x��j �

We chose � to be �	�� as in ��	��� and so ��	��� is the same as ��	���
which is exactly what we wanted	 This completes the proof of Lemma
�		

The next lemma provides conditions under which ��	�� cannot oc�
cur �so that Condition �	 will lead us to ��	���	

Lemma ����� Let R be a cube in ��Q��� with R � �j� j � j��
Suppose that x � R and that Tj�x� � Q�� Let Q be a cube in �j

such that Q � Tj�x�� If R � MA���� with A large enough and � small

enough� depending only on n� C�� �� and the Ahlfors�regularity constant

for M �and not on R� j� or Q�� then

��	���
jh�Q�j

jQj
� � � � ��

jh�Tj�x��j

jTj�x�j
�

We can prove Lemma �	� using practically the same estimates as
for Lemma �		 Let R� j� x� and Q be given as in the statement of the
lemma	 Thus

��	���
jh�Q�j

jQj
� � � ��

jh�R�j

jRj

as in ��	��� i�e�� Q is necessarily a neighbor of R under the conditions
of the lemma� at least if A is large enough� and ��	��� follows then
directly from the assumption R � MA��� and part b� of De�nition �		

On the other hand� we have that

��	��� � � ���� �� �� � � ���C�
jh�R�j

jRj
jTj�x�j � jh�Tj�x��j �

because of ��	��� and ��	���	 This constant C is the same as the one
in ��	���� and depends only on n and the Ahlfors�regularity constant of
M 	

Combining ��	��� with ��	���� we obtain that

��	���
jh�Q�j

jQj
� � � ��� �� �� � � ���C���

jh�Tj�x��j

jTj�x�j
�
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If � is small enough� depending on n� �� and the Ahlfors�regularity
constant for M � then ��	��� follows from this inequality	 This proves
Lemma �	�	

Lemma �	� has the e�ect of neutralizing the parameter � from
Condition �	� and we shall not have to deal with it again	

The next proposition gives the main conclusions of this section	

Proposition ����� There are positive constants k� A�� and ��� de�
pending only on n� �� C�� L �which is the Lipschitz constant for our

mapping h� as in Standing Assumptions ����� and the Ahlfors regular�

ity constants for M � so that the following is true�

Suppose that Q is a cube such that Q � Q� and Q � MA�
�����

Then Q also lies in BL��k�� where the latter is de�ned as in ������ �In
������ one should replace T with Q�� and f with our mapping h��

To prove this� let k� A� be large� and let �� be small� to be chosen
soon	 Let b be as in Lemma �	�	 Fix a cube Q � ��Q�� with Q �
MA�

����	 Also �x arbitrary points x� y � �Q 	 Q� �where �Q is as
de�ned in ��	�� such that

��	��� d�x� y� � b diamQ �

We want to show that� if k� A�� and �� are chosen correctly� then

��	��� ��h�x�� h�y�� � k�� d�x� y� �

where ��� � denotes the metric on the target space N 	 Once we do this�
we shall be �nished� because

��	��� ��h�x�� h�y�� � Ld�x� y�

holds automatically by the Lipschitz condition on h in Standing As�
sumptions �		 �Thus� to get ��	��� one should take k to be at least
L	�

Let j�Q� be the largest integer such that Q � �j�Q�� and let j� be
the largest integer at most j�Q� which satis�es

��	��� Tj��x� 	 Tj��y� � � �

It is not hard to see that

��	�� � � j�Q�� j� � C �
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for some constant C that depends only on n� C�� and the Ahlfors�
regularity constant for M 	 �Note that b depends only on n and the
Ahlfors�regularity constant for M � as in Lemma �	�	� This follows from
the de�nition ��	�� of Tj�� and the usual properties of cubes �especially
��	���	

Claim ����� If A� is large enough� and �� is small enough� de�

pending on n� C�� and the Ahlfors�regularity constant for M � then

Tj��x�� Tj��y� � Q� and

��	��� h�Tj��x�� � BN �h�x�� �j��� h�Tj��y�� � BN �h�y�� �j�� �

To see this� let Rx and Ry denote cubes in �j� such that x � Rx

and y � Ry	 Let A� � be positive numbers which are chosen large and
small enough� respectively� so that Lemmas �	�� �	� and �	� hold	 If
A� is large enough� and �� is small enough� depending on these choices
of A and � �which themselves depend only on acceptable parameters��
then we have that

��	��� Rx� Ry � MA��� �

This is not too hard to prove	 Indeed� ��	�� and the fact that x� y �
�Q imply that Rx and Ry are neighbors of Q� with a constant which
depends only on n� C�� and the Ahlfors�regularity constant for M 	 Any
cube which is a neighbor of Rx or Ry is then a neighbor of Q� but
with the 
neighborly� constant increased in a controlled fashion	 This
permits one to derive the requirements in De�nition �	 for ��	��� to
hold from the corresponding features for Q coming from the hypothesis
that Q � MA�

����	
Once one has ��	���� one can apply lemmas �	� and �	 to con�

clude that the 
hypotheses� of Condition �	 hold for x� j� and y� j� �i�e��
j� instead of j�	 In particular� Lemma �	� implies that Tj��x�� Tj��y� �
Q�� as asserted in Claim �	��	 The 
conclusions� of Condition �	 then
imply that one of ��	�� and ��	�� must hold for each of x� j� and y� j�	
From Lemma �	� �applied to Rx and Ry� we know that ��	�� is not
possible in either case� and so we are left with ��	�� for both x� j� and
y� j�	 In other words� ��	��� holds� which is exactly what we wanted	
This proves Claim �	��	

From now on we assume that A� is at least large enough� and ��
at least small enough� for the purposes of Claim �	��	
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Let us assume now that ��	��� does not hold� so that

��	��� ��h�x�� h�y�� � k�� d�x� y� �

We want to derive a contradiction	

Claim ����� If k is large enough� depending on n� C�� and the Ahlfors�

regularity constants for M � then

��	��� h�Tj��x�� � BN �h�y�� �j���� �

Note that there is an x on the left side of ��	���� and a y on the
right side	 In other words� we can convert ��	��� into a condition of
overlapping images	 This is quite straightforward	 To derive ��	���
from ��	���� we simply need to know that

��	��� ��h�x�� h�y�� � �j��� �

On the other hand� d�x� y� � � diamQ� since x� y � �Q by as�
sumption �as stated at the beginning of the proof of Proposition �	����
and diamQ is bounded by a �somewhat large� constant multiple of �j� �
because of ��	�� and the usual properties of cubes �namely� ��	���	
Thus ��	��� implies that ��h�x�� h�y�� is less that k�� times a constant
multiple of �j� � which ensures that ��	��� holds when k is su�ciently
large	 This proves Claim �	��	

From now on we assume that k is large enough for Claim �	�� to
work	 We shall not need to impose any further conditions on k� so it
may now be chosen and �xed� once and for all	

Claim ����� If A� is large enough� depending only on n� C�� L� and
the Ahlfors�regularity constant for M � and if �� �  �say�� then

��	��� jh�Tj��x�� 	 h�Tj��y��j � c jh�Q�j �

where c depends only on n� C�� L� and the Ahlfors�regularity constant

for M �

To prove the claim we use ��	��� and ��	���	 Note that ifN happens
to be Ahlfors regular of dimension n� then Claim �	�� would follow
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immediately� and could be simpli�ed slightly� but because we are not
assuming this we have to do a bit more work	

LetW ���Q�� be a cube which contains x	 If diamW�L�� �j����
then we have that

��	�� h�W � � BN �h�x�� �j���� �

since h is L�Lipschitz by hypothesis �as in Standing Assumptions �	�	
In particular we have that

��	��� h�W � � h�Tj��x�� 	 h�Tj��y�� �

by ��	��� and ��	���	
On the other hand� we can choose W to be as large as possible

subject to the conditions above� and this ensures that

��	��� diamW � C �
��

L�� �j��� �

where C � depends only on n and the Ahlfors�regularity constant for M 	
If A� is large enough� depending on n� L� C�� and the Ahlfors�regularity
constant forM � then this implies thatW must be a neighbor of Q� using
A� for the neighborly constant in ��	���� ��	��	 For this assertion we
also use ��	�� and the fact that x lies in �Q� by construction	 Because
Q � MA�

����� we may apply b� in De�nition �	 to obtain that

��	���
jh�W �j

jW j
� � � ���

�� jh�Q�j

jQj
�

We can convert this into

��	��� jh�W �j � C ��
��
jh�Q�j �

where C �� depends only on n� L� C�� and the Ahlfors�regularity con�
stant for M � because of ��	��� and ��	��	 Claim �	�� now follows by
combining ��	��� and ��	���	

Remark 	���� Wementioned before in Remark �	� that it is sometimes
convenient to weaken Condition �	 by replacing ��	�� with a condition
like ��	��� and that such a change would be innocuous for the purposes
of this section	 Indeed� it is only in the proof of Claim �	�� that this
modi�cation would have more than a cosmetic a�ect	 The crucial point
would come in ��	���� now we would only be able to say that h�W �
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minus a set of small measure is contained in h�Tj��x��	h�Tj��y��	 More
precisely� by choosing the constant a in Remark �	� correctly� one could
still say that at least half of h�W � �in terms of measure� is contained in
h�Tj��x�� 	 h�Tj��y��� and this would be perfectly �ne for Claim �	��	
One would simply have to change the constant in ��	��� slightly	

Let us be a bit careful about why one can choose a in this way
�i�e�� with a depending only on the constants given at the beginning�	
From a� and b� in De�nition �	 we have the lower bound

��	���
jh�W �j

jW j
� � � ���

�� � �
�

�
�

As in ��	���� we also have a lower bound for the diameter of W � in
terms of a constant multiple of �j� 	 This leads to the lower bound

��	��� jW j � C��� L�n �j�n �

where C� depends only on n and the Ahlfors�regularity constant for M 	
Thus

��	��� jh�W �j � C���

�

�
L�n �j�n �

Therefore� if we choose a so that

��	��� a � C���

�

�
L�n �

then we would be able to use ��	�� and ��	�� to conclude that

��	�� h�Tj��x�� 	 h�Tj��y��

contains at least half of the elements of h�W �� in terms of measure�
instead of ��	��� as before	 This type of condition on a is completely
acceptable� in that it depends only on the parameters that are given to
us in advance� rather than anything like C� or � from Condition �	�
which would lead to circles in the argument	 �The constant C� does
come into the later estimates� as in the proof of Claim �	��� but this
does not matter� because it is not connected to the choice of a	�

To �nish the proof of Proposition �	��� we want to use Claim �	��
to get a contradiction	 The basic idea is that the substantial overlap in
��	��� is incompatible with the approximate preservation of measure�
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in much the same way as in the discussion at the beginning of Section
�	

Much of the argument will be similar to the one in the proof of
Lemma �		 We begin by choosing a cube Q� such that

��	��� Q � Q� � Q� and Tj��x�� Tj��y� � bQ� �

where bQ� is de�ned through ��	�� and ��	��	 The cube Q� already
satis�es these conditions� but by choosing Q� as small as possible we
can guarantee that

��	��� diamQ� � C diamQ �

where C depends only on n and the Ahlfors�regularity constant for M 	
One does not need C to depend on C� � although that would not really
matter � because the requirement that Tj��x� and Tj��y� be disjoint� as
in ��	���� ensures that the diameters of Tj��x� and Tj��y� are not too
large compared to the diameter of Q	 This also uses the de�nition ��	��
to know that x and y are roughly in the middle of Tj��x� and Tj��y��
so that the distance between x and y controls the diameters of Tj��x�
and Tj��y� up to a bounded factor	 �A key occurrence of C� is in the
choice of j�� as in ��	��� which goes in sort of the opposite direction
from the choice of Q�	�

From ��	��� and ��	��� it follows that Q� is a neighbor of Q� with
constant A�� at least if A� is large enough	 Since Q � MA�

����� we
may apply c� in De�nition �	 to get that

��	��� � � ���
�� jh�Q�j

jQj
�
jh� bQ��j

j bQ�j
�

We would like to get an upper bound for jh� bQ��j which contradicts this
lower bound	

From ��	��� and ��	��� we know that Tj��x� and Tj��y� are disjoint

subsets of bQ�	 Set

��	��� E � bQ� n �Tj��x� � Tj��y�� �

Thus

��	��� h� bQ�� � h�E� � h�Tj��x�� � h�Tj��y�� �
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and

��	��� jh� bQ��j � jh�E�j�jh�Tj��x��j�jh�Tj��y��j�jh�Tj��x�	Tj��y��j �

�Compare with ��	��	�
By de�nition� Tj��x� and Tj��y� are unions of cubes in �j� 	 �See

��	��	� Let us check that

��	��� bQ� is a union of cubes in �j� �

Let j�Q�� denote the largest integer such that Q� � �j�Q��	 Thus
j�Q�� � j�Q�� since Q� � Q� as in ��	���	 We also have that

��	��� bQ� is a union of cubes in �j�Q�� �

by the construction of bQ� in ��	�� and ��	��	 �Strictly speaking� we use
here the fact that Q� � Q�� to know that j�Q�� � j�Q��� where j�Q��
is the largest integer such that Q� � �j�Q��	� Since j�Q�� � j�Q�� as
noted above� and j�Q� � j�� as in ��	��� we have that j�Q�� � j�	 Thus
��	��� follows from ��	���� by the usual properties of cubes �namely�
��	�� and ��	���	

Since Tj��x�� Tj��y�� and bQ� are all unions of cubes in �j� � and
since the cubes in �j� are pairwise disjoint by ��	��� we conclude that
E is also a union of cubes in �j� 	

Let U�X� denote the collection of cubes W � �j� such that W �

X� where X is Tj��x�� Tj��y�� bQ�� or E	 Then

jh�E�j� jh�Tj��x��j� jh�Tj��y��j

�
X

W�U�E�

jh�W �j�
X

W�U�Tj� �x��

jh�W �j�
X

W�U�Tj��y��

jh�W �j �

��	���

since E� Tj��x�� and Tj��y� are each given by the union of the cubes
in U�E�� U�Tj��x��� and U�Tj��y��	 On the other hand� the collections
U�E�� U�Tj��x��� and U�Tj��y�� are pairwise disjoint� since E� Tj��x��
and Tj��y� are pairwise disjoint �by ��	��� and ��	����	 We also have
that

��	�� U� bQ�� � U�E� � U�Tj��x�� � U�Tj��y�� �
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In other words� every cube W � �j� which is a subset of bQ� must
also be a subset of one of E� Tj��x�� and Tj��y�	 This uses the fact

that bQ� is the union of E� Tj��x�� and Tj��y� �by ��	����� the earlier
observation that each of E� Tj��x�� and Tj��y� is a union of cubes in
�j� � and the pairwise�disjointness of cubes in �j� 	 Because of ��	��
and the disjointness of the union in ��	�� we may convert ��	��� into

��	��� jh�E�j� jh�Tj��x��j� jh�Tj��y��j �
X

W�U� bQ��

jh�W �j �

If A� is large enough� depending on n� C�� and the Ahlfors�regularity
constant� then the cubes W � U� bQ�� are all neighbors of Q� with neigh�
borly constant A�	 �This is the last time that we impose a condition
on A�� and so it may now be chosen and �xed� once and for all	� This
permits us to apply b� in De�nition �	 to get that

��	���
jh�W �j

jW j
� � � ���

jh�Q�j

jQj
�

for all W � U� bQ��	 Thus ��	��� leads to

��	��� jh�E�j�jh�Tj��x��j�jh�Tj��y��j � �����
jh�Q�j

jQj

X
W�U� bQ��

jW j �

The cubesW in U� bQ�� are pairwise disjoint� since they all lie in �j� � and

they are also subsets of bQ�� by de�nition of U� bQ��	 Thus we conclude
that

��	��� jh�E�j� jh�Tj��x��j� jh�Tj��y��j � � � ���
jh�Q�j

jQj
j bQ�j �

Combining ��	��� with ��	��� yields

��	��� jh� bQ��j � � � ���
jh�Q�j

jQj
j bQ�j � jh�Tj��x� 	 Tj��y��j �

We can also apply ��	��� to get that

��	��� jh� bQ��j � � � ���
jh�Q�j

jQj
j bQ�j � c jh�Q�j �
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where c depends only on n� C�� L� and the Ahlfors�regularity constant
for M 	

Let us rewrite ��	��� as

��	���
jh� bQ��j

j bQ�j
� � � ���

jh�Q�j

jQj
� c

jh�Q�j

j bQ�j
�

Putting this upper bound together with the lower bound in ��	���� we
obtain that

��	��� � � ���
�� jh�Q�j

jQj
� � � ���

jh�Q�j

jQj
� c

jh�Q�j

j bQ�j
�

This is equivalent to

��	��� � � ���
�� � � � ���� c

jQj

j bQ�j
�

�Note that jh�Q�j � �� since Q � MA�
����	 See a� in De�nition �		�

On the other hand�

��	�� j bQ�j � D jQj �

for some constantD which depends only on n and the Ahlfors�regularity
constant forM � by ��	��� and the usual properties of cubes �i�e�� ��	���	
Thus ��	��� leads to

��	��� � � ���
�� � � � ���� cD�� �

This gives us the desired contradiction if we choose �� small enough�
depending on c and D	 In other words� cD�� is a positive number of
de�nite size� depending only on n� C�� L� and the Ahlfors�regularity
constant for M � and since we are free to choose �� as small as we want�
depending on these parameters� we may choose it so that ��	��� is not
true	

This completes the proof of Proposition �	��	 We shall make use
of it in the next section	
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�� A summarizing theorem�

Again the provisions of Standing Assumptions �	 are in force	
Thus M and N are metric spaces� with M Ahlfors�regular of dimension
n� f�jgj�j� is a sequence of families of cubes in M � as in Section �	��
Q� is a �xed cube inM � and h � Q� �� N is an Lipschitz mapping with
norm at most L	 Also� we use jAj to denote n�dimensional Hausdor�
measure of A� whether A is contained in M or N 	 �To some extent one
could allow other measures besides Hausdor� measure� as in Remark
�	�	�

Theorem ���� Notations and assumptions as above� Suppose also

that Condition �� holds� Let � � � be arbitrary� but �xed� and set

��	�� SI� � fW � � � W � Q�� jh�W �j � �jW jg �

Also put

��	�� D � Q�n
�

W�SI�

W �

Then

��	�� jh�Q�nD�j � � jQ�nDj � � jQ�j

�at least if Q�nD 
� ��� and h is �Q�� D��weakly bilipschitz� in the

sense of De�nition ���� The constants for the �Q�� D��weak bilipschitz

property may be taken to depend only on n� L� �� the Ahlfors�regularity
constant for M � and the constants C�� � in Condition ��� associated
to C� �  and � � �	��

In particular� for each � � � one can �nd measurable subsets

F�� � � � � F� of D such that

��	��
���D n

��
i��

Fi

��� � � jQ�j

and so that the restriction of h to each Fi is bilipschitz� with � and the

bilipschitz constants bounded by quantities which depend only on � and

the parameters mentioned above�
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Note that

��	��
���h�Q�� n

��
i��

h�Fi�
��� � �Ln �� �� jQ�j �

because of ��	��� ��	��� and ��	��	 This is like the situation in ���� the
h�Fi��s account for all of h�Q�� except for a subset of small measure	
If h�Q�� itself is of small measure� then Theorem �	 does not really
contain any information� but as soon as the measure of the image is
of de�nite size� one obtains substantial subsets of Q� on which h is
bilipschitz� as in ���	

To prove the theorem we basically only have to concatenate pieces
from the previous sections	 The inequality ��	�� is quite automatic�
and we have done this type of calculation several times before	 �See
Lemma �	�� for instance	� For the weak bilipschitz condition� choose k
as in Proposition �	��	 Let BL��k� be as in Section � �see ��	���� and
let ��Q�� D� denote the collection of cubes in M which are contained
in M and which intersect D	 We want to show that

��	�� ��Q�� D�nBL��k� is a Carleson set �

which is slightly stronger than needed for De�nition �	�	
According to Proposition �	���

��	�� MA�
���� � BL��k�

when A� is large enough and �� is small enough �and with suitable
bounds�	 To establish ��	��� it is therefore enough to show that

��	�� ��Q�� D�nMA�
���� is a Carleson set �

This we can get from Proposition �	�	 �The A�parameter was left im�
plicit in Proposition �	�� i�e�� we used the notation M��� instead of
MA���	� More precisely� Proposition �	� provides a Carleson condition
for

��	�� ��Q��n�MA�
���� � SI� �

where SI was de�ned �in De�nition �	�� to be the set of cubes Q � Q�

such that Q �W for some W � SI�	 If Q is a cube in ��Q�� D�� then
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Q intersects D� and therefore cannot be contained in some W � SI�	
Thus

��	� ��Q�� D�nMA�
���� � ��Q��n�MA�

���� � SI� �

and so ��	�� follows from the Carleson condition for ��	��	
This proves that h is �Q�� D��weakly bilipschitz in the sense of

De�nition �	�� and with suitable bounds	 The last part of Theorem
�	 follows directly from this and Proposition �		 This completes
the proof of Theorem �		

Remark �
���� Let us mention a simple extension of the preceding
theorem and proof	 We want to 
weaken� Condition �	� by allowing
some exceptions which are controlled by a packing condition� in the
following manner	

Let Q� be a �xed cube in M � as in Condition �	� and let B be a
collection of cubes in � which are also subcubes of Q�	 These will be
the set of 
bad� cubes for Condition �		 Given a point x � Q� and an
integer j � j�� we shall allow the pair �x� j� to be 
excused� from the
provisions of Condition �	 if there is a cube Q � B such that

��	�� there is a W � B such that x �W and W � �j �

To prevent this from happening too often� we ask that B satisfy a
packing condition of the form

��	��
X
W�B

jW j � C � jQ�j �

We should be a bit more careful here about the role of B in Condition
�		 We allow B and the constant C � in ��	�� to depend on C� and
�� but not on anything else	 In other words� B and C � are in roughly
the same category as C� and �� and should be given at the same time	
The rest of Condition �	 remains the same as before� except that the
pairs �x� j� which satisfy ��	�� are excused from the conclusions of
Condition �		 One could rephrase this by treating ��	�� as a third
alternative� in addition to the two ��	��� ��	�� that are already there	

If Condition �	 is weakened in this manner� then the conclusions of
Theorem �	 still hold� and with essentially the same proof	 The main
point is that Proposition �	�� should be modi�ed� to say that the cube
Q in the statement of Proposition �	�� either lies in BL��k�� as before�
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or is a neighbor of a cube in B� for a suitable choice of constant A in
the neighbor�conditions ��	���� ��	��	 This choice of A may depend
on C�� as well as n and the Ahlfors�regularity constant for M 	 With
this adjustment� Proposition �	�� is derived in practically the manner
as in Section �	 The only di�erence comes in the justi�cation of Claim
�	��� which is where Condition �	 was used	 Now the weaker version of
Condition �	 would imply that either the given cube Q is a neighbor
of a cube in B �for a su�ciently large neighbor�constant A�� or that
the same conclusions as in Claim �	�� are true� so that the rest of the
argument can be �nished in the same way as before	 �In particular�
Condition �	 was not employed again after Claim �	��	�

For the proof of Theorem �	� one would then replace ��	�� with
the requirement that ��Q�� D�nBL��k� satisfy a packing condition� and
one would replace ��	�� with

��	�� BL��k�nMA�
���� satis�es a packing condition �

The latter is what one would get from the modi�ed version of Propo�
sition �	��� and it is su�cient for the conclusions of Theorem �	� for
the same reasons as before	

As usual� one should not be too concerned with the di�erence be�
tween Carleson and packing conditions here� and indeed in practice the
set B of bad cubes could well be a Carleson set anyway	 One could also
consider weakenings of the packing condition� as may be appropriate in
some circumstances� but this is easy to analyze and we shall not pursue
it here	

��� Some technical extensions�

In this section we would like to record some modest re�nements of
the assertions in this paper� concerning the Lipschitz condition on our
initial mapping h � Q� �� N from Standing Assumptions �		

Instead of the Lipschitz condition ��	��� consider the requirements
that

�	� h � Q� �� N be continuous

and

�	�� Hn�h�E�� � LnHn�E� � for all E � Q� �
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Each of these properties holds automatically when h is Lipschitz with
constant L� using ��	�� to get �	��	 �For �	��� one might also be in�
terested in di�erent measures besides Hausdor� measure� as in Remark
�	��	

Notice �rst that Lemma �	� works for mappings which satisfy
�	� and �	�� instead of being Lipschitz	 Indeed� all that one really
needs for Lemma �	� is that the given mapping send compact sets to
compact sets �which follows from continuity�� and that sets of measure
� are sent to sets of measure � �which is a special case of �	���	

With �	� and �	�� instead of the Lipschitz condition ��	�� for
h� the statement and proof of Proposition �	� go through exactly as
before	 The main points are that one still has ��	��� now by �at� and
that Lemma �	� continues to work under these conditions	 Speci��
cally� ��	�� in Lemma �	� still follows from ��	��� by �	��� and the
�niteness of jf�Q�j mentioned just after ��	��� also follows from �	��	
�In the context of the proof of Proposition �	�� Lemma �	� was always
applied with the mapping f taken to be h� and with the cube Q a
subcube of our original cube Q�	�

None of this should be considered surprising� as Proposition �	�
relies only on very general principles� in which the mapping h plays
little role	 �One really only uses h to get the subadditive measure
E ��� jh�E�j for subsets of M 	�

Similarly� the extension of Proposition �	� to propositions �	� and
�	� does not involve h at all� beyond what is incorporated into Propo�
sition �	� already� and so they also work in this more general setting	
In Proposition �	�� the mapping h does participate slightly� but only
for subadditivity of E ��� jh�E�j again	 This does not take place un�
til the last parts of the proof� after all of the initial reductions	 For
Proposition �	� the mapping h plays essentially no active role either�
and the proof in e�ect provides merely a di�erent view of some of the
information given in Proposition �	�	

To summarize� we have that the statements and proofs of Propo�
sitions �	�� �	�� �	�� �	�� and �	� work just as well with the Lipschitz
condition ��	�� for h replaced with �	� and �	��	 Actually� we never
even need �	� here	 It is nice to have� for the sake of measurability
of the images� as in Lemma �	� and its extension mentioned above� but
one does not really need measurability for these propositions	 This is
because Hausdor� measure Hn is de�ned as an outer measure on all
subsets of N � and subadditivity of E ��� jh�E�j is all that was ever
used for these propositions	 �Measurability of the images is needed for
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the interpretation of measure�preserving behavior mentioned near the
beginning of Section �� concerning approximate disjointness of images
of disjoint sets� but this did not enter into the proofs of the proposi�
tions	 It does play a role in later applications� as in ��	��� in the proof
of Proposition �	��	�

For the work in sections � and �� it is important to have Lipschitz
control on h� and not just �	� and �	��	 However� the nature of
this control can be weakened� as in the following notion	

De
nition ���� �Pseudo�Lipschitz condition�� Let M � N � and Q� be

as usual� in Standing Assumptions ��� We shall call h � Q� �� N
pseudo�Lipschitz with constant L if h is continuous on Q�� and if there

is a subset Y of Q� such that the restriction of h to Y is Lipschitz with

constant L� and such that

�	�� Hn�h�Q�nY �� � � �

In other words� h is L�Lipschitz on Y � and h is completely degen�
erate on Q�nY � in the sense of �	��	 This comes up naturally in some
situations� where one starts with some mapping and tries to 
clean it
up� by collapsing portions that are not essential �e�g�� which are not
needed for some topological purpose�	 In doing this it may not be con�
venient or possible to keep track of the Lipschitz behavior of the given
mapping on the whole domain� but� as in the pseudo�Lipschitz property�
one may not need a bound on the parts where collapsing takes place	

If h � Q� �� N is pseudo�Lipschitz with constant L� then it auto�
matically satis�es �	� and �	��� the latter by ��	�� and �	��	 In
particular� Propositions �	�� �	�� �	�� �	�� and �	� continue to hold in
these circumstances	

We want to extend the results of sections � and � to the case
where h � Q� �� N is pseudo�Lipschitz with constant L as well	 Let
us �rst make some observations about Section �� and weak bilipschitz
conditions	

Let M and N be as usual �in Standing Assumptions �	�� and �x
a cube T in M 	 Also �x a measurable subset S of T 	 Instead of a
mapping f � T �� N � as in Section �� let us take f to be de�ned only
on S	 �If it happens to be de�ned on all of T � then we simply forget
about the part that is not in S	�

Fix a constant b � � as in Lemma �	�� and let k be a number
greater than 	 De�ne BL���k� to be the collection of cubes Q � � such
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that Q � T and

�	��
k�� d�x� y� � ��f�x�� f�y��� k d�x� y�

for all x� y � �Q 	 S with d�x� y� � b diamQ �

This is the same as ��	��� except that we restrict ourselves to points x�
y in S	

De
nition ���� ��T�D� S��weakly bilipschitz mappings�� Given a

measurable set D � T � we say that f � S �� N is �T�D� S��weakly
bilipschitz if exactly the same conditions hold as in De�nition ���� ex�
cept that BL��k� is replaced with BL���k��

If f � S �� N is �T�D� S��weakly bilipschitz� then exactly the same
conclusions as in Proposition �	 are true� except that the Fi�s should
now be subsets of D 	 S� and the D in ��	�� should be replaced with
D 	 S	 This can be proved in practically the same manner as before�
except that now one only worries about points in S	 More precisely�
the choice of 
bad set� E� of points to remove can be made in exactly
the same manner as before� in ��	��	 One then wants to show that

�	�� �D 	 S�nE�

can be covered by a bounded number of sets Fi on which f is k�
bilipschitz� as in the statement around ��	��	 As before� to get the
bilipschitz condition� it su�ces to choose the Fi�s so that ��	��� holds	
Thus one only needs to choose the Fi�s so that they cover �D 	 S�nE�
and satisfy ��	��� �and so that there are only boundedly many of them��
and this can be accomplished through exactly the same kind of coding
argument as for Proposition �		

Let us now proceed to the material in sections � and �	 We use
the same notations and assumptions as before� including the ones in
Standing Assumptions �	� except that h � Q� �� N is now required
to be pseudo�Lipschitz with constant L� instead of the usual Lipschitz
condition ��	��	 Let Y � Q� be as in De�nition 	�	 We may as well
assume that Y is relatively closed in Q�� since otherwise we can simply
replace it with its relative closure	

We do not change the formulation of David�s condition �Condition
�	� in this context� and we also keep Standing Assumptions �	 as they
are	 The weakening of David�s condition described in Remark �	� would
also work �ne here	
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The statements and proofs of lemmas �	�� �	� and �	�� carry
over to this context without trouble� in much the same way as for
propositions �	�� �	�� ���� �	�� and �	� before	 For this the pseudo�
Lipschitz condition could be replaced with �	� and �	�� �or just
�	���	

For Proposition �	��� one should be a bit more careful	 In the
statement of Proposition �	�� one should replace BL��k� with BL���k�
as de�ned above� around �	��	 �For the de�nition of BL���k�� one
should now take the cube T to be Q�� f to be h� and S to be Y 	�

The proof of the modi�ed version of Proposition �	�� begins the
same way as before� except that x and y should be chosen in �Q 	 Y �
rather than �Q 	 Q�	 The pseudo�Lipschitz condition on h still gives
��	��� in that case� since x and y lie in Y 	

Proceeding with the earlier proof� the choices of j�Q� and j� remain
the same as before� and one can derive Claim �	�� from lemmas �	��
�	� and �	� in exactly the same manner as in Section �	

For Claim �	�� we have to be a bit more careful	 If N happens to be
Ahlfors regular of dimension n� then there is nothing to do� and Claim
�	�� would follow directly from Claim �	��	 Without that assumption
we can try to argue as before� but now ��	�� need not be true� since
we only have a pseudo�Lipschitz condition for h	 Instead of ��	�� we
have that

�	�� h�W 	 Y � � BN �h�x�� �j���� �

because h is L�Lipschitz on Y 	 This is practically as good as ��	���
since

�	�� jh�WnY �j � � �

by �	��� and therefore

�	�� jh�W 	 Y �j � jh�W �j �

From here the argument for Claim �	�� is nearly the same as in Section
�	 One should replace W in the left side of ��	��� with W 	 Y � but
the measure�theoretic computations do not change� because of �	��	
�Similarly� the considerations of Remark �	�� extend to the present
circumstances as well	�

The rest of the proof of Proposition �	�� carries over without much
incident� and indeed would work under the assumptions of �	� and
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�	�� in place of the �stronger� pseudo�Lipschitz property	 The one
slightly delicate point is that for this part of the argument we do need
the measurability of the images of measurable sets under h �for ��	�����
and so we do use now the continuity condition �	�	

This takes care of the material in Section �	 As for Section ��
Theorem �	� goes over with only minor adjustments	 Speci�cally�
instead of the �Q�� D��weak bilipschitz property for h in the conclusions
of Theorem �	� one would get �Q�� D� Y ��weak bilipschitzness� in the
sense of De�nition 	�� and with the same estimates as before	 In ��	��
one should replace D with D 	 Y � as in the variant of Proposition �	
for �T�D� S��weak bilipschitzness discussed above �in the paragraph
containing �	���	 These are the changes that one should make to
the statement of Theorem �	� and then the proof is almost exactly
the same as in Section �	 One simply has to use BL���k� �from �	���
instead of BL��k�� and employ the versions of propositions �	�� �	� and
�	�� adapted to this context �i�e�� with the pseudo�Lipschitz condition
instead of the Lipschitz condition�	

Thus Theorem �	 can be extended to the case where h is pseudo�
Lipschitz with constant L instead of Lipschitz	 Note that the inequal�
ity ��	�� does still work in this case� i�e�� without having to replace
D with D 	 Y � since jh�Q�nY �j � � �as part of the pseudo�Lipschitz
condition� as in �	���	 In particular� given a suitable lower bound for
jh�Q��j	jQ�j	 we may conclude that there is a subset of Q� of de�nite
size on which h is bilipschitz� and with uniform bounds	

Of course David�s method in ��� also works perfectly well in this
context	 �Since we happen to be here� though� it is convenient to go
through the veri�cations for the arguments described in this paper	�

Remark ������ As one last comment� let us mention that if N is
Ahlfors regular of dimension n� then one could simplify these extensions
slightly� as follows	 One might as well split the issue of the upper
bounds in the bilipschitz conditions o� from the lower bounds� and
just concentrate on the latter	 If one does have upper bounds� as in
the pseudo�Lipschitz condition� one can simply add that on afterwards�
separately	

In concentrating on the lower bounds on the bilipschitz conditions�
one should drop the upper bounds from most of the hypotheses and
conclusions in the various statements	 Thus� instead of weak bilipschitz
conditions in Section �� one would work with similar conditions which
involve only lower bounds in ��	��� and ��	��� and only lower bounds
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in Proposition �		 Analogous changes would be made to Proposition
�	�� and Theorem �		 With these modi�cations it would be enough
to use �	� and �	��� rather than the pseudo�Lipschitz condition �at
least if N is Ahlfors regular of dimension n� to avoid trouble with Claim
�	�� in the proof of Proposition �	��	�
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