Periodic-by-Nilpotent Linear Groups

B. A. F. Wehrfritz

ABSTRACT - Let G be a linear group of (finite) degree n and characteristic $p \geq 0$. Suppose that for every infinite subset X of G there exist distinct elements x and y of X with (x, x^n) periodic-by-nilpotent. Then G has a periodic normal subgroup T such that if $p > 0$ then G/T is torsion-free abelian and if $p = 0$ then G/T is torsion-free nilpotent of class at most $\max \{1, n-1\}$ and is isomorphic to a linear group of degree n and characteristic zero. We also discuss the structure of periodic-by-nilpotent linear groups.

In [4] Rouabhi and Trabelsi prove that if G is a finitely generated soluble-by-finite group such that for every infinite subset X of G there exist distinct elements x and y of X with (x, x^n) periodic-by-nilpotent, then G is periodic-by-nilpotent, work that ultimately was prompted by very much earlier work of B.H. Neumann, see [4]. Throughout for any positive integer n we set $n' = \max \{1, n-1\}$. Here we prove the following.

THEOREM. Let G be a linear group of (finite) degree n and characteristic $p \geq 0$. Suppose that for every infinite subset X of G there exist distinct elements x and y of X with (x, x^n) periodic-by-nilpotent. Then G is periodic-by-nilpotent. Further G has a periodic normal subgroup T such that if $p > 0$ then G/T is torsion-free abelian and if $p = 0$ then G/T is torsion-free nilpotent of class at most $n' = \max \{1, n-1\}$ and is isomorphic to a linear group of degree n and characteristic zero.

If T is a periodic normal subgroup of some linear group G of degree n and characteristic zero, then G/T is always isomorphic to a linear group of...
characteristic zero (see [9]), but not necessarily of degree \(n \), so the above situation is unusual. As a simple example, \(SL(2, 5) \) has a faithful representation of degree 2 over the complex numbers (indeed over \(\mathbb{Q}(\sqrt{5}, \sqrt{1}) \)), but the least degree of a faithful representation in characteristic zero of its image \(PSL(2, 5) \cong \text{Alt}(5) \) is 3.

Not every torsion-free nilpotent group is isomorphic to a linear group; for example, a direct product \(D \) of infinitely many copies of the full unitriangular group \(\text{Tr}_1(3, Z) \) over the integers \(Z \) is torsion-free nilpotent of class 2, but is not isomorphic to any linear group of any characteristic. Every torsion-free abelian group is isomorphic to a linear group of arbitrary characteristic ([6] 2.2) and any finitely generated torsion-free nilpotent group is isomorphic to a unipotent linear group over the integers (see [6] Page 23), so the counter example \(D \) above is about as small as one can get.

For any group \(G \) denote its hypercentre by \(\zeta(G) \) and the \(i \)-th terms of its upper and lower central series by \(\zeta_i(G) \) and \(\gamma^i G \) respectively (where \(\zeta_0(G) = \langle 1 \rangle \) and \(\gamma^1 G = G \)). Let \(G \) be a group. If \(\gamma^{m+1} G \) is finite, then \(G/\zeta_m(G) \) is finite (if \(G \) is finitely generated even \(G/\zeta_m(G) \) is finite) and if \(G/\zeta_m(G) \) is finite, then \(\gamma^{m+1} G \) is finite, see [3] 4.25, 4.24 and 4.21, Corollary 2. Something similar happens for periodic-by-nilpotent linear groups.

Proposition. Let \(G \) be a linear group of degree \(n \) and characteristic \(p \geq 0 \).

a) Suppose that \(\gamma^{m+1} G \) is periodic for some integer \(m \geq 0 \) and that \(O_p(G) = \langle 1 \rangle \) if \(p > 0 \). Then \(G/\zeta_m(G) \) (and \(\gamma^{m+1} G \)) are locally finite.

b) If \(G/\zeta(G) \) is periodic, then \(\gamma^{n+1} G \) and \(G/\zeta_n(G) \) are locally finite.

c) If \(G/\zeta_m(G) \) is periodic for some integer \(m \geq 0 \), then \(\gamma^{m+1} G \) and \(G/\zeta_m(G) \) are locally finite.

Of course Part c) only adds to Part b) in the Proposition for \(m < n \) and Part a) for \(m > n \) adds nothing to the case \(m = n \) by the Theorem. Perhaps Part b) is a slight surprise, since if \(G/\zeta(G) \) is finite there is no need for any \(\gamma^G \) to be finite, even if \(G \) is also linear (consider the infinite locally dihedral 2-group). If \(G \) is any group with \(G/\zeta_m(G) \) locally finite, then \(\gamma^{m+1} G \) is easily seen to be locally finite.

If \(G \) is the wreath product of a cyclic group of prime order \(p \) by an infinite cyclic group, then \(G \) is isomorphic to a triangular linear group of degree 2 and characteristic \(p \) with \(\gamma^2 G \) periodic (even elementary abelian) and yet \(\zeta(G) = \langle 1 \rangle \). Thus the extra hypothesis if \(p > 0 \) in Part a) cannot be
removed. There is no obvious analogue to Part b) in the context of Part a); if G is a non-cyclic free group, then G is isomorphic to a linear group of degree 2 in any characteristic and yet $\gamma^m G = (1) = \zeta(G)$. Note that there exist hypercentral linear groups of infinite central height, even periodic ones, see [6] 8.3, so for example in Part b) there is no need for $\zeta(G)$ and $\zeta_n(G)$ to be equal.

Let G be any group. Denote its unique maximal periodic normal subgroup by $\tau(G)$ and its unique maximal normal π-subgroup for π some set of primes by $O_{\pi}(G)$. If G is linear, G^0 denotes its connected component containing the identity (relative to the Zariski topology).

Proof of the Theorem. To begin with, note that if G is a torsion-free, locally nilpotent group with a normal subgroup H such that G/H is periodic and such that H is nilpotent of class c, then G is nilpotent of class c. This can be derived either from isolator theory, see [2] 2.3.9, or from the Zariski topology using [5], 5.11 and Point 3 on Page 23.

Suppose G is a subgroup of $GL(n, F)$, where F is an algebraically closed field of characteristic $p \geq 0$. If G is not soluble-by-(locally finite), then G contains a free subgroup on an infinite set X by Tits’ Theorem, see [6] 10.17. Then $\langle x, x^y \rangle$ is free of rank 2 for every pair of distinct elements x and y of X. Consequently G is soluble-by-(locally finite). By Rouabhi & Trabelsi’s theorem, see [4], the group G is locally (periodic-by-nilpotent) and hence is locally (periodic-by-(torsion-free nilpotent)). Therefore G is periodic-by-(torsion-free, locally nilpotent).

Set $T = \tau(G)$ and suppose p is positive. Clearly $O_p(G) \leq T$, so G/T is isomorphic to a torsion-free, locally nilpotent, linear group of characteristic p by Corollary 1 of [9]. Then G/T is also abelian-by-finite by [6] 3.6 and consequently G/T is abelian by the remark at the beginning of this proof. This settles the positive characteristic case.

From now on assume that $p = 0$. Set $C = C_G(T)$. Then G/CT is finite by [5] 5.1.6. Also C is locally nilpotent, so C has a Jordan decomposition

$$C \leq C_n \times C_d = C_n C = CC_d = GL(n, F),$$

see [6] Chapter 7, especially 7.14 and 7.13 (recall F here is algebraically closed). Here C_n is unipotent, torsion-free and nilpotent of class less than n. Set $P = \tau(C_n)$. Then C_d/P is torsion-free, locally nilpotent and abelian-by-finite ([6] 7.7 & 3.5). Therefore C_d/P is abelian. Consequently $P = \tau(C_n C_d)$, $C \cap T = C \cap P$ and $CT/T \cong C/(C \cap P)$ is nilpotent of class at most $\max \{n - 1, 1\} = n'$. But then G/T is torsion-free, locally nilpotent and has a nilpotent subgroup CT/T of finite index and class at most n'. Therefore G
is torsion-free and nilpotent of class at most n', again by our remark at the beginning.

Finally G/T is isomorphic to a linear group over F of n-bounded degree by the theorem of [9], but we need to ensure it is actually isomorphic to a linear group of degree n and characteristic zero. If $n = 1$, then G is abelian and clearly G/T embeds into $F^* = GL(1, F)$, since F^* is divisible and splits over $\tau(F^*)$. Suppose $n > 1$. If K is an extension field of F, then the centre of the unitriangular group $\text{Tr}_1(n, K)$ is isomorphic to the additive group of K and hence is equal to $Z \times R$ for Z the centre of $\text{Tr}_1(n, F)$ and R a direct sum of copies of the additive group of the rationals. Further C_n is isomorphic to a subgroup of $\text{Tr}_1(n, F)$ and C_d/P is embeddable in R for a suitably large K. In which case C_nC_d/P is isomorphic to a subgroup of $\text{Tr}_1(n, K)$ and hence so too is $CT/T \cong CP/P \leq C_nC_d/P$. Now $\text{Tr}_1(n, K)$ is torsion-free, nilpotent and divisible. Thus $\text{Tr}_1(n, K)$ contains a divisible completion D of CT/T. Since G/T is torsion-free, nilpotent and of finite index over CT/T, so D contains a copy of G/T. (See [2] Chap. 2, especially 2.1.1, for divisible completions of nilpotent groups.). Therefore G/T is isomorphic to a linear group of degree n and characteristic zero. The proof is complete.

As an example of an application of this theorem, we have the following.

COROLLARY. Let G be a soluble-by-finite group with finite Hirsch number. Suppose that for every infinite subset X of G there exist distinct elements x and y of X with (x, x^2) periodic-by-nilpotent. Then G is periodic-by-nilpotent.

PROOF. For if $T = \tau(G)$, then G/T has a torsion-free soluble normal subgroup of finite rank and index. Then G/T is isomorphic to a linear group over the rationals (e.g. [7] 1.2) and applying the theorem to G/T yields the corollary. Alternatively it follows from [4] as follows. By [4] the group G is locally periodic-by-nilpotent, so G is periodic-by-torsion-free and locally nilpotent of finite rank). Consequently G is periodic-by-nilpotent by a theorem of Mal’cev ([3] 6.36).

The Proposition follows at once from the following three lemmas.

LEMMA 1. Let G be a linear group of degree n and characteristic $p \geq 0$ such that $O_p(G) = \{1\}$ if $p > 0$. If there exists an integer $m \geq 0$ such that $\gamma^{m+1}G$ is periodic, then $G/\zeta_m(G)$ is locally finite.

Note that here $\gamma^{m+1}G$ is locally finite by [6] 4.9.
PROOF. Let X be a finitely generated subgroup of G. Suppose first that $p = 0$. Then $\gamma^{m+1}X$ is finite by [6] 4.8 and therefore $X/\zeta_m(X)$ is finite by [3] 4.24. Also $\zeta_m(X)$ is closed in X by [6] 5.10, so $X^0 \leq \zeta_m(X)$. If Y is a finitely generated subgroup of G containing X, then

$$X^0 \leq X \cap Y^0 \leq \zeta_m(Y).$$

Thus $X^0 \leq \zeta_m(G)$. Set $G^* = \bigcup_X X^0$. Then G^* is a normal subgroup of G with G/G^* locally finite and $G^* \leq \zeta_m(G)$. The case $p = 0$ follows.

Now assume that $p > 0$. Here [6] 4.8 only yields that $\gamma^{m+1}X$ is a finite extension of a p-group. Define $Z_i(X)$ by

$$Z_i(X)/O_p(X) = \zeta_i(X/O_p(X)).$$

Then $X/Z_m(X)$ is finite by [3] 4.24 and $O_p(X)$ and $Z_m(X)$ are closed in X, so $X^0 = Z_m(X)$. Thus $X^0 \leq \bigcap_{Y \geq X} X \cap Z_m(Y)$ and a simple localizing argument (cf. the previous paragraph) yields that $[G^*, mG]$ is a p-group. Clearly it is normal in G and $O_p(G) = (1)$. Therefore $G^* \leq \zeta_m(G)$ and the lemma follows.

LEMMA 2. Let G be a linear group of degree n with $G/\zeta_m(G)$ periodic for some integer $m \geq 0$. Then $\gamma^{m+1}G$ and $G/\zeta_m(G)$ are locally finite.

PROOF. Now $\zeta_m(G)$ is closed in G, so $G/\zeta_m(G)$ is isomorphic to a periodic linear group ([6] 6.4) and so is locally finite ([6] 4.9). Then [3] 4.21, Corollary 2, yields that $\gamma^{m+1}X$ is finite for every finitely generated subgroup X of G. Consequently $\gamma^{m+1}G$, which equals $\bigcup_X \gamma^{m+1}X$, is locally finite.

LEMMA 3. Let G be a linear group of degree n and characteristic $p \geq 0$ such that $G/\zeta(G)$ is periodic. Then $\gamma^{m+1}G$ and $G/\zeta(G)$ are locally finite.

PROOF. We may assume that the ground field F of G is algebraically closed. If $g \in GL(n, F)$, let $g = g_u g_d = g_u g_d$ be its Jordan decomposition (see [6] Chapter 7). Set

$$K = \langle g_u, g_d : g \in \zeta(G) \rangle \leq GL(n, F)$$

Then $K = \zeta(G) \cap N = \zeta(G)$ and $K = K_u \times K_d$, where K_u is unipotent and K_d is a d-subgroup, see [6] 7.17, 7.14 and 7.13. Also $GK/K \cong G/\zeta(G)$, which is periodic.

By the theorem of [8] we have $K_u \leq \zeta_n(GK)$. Set $D = (K_d)^0$. Then D is a diagonalizable normal subgroup of GK by [6] 7.7 and 5.8. Let n denote the finite set of all primes not exceeding n. Then $O_n(D)$ has finite rank (at most n), so D splits over $O_n(D)$ by [1] 21.2 and 27.5, say $D = O_n(D) \times E$. Also
GK/C_{GK}(D) is a finite \(\pi\)-group by [6] 1.12. Then \(H = \bigcap_{y \in GK} E^y\) is a normal subgroup of \(GK\) with \(O_\pi(H) = (1)\) and \(D/H\) a periodic \(\pi\)-group. Also \([H, GK]\) is a \(\pi\)-group by [6] 4.14. Therefore \([H, GK] = (1)\). We have now shown that \(K_u \times H \cong \zeta^u(GK)\). Since \(GK/K\) and \(D/H\) are periodic and \(K_u/D\) is finite, so \(GK/\zeta^u(GK)\) is periodic. It follows that \(G/\zeta^u(G)\) is periodic. Finally \(\gamma^{u+1}G\) and \(G/\zeta^u(G)\) are locally finite by Lemma 2.

REFERENCES

Manoscritto pervenuto in redazione il 16 ottobre 2009.