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Spectral Properties of the Linearized Semigroup
of the Compressible Navier–Stokes Equation on a

Periodic Layer

by

Yoshiyuki Kagei and Naoki Makio

Abstract

The linearized problem for the compressible Navier–Stokes equation around a given con-
stant state is considered in a periodic layer of Rn with n ≥ 2, and spectral properties of
the linearized semigroup are investigated. It is shown that the linearized operator gener-
ates a C0-semigroup in L2 over the periodic layer and the time-asymptotic leading part
of the semigroup is given by a C0-semigroup generated by an n − 1-dimensional elliptic
operator with constant coefficients that are determined by solutions of a Stokes system
over the basic period domain.
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§1. Introduction

This paper is concerned with the initial boundary value problem for the following

compressible Navier–Stokes equation in a periodic layer Ω:

(1.1)


∂tρ+ div(ρu) = 0,

ρ(∂tv + v · ∇v)− µ∆v − (µ+ µ′)∇ div v +∇(P (ρ)) = 0,

v|∂Ω = 0,

(ρ, v)|t=0 = (ρ0, v0).
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Here ρ = ρ(x, t) and v = >(v1(x, t), . . . , vn(x, t)) denote the unknown density and

velocity, respectively, at time t and position x; Ω is a periodic layer defined by

Ω :=
{
x = (x′, xn); x′ ∈ Rn−1, ω1(x′) < xn < ω2(x′)

}
,

where ω1 and ω2 are nonconstant and smooth functions of x′ satisfying the period-

icity conditions ωj
(
x′+ 2π

αk
e′k
)

= ωj(x
′) (j = 1, 2; k = 1, . . . , n− 1) with constants

αk > 0 and e′k := >(0, . . . ,
k
1, . . . , 0) ∈ Rn−1; µ and µ′ are the viscosity coefficients

that are constants satisfying

µ > 0,
2

n
µ+ µ′ ≥ 0;

P is the pressure for which we assume that P is a smooth function of ρ that

satisfies

P ′(ρ∗) > 0

for a given positive constant ρ∗. Here and in what follows, >· stands for transpo-

sition.

We are interested in the large time behavior of solutions to (1.1) around the

constant equilibrium us = >(ρ∗, 0). To establish a detailed asymptotic description

of large time behavior, we study the spectral properties of the linearized semigroup

for (1.1) around us as a first step of our analysis.

The system of equations for the perturbation is written as

(1.2)


∂tφ+ γ divw = f0,

∂tw − ν∆w − ν̃∇divw + γ∇φ = f,

w|∂Ω = 0,

u|t=0 = u0 = (φ0, w0).

Here u = >(φ,w) with φ := 1
ρ∗

(ρ − ρ∗) and w := 1
γ v denotes the (scaled) pertur-

bation from us := >(ρ∗, 0); ν, ν̃ and γ are parameters given by

ν :=
µ

ρ∗
, ν̃ :=

µ+ µ′

ρ∗
, γ :=

√
P ′(ρ∗);

and f0 and f denote the nonlinearities

f0 := −γ div(φw),

f := − φ

1 + φ
{ν∆w + ν̃∇ divw} − γw · ∇w

−
{

1

γρ∗(1 + φ)
∇(P (ρ∗(1 + φ)))− P ′(ρ∗)

γ
∇φ
}
.
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Large time behavior of solutions to the compressible Navier–Stokes equations

has been extensively studied since the pioneering works by Matsumura–Nishida

[16, 17, 18]. See, e.g., [5, 10, 11, 13, 14, 15, 20] and references therein. In [7, 8, 9],

the stability of us was studied when the underlying domain is an n-dimensional

infinite layer

Rn−1 × (0, 1) = {x = (x′, xn); x′ = (x1, . . . , xn−1) ∈ Rn−1, 0 < xn < 1}.

It was proved that us is stable under sufficiently small initial perturbations and

the L2 norm of the perturbation decays in the order of t−(n−1)/4 as t → ∞.

Furthermore, it was shown that the perturbation behaves like a solution of an

n− 1-dimensional heat equation.

In this paper we extend the results on the asymptotic behavior of the linearized

semigroup for (1.2) obtained in [7, 8] to the case of the periodic layer Ω. We will

prove that the linearized semigroup behaves as t→∞ like a semigroup generated

by an n−1-dimensional elliptic operator with constant coefficients. More precisely,

we consider the linear problem

(1.3) ∂tu+ Lu = 0, u|t=0 = u0,

where u = >(φ,w) is the unknown; u0 = >(φ0, w0) is a given initial datum; and L

is the operator of the form

L :=

(
0 γ div

γ∇ −ν∆− ν̃∇ div

)
.

It is shown that −L generates a contraction C0-semigroup e−tL on L2(Ω) and e−tL

is decomposed as

e−tL = e−tLΠ + e−tL(I −Π).

Here I is the identity operator and Π is a bounded projection on L2(Ω); moreover,

‖e−tLΠu0‖L2(Ω) ≤ C(1 + t)−(n−1)/4‖u0‖L1(Ω),

‖e−tL(I −Π)u0‖L2(Ω) ≤ Ce−βt‖u0‖L2(Ω)

and

(1.4) ‖e−tLΠu0 − [e−tHσ0]u(0)‖L2(Ω) ≤ Ct−(n−1)/4−1/2‖u0‖L1(Ω),

where β is a positive constant; and e−tH is the C0-semigroup in L2(Rn−1) gener-

ated by the operator −H where

Hσ := −γ
2

ν

n−1∑
i,j=1

aij∂xi∂xjσ.
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Here (aij) is a positive definite symmetric matrix with constant components; and

σ0 and u(0) are given by

σ0 :=
|Q|
|Ωper|

∫ ω2(x′)

ω1(x′)

φ0(x′, xn) dxn, u(0) := >(1, 0),

where Ωper is the basic period domain given by

Ωper := {x = (x′, xn); x′ ∈ Q, ω1(x′) < xn < ω2(x′)}

with the basic period cell Q =
∏n−1
j=1 [−π/αj , π/αj). Here and in what follows, for

a bounded domain D, |D| denotes the volume of D. We note that the matrix (aij)

is given by
aij :=

1

|Ωper|
(∇w(i),∇w(j))L2(Ωper),

where w(k) = w(k)(x′, xn) (k = 1, . . . , n − 1) are functions Q-periodic in x′ satis-

fying the following Stokes system:
divw(k) = 0,

−∆w(k) +∇φ(k) = ek,

w(k)|xn=ω1(x′),ω2(x′) = 0

for some φ(k) = φ(k)(x′, xn) Q-periodic in x′, where ek := >(0, . . . ,
k
1, . . . , 0) ∈ Rn.

Here and in what follows, we say that a function f(x′) is Q-periodic if f(x′+ 2π
αj

e′j)

=f(x′) for all x′∈Rn−1 and j=1, . . . , n− 1, where e′j=>(0, . . . ,
j

1, . . . , 0)∈Rn−1.

We will prove our results as follows. In the case of infinite layers analyzed in

[7, 8, 9], the spectral properties of the linearized semigroup were investigated by

using the Fourier transform in x′ ∈ Rn−1. In the case of the periodic layer Ω, the

Fourier transform does not work well any longer; instead, we employ the Bloch

wave decomposition which transforms the linearized problem (1.3) on Ω to the

problem ∂tu + Lη′u = 0 on Ωper under Q-periodic boundary conditions in x′.

Here Lη′ is the linear operator obtained by replacing the partial derivatives ∂xj
(j = 1, . . . , n − 1) in L by ∂xj + iηj with parameter η′ = (η1, . . . , ηn−1) ∈ Q∗,

where Q∗ is the dual cell defined by Q∗ :=
∏n−1
j=1 [−αj/2, αj/2).

When |η′| � 1, the operator Lη′ can be regarded as a perturbation of L0; and

analytic perturbation theory is applied to show that

ρ(−Lη′) ⊃ {Reλ > −β0} \ {λη′} for some β0 > 0,

σ(−Lη′) ∩ {|λ| < β0/2} = {λη′},

where

λη′ = −γ
2

ν

n−1∑
i,j=1

aijηiηj +O(|η′|3)
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as η′ → 0. It then follows that this part of e−tL behaves as in (1.4). As for the

remaining part of η′, we establish some estimates for a modified Stokes system

(see Section 4.3); and based on the established estimates we prove by an energy

method that if |η′| ≥ r0 (η′ ∈ Q∗), then

ρ(−Lη′) ⊃ {Reλ ≥ −β1} for some β1 > 0,

and hence this part of e−tL decays exponentially. We note that we consider the

linearized operator L as an operator on L2 as in [6], in contrast to [7, 8] where the

underlying space is H1×L2. The L2 setting will be useful for the stability analysis

of stationary flows with nonzero velocity fields.

This paper is organized as follows. In Section 2 we introduce some notation,

function spaces and state some properties of the Bloch wave decomposition. In

Section 3 we state the main result of this paper. The proof of the main result is

given in Sections 4–5. In Section 6 we give an outline of the proof of a lemma used

in Section 4.3.

§2. Preliminaries

In this section we introduce the notation, function spaces and operators which will

be used in this paper.

For a domain D and 1 ≤ p ≤ ∞, the Lebesgue space over D is denoted by

Lp(D) and its norm is denoted by ‖ · ‖Lp(D). The symbol W l,p(D) stands for the

lth order Lp Sobolev space and its norm is denoted by ‖ · ‖W l,p(D). When p = 2,

we denote W l,2(D) by H l(D) and its norm is denoted by‖ · ‖Hl(D). We denote by

Cl0(D) the set of all Cl functions whose support is compact in D. The completion

of Cl0(D) in W l,p(D) is denoted by W l,p
0 (D). In particular, we write H l

0(D) for

W l,2
0 (D).

We simply denote by Lp(D) the set of all vector fields W = >(w1, . . . , wn)

on D whose components wj (j = 1, . . . , n) belong to Lp(D) and the norm is also

denoted by ‖ · ‖Lp(D) if no confusion can occur. Similarly, the symbols W l,p(D)

and H l(D) are also used for vector fields.

For u = >(φ,w) with φ ∈ W k,p(D) and w = >(w1, . . . , wn) ∈ W l,q(D), we

define the norm ‖u‖Wk,p(D)×W l,q(D) by

‖u‖Wk,p(D)×W l,q(D) := ‖φ‖Wk,p(D) + ‖w‖W l,q(D).

We define the sets Q, Q∗, Ωper, Σj,± (j = 1, . . . , n− 1) and Σn as follows:

Q :=

n−1∏
i=1

[−π/αi, π/αi), Q∗ :=

n−1∏
i=1

[−αi/2, αi/2),
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Ωper := {x = (x′, xn); x′ ∈ Q, ω1(x′) < xn < ω2(x′)},
Σj,± := {x ∈ Ωper; xj = ±π/αj},

Σn := {x ∈ ∂Ω; x′ ∈ Q, xn = ωj(x
′), j = 1, 2}.

In the case D = Ωper, we simply write Lp(Ωper) as Lp, and likewise,

W k,p(Ωper), H
l(Ωper) as W k,p, H l, respectively. Similarly, the norms are also ab-

breviated to ‖ · ‖Hl , ‖ · ‖Wk,p , and, in particular, we write ‖ · ‖p for ‖ · ‖Lp(Ωper).

The inner product of L2(D) is defined by

(f, g)L2(D) :=

∫
D

f(x)g(x) dx, f, g ∈ L2(D).

When D = Ωper, we abbreviate it to (f, g). The dual space of H1
0 (D) is denoted

by H−1(D), and the pairing between H−1(D) and H1
0 (D) is written as [·, ·]. For

f ∈ L2(Ωper), its mean value over Ωper is denoted by JfK, i.e.,

JfK := (f, 1) =
1

|Ωper|

∫
Ωper

f(x) dx.

We often write x ∈ Ω as x = >(x′, xn), x′ = >(x1, . . . , xn−1) ∈ Rn−1. The

partial derivatives of a function u are denoted by ∂xj , ∂xj∂xk , and so on.

We will work in spaces of functions Q-periodic in x′, and so we introduce

the function spaces L2
per(Ωper), C

∞
per(Ωper), C

∞
0,per(Ωper), H

l
per(Ωper), H

l
0,per(Ωper)

defined by

L2
per(Ωper) :=

{
u|Ωper

; u ∈ L2
loc(Ω), u

(
x′ + 2π

αj
e′j , xn

)
= u(x′, xn),

(x′, xn) ∈ Ω, 1 ≤ j ≤ n− 1
}
,

C∞per(Ωper) :=
{
u|Ωper

; u ∈ C∞(Ω), u
(
x′ + 2π

αj
e′j , xn

)
= u(x′, xn),

(x′, xn) ∈ Ω, 1 ≤ j ≤ n− 1
}
,

C∞0,per(Ωper) := {u ∈ C∞per(Ωper) ; u = 0 in a neighborhood of ∂Ω},
H l

per(Ωper) := the closure of C∞per(Ωper) in H l(Ωper),

H l
0,per(Ωper) := the closure of C∞0,per(Ωper) in H l(Ωper).

Observe that L2
per(Ωper) can be identified with L2(Ωper), and that

H l
per(Ωper) = {u ∈ H l(Ωper); ∂

β
x′u|Σj,− = ∂βx′u|Σj,+ , 1 ≤ j ≤ n− 1, |β| ≤ l − 1},

H1
0,per(Ωper) = {u ∈ H1

per(Ωper); u|Σn = 0}.

We also set

L2
∗,per(Ωper) := {f ∈ L2

per(Ωper); JfK = 0},
H l
∗,per(Ωper) := H l

per(Ωper) ∩ L2
∗,per(Ωper).
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For η′ ∈ Rn−1 we denote

η̃′ = >(η′, 0) ∈ Rn,

and ∇η′ and ∆η′ are defined by

∇η′ := ∇+ iη̃′ and ∆η′ := ∇η′ · ∇η′ ,

respectively.

We next introduce some operators. We denote by P0 and P̃ the following

(n+ 1)× (n+ 1) diagonal matrices:

P0 := diag(1, 0, . . . , 0), P̃ = diag(0, 1, . . . , 1).

Note that P0u=>(φ, 0) and P̃u=>(0, w) for u=>(φ,w) with w=>(w1, . . . , wn).

We denote the kernel and range of an operator A by KerA and R(A), respec-

tively.

For a function f = f(x′) (x′ ∈ Rn−1), we denote its Fourier transform by f̂

or F [f ]:

f̂(ξ′) = F [f ](ξ′) =

∫
Rn−1

f(x′)e−iξ
′·x′ dx′ (ξ′ ∈ Rn−1).

The inverse Fourier transform F−1 is defined by

F−1[f ](x′) = (2π)−(n−1)

∫
Rn−1

f(ξ′)eiξ
′·x′dξ′ (x′ ∈ Rn−1).

We next introduce the Bloch wave decomposition. Let S(Rn−1) denote the

Schwartz space on Rn−1.

Definition 2.1. We define the operator T by setting, for ϕ ∈ S(Rn−1), x′ ∈ Rn−1,

and η′ ∈ Rn−1,

(2.1) (Tϕ)(x′, η′)

:=
1

(2π)(n−1)/2|Q|1/2
∑

(k1,...,kn−1)∈Zn−1

ϕ̂
(
η′ +

n−1∑
j=1

kjαje
′
j

)
ei

∑n−1
j=1 kjαjxj

=
1

|Q∗|1/2
∑

(l1,...,ln−1)∈Zn−1

ϕ

(
x′ +

n−1∑
j=1

lj
2π

αj
e′j

)
e
−iη′·(x′+

∑n−1
j=1 lj

2π
αj

e′j).

We also define the operator U as follows. For a function ϕ(x′, η′)∈C∞(Rn−1×Rn−1)

such that ϕ(x′, η′) is Q-periodic in x′ and ϕ(x′, η′)eiη
′·x′ is Q∗-periodic in η′, we

define, for x′ ∈ Rn−1,

(2.2) (Uϕ)(x′) :=
1

|Q∗|1/2

∫
Q∗
ϕ(x′, η′)eiη

′·x′dη′.

Note that ϕ(x, η′ + αje
′
j) = ϕ(x′, η′)e−iαje

′
j ·x
′

(j = 1, . . . , n− 1).
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The operators T and U have the following properties. See, e.g., [21, 22] for

the details.

Proposition 2.2. (i) (Tϕ)(x′, η′) is Q-periodic in x′ and (Tϕ)(x′, η′)eiη
′·x′ is

Q∗-periodic in η′.

(ii) T can be uniquely extended to an isometric operator from L2(Rn−1) to

L2(Q∗;L2(Q)).

(iii) U is the inverse operator of T .

(iv) Let ψ be Q-periodic in x′. Then T (ψϕ) = ψT (ϕ).

(v) T (∂xjϕ) = (∂xj+iηj)Tϕ (j = 1, . . . , n−1) and T defines an isomorphism from

H l(Rn−1) to L2(Q∗;H l
per(Q)). (Here H l

per(Q) denotes the space of Q-periodic

functions belonging to H l(Q), as in the case of H l
per(Ωper).)

We next consider T as an operator acting on functions in H l(Ω). Let y = Φ(x)

be the transformation

y′ = x′, yn =
1

ω2(x′)− ω1(x′)
(xn − ω1(x′)).

Then Φ is a diffeomorphism from Ω to Rn−1 × (0, 1) and Φ transforms Q-periodic

functions on Ω to those on Rn−1×(0, 1). We denote the inverse transform of Φ by Ψ

and we define the operators Φ∗ and Ψ∗ by [Φ∗u](x) = u(Φ(x)) and [Ψ∗u](y) =

u(Ψ(y)). Then Φ∗ is an isomorphism from H l(Ω) to H l(Rn−1×(0, 1)), and likewise

from H l
per(Ωper) to H l

per(Q × (0, 1)), where H l
per(Q × (0, 1)) denotes the space of

Q-periodic functions belonging to H l(Q× (0, 1)).

It is not difficult to see that Proposition 2.2 holds with H l(Rn−1) replaced by

H l(Rn−1× (0, 1)), and likewise with H l
per(Q) replaced by H l

per(Q× (0, 1)). It then

follows that Φ∗TΨ∗ is an isomorphism from H l(Ω) to L2(Q∗;H l
per(Ωper)). Using

the second expression of T in Definition 2.1 and the periodicity of ωj (j = 1, 2),

one can see that Φ∗TΨ∗u = Tu for functions u on Ω. Therefore, we will write

Φ∗TΨ∗u as Tu if no confusion can occur.

§3. Main results

In this section we state the main results of this paper.

Let us consider the linear problem

(3.1) ∂tu+ Lu = 0, u = >(φ,w).

Here L is the operator on L2(Ω) given by

(3.2) L :=

(
0 γ div

γ∇ −ν∆− ν̃∇div

)
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with domain

(3.3) D(L) =
{
u = >(φ,w) ∈ L2(Ω); w ∈ H1

0 (Ω), Lu ∈ L2(Ω)
}
.

Our main issue is to investigate the spectral properties of the semigroup gen-

erated by −L.

Theorem 3.1. The operator −L generates a contraction C0-semigroup e−tL on

L2(Ω), and

‖e−tLu0‖L2(Ω) ≤ ‖u0‖L2(Ω) (u0 ∈ L2(Ω)).

The semigroup e−tL has the following properties.

Theorem 3.2. There is a bounded projection Π : L2(Ω)→ L2(Ω) with ΠL ⊂ LΠ

and Πe−tL = e−tLΠ, and the following estimates hold uniformly for t > 0 and

u0 ∈ L1(Ω) ∩ L2(Ω):

(i) ‖e−tLΠu0‖L2(Ω) ≤ C(1 + t)−(n−1)/4‖u0‖L1(Ω),

(ii) ‖e−tL(I −Π)u0‖L2(Ω) ≤ Ce−βt‖u0‖L2(Ω),

(iii) ‖e−tLΠu0 − [e−tHσ0]u(0)‖L2(Ω) ≤ Ct−(n−1)/4−1/2‖u0‖L1(Ω).

Here β is a positive constant; e−tH is the C0-semigroup in L2(Rn−1) generated by

the operator −H defined by

Hσ := −γ
2

ν

n−1∑
i,j=1

aij∂xi∂xjσ (σ ∈ D(H))

with domain D(H) = H2(Rn−1); and σ0 and u(0) are given as follows:

σ0 :=
|Q|
|Ωper|

∫ ω2(x′)

ω1(x′)

φ0(x′, xn) dxn, u(0) := >(1, 0).

Here the matrix (aij) satisfies

n−1∑
i,j=1

aijξiξj ≥ κ0|ξ′|2 (ξ′ = (ξ1, . . . , ξn−1) ∈ Rn−1)

with a constant κ0>0 independent of ξ′. Furthermore, aij=(∇w(i),∇w(j))L2(Ωper)

with >(φ(k), w(k)) (k = 1, . . . , n−1) satisfying the following Stokes system in Ωper:

(3.4)


divw(k) = 0,

−∆w(k) +∇φ(k) = ek,

w(k)|Σj,+ = w(k)|Σj,− , φ(k)|Σj,+ = φ(k)|Σj,− , w(k)|Σn = 0,

Jφ(k)K = 0

for some φ(k).
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The proof of Theorem 3.2 will be given in Sections 4 and 5. To prove Theorem

3.2, we will consider the resolvent problem λu + Lη′u = f on L2
per(Ωper) with

parameter η′ ∈ Q∗. In the case of |η′| ≤ r0 for some small r0 > 0, we regard

Lη′ as a perturbation of L0 and apply analytic perturbation theory to study the

spectrum of −Lη′ . For η′ ∈ Q∗ with |η′| ≥ r0, we establish estimates for a modified

Stokes system and apply an energy method. Based on the analysis of −Lη′ , we

give a proof of Theorem 3.2.

§4. Spectral properties of Lη′

In this section we investigate the spectral properties of Lη′ .

§4.1. Formulation

Let us consider the resolvent problem for (3.1),

(4.1) (λ+ L)u = f, u ∈ D(L).

Here λ ∈ C is a resolvent parameter.

Applying Ψ∗ to (4.1), we have

(4.2) (λ+ Ψ∗L)Ψ∗u = Ψ∗f in Rn−1 × (0, 1).

Here Ψ∗L is the differential operator of the form

Ψ∗L =

(
0

∑n
j=1 l

j
12(y′, yn)∂yj∑n

j=1 l
j
21(y′, yn)∂yj

∑n
j,k=1 l

j,k
22 (y′, yn)∂yj∂yk +

∑n
j=1 l

j
22(y′, yn)∂yj

)
with some ljpq and lj,kpq (p, q = 1, 2) Q-periodic in y′. We next apply T to (4.2). It

then follows from Proposition 2.2(i), (iv) and (v) that (4.2) is transformed into

the following problem on Q× (0, 1):

(4.3) (λ+ Ψ∗Lη′)TΨ∗u = TΨ∗f (η′ ∈ Q∗)

with Q-periodic boundary condition in y′. Applying Φ∗ to (4.3) we arrive at

(4.4) (λ+ Lη′)Tu = Tf on Ωper

with the dual parameter η′ ∈ Q∗, where Lη′ is the operator on L2
per(Ωper) of the

form

Lη′ :=

(
0 γ>∇η′

γ∇η′ −ν∆η′ − ν̃∇η′>∇η′

)
with domain

D(Lη′) = {u = >(φ,w) ∈ L2
per(Ωper); Lη′u ∈ L2

per(Ωper), w ∈ H1
0,per(Ωper)}.
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It is not difficult to see that D(Lη′) = D(L0) for all η′ ∈ Q∗ and that Lη′ is a

closed operator on L2
per(Ωper).

If λ ∈ ρ(−Lη′), then, by (4.4), u can be written as

u = U(λ+ Lη′)
−1Tf.

Therefore, to investigate the resolvent of −L, we will consider the problem

for −Lη′ :

(4.5) λu+ Lη′u = f, u ∈ D(L0).

Before going further, we also introduce the adjoint operator of Lη′ . We define

L∗η′ :=

(
0 −γ>∇η′

−γ∇η′ −ν∆η′ − ν̃∇η′>∇η′

)
with domain

D(L∗η′) = {u = >(φ,w) ∈ L2
per(Ωper); L

∗
η′u ∈ L2

per(Ωper), w ∈ H1
0,per(Ωper)}.

One can see that D(L∗η′) = D(L∗0) for all η′ ∈ Q∗ and that L∗η′ is the adjoint

operator of Lη′ .

§4.2. The case |η′| ≤ r0

In this subsection we consider (4.5) with |η′| ≤ r0 for some sufficiently small r0 > 0.

It is convenient to write

Lη′ = L0 +

n−1∑
j=1

ηjL
(1)
j +

n−1∑
j,k=1

ηjηkL
(2)
jk ,

where

L0 :=

(
0 γ div

γ∇ −ν∆− ν̃∇div

)
,

L
(1)
j := i

(
0 γ>ej

γej −2ν∂xj − ν̃ej div−ν̃∇(>ej)

)
, L

(2)
jk :=

(
0 0

0 νδjkIn + ν̃ej
>ek

)
with In being the n× n identity matrix. We also set

Mη′ =

n−1∑
j=1

ηjL
(1)
j +

n−1∑
j,k=1

ηjηkL
(2)
jk ,

namely,

Mη′ :=

(
0 iγ>η̃′

iγη̃′ ν(|η′|2 − 2iη̃′ · ∇)− iν̃η̃′>(∇+ iη̃′)− iν̃∇>η̃′

)
.
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Similarly, we write

L∗η′ = L∗0 +

n−1∑
j=1

ηjL
(1)∗
j +

n−1∑
j,k=1

ηjηkL
(2)∗
jk ,

where

L∗0 :=

(
0 −γ div

−γ∇ −ν∆− ν̃∇ div

)
,

L
(1)∗
j := i

(
0 −γ>ej
−γej −2ν∂xj − ν̃ej div−ν̃∇(>ej)

)
,

L
(2)∗
jk :=

(
0 0

0 νδjkIn + ν̃ej
>ek

)
.

We begin with the resolvent estimates for the case η′ = 0 which imply the

generation of a contraction semigroup e−tL0 .

In what follows we write X := L2
per(Ωper) for simplicity of notation.

Proposition 4.1. We have {λ; Reλ > 0} ⊂ ρ(−L0), and if Reλ > 0, then

‖(λ+ L0)−1f‖2 ≤
1

Reλ
‖f‖2, ‖∇P̃(λ+ L0)−1f‖2 ≤

1

(ν Reλ)1/2
‖f‖2.

The same conclusion holds for the adjoint operator L∗0.

Proof. Let Reλ > 0. Since

(4.6) Re ((λ+ L0)u, u) = ν‖∇w‖22 + ν̃‖divw‖22 + Reλ‖u‖22,

we see that if (λ+L0)u = 0, then u = 0, and so λ+L0 is injective when Reλ > 0.

Observe also that if Reλ > 0, then

‖u‖2 ≤
1

Reλ
‖(λ+ L0)u‖2,(4.7)

‖∇w‖2 ≤
1

(ν Reλ)1/2
‖(λ+ L0)u‖2.(4.8)

It follows from (4.7) that R(λ+L0) is a closed subspace of X. We note that these

inequalities also hold with L0 replaced by L∗0. Let v ∈ R(λ + L0)⊥. Then, since

((λ + L0)u, v) = 0 for all u ∈ D(L0), we see that v ∈ D(L∗0) and (λ + L∗0)v = 0.

This, together with (4.7) with L0 replaced by L∗0, implies that v = 0. We thus

conclude that R(λ+ L0) = X, that is, λ+ L0 is surjective.

The following estimates show that −Lη′ also generates a contraction semi-

group.
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Proposition 4.2. We have {λ; Reλ > 0} ⊂ ρ(−Lη′) and the following estimates

hold for Reλ > 0:

‖(λ+ Lη′)
−1f‖2 ≤

1

Reλ
‖f‖2,

‖∇P̃(λ+ Lη′)
−1f‖2 ≤

C

ν1/2

(
1

(Reλ)1/2
+

1

Reλ

)
‖f‖2.

The same conclusion holds for the adjoint operator L∗η′ .

Proof. We have

Re ((λ+ Lη′)u, u) = Reλ‖u‖22 + ν‖∇η′w‖22 + ν̃‖∇η′ · w‖22.

It then follows that if Reλ > 0, then

‖u‖2 ≤
1

Reλ
‖(λ+ Lη′)u‖2.

We also have

Re ((λ+ Lη′)u, u) ≥ ν‖∇w‖22 + (Reλ− C)‖u‖22

for a constant C > 0 uniformly for η′ ∈ Q∗. Therefore, we deduce that

ν‖∇w‖22 ≤ ‖(λ+ Lη′)u‖2‖u‖2 + C‖u‖22 ≤ C
(

1

Reλ
+

1

(Reλ)2

)
‖(λ+ Lη′)u‖22,

which gives

‖∇w‖2 ≤
C

ν1/2

(
1

(Reλ)1/2
+

1

Reλ

)
‖(λ+ Lη′)u‖2.

As in the proof of Proposition 4.1, one can now obtain the desired results.

We next show that λ = 0 is a simple eigenvalue of −L0.

Proposition 4.3. There exists a constant β0 > 0 such that ρ(−L0) ⊃ {λ 6= 0;

Reλ > −β0}. Furthermore, λ = 0 is a simple eigenvalue of −L0, and for λ 6= 0

satisfying Reλ > −β0,

(λ+ L0)−1f =
1

λ
Π(0)f + Sλ(I −Π(0))f,

and the following estimates hold uniformly for λ satisfying Reλ > −β0:

‖Sλ(I−Π(0))f‖2 ≤
C

Reλ+ β0
‖f‖2, ‖∇P̃Sλ(I−Π(0))f‖2 ≤

C

(Reλ+ β0)1/2
‖f‖2.

Here Π(0) is the eigenprojection for the eigenvalue λ = 0 defined by

Π(0)u := (u, u(0)∗)u(0) = JφKu(0), u = >(φ,w),
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where

u(0) := >(1, 0), u(0)∗ :=
1

|Ωper|
>(1, 0),

and Sλ is the operator defined by

Sλ := [(I −Π(0))(λ+ L0)(I −Π(0))]−1.

The same conclusion holds with L0, Sλ, Π(0) replaced by L∗0, S∗λ, Π(0)∗ respectively

where

S∗λ := [(I −Π(0)∗)(λ+ L∗0)(I −Π(0)∗)]−1, Π(0)∗u := (u, u(0))u(0)∗.

We give a proof of Proposition 4.3 for L0 only since the case of L∗0 can be

treated similarly. For the proof, we prepare the following two lemmas.

Lemma 4.4. We have KerL0 = span{u(0)} and Π(0) is a bounded projection on

L2(Ωper) with Π(0)X = KerL0 and Π(0)L0 ⊂ L0Π(0) = 0.

Proof. Let L0u = 0. It then follows from (4.6) that ∇w = 0, and hence ∇φ = 0.

This implies that w = 0 and φ = const. This shows that KerL0 = span{u(0)}.
Clearly, Π(0) is a bounded projection onto KerL0. For u = >(φ,w), we have

L0Π(0)u = >(0, γ∇JφK) = 0. On the other hand, for u ∈ D(L0), we have Π(0)L0u =

Jγ divwKu(0) = 0. We thus conclude that Π(0)L0 ⊂ LΠ(0) = 0.

Lemma 4.5. We have ρ(−L0|(I−Π(0))X) ⊃ {λ; Reλ > −β0} with a positive con-

stant β0, and the estimates for Sλ in Proposition 4.3 hold true.

Proof. We set A := −L0|(I−Π(0))X . Let us consider λu+Au = f . It is known that

there exists a bounded linear operator B : L2
∗(Ωper) → H1

0,per(Ωper) such that for

any g ∈ L2
∗,per(Ωper) we have divBg = g and ‖∇Bg‖2 ≤ c0‖g‖2 for some constant

c0 > 0. See [1, 2, 4] for the details.

We follow the argument in [6]. We introduce a new inner product

((u1, u2)) := (u1, u2)− δ{(w1,Bφ2) + (Bφ1, w2)}

for uj = >(φj , wj) (j = 1, 2) with a constant δ > 0 to be determined later. This

pairing ((u1, u2)) defines an inner product on L2
∗,per(Ωper) × L2(Ωper) if δ > 0 is

sufficiently small. In fact, using the Poincaré inequality ‖w‖2 ≤ c1‖∇w‖2, we see

that there exists a constant C > 0 such that

((u, u)) = ‖u‖22 − δ{(w,Bφ) + (Bφ,w)} ≥ (1− δc0c1)‖u‖22

and ((u, u)) ≤ (1 + δc0c1)‖u‖22. Therefore, ((·, ·)) is an inner product and the norm

it defines is equivalent to the norm ‖ · ‖2 if δ > 0 is taken sufficiently small.
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We denote Au = >(A1u,A2u). Note that
∫

Ωper
A1u dx = 0. We see that

((Au, u)) = (L0u, u)− δ{(A2u,Bφ) + (B(A1u), w)}

≥ ν‖∇w‖22 + ν̃‖divw‖22 + 1
2δγ‖φ‖

2
2 − δ

{(
ν2c20
γ

+ γc21

)
‖∇w‖22 +

ν̃2

γ
‖divw‖22

}
≥ 1

2ν‖∇w‖
2
2 + 1

2 ν̃‖divw‖22 + 1
2δγ‖φ‖

2
2

if δ > 0 is taken suitably small. Therefore, we have

(1− δc0c1) Reλ‖u‖2 + 1
2ν‖∇w‖

2
2 + 1

2 ν̃‖divw‖22 + 1
2δγ‖φ‖

2
2 ≤ Re ((f, u))

≤ C‖f‖2‖u‖2.

Setting β0 = 1
2(1−δc0c1) min

{
δγ, ν

2c21

}
we find by the Poincaré inequality that

(Reλ+ β0)‖u‖2 ≤ C‖f‖2.

We thus conclude that if Reλ+ β0 > 0, then

‖u‖2 ≤
C

Reλ+ β0
‖f‖2 and ‖∇w‖2 ≤

C

(Reλ+ β0)1/2
‖f‖2.

These estimates, together with Proposition 4.1, yield the desired results.

We are now in a position to prove Proposition 4.3.

Proof of Proposition 4.3. We define

X0 := Π(0)X and X1 := (I −Π(0))X.

By Lemma 4.4, we have X = X0⊕X1 and ρ(−L0|X0
) = {λ; λ 6= 0}. This, together

with Lemma 4.5, shows that {λ 6= 0; Reλ > −β0} ⊂ ρ(−L0),

(λ+ L0)−1f =
1

λ
Π(0)f + Sλ(I −Π(0))f,

and Sλ satisfies the desired estimates.

We next derive the resolvent estimates for −Lη′ with |η′| ≤ r0.

Theorem 4.6. There exists a constant r0 > 0 such that if η′ ∈ Q∗ satisfies

|η′| ≤ r0, then

Σ1 := {λ; Reλ ≥ −3β0/4} ∩ {λ; |λ| ≥ β0/2} ⊂ ρ(−Lη′),

and the following estimates hold uniformly for λ ∈ Σ1:

‖(λ+ Lη′)
−1f‖2 ≤

C

Reλ+ β0
‖f‖2, ‖∇P̃(λ+ Lη′)

−1f‖2 ≤
C

(Reλ+ β0)1/2
‖f‖2.

The same conclusion holds with Lη′ replaced by L∗η′ .
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Proof. Let λ ∈ Σ1. By Proposition 4.3, we see that

(4.9) ‖(λ+ L0)−1f‖2 + ‖∇P̃(λ+ L0)−1f‖2 ≤ C1‖f‖2

uniformly for λ ∈ Σ1. Here C1 is a constant depending only on β0. It then follows

that

‖L(1)
j u‖2 ≤ C{‖w‖2 + ‖∇w‖2 + ‖φ‖2} ≤ CC1‖(λ+ L0)u‖2,(4.10)

‖L(2)
jk u‖2 ≤ C‖w‖2 ≤ CC1‖(λ+ L0)u‖2(4.11)

uniformly for λ ∈ Σ1 and u ∈ D(L0). We thus obtain

‖Mη′(λ+ L0)−1f‖2 ≤ CC1|η′| ‖f‖2 (λ ∈ Σ1)

uniformly for λ ∈ Σ1 and f ∈ X. Therefore, if r0 > 0 is a constant satisfying

r0 <
1

CC1
, then λ ∈ ρ(−Lη′) for |η′| ≤ r0 and

(λ+ Lη′)
−1 = (λ+ L0)−1

∞∑
N=0

(−1)N (Mη′(λ+ L0)−1)N ,

‖(λ+ Lη′)
−1f‖2 ≤

C

Reλ+ β0

∞∑
N=0

‖Mη′(λ+ L0)−1‖N‖f‖2 ≤
C

Reλ+ β0
‖f‖2.

Similarly,

‖∇P̃(λ+ Lη′)
−1f‖2 ≤

C

(Reλ+ β0)1/2
‖f‖2.

The case of L∗η′ can be proved similarly.

We now show that σ(−Lη′) ∩ {λ; |λ| < β0/2} consists of a simple eigenvalue

whose real part is negative and of order O(|η′|2) as η′ → 0.

Theorem 4.7. There exists a constant r0 > 0 such that if |η′| ≤ r0, then σ(−Lη′)
∩ {λ; |λ| < β0/2} = {λη′}. Here λη′ is a simple eigenvalue that satisfies

λη′ = −γ
2

ν
κ(η′) +O(|η′|3) (η′ → 0),

where

κ(η′) :=

n−1∑
j,k=1

ajkηjηk, ajk :=
1

|Ωper|
(∇w(j)

1 ,∇w(k)
1 ).

Here w
(k)
1 (k = 1, . . . , n − 1) satisfy the Stokes system (3.4) for some φ

(k)
1 , and

κ(η′) ≥ κ0|η′|2 with some constant κ0 > 0. As a result,

Reλη′ ≤ −
κ0

2

γ2

ν
|η′|2.
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Remark 4.8. A similar result holds for L∗η′ with simple eigenvalue λ∗η′ = λη′ .

Remark 4.9. Since λη′ → 0 as η′ → 0, we see that for any β ∈ (0, β0/2), there

exists a constant r = r(β) > 0 such that if |η′| ≤ r(β), then |λη′ | < β and

{λ; Reλ ≥ −3β0/4} ∩ {λ; |λ| ≥ β} ⊂ ρ(−Lη′).

Proof of Theorem 4.7. In view of Proposition 4.3, (4.10) and (4.11), we can apply

analytic perturbation theory to see that σ(−Lη′) ∩ {λ; |λ| < β0/2} consists of a

simple eigenvalue, say λη′ , for sufficiently small η′, and that λη′ is expanded as

λη′ =

n−1∑
j=0

λ
(1)
j ηj +

n−1∑
j,k=0

λ
(2)
jk ηjηk +O(|η′|3)

with

λ
(1)
j := −(L

(1)
j u(0), u(0)∗),

λ
(2)
jk := − 1

2 ((L
(2)
jk + L

(2)
kj )u(0), u(0)∗) + 1

2 ((L
(1)
j SL

(1)
k + L

(1)
k SL

(1)
j )u(0), u(0)∗).

Here S = Sλ|λ=0. See, e.g., [12, Chap. VII], [21, Chap. XII].

Let us compute λ
(1)
j . Since (u, u(0)∗) = JφK for u = >(φ,w) and L

(1)
j u(0) =

>(0, iγej), we have λ
(1)
j = 0.

As for λ
(2)
jk , since L

(2)
jk u

(0) = 0, we have JL(2)
jk u

(0)K = 0. Furthermore,

1
2 ((L

(1)
j SL

(1)
k + L

(1)
j SL

(1)
k )u(0), u(0)∗) = (L

(1)
j SL

(1)
k u(0), u(0)∗) = JL(1)

j SL
(1)
k u(0)K.

We compute JL(1)
j SL

(1)
k u(0)K. Set u1 = >(φ1, w1) := SL

(1)
k u0. Then u1 is a solution

of

L0u1 = (I −Π(0))L
(1)
k u(0) = L

(1)
k u(0), Jφ1K = 0,

that is,
γ divw1 = 0,

−ν∆w1 + γ∇φ1 = iγek,

w1|Σj,+ = w1|Σj,− , φ1|Σj,+ = φ1|Σj,− , w1|Σn = 0, Jφ1K = 0.

Lemma 4.5 implies that for each k = 1, . . . , n − 1, there exists a unique solution

ũ
(k)
1 = >(φ̃

(k)
1 , w̃

(k)
1 ) of this system. Let u

(k)
1 = >(φ

(k)
1 , w

(k)
1 ) be the unique solution

of (3.4). Then φ̃
(k)
1 = iφ

(k)
1 and w̃

(k)
1 = iγ

ν w
(k)
1 , and hence

L
(1)
j SL

(1)
k u(0) = i

(
0 γ>ej

γej −2ν∂xj − ν̃ej div−ν̃∇(>ej)

)(
φ̃

(k)
1

w̃
(k)
1

)
=−γ

2

ν

(
ej · w(k)

1

∗

)
.
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It then follows that

λ
(2)
jk = JL(1)

j SL
(1)
k u(0)K = −γ

2

ν
Jej · w(k)

1 K

= −γ
2

ν
J(−∆w

(j)
1 +∇φ(j)

1 ) · w(k)
1 K = −γ

2

ν

1

|Ωper|
(∇w(j)

1 ,∇w(k)
1 ).

Let us show that the matrix ((∇w(j)
1 ,∇w(k)

1 ))n−1
j,k=1 is positive definite. We first

observe that w
(1)
1 , . . . , w

(n−1)
1 are linearly independent. In fact, suppose that w1 =∑n−1

j=1 cjw
(j)
1 = 0. Then φ1 =

∑n−1
j=1 cjφ

(j)
1 satisfies ∇φ1 =

∑n−1
j=1 cjej . Therefore,

φ1 can be written as φ1 = c +
∑n−1
j=1 cjxj with some constant c. Since φ1 is Q-

periodic in x′ = (x1, . . . , xn−1) and Jφ1K = 0, we see that c = c1 = · · · = cn−1 = 0.

We thus conclude that w
(1)
1 , . . . , w

(n−1)
1 are linearly independent.

Set V := span{w(1)
1 , . . . , w

(n−1)
1 } and take an orthonormal basis {f1, . . . , fn−1}

of V as a subspace of H1
0,per(Ωper) with respect to the inner product (w, v)H1

0,per
:=

(∇w,∇v). Then w
(m)
1 can be written as w

(m)
1 =

∑n−1
k=1 bmkfk for m = 1, . . . , n− 1,

and thus (w
(1)
1 , . . . , w

(n−1)
1 ) = (f1, . . . , fn−1)B, where B = (b1, . . . , bn−1) with

bm = >(bm1, . . . , bm,n−1). It then follows that b1, . . . , bn−1 are linearly indepen-

dent. We have (∇w(m)
1 ,∇w(l)

1 ) = (w
(m)
1 , w

(l)
1 )H1

0,per
= (BB∗)ml. Since BB∗ is pos-

itive definite, so is the matrix ((∇w(m)
1 ,∇w(l)

1 ))n−1
j,k=1. It then follows that there is

a constant κ0 > 0 such that

n−1∑
j,k=1

λ
(2)
jk ηjηk = −

n−1∑
j,k=1

γ2

ν

1

|Ωper|
(∇w(j)

1 ,∇w(k)
1 )ηjηk = −γ

2

ν
|B∗η′|2 ≤ −κ0

γ2

ν
|η′|2

for all η′ ∈ Rn−1. Therefore, there exists r0 > 0 such that if |η′| ≤ r0, then

Reλη′ ≤ −
κ0

2

γ2

ν
|η′|2.

Let Πη′ be the eigenprojection for the eigenvalue λη′ . Since Πη′e
−tL
η′ =eλη′ tΠη′ ,

we have the following estimate.

Theorem 4.10. If |η′| ≤ r0, then

‖e−tLη′u0 − eλη′ tΠη′u0‖2 ≤ Ce−
β0
2 t‖u0‖2.

Theorem 4.10 follows from Theorems 4.6 and 4.7. See, e.g., [3, Chap. V,

Theorem 1.11], [24].

We close this subsection with estimates for the eigenprojections Πη′ and Π∗η′

for the eigenvalues λη′ and λ∗η′ (= λη′) of −Lη′ and −L∗η′ , respectively.
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Theorem 4.11. For any nonnegative integer k, there exists a constant rk > 0

such that the following estimates hold uniformly for |η′| ≤ rk:

(i) ‖Πη′u‖Hk ≤ C‖u‖1.

(ii) ‖(Πη′ −Π(0))u‖Hk ≤ C|η′| ‖u‖1.

The same conclusion holds with Πη′ replaced by Π∗η′ .

Proof. By Theorem 4.6 we have

Πη′ =
1

2πi

∫
|λ|=β0/2

(λ+ Lη′)
−1 dλ, Π∗η′ =

1

2πi

∫
|λ|=β0/2

(λ+ L∗η′)
−1 dλ.

Furthermore, uη′ = Πη′u
(0) and u∗η′ = Π∗η′u

(0)∗ are eigenfunctions of −Lη′ and

−L∗η′ for the eigenvalues λη′ and λ∗η′ = λη′ , respectively; and

Πη′u =
(u, u∗η′)

(uη′ , u∗η′)
uη′ .

Note that uη′ |η′=0 = Π(0)u(0) = u(0) and u∗η′ |η′=0 = Π(0)∗u(0)∗ = u(0)∗.

In view of (4.9)–(4.11), we see that (λ+ Lη′)
−1 can be expanded as

(λ+ Lη′)
−1 = (λ+ L0)−1 − (λ+ L0)−1

n−1∑
j=1

ηjL
(1)
j (λ+ L0)−1 +Rη′(λ)

and

‖Rη′(λ)f‖2 ≤ C|η′|2‖f‖2, ‖∇P̃Rη′(λ)f‖2 ≤ C|η′|2‖f‖2
uniformly for |η′| ≤ r0 and |λ| = β0/2. We write

uη′ = u(0) +
1

2πi

∫
|λ|=β0/2

(
−
n−1∑
j=1

ηj(λ+ L0)−1L
(1)
j (λ+ L0)−1u(0)

)
dλ

+
1

2πi

∫
|λ|=β0/2

Rη′(λ)u(0) dλ

=: u(0) +

n−1∑
j=1

ηju
(1)
j + u(2).

Using (4.9)–(4.11), we have

‖u(1)
j ‖2 + ‖∇P̃u(1)

j ‖2 ≤ C, ‖u(2)‖2 + ‖∇P̃u(2)‖2 ≤ C|η′|2.

Similarly,

u∗η′ = u(0)∗ +

n−1∑
j=1

ηju
(1)∗
j + u(2)∗,



356 Y. Kagei and N. Makio

with estimates

‖u(1)∗
j ‖2 + ‖∇P̃u(1)∗

j ‖2 ≤ C, ‖u(2)∗‖2 + ‖∇P̃u(2)∗‖2 ≤ C|η′|2.

It then follows that

(uη′ , u
∗
η′) = (u(0), u(0)∗) + (uη′ − u(0), u∗η′) + (u(0), u∗η′ − u(0)∗) ≥ 1− C|η′| ≥ 1/2

for |η′| ≤ r0 with r0 > 0 replaced by a smaller one if necessary.

If we had the estimates ‖u∗η′‖∞ ≤ C and ‖∂αx uη′‖2 ≤ C, then it would fol-

low that ‖∂αxΠη′u‖2 ≤ C‖u‖1‖u∗η′‖∞‖∂αx uη′‖2 ≤ C‖u‖1. So we will deduce the

estimates for uη′ and u∗η′ , in other words, for (λ+Lη′)
−1u(0) and (λ+L∗η′)

−1u(0)∗.

In the remainder of the proof we only consider (λ + Lη′)
−1u(0) since (λ +

L∗η′)
−1u(0)∗ can be estimated similarly. We also observe that the integral path of

uη′ = 1
2πi

∫
|λ|=β0/2

(λ+ Lη′)
−1u(0) dλ can be deformed into {|λ| = β} ⊂ ρ(−Lη′).

We claim the following

Proposition 4.12. Let m be a nonnegative integer. Then there exist constants

rm > 0 and βm > 0 such that if |η′| ≤ rm and βm/2 ≤ |λ| ≤ βm, then we have

(λ+ Lη′)
−1u(0) ∈ Hm+1

per (Ωper)× (Hm+2
per ∩H1

0,per)(Ωper), and

‖(λ+ Lη′)
−1u(0)‖Hm+1×Hm+2 ≤ C

uniformly for |η′| ≤ rm and βm/2 ≤ |λ| ≤ βm.

To prove Proposition 4.12, we employ the following lemma.

Lemma 4.13. Let m be a nonnegative integer. Then there exists β̃m > 0 such

that if |λ| ≤ β̃m, then Sλf ∈ Hm+1
∗,per(Ωper) × (Hm+2

per ∩ H1
0,per)(Ωper) for any f ∈

Hm+1
∗,per(Ωper)×Hm

per(Ωper), and

‖Sλf‖Hm+1×Hm+2 ≤ C‖f‖Hm+1×Hm

uniformly for λ with |λ| ≤ β̃m.

The proof of Lemma 4.13 will be given later.

Proof of Proposition 4.12. We argue by induction on m. We denote u :=

(λ + Lη′)
−1u(0). By Theorems 4.6 and 4.7, we have ‖u‖L2×H1 ≤ C uniformly

for |η′| ≤ r0 and β0/4 ≤ |λ| ≤ β0/2 with r0 replaced by a smaller one if necessary.

We write (λ + L0)u = u(0) − Mη′u and decompose u = >(φ,w) as u =

JφKu(0) + u1, where Π(0)u = JφKu(0) and u1 = (I −Π(0))u. Then

JφK =
1

λ
{1− iγJη′ · w′K}, (λ+ L0)u1 = −(Mη′u1 + JφKMη′u

(0) −Π(0)Mη′u).
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It then follows that

(4.12) |JφK| = 1

|λ|
{1 + γr0‖w‖2} ≤ C

uniformly for |η′| ≤ r0 and β1/2 ≤ |λ| ≤ β1 with β1 > 0 to be determined later.

On the other hand, we have

‖Mη′u1 + JφKMη′u
(0) −Π(0)Mη′u‖H1×L2 ≤ C‖u‖L2×H1 ≤ C

uniformly for |η′| ≤ r0 and β0/4 ≤ |λ| ≤ β0/2. It then follows from Remark 4.9 and

Lemma 4.13 that, with a suitable choice of r1, β1 > 0, the estimate ‖u1‖H1×H2 ≤ C
holds uniformly for |η′| ≤ r1 and β1/2 ≤ |λ| ≤ β1. This, together with (4.12),

proves Proposition 4.12 for m = 0.

Assume that the proposition holds for m = k. We will show that it holds for

m = k + 1. By the inductive assumption, we have

‖Mη′u1 + JφKMη′u
(0) −Π(0)Mη′u‖Hk+2×Hk+1 ≤ C‖u‖Hk+1×Hk+2 ≤ C

uniformly for |η′| ≤ rk and βk/2 ≤ |λ| ≤ βk. It then follows from Remark 4.9 and

Lemma 4.13 that ‖u1‖Hk+2×Hk+3 ≤ C uniformly for |η′| ≤ rk+1 and βk+1/2 ≤
|λ| ≤ βk+1. Combining this with (4.12), we conclude that the proposition holds

for m = k + 1.

We now continue the proof of Theorem 4.11. Let m be a nonnegative integer.

By Proposition 4.12, we see that

(λ+ Lη′)
−1u(0) ∈ Hm+1

per (Ωper)× (Hm+2
per ∩H1

0,per)(Ωper),

‖(λ+ Lη′)
−1u(0)‖Hm+1×Hm+2 ≤ C

uniformly for |η′| ≤ rm and |λ| = βm. Deforming the integral path into {|λ| = βm},
we deduce that uη′ ∈ Hm+1

per (Ωper)×Hm+2
per (Ωper) and

(4.13) ‖uη′‖Hm+1×Hm+2 =

∥∥∥∥ 1

2πi

∫
|λ|=βm/2

(λ+ Lη′)
−1u(0) dλ

∥∥∥∥
Hm+1×Hm+2

≤ C.

Taking m = k−1, we have ‖∂αx uη′‖2 ≤ C for |α| ≤ k and |η′| ≤ rk. Similarly we can

obtain (4.13) with uη′ replaced by u∗η′ , and hence ‖u∗η′‖∞ ≤ C‖u∗η′‖H[n/2]+1 ≤ C.

It then follows that

‖∂αxΠη′u‖2 ≤ C‖u∗η′‖∞‖∂αx uη′‖2‖u‖1 ≤ C‖u‖1.

This proves (i).
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Let us next consider (ii). We write Πη′u−Π(0)u as

Πη′u−Π(0)u =

(
1

(uη′ , u∗η′)
− 1

)
(u, u(0)∗)u(0)

+
1

(uη′ , u∗η′)
{(u, u∗η′)uη′ − (u, u(0)∗)u(0)}

=: I1 + I2.

As for I1, we have

|(uη′ , u∗η′)− 1| = |(uη′ − u(0), u∗η′) + (u(0), u∗η′ − u(0)∗)|

≤ C{‖uη′ − u(0)‖2 + ‖u∗η′ − u(0)∗‖2}.

Since

uη′ − u(0) =
1

2πi

∫
|λ|=βm

(λ+ L0)−1
∞∑
N=1

(−1)N [Mη′(λ+ L0)−1]Nu(0) dλ,

we have ‖uη′ −u(0)‖2 ≤ C|η′|, and likewise ‖u∗η′ −u(0)∗‖2 ≤ C|η′|. We thus obtain

‖∂αx I1‖2 ≤ C|η′| |(u, u(0)∗)∂αx u
(0)| ≤ C|η′| ‖u‖1‖u(0)∗‖∞‖∂αx u(0)‖∞ ≤ C|η′| ‖u‖1.

As for I2, we have

‖∂αx {(u, u∗η′)uη′ − (u, u(0)∗)u(0)}‖2
= ‖(u, u∗η′ − u(0)∗)∂αx uη′ + (u, u(0)∗)∂αx (uη′ − u(0))‖2
≤ ‖u‖1‖u∗η′ − u(0)∗‖∞‖∂αx uη′‖2 + ‖u‖1‖u(0)∗‖∞‖∂αx (uη′ − u(0))‖2
≤ C‖u‖1{‖u∗η′ − u(0)∗‖H[n/2]+1‖uη′‖Hk + ‖uη′ − u(0)‖Hk}.

Since ‖Mη′u‖Hk×Hk−1 ≤ C|η′| ‖u‖Hk−1×Hk , with the aid of Lemma 4.13 we see

that

‖(λ+ L0)−1[Mη′(λ+ L0)−1]Nu(0)‖Hk×Hk ≤ (C|η′|)N

uniformly for |η′| ≤ rk and |λ| = βk. Taking rk > 0 smaller if necessary, we obtain

‖uη′ − u(0)‖Hk ≤ C|η′|. Similarly, we can obtain ‖u∗η′ − u(0)∗‖H[n/2]+1 ≤ C|η′|. It

then follows that ‖∂αx I2‖2 ≤ C|η′| ‖u‖1 for |α| ≤ k. We thus conclude that

‖∂αx (Πη′ −Π(0))u‖2 ≤ C|η′| ‖u‖1

for |α| ≤ k.

In the remainder of this subsection we prove Lemma 4.13.

Proof of Lemma 4.13. We set ǔ := Sλf . Then

L0ǔ = f − λǔ,
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which is regarded as an inhomogeneous Stokes system. This can be solved for ǔ

if |λ| is suitably small. In fact, let f ∈ Hm+1
∗,per(Ωper) ×Hm

per(Ωper). Then, for each

v̌ ∈ Hm+1
∗,per(Ωper)×(Hm+2

per ∩H1
0,per)(Ωper), there exists a unique ǔ ∈ Hm+1

∗,per(Ωper)×
(Hm+2

per ∩H1
0,per)(Ωper) such that L0ǔ = f − λv̌ and

‖ǔ‖Hm+1×Hm+2 ≤ C|λ| ‖v̌‖Hm+1×Hm+2 + C‖f‖Hm+1×Hm .

See, e.g., [23, Chap. III, Theorem 1.5.3]. This estimate shows that the map v̌ 7→ ǔ

is a contraction on Hm+1
∗,per(Ωper) × (Hm+2

per ∩ H1
0,per)(Ωper) when |λ| ≤ β̃m with

suitably small β̃m.

§4.3. The case |η′| ≥ r0

In this subsection we investigate the spectrum of −Lη′ for η′ ∈ Q∗ with |η′| ≥ r0.

We have already shown in Proposition 4.2 that −Lη′ generates a contraction semi-

group e−tLη′ . We will show that e−tLη′ has an exponential decay estimate, uni-

formly for η′ ∈ Q∗ with |η′| ≥ r0.

We first introduce an inner product of H1
0,per(Ωper) in terms of ∇η′ .

Proposition 4.14. Let η′ ∈ Q∗. Then (∇η′w,∇η′v) defines an inner product in

H1
0,per(Ωper). Furthermore, ‖∇η′w‖2 is equivalent to ‖w‖H1 for w ∈ H1

0,per(Ωper),

and the estimate

C−1‖w‖H1 ≤ ‖∇η′w‖2 ≤ C‖w‖H1

holds uniformly for η′ ∈ Q∗ and w ∈ H1
0,per(Ωper).

Proof. It suffices to show that ‖∇η′w‖22 = (∇η′w,∇η′w) is equivalent to ‖w‖2H1

for w ∈ H1
0,per(Ωper). Let w ∈ H1

0,per(Ωper). Then by the Poincaré inequality,

‖w‖H1 ≤ C‖∇w‖2 ≤ C ′(‖∇′η′w‖22+‖∂xnw‖22)1/2 = C ′‖∇η′w‖2 ≤ C ′′‖w‖H1 .

Before going further, we introduce some notation. We denote

∇′η′ := ∇′ + iη′.

Here ∇′ denotes the gradient with respect to x′ = (x1, . . . , xn−1) ∈ Rn−1. We note

that ∆η′ = ∇′η′ · ∇′η′ + ∂2
xn . We define

Dη′(w) := ν‖∇η′w‖22+ν̃‖∇η′ ·w‖22 = ν‖∇′η′w‖22+ν‖∂xnw‖22+ν̃‖∇′η′ ·w′+∂xnwn‖22.

In what follows we denote the projection I −Π(0) by Π1:

Π1 := I −Π(0).

Recall that X0 = Π(0)X and X1 = Π1X.
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To study problem (4.5) for η′ ∈ Q∗ with |η′| ≥ r0, we decompose u into its

Π(0)-part and Π1-part in X, namely,

(4.14) u = σu(0) + u1,

where σ = (u, u(0)∗) = JφK ∈ C, u(0) = >(1, 0) and u1 = >(φ1, w1) ∈ X1. We note

that

(4.15) Jφ1K = 0.

It is easy to see that problem (4.5) reduces to

(4.16)

{
λσ + iγJη̃′ · w1K = Jf0K,
λu1 + Lη′u1 −Π(0)Mη′u1 +Mη′(σu

(0)) = f1,

where σ ∈ C, u1 = >(φ1, w1) ∈ D(Lη′) ∩X1 and f1 = Π1f := >(f0
1 , f̃1) ∈ X1. We

observe that

Π(0)Mη′u1 = iγJη̃′ · w1Ku(0), Mη′(σu
(0)) = >(0, iγη̃′σ).

We begin with the following

Proposition 4.15. We have

(4.17) Reλ(|σ|2 + |u1|2) +Dη′(w1) = Re{Jf0Kσ + (f1, u1)}.

Proof. Multiplying the first equation of (4.16) by σ, we get

λ|σ|2 + iγJη̃′ · w1Kσ = Jf0Kσ.

Taking the inner product of the second equation of (4.16) with u1, we have

λ‖u1‖22 + (Lη′u1, u1) + (Mη′(σu
(0)), u1)− (Π(0)Mη′u1, u1) = (f1, u1).

We add these two equations to obtain

λ(|σ|2 + ‖u1‖22) + (Lη′u1, u1) + iγJη̃′ · w1Kσ

+ (Mη′(σu
(0)), u1)− (Π(0)Mη′u1, u1) = Jf (0)Kσ + (f1, u1).

Since Re (Lη′u1, u1) = Dη′(w1) and

Re {iγJη̃′ · w1Kσ + (Mη′(σu
(0)), u1)} = Re {2i Im (iγJη̃′ · w1Kσ)} = 0,

and

(Π(0)Mη′u1, u1) = (iγJη̃′ · w1K, φ1) = iγJη̃′ · w1KJφ1K = 0,

we obtain the desired conclusion.
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For later use, we next derive an estimate for λw1.

Proposition 4.16. We have

(4.18) ReλDη′(w1) + |λ|2‖w1‖22 ≤ C{‖f1‖22 + ‖w1‖22 + |Jf0K|2 + ‖∇η′w1‖22}.

Proof. We write the second equation of (4.16) as

λφ1 + γ divη′ w1 = f0
1 ,(4.19)

λw1 − ν∆η′w1 − ν̃∇η′(∇η′ · w1) + γ∇η′φ1 + iγση̃′ = f̃1.(4.20)

Here we define

divη′ w := ∇η′ · w − iJη̃′ · wK.

We take the inner product of (4.20) with λw1. Then the real part of the resulting

equation yields

|λ|2‖w1‖22 + ReλDη′(w1) = Re {γλ(φ1,∇η′ · w1)− iλγσJη̃′ · w1K + λ(f̃1, w1)}.

Equation (4.19) gives φ = 1
λf

0
1 −

γ
λ divη′ w1, and hence

(4.21) Re |λ|2‖w1‖22 + ReλDη′(w1)

= Re

{
γλ

λ
(f0

1 ,∇η′ · w1)− λ

λ
γ2(divη′ w1,∇η′ · w1)− iλγσJη̃′ · w1K + λ(f̃1, w1)

}
.

By the first equation of (4.16), we have σ = 1
λJf0K− iγ

λ Jη̃′, w1K. Therefore,

R.H.S. of (4.21) = Re

{
γλ

λ
(f0

1 ,∇η′ ·w1)− λ
λ
γ2(divη′ w1,∇η′ ·w1)−iγ λ

λ
Jf0KJη̃′ ·w1K

− λ

λ
γ2|Jη̃′ · w1K|2 + λ(f̃1, w1)

}
≤ ε|λ|2‖w1‖22 + C{‖∇η′w1‖22 + |Jf0K|2 + ‖f0

1 ‖22 + (1/ε)‖f̃1‖22}

for any ε > 0, where C is a positive constant independent of ε. Taking ε suitably

small, we see that

|λ|2‖w1‖22 + ReλDη′(w1) ≤ C1{‖f1‖22 + |Jf0K|2 + ‖∇η′w1‖22}.

We next derive a coercive estimate for σ.

Proposition 4.17. We have

(4.22) Reλ|σ|2 +
c2γ

2

2ν
|η′|2|σ|2

≤ C{(1 + 1/|η′|2)|Jf0K|2 + ‖f̃1‖22 + |λ|2‖w1‖22 +Dη′(w1)},

where c2 is a positive constant independent of γ, ν and η′ ∈ Q∗.
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To prove Proposition 4.17, we prepare several lemmas.

Lemma 4.18. Let f0 ∈ L2
∗,per(Ωper) and let f̃ ∈ H−1

per(Ωper). Then there exists a

unique >(φ,w) ∈ L2
∗,per(Ωper)×H1

0,per(Ωper) satisfying

(4.23)


divη′ w = f0,

−∆η′w +∇η′φ = f̃ ,

φ|Σj,+ = φ|Σj,− , w|Σj,+ = w|Σj,− , w|Σn = 0.

Furthermore,

‖φ‖2 + ‖∇η′w‖2 ≤ C{‖f0‖2 + ‖f̃‖H−1
per(Ωper)

}.

Lemma 4.18 can be proved in a similar manner to [23, Chap. III, proof of

Theorem 1.4.1]. An outline of the proof of Lemma 4.18 will be given in Section 6.

Setting f0 = 0 and f̃ = ek in Lemma 4.18, we have the following

Lemma 4.19. Let >(φ
(1)
1,k,η′ , w

(1)
1,k,η′) ∈ L2

∗,per(Ωper) × H1
0,per(Ωper) be the pair of

functions satisfying

(4.24)


divη′ w

(1)
1,k,η′ = 0,

−∆η′w
(1)
1,k,η′ +∇η′φ(1)

1,k,η′ = ek,

φ1,k,η′ |Σj,+ = φ1,k,η′ |Σj,− , w
(1)
1,k,η′ |Σj,+ = w

(1)
1,k,η′ |Σj,− , w1,k,η′ |Σn = 0.

Then there exists a constant C > 0 such that

‖w(1)
1,k,η′‖H1 + ‖φ(1)

1,k,η′‖2 ≤ C (k = 1, . . . , n− 1)

uniformly for η′ ∈ Q∗ with |η′| ≥ r0.

Lemma 4.20. For each k = 1, . . . , n − 1, let >(φ
(1)
1,k,η′ , w

(1)
1,k,η′) ∈ L2

∗,per(Ωper) ×
H1

0,per(Ωper) be the pair of functions satisfying (4.24). Then w
(1)
1,1,η′ , . . . , w

(1)
1,n−1,η′

are linearly independent.

Proof. Let w := c1w
(1)
1,1,η′ + · · · + cn−1w

(1)
1,n−1,η′ = 0. It then follows from (4.24)

that ∇η′ φ̃ =
∑n−1
j=1 cjej . Here φ̃ := c1φ

(1)
1,1,η′ + · · ·+ cn−1φ

(1)
1,n−1,η′ . Since |η′| ≥ r0,

there exists j such that ηj 6= 0. For this ηj , since (∂xj + iηj)φ̃ = cj , we have

∂xj (e
iηjxj φ̃) = cje

iηjxj . This implies that there exists a function a(x̌j) (x̌j =

(x1, . . . , xj−1, xj+1, . . . , xn−1)) such that

eiηjxj φ̃ = a(x̌j) +
cj
iηj

eiηjxj ,

that is,

φ̃ = a(x̌j)e
−iηjxj +

cj
iηj

.
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Since φ̃ is Q-periodic in x′, we see that a(x̌j) is Q-periodic and a(x̌j)e
−i(π/αj)ηj =

a(x̌j)e
i(π/αj)ηj . Since 0 < |ηj | ≤ αj/2, we have a(x̌j) = 0, and hence, φ̃ = cj/(iηj).

But, since Jφ̃K = 0, we have cj = 0, and so φ̃ = 0. This implies that
∑n−1
j=1 cjej = 0.

We thus conclude that cj = 0 (j = 1, . . . , n− 1).

We are now in a position to prove Proposition 4.17.

Proof of Proposition 4.17. We multiply the first equation of (4.16) by σ̄ and take

the real part of the resulting equation to obtain

(4.25) Reλ|σ|2 + Re{iγJη̃′ · w1Kσ} = Re {Jf0Kσ}.

Let us estimate Re{iγJη̃′ · w1Kσ} on the left-hand side of (4.25). To do so, we

decompose w1 in the following way. In (4.19) and (4.20) we decompose φ1 and w1

as follows:

φ1 = φ
(1)
1 + φ

(2)
1 , w1 = w

(1)
1 + w

(2)
1 ,

where >(φ
(1)
1 , w

(1)
1 ) and >(φ

(2)
1 , w

(2)
1 ) satisfy the following systems:

(4.26)


divη′ w

(1)
1 = 0,

−∆η′w
(1)
1 + γ

ν∇η′φ
(1)
1 = − iγσν η̃′,

φ
(1)
1 |Σj,+ = φ

(1)
1 |Σj,− , w

(1)
1 |Σj,+ = w

(1)
1 |Σj,− , w

(1)
1 |Σn = 0,

Jφ(1)
1 K = 0

and

(4.27)


γ divη′ w

(2)
1 = f0

1 − λφ1,

−ν∆η′w
(2)
1 + γ∇η′φ(2)

1 = f̃1 − λw1 + ν̃∇η′(∇η′ · w1),

φ
(2)
1 |Σj,+ = φ

(2)
1 |Σj,− , w

(2)
1 |Σj,+ = w

(2)
1 |Σj,− , w

(1)
1 |Σn = 0,

Jφ(2)
1 K = 0.

Let us estimate iJη̃′ ·w(1)
1 K. We see from (4.26) that >(φ

(1)
1 , w

(1)
1 ) can be written

as (
φ

(1)
1

w
(1)
1

)
= − iγ

ν
σ

n−1∑
k=1

ηk

( ν
γφ

(1)
1,k,η′

w
(1)
1,k,η′

)
.

Since Jφ(1)
1,k,η′K = 0, we see that 0 = iJη̃′ · w(1)

1,k,η′KJφ
(1)
1,k,η′K = (iJη̃′ · w(1)

1,k,η′K, φ
(1)
1,k,η′),

which implies that (w
(1)
1,k,η′ ,∇η′φ

(1)
1,k,η′) = −(divη′ w

(1)
1,k,η′ , φ

(1)
1,k,η′) = 0. Taking this
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into account, we have

iJη̃′ · w(1)
1 K =

γ

ν
σ

n−1∑
j,k=1

ηjηk(w
(1)
1,j,η′ , ek)

=
γ

ν
σ

n−1∑
j,k=1

ηjηk(w
(1)
1,j,η′ ,−∆η′w

(1)
1,k,η′ +∇η′φ(1)

1,k,η′)

=
γ

ν
σ

n−1∑
j,k=1

ηjηk(∇η′w(1)
1,k,η′ ,∇η′w

(1)
1,j,η′).

Let {f1,η′ , . . . , fn−1,η′} be an orthonormal basis of span{w(1)
1,k,η′}

n−1
k=1 in

H1
0,per(Ωper). Then w

(1)
1,k,η′ can be written as w

(1)
1,k,η′ =

∑n−1
m=1 bkm,η′fm,η′ , and

therefore

(∇η′w(1)
1,j,η′ ,∇η′w

(1)
1,k,η′) =

∑
l,m

bjm,η′bkl,η′(∇η′fm,η′ ,∇η′fl,η′) = (Bη′B
∗
η′)jk.

Here Bη′ is the (n−1)×(n−1) matrix given by Bη′ := (bjk,η′)
n−1
j,k=1. Note that Bη′

is nonsingular since {w(1)
1,k,η′}

n−1
k=1 are linearly independent by Lemma 4.20. Thus

Bη′B
∗
η′ is positive definite for each η′, and

iJη̃′ · w(1)
1 K =

γ

ν
σ|B∗η′η′|2,(4.28)

|B∗η′η′|2 ≥ c2|η′|2(4.29)

uniformly for η′ ∈ Q∗ with |η′| ≥ r0. Here c2 is the number given by

c2 := inf
η′∈Q∗, |η′|≥r0

c2,η′

with

c2,η′ := min{λ; λ is an eigenvalue of Bη′B
∗
η′} > 0.

Let us show that c2 > 0. To do so, we first show that, for each j, k =

1, . . . , n−1, bjk,η′ = (∇η′w(1)
1,j,η′ ,∇η′w

(1)
1,k,η′) is continuous in η′. Once this is shown,

then, by the continuity of the eigenvalue with respect to the components of a ma-

trix, we will have c2 > 0.

We define u
(1)
1,k,η′ := >(φ

(1)
1,k,η′ , w

(1)
1,k,η′). Then u

(1)
1,k,η′ is in D(L0) ∩ X1 and

(L0 + Π1Mη′)u
(1)
1,k,η′ = f1,k with f1,k := >(0, ek). By Lemma 4.18, L0 + Π1Mη′ has

a bounded inverse (L0 + Π1Mη′)
−1 on X1 and

(4.30) ‖(L0 + Π1Mη′)
−1f‖L2×H1 ≤ C‖f‖2
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uniformly for η′ ∈ Q∗ and f ∈ X1. On the other hand, we see from (4.10) and

(4.11) that

‖Π1(Mη′+h′ −Mη′)u‖2 ≤ C|h′| ‖(L0 + Π1Mη′)u‖2
for u ∈ D(L0) ∩ X1 and h′ ∈ Rn−1 with |h′| ≤ 1. This, together with (4.30),

implies that for each fixed f ∈ X1, (L0 + Π1Mη′)
−1f is analytic in η′ ∈ Q∗

in L2
∗,per(Ωper) × H1

0,per(Ωper). Since u
(1)
1,k,η′ = (L0 + Π1Mη′)

−1f1,k, we find that

w
(1)
1,k,η′ is analytic in η′ ∈ Q∗ in H1

0,per(Ωper). Thus bjk,η′ = (∇η′w(1)
1,j,η′ ,∇η′w

(1)
1,k,η′)

is continuous in η′, and hence the eigenvalues of Bη′B
∗
η′ are continuous in η′. Since

c2,η′ is positive for each η′ and is continuous in η′, we deduce that

c2 = inf
η′∈Q∗, |η′|≥r0

c2,η′ > 0.

By (4.28) and (4.29),

Re {iγJη̃′ · w(1)
1 Kσ̄} = Re

{
γ2

ν
|B∗η′η′|2σσ̄

}
≥ c2

γ2

ν
|η′|2|σ|2.

As for Re{iγJη̃′ · w(2)
1 Kσ}, by Proposition 4.14, we have

Re {iγJη̃′ · w(2)
1 Kσ̄} ≤ εγ

2

ν
|η′|2|σ|2 +

Cν

ε
‖∇η′w(2)

1 ‖22

for all ε > 0 with C > 0 independent of ε. On the other hand, using Lemma 4.18,

we see from (4.27) that

‖∇η′w(2)
1 ‖2 ≤ C{‖divη′ w1‖2 + ‖f̃1 − λw1 + ν̃∇η′(∇η′ · w1)‖H−1

per(Ωper)
}

≤ C{Dη′(w1) + ‖λw1‖2 + ‖f̃1‖2},

and hence

Re{iγJη̃′ · w1Kσ} ≤ ε
γ2

ν
|σ|2 +

C

ε
{Dη′(w1) + ‖λw1‖2 + ‖f̃1‖2}.

Taking ε = 1
4c2, we arrive at

Reλ|σ|2 +
3

4

γ2c2
ν
|σ|2|η′|2 ≤ C3{|Jf0K| |σ|+ ‖f̃1‖22 + |λ|2‖w1‖22 +Dη′(w1)},

which yields

Reλ|σ|2 +
c0γ

2

2ν
|η′|2|σ|2

≤ C2{(1 + 1/|η′|2)|Jf0K|2 + ‖f̃1‖22 + |λ|2‖w1‖22 +Dη′(w1)}.

We now establish the resolvent estimate for −Lη′ with |η′| ≥ r0.
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Theorem 4.21. Let η′ ∈ Q∗ satisfy |η′| ≥ r0. Then there exists a constant β1 > 0

such that {λ; Reλ > −β1} ⊂ ρ(−Lη′) and if Reλ > −β1, then

‖(λ+ Lη′)
−1f‖2 + ‖∇P̃(λ+ Lη′)

−1f‖2 ≤
C

(Reλ+ β1)1/2
‖f‖2.

The same conclusion holds with Lη′ replaced by L∗η′ .

Proof. Set E[u] = (1 + b2)|σ|2 + ‖u1‖22 + b1Dη′(w1) with constants b1, b2 > 0 to

be determined later. It suffices to show that

E[u] ≤ C

Reλ+ β1
{|Jf0K|2 + ‖f0

1 ‖22 + ‖f̃1‖22}.

Consider (4.17) + (4.18)× b1. Then taking b1 > 0 suitably small, we have

(4.31)
Reλ(|σ|2 + ‖u1‖22 + b1Dη′(w1)) + 1

4Dη′(w1) + b1|λ|2‖w1‖22
≤ C{|Jf0K||σ|+ |(f0

1 , φ1)|+ ‖f1‖22 + |Jf0K|2}.

We next consider (4.22)× b2 + (4.31). Then with a suitably small b2 > 0, we have

(4.32) ReλE[u] + 1
4Dη′(w1) +

b1
2
|λ|2‖w1‖22 +

b2
4

c0γ
2

ν
|η′|2|σ|2

≤ C{(1 + 1/|η′|2)|Jf0K|2 + |(f0
1 , φ1)|+ ‖f1‖22}.

Since >(φ1, w1) ∈ L2
∗,per(Ωper)×H1

0,per(Ωper) and{
−∆η′w1 +∇η′(γνφ1) = 1

ν f̃1 − 1
ν {λw1 − ν̃∇η′(∇η′ · w1) + iγση̃′},

divη′ w1 = 1
γ {f

0
1 − λφ1},

we see from Lemma 4.18 that

‖φ1‖22 ≤ C
ν2

γ2

{
‖divη′ w1‖22 +

1

ν2
‖f̃1‖22 +

1

ν2
|λ|2‖w1‖22(4.33)

+
ν̃2

ν2
‖∇η′(∇η′ · w1)‖2

H−1
per(Ωper)

+
γ2

ν2
|η′|2|σ|2

}
≤ C

{
(ν + ν̃)2

γ2
‖∇η′w1‖22 +

1

γ2
‖f̃1‖22 +

1

γ2
|λ|2‖w1‖22 + |η′|2|σ|2

}
.

We consider (4.33)× b3 + (4.32). Taking b3 > 0 suitably small, we have

ReλE[u] + 1
8Dη′(w1) +

b1
4
|λ| ‖w1‖22 +

b3
2
‖φ1‖22 +

b2c2
8

γ2

ν
|η′|2|σ|2

≤ C{(1 + 1/|η′|2)|Jf0K|2 + ‖f0
1 ‖22 + ‖f̃1‖22 + |(f0

1 , φ1)|}

≤ b3
4
‖φ1‖22 + C{(1 + 1/|η′|2)|Jf0K|2 + ‖f0

1 ‖22 + ‖f̃1‖22},
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and hence

ReλE[u] + 1
8Dη′(w1) +

b1
4
|λ| ‖w1‖22 +

b3
4
‖φ1‖22 +

b2c2
8

γ2

ν
|η′|2|σ|2

≤ C{
(
1 + 1/|η′|2

)
|Jf0K|2 + ‖f0

1 ‖22 + ‖f̃1‖22}.

Using the Poincaré inequality, we have 1
16Dη′(w1) + b3

4 ‖φ1‖22 + b2c2
8 |η

′|2|σ|2 ≥
β1E[u] for some constant β1 = β1(r0) > 0. We thus obtain

(Reλ+ β1)E[u] + 1
16Dη′(w1) ≤ C{|Jf0K|2 + ‖f0

1 ‖22 + ‖f̃1‖22}

for η′ with |η′| ≥ r0.

We have already shown in Proposition 4.2 that −Lη′ generates a contrac-

tion semigroup e−tLη′ . Theorem 4.21 implies that e−tLη′ decays exponentially for

η′ ∈ Q∗ with |η′| ≥ r0.

Theorem 4.22. The estimate

‖e−tLη′u0‖2 ≤ Ce−
β1
2 t‖u0‖2

holds uniformly for η′ ∈ Q∗ satisfying |η′| ≥ r0.

This follows from Theorem 4.21 and [3, Chap. V, Theorem 1.11].

§5. Proof of Theorems 3.1 and 3.2

In this section we give proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. As in the proof of Proposition 4.1, one can show that

{λ; Reλ > 0} ⊂ ρ(−L) and if Reλ > 0, then

(5.1)

‖(λ+ L)−1f‖L2(Ω) ≤
1

Reλ
‖f‖L2(Ω),

‖∇P̃(λ+ L)−1f‖L2(Ω) ≤
1

(ν Reλ)1/2
‖f‖L2(Ω).

Therefore, −L generates a contraction semigroup e−tL on L2(Ω).

Proof of Theorem 3.2. We set

Π := Uχ0Πη′T, χ0(η′) :=

{
1, |η′| ≤ r0,

0, |η′| ≥ r0.

It then follows from Proposition 2.2 that Π2 = Π. Furthermore, by Theorem 4.7,

e−tLΠu0 = Uχ0e
−tLη′Πη′Tu0 = Uχ0e

λη′ tΠη′Tu0.



368 Y. Kagei and N. Makio

Since

sup
η′∈Q∗

‖Tu0‖1 ≤ C‖u0‖L1(Ω),

we see from Theorems 4.7 and 4.11 that

‖e−tLΠu0‖2L2(Ω)

≤ C
∫
η′∈Q∗

‖χ0e
−tLη′Πη′Tu0‖22 dη′ ≤ C

∫
|η′|≤r0

e−
κ0
2
γ2

ν |η
′|2t‖Πη′Tu0‖22 dη′

≤ C
∫
|η′|≤r0

e−
κ0
2
γ2

ν |η
′|2t‖Tu0‖21 dη′ ≤ Ct−(n−1)/2‖u0‖2L1(Ω).

On the other hand,

‖e−tLΠu0‖2L2(Ω) ≤ C
∫
|η′|≤r0

dη′ ‖u0‖2L1(Ω) ≤ C‖u0‖2L1(Ω).

We thus obtain

‖e−tLΠu0‖L2(Ω) ≤ C(1 + t)−(n−1)/4‖u0‖L1(Ω).

This proves (i) of Theorem 3.2.

As for the estimate for e−tL(I −Π)u0, we write it as

e−tL(I −Π)u0 = Uχ0e
−tLη′ (I −Πη′)T + U(1− χ0)e−tLη′T

= Uχ0(e−tLη′ − eλη′ tΠη′)T + U(1− χ0)e−tLη′T.

It follows from Theorems 4.10 and 4.22 that

‖e−tL(I −Π)u0‖L2(Ω) ≤ Ce−βt‖u‖L2(Ω),

where β = 1
2 min{β0, β1}. This proves (ii) of Theorem 3.2.

Let us prove (iii) of Theorem 3.2. We write

e−tLΠu0 = Uχ0e
λη′tΠ(0)Tu0 + Uχ0e

λη′t(Πη′ −Π(0))Tu0 =: J1 + J2.

For `′ = (`1, . . . , `n−1) ∈ Zn−1, we denote Ωper,`′ :=
{(
x′ +

∑n−1
j=1

2π`j
αj

e′j , xn
)
;

(x′, xn) ∈ Ωper

}
. By the definition of T , we have

Π(0)Tu0 =

[∫
Ωper

J(Tφ0)(x′, ·)K dx
]
u(0)

=

[
1

|Ωper| |Q∗|1/2
∑
`′∈Z

∫
Ωper,`′

φ0(x)e−iη
′·x′ dx

]
u(0)

=

[
1

|Ωper| |Q∗|1/2

∫
Ω

φ0(x)e−iη
′·x′ dx

]
u(0) =

1

(2π)(n−1)/2|Q|1/2
σ̂0(η′)u(0),
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where

σ0(x′) =
|Q|
|Ωper|

∫ ω2(x′)

ω1(x′)

φ0(x′, xn) dxn.

It then follows that

J1 =

[
1

(2π)n−1

∫
Q∗
χ0e

λη′tσ̂0(η′)eiη
′·x′dη′

]
u(0) = [e−tHσ0(x′)]u(0) + J

(1)
1 + J

(2)
1 .

Here

J
(1)
1 := F−1[(χ0 − 1)e−

γ2

ν κ(η′)tσ̂0(η′)]u(0),

J
(2)
1 :=

[
1

(2π)n−1

∫
Q∗
χ0(eλη′ t − e−

γ2

ν κ(η′)t)σ̂0(η′)eiη
′·x′ dη′

]
u(0).

By the Plancherel Theorem,

‖J (1)
1 ‖2L2(Ω) ≤ d̄‖F

−1[(χ0 − 1)e−
γ2

ν κ(η′)tσ̂0]u(0)‖2L2(Rn−1)

= (2π)−(n−1)d̄‖(χ0 − 1)e−
γ2

ν κ(η′)tσ̂0‖2L2(Rn−1)

with d̄ := maxx′∈Rn−1{ω2(x′)− ω1(x′)} > 0. Since supp(χ0 − 1) = {|η′| ≥ r0}, we

see that

‖(χ0 − 1)e−
γ2

ν κ(η′)tσ̂0‖2L2(Rn−1) ≤ Ct
−(n−1)/2e−

γ2

ν r
2
0t‖φ0‖2L1(Ω),

and hence

‖J (1)
1 ‖2 ≤ Ct−(n−1)/4e−

γ2

2ν r
2
0t‖φ0‖L1(Ω).

As for J
(2)
1 , we have

eλη′ t − e−κ(η′)t = (λη′ + κ(η′))t

∫ 1

0

e−κ(η′)t+θ(λη′+κ(η′))tdθ.

Since λη′ = −γ
2

ν κ(η′) +O(|η′|3), we obtain

|eλη′ t − e−
γ2

ν κ(η′)t| ≤ C|η′|3te−
κ0
2
γ2

ν |η
′|2t ≤ C|η′|e−

κ0
4
γ2

ν |η
′|2t,

and hence

‖J (2)
1 ‖2L2(Ω) ≤ C

∫
|η′|≤r0

|η′|2e−
κ0
2
γ2

ν |η
′|2t dη′

(
sup

η′∈Rn−1

|σ̂0(η′)|
)2

≤ Ct−(n−1)/2−1‖φ0‖2L1(Ω).

Concerning J2, we see from Theorem 4.11 that

‖J2‖L2(Ω) ≤ C‖χ0e
λη′ t(Πη′ −Π(0))Tu0‖L2(Q∗;L2(Ωper))

≤ C
∥∥χ0|η′|eλη′ t‖Tu0‖1

∥∥
L2(Q∗)

≤ C(1 + t)−(n−1)/4−1/2‖u0‖L1(Ω).

We thus obtain the desired estimate.
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§6. Outline of proof of Lemma 4.18

In this section we outline the proof of Lemma 4.18. We only give several lemmas

necessary for the proof since Lemma 4.18 can be proved by an argument similar to

the proof of [23, Chap. III, Theorem 1.4.1], where the proof for the Stokes system

(i.e., η′ = 0) is given.

We begin with

Lemma 6.1. For u ∈ L2(Ωper),

‖u‖2 ≤ C{‖∇η′u‖H−1
per(Ωper)

+ ‖u‖H−1
per(Ωper)

}.

This can be proved in a similar manner to [19, Chap. 3, Lemma 7.1]. (Cf. [23,

Chap. II, Lemma 1.1.3].)

Lemma 6.2. For u ∈ L2
∗,per(Ωper),

‖u‖2 ≤ C1‖∇η′u‖H−1
per(Ωper)

≤ C1C2‖u‖2.

This follows from Lemma 6.1 as in [23, Chap. II, proof of Lemma 1.5.4].

Lemma 6.3. (i) For every g ∈ L2
∗,per(Ωper), there exists w ∈ H1

0,per(Ωper) such

that

divη′ w = g, ‖∇η′w‖2 ≤ C‖g‖2.

(ii) For every f ∈ H−1
per(Ωper) satisfying

[f, w] = 0 for all w ∈ H1
0,per(Ωper) with divη′ w = 0,

there exists a unique p ∈ L2
∗,per(Ωper) such that

∇η′p = f, ‖p‖2 ≤ C‖f‖H−1
per(Ωper)

.

One can prove this by using Lemma 6.2 as in [23, Chap. II, proof of Lemma

2.1.1].

We define

H1
0,σ(Ωper) := {w ∈ H1

0,per(Ωper); divη′ w = 0}.

Lemma 6.4. For every f ∈ H−1
0,per(Ωper), there exists a unique w ∈ H1

0,σ(Ωper)

satisfying

(∇η′w,∇η′v) = [f, v]

for all v ∈ H1
0,σ(Ωper), and

‖∇η′w‖2 ≤ C‖f‖H−1
per(Ωper)

.
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Furthermore, there exists a unique φ ∈ L2
∗,per(Ωper) such that

−∆η′w − f = −∇η′φ

and

‖φ‖2 ≤ C‖f‖H−1
per(Ωper)

.

This can be proved in a similar manner to [23, Chap. III, proof of Theorem

1.3.1].

Lemma 4.18 now follows from Lemmas 6.3 and 6.4 as in [23, Chap. III, proof

of Theorem 1.4.1].
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