The Irregularity of the Direct Image of Some \mathcal{D}-modules

By

Céline Roucairol*

Abstract

Let f and g be two regular functions on U smooth affine variety. Let \mathcal{M} be a regular holonomic \mathcal{D}_U-module. We are interested in the irregularity of the complex $f_+ (\mathcal{M}e^g)$. More precisely, we relate the irregularity number at c of the systems $\mathcal{H}^k f_+ (\mathcal{M}e^g)$ with the characteristic cycles of the systems $\mathcal{H}^k (f, g)_+ (\mathcal{M})$.

§1. Introduction

Let U be a smooth affine variety over \mathbb{C} and $g : U \to \mathbb{C}$ be a regular function on U. We denote by \mathcal{O}_U the sheaf of regular functions on U and by \mathcal{D}_U the sheaf of algebraic differential operators on U.

Let \mathcal{M} be a regular holonomic \mathcal{D}_U-module. We denote by $\mathcal{M}e^g$ the \mathcal{D}_U-module obtained from \mathcal{M} by twisting by e^g. If ∇ is the connection defined by the \mathcal{D}_U-module structure of \mathcal{M}, $\nabla + dg$ is the one associated with $\mathcal{M}e^g$. Although \mathcal{M} is regular, $\mathcal{M}e^g$ is not regular in general. Here, regular means that there exists a smooth compactification X of U and an extension of $\mathcal{M}e^g$ as \mathcal{D}_X-module which is regular holonomic on X. In [10], C. Sabbah describes a comparison theorem for these \mathcal{D}-modules twisted by an exponential. This theorem gives a relation between the irregularity complex of $\mathcal{M}e^g$ (see [6]) and some topological data given by g and \mathcal{M}.

In this paper, we consider two regular functions $f, g : U \to \mathbb{C}$. We are interested in the irregularity of the cohomology modules of the direct image by f of a \mathcal{D}_U-module, $\mathcal{M}e^g$, where \mathcal{M} is regular and holonomic.

Communicated by M. Kashiwara. Received June 28, 2005. Revised September 27, 2005. 2000 Mathematics Subject Classification(s): 32C38, 35B40.

*Universität Mannheim, Institut für Mathematik, A5, 6, 68131 Mannheim, Germany.
e-mail: celine.roucairol@uni-mannheim.de

c⃝2006 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
• In Section 2, we recall the definitions of a \(D \)-module twisted by an exponential of a meromorphic function. We will need the definition in the case of meromorphic function during the proof of the main theorem.

Then, we will consider the case where \(\mathcal{M} \) is the sheaf of regular function \(\mathcal{O}_U \). According to [4], the system \(\mathcal{H}^k(f_+(\mathcal{O}_U e^g)) \) extends vector bundle with flat holomorphic connection such that the generic fiber of the sheaf of their horizontal sections is canonically isomorphic to the cohomology group \(H^{k+n-1}_0(f^{-1}(e^n), \mathbb{C}) \), where \(\mathcal{O}_t \) is the family of closed subsets of \(f^{-1}(t) \) on which \(e^{-g} \) is rapidly decreasing. Using this result, we will motivate the study of the irregularity of the systems \(\mathcal{H}^k f_+(\mathcal{O}_U e^g) \) by observations on some integrals.

• The main theorem of this paper gives us a formula for the irregularity number of the systems \(\mathcal{H}^k(f_+(\mathcal{M} e^g)) \) at finite distance and at infinity.

In the case where \(f \) and \(g \) are two polynomials in two variables which are algebraically independents and \(\mathcal{M} = \mathcal{O}_{\mathbb{C}^2} \), the complex \(f_+(\mathcal{O}_{\mathbb{C}^2} e^g) \) is concentrated in degree 0 except at a finite number of points (see [9]). Then, the irregularity number at a point \(c \in \mathbb{C} \cup \{\infty\} \) of the system \(\mathcal{H}^k f_+(\mathcal{O}_{\mathbb{C}^2} e^g) \) can be expressed in terms of some geometric data associated with \(f \) and \(g \) (see [9]).

In this paper, we calculate the irregularity number at \(c \in \mathbb{C} \cup \{\infty\} \) of the systems \(\mathcal{H}^k(f_+(\mathcal{M} e^g)) \) with the help of the characteristic cycle of the systems \(\mathcal{H}^k(f, g)_+(\mathcal{M}) \), in the general case where \(f \) and \(g \) are any regular functions.

In the following, we identify \(\mathbb{C} \cup \{\infty\} \) with \(\mathbb{P}^1 \). Let \(i \) be the inclusion of \(\mathbb{C}^2 \) in \(\mathbb{P}^1 \times \mathbb{P}^1 \). Let \(c \in \mathbb{P}^1 \) and \(V = V_1 \times V_2 \subset \mathbb{P}^1 \times \mathbb{P}^1 \) a neighbourhood of \((c, \infty) \).

Let \(\text{Ch}(c, k) \) be the characteristic cycle of \(\mathcal{H}^k f_+(f, g)_+(\mathcal{M}) \) in the neighborhood \(V \):

\[
\text{Ch}(c, k) = mT_2V + m'T_{(c, \infty)}^*V + m''T_{(c, \infty)}^*V + m'''T_{(c, \infty)}^*V + \sum m_i T_i \mathfrak{Z}V,
\]

where \(Z_i \) are some germs of irreducible curves in a neighbourhood of \((c, \infty) \) distinct from \(V_1 \times \{\infty\} \) and \(\{c\} \times V_2 \).

Theorem 1.1. The irregularity number of \(\mathcal{H}^k f_+(\mathcal{M} e^g) \) at \(c \) is equal to

\[
\sum_i m_i I_{(c, \infty)}(Z_i, \mathbb{P}^1 \times \{\infty\}),
\]

where \(I_{(c, \infty)}(Z_i, \mathbb{P}^1 \times \{\infty\}) \) is the intersection multiplicity of \(Z_i \) and \(\mathbb{P}^1 \times \{\infty\} \) at \((c, \infty) \).

• The theorem of commutation between the irregularity functor and the direct image functor ([6]) allows us to rephrasing Theorem 1.1 in terms of an irregularity complex of a regular holonomic \(D \)-module twisted by an exponential (cf. Lemma 3.2).

Then, using the comparison theorem of [10], we are led to calculate the Euler characteristic of a germ of a complex of nearby cycles.
§2. The Complex $f_+ (M e^g)$

§2.1. Regular holonomic \mathcal{D}-modules twisted by an exponential

Let X be a smooth algebraic variety over \mathbb{C}. We identify \mathbb{P}^1 with $\mathbb{C} \cup \{ \infty \}$. Let $h : X \to \mathbb{P}^1$ be a meromorphic function.

Definition 2.1. We define the \mathcal{D}_X-module $\mathcal{O}_X[*h^{-1}(\infty)] e^h$ as a \mathcal{D}_X-module which is isomorphic to $\mathcal{O}_X[*h^{-1}(\infty)]$ as \mathcal{O}_X-module. The original connection ∇ on $\mathcal{O}_X[*h^{-1}(\infty)]$ is replaced with the connection $\nabla + dh$ on $\mathcal{O}_X[*h^{-1}(\infty)] e^h$.

Let M be a holonomic \mathcal{D}_X-module.

Definition 2.2. We define the \mathcal{D}_X-module $M[*h^{-1}(\infty)] e^h$ as the \mathcal{D}_X-module $M \otimes_{\mathcal{O}_X} \mathcal{O}_X[*h^{-1}(\infty)] e^h$.

Remark. $\mathcal{O}_X[*h^{-1}(\infty)] e^h$ is the direct image by an open immersion of a vector bundle with integrable connection. Then, it is a holonomic \mathcal{D}_X-module as algebraic direct image of a holonomic \mathcal{D}-module.

$M[*h^{-1}(\infty)] e^h$ is a holonomic left \mathcal{D}_X-module as tensor product of two holonomic left \mathcal{D}_X-modules (cf. Theorem 4.6 of [2]).

We have analogous definitions in the analytic case. We just have to transpose in the analytic setting.

§2.2. On the solutions of the systems $\mathcal{H}^k (f_+ (\mathcal{O}_U e^g))$

The generic fiber of the sheaf of horizontal sections of $\mathcal{H}^k (f_+ (\mathcal{O}_U e^g))$ can be describe as follows:

Theorem 2.1 ([4]). There exists a finite subset $\Sigma \subset \mathbb{C}$ such that

- $\mathcal{H}^k (f_+ (\mathcal{O}_U e^g))|_{\mathbb{C} \setminus \Sigma}$ is a vector bundle with flat holomorphic connection.
- For all $t \in \mathbb{C} \setminus \Sigma$, $i_t^* \mathcal{H}^{k-n+1}(f_+ (\mathcal{O}_U e^g)) \simeq H^k_{\phi_t}((f^{-1}(t))^{an}, \mathbb{C})$, where i_t is the inclusion of $\{ t \}$ in \mathbb{C} and ϕ_t is the family of closed subsets of $f^{-1}(t)$ on which e^{-g} is rapidly decreasing.

More precisely, the family ϕ_t is defined as follow. Let $\pi : \overline{\mathbb{P}^1} \to \mathbb{P}^1$ be the oriented real blow-up of \mathbb{P}^1 at infinity. $\overline{\mathbb{P}^1}$ is diffeomorphic to $\mathbb{C} \cup S^1$, where S^1 is the circle of directions at infinity. A is in ϕ_t if A is a closed subset of $f^{-1}(t)$ and the closure of $g(A)$ in $\mathbb{C} \cup S^1$ intersects S^1 in $]-\frac{\pi}{2}, \frac{\pi}{2}[$.
Let us motivate the study of this complex by observations on some integrals. Concerning Gauss-Manin systems, we can express their solutions as period integrals of the type \(\int_{\gamma(t)} w_{f^{-1}(t)} \), where \(\gamma(t) \) is an horizontal family of cycles in the fibres \(f^{-1}(t) \) and \(w \) is a relative algebraic differential form. As the Gauss-Manin connection is regular, these integrals have moderate growth in the neighbourhood of their singularities. In our case, some solutions can also be expressed as integrals.

Let \(\Psi_t \) be the family of closed subsets \(A \) of \(f^{-1}(t) \) such that for all \(R \) big enough, \(A \setminus g^{-1}(\{t \in \mathbb{C} \mid \text{Re}(-t) > R\}) \) is compact. We consider the complex of semi-algebraic chains with support in \(\Psi_t \) (see [8]). We denote by \(H_{k,\Psi_t}(f^{-1}(t)^{an}, \mathbb{C}) \) the \(k \)-th homology group associated with this complex. We can now integrate forms in \(H_k(f^{-1}(t)^{an}, \mathbb{C}) \) on cycles in \(H_{k,\Psi_t}(f^{-1}(t)^{an}, \mathbb{C}) \).

According to Theorem 1.4 of [1], since \(f \) is a submersion outside \(\Sigma \), we have an isomorphism

\[
H^{k-n+1}(f_+(\mathcal{O}_U e^\varphi))|_{\mathcal{C} \setminus \Sigma} \cong R^k f_*(DR_{\mathcal{C}^* / \mathcal{C}}(\mathcal{O}_U e^\varphi))|_{\mathcal{C} \setminus \Sigma}.
\]

Thus, we can extend the integration defined before to a form \(we^\varphi_{f^{-1}(t)} \), where \(w \) is a relative algebraic differential form. Indeed, by the definition of \(\Psi_t \), \(e^\varphi \) is rapidly decreasing on the cycles and semi-algebraic chains with support in \(\Psi_t \) behave well at infinity.

In this way, to \(\gamma(t) \), horizontal family of cycles in \(H_{k,\Psi_t}(f^{-1}(t)^{an}, \mathbb{C}) \), we can associate a solution of the \(\mathcal{D}_{\mathcal{C} \setminus \Sigma} \)-module \(H^{k-n+1}(f_+(\mathcal{O}_U e^\varphi))|_{\mathcal{C} \setminus \Sigma} \). It is a morphism \(\alpha \) of \(\mathcal{D}_{\mathcal{C} \setminus \Sigma} \)-modules defined by \(\alpha([we^\varphi]) = \int_{\gamma(t)} we^\varphi_{f^{-1}(t)} \).

The study of the irregularity of the systems \(H^{k-n+1}(f_+(\mathcal{O}_U e^\varphi)) \) gives us informations about the growth of these integrals in the neighbourhood of their singularities.

§3. On the Irregularity of the Complex \(f_+(\mathcal{M}e^\varphi) \)

In the following, we will identify \(\mathbb{C} \cup \{\infty\} \) with \(\mathbb{P}^1 \) and we consider the canonical immersion \(j : \mathbb{C} \to \mathbb{P}^1 \). Let us fix \(k \in \mathbb{Z} \) and \(c \in \mathbb{P}^1 \).

We are interested in the number \(IR_{c,k} \), it being the irregularity number at \(c \in \mathbb{P}^1 \) of the system \(H^k j_* f_*(\mathcal{M}e^\varphi) \).

The first step of the proof of Theorem 1.1 consists in rephrasing it using an irregularity complex of a \(\mathcal{D}_{\mathbb{C}} \)-module twisted by an exponential.

For the definition of irregularity complex along an hypersurface, we refer the reader to [6] and [7]. We adopt the following notations. If \(\mathfrak{M} \) is a complex of \(\mathcal{D}_X \)-modules and \(Z \) is an hypersurface of \(X \), we denote by \(IR_Z(\mathfrak{M}) \) the irregu-
Irregularity complex of \mathfrak{M} along Z. For simplicity of notations, we write $IR^k_Z(\mathfrak{M})$ instead of $\mathcal{H}^k(IR_Z(\mathfrak{M}))$.

According to [5], the irregularity number $IR_{c,k}$ is equal to the dimension of the \mathbb{C}-vector space $IR^0(\mathcal{H}^k j_+ f_+(\mathcal{M}e^\theta))_c$.

Denote by \mathcal{N}^\bullet the complex of $D_{\mathbb{P}^1 \times \mathbb{P}^1}$-modules $i_+(f,g)_+(\mathcal{M})$. In the way of rephrasing Theorem 1.1, we need the following lemma:

Lemma 3.1. Let $\pi_2 : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ be the second projection and $D = (\mathbb{P}^1 \times \mathbb{P}^1) \setminus i(\mathbb{C}^2)$.

$$IR_c(\mathcal{H}^k j_+ f_+(\mathcal{M}e^\theta))_c = IR_{\{c\} \times \mathbb{P}^1}(\mathcal{H}^k(\mathcal{N}^\bullet)(\star D)[e^{\pi_2}])_{(c,\infty)}[+1].$$

Proof.
- Reduction to the case of the two projections.
- Let $p_1 : \mathbb{C}^2 \to \mathbb{C}$ and $p_2 : \mathbb{C}^2 \to \mathbb{C}$ be the two canonical projections.
- As $f = p_1 \circ (f,g)$, we have $f_+(\mathcal{M}e^\theta) = p_1(f,g)_+(\mathcal{M}e^\theta)$. Moreover, $(f,g)_+(\mathcal{M}e^\theta) = (f,g)_+(\mathcal{M})e^{p_2}$.
- Finally, we obtain that $f_+(\mathcal{M}e^\theta) \simeq p_1((f,g)_+(\mathcal{M})e^{p_2})$.
- In this paragraph, we denote by \mathcal{P}^h the perverse cohomology. According to Corollary 2-1-8 of [6], we have:

$$IR_c(\mathcal{H}^k j_+ f_+(\mathcal{M}e^\theta)) = \mathcal{P}^h IR_c(j_+ f_+(\mathcal{M}e^\theta)).$$

Consider the following diagrams:

$$\begin{array}{cc}
\mathbb{C}^2 \xrightarrow{i} \mathbb{P}^1 \times \mathbb{P}^1 & \mathbb{C}^2 \xrightarrow{i} \mathbb{P}^1 \times \mathbb{P}^1 \\
\downarrow p_1 & \downarrow p_2 \\
\mathbb{C} \xrightarrow{j} \mathbb{P}^1 & \mathbb{C} \xrightarrow{j} \mathbb{P}^1 \\
\end{array}$$

Then,

$$IR_c(j_+ f_+(\mathcal{M}e^\theta)) = IR_c(j_+ p_1 \circ ((f,g)_+(\mathcal{M})e^{p_2}))$$
$$= IR_c(\pi_1 + i_+(f,g)_+(\mathcal{M})e^{p_2}))$$
$$= IR_c(\pi_1 + i_+(\mathcal{N}^\bullet[\star D][e^{\pi_2}])).$$

Then, $IR_c(\mathcal{H}^k j_+ f_+(\mathcal{M}e^\theta)) = \mathcal{P}^h IR_c(\pi_1 + i_+(\mathcal{N}^\bullet[\star D][e^{\pi_2}])).$

- According to Proposition 3-6-4 of [7], the irregularity functor commutes with the direct image functor. Thus:

$$IR_c(\pi_1 + i_+(\mathcal{N}^\bullet[\star D][e^{\pi_2}]))_c = R\pi_1 IR_{\{c\} \times \mathbb{P}^1}(\mathcal{N}^\bullet[\star D][e^{\pi_2}])_{[+1]}$$
$$= R\Gamma(\{c\} \times \mathbb{P}^1, IR_{\{c\} \times \mathbb{P}^1}(\mathcal{N}^\bullet[\star D][e^{\pi_2}])[+1].$$
• Then, we remark that π_2 is holomorphic out of (c, ∞) and N^* is regular holonomic (direct image complex of an algebraic regular holonomic \mathcal{D}-module). Then, $IR_{(c)\times \mathbb{P}^1}(N^*[-2])$ has its support in (c, ∞) and we have an isomorphism of complexes of vector spaces

$$IR_c(\pi_1 + i_+ (N^*[-2])) = IR_{(c)\times \mathbb{P}^1}(N^*[-2])_{(c, \infty)}[+1].$$

• We conclude that

$$IR_c(\mathcal{H}^l j_+ f_+ (Me^p)) = \mathcal{H}^l IR_c(\pi_1 + i_+ (N^*[-2]))_{(c, \infty)}[+1] = IR_{(c)\times \mathbb{P}^1}(\mathcal{H}^l (N^*[-2]))_{(c, \infty)}[+1] = IR_{(c)\times \mathbb{P}^1}(\mathcal{H}^l (N^*[-2]))_{(c, \infty)}[+1].$$

Now, we can rephrase Theorem 1.1.

Let us choose some local coordinates (x, z) of $\mathbb{P}^1 \times \mathbb{P}^1$ in a neighbourhood of (c, ∞) such that:

1. (c, ∞) has for coordinates $(0, 0)$,
2. $(c) \times \mathbb{P}^1$ has equation $x = 0$ in a neighbourhood of (c, ∞),
3. $\mathbb{P}^1 \times \{\infty\}$ has equation $z = 0$ in a neighbourhood of (c, ∞).

In these coordinates, π_2 is equal to $\frac{1}{z}$ in a neighbourhood of (c, ∞). Then, according to Lemma 3.1, we are led to prove the following lemma:

Lemma 3.2. Let \mathcal{M} be a holonomic regular $\mathcal{D}_{\mathcal{C}^2}$-module. We denote the characteristic cycle of \mathcal{M} in a neighbourhood of $(0, 0)$ by:

$$Ceh(\mathcal{M}) = mT_{c=0}^x \mathcal{C}^2 + m' T_{(c, \infty)}^x \mathcal{C}^2 + m'' T_{z=0}^z \mathcal{C}^2 + \sum m_i T_{Z_i}^z \mathcal{C}^2,$$

where Z_i are some germs of irreducible curves in a neighbourhood of $(0, 0)$ distinct from $x = 0$ and $z = 0$.

Then,

$$\chi(IR_{z=0}(\mathcal{M}[-1])^e(0, 0)) = -\sum m_i I(c, \infty)(Z_i, \{z = 0\}).$$
\section{Proof of Lemma 3.2}

We break up the proof of Lemma 3.2 in three steps:

Lemma 4.1. \(\chi(IR_{x=0}(\mathcal{M}[\frac{1}{x}] e^\cdot_\ast)(0,0)) = \chi(IR_{z=0}(\mathcal{M}[\frac{1}{x}] e^\cdot_\ast)(0,0)) \).

We denote by \(\Psi_z(\mathcal{M}[\frac{1}{x}]) \) the complex of nearby cycles of \(\mathcal{M}[\frac{1}{x}] \) relative to \(z \). It is a complex of constructible sheaves on \(\mathbb{C} \times \{0\} \) defined as follows.

Let \(\eta \) small enough. We denote by \(D^*(0,\eta) \) the universal covering of \(D^*(0,\eta) \). Let \((E,\pi,\tilde{z}) \) be the fiber product over \(D^*(0,\eta) \) of \(\mathbb{C} \times D^*(0,\eta) \) and \(D^*(0,\eta) \). Then, we have the following diagram:

\[
\begin{array}{c}
\mathbb{C} \times \{0\} \xrightarrow{\alpha} \mathbb{C}^2 \xrightarrow{i} \mathbb{C} \times D^*(0,\eta) \xrightarrow{\pi} E \\
\mathbb{C} \times D^*(0,\eta) \xrightarrow{\pi} D^*(0,\eta) \xrightarrow{\tilde{\pi}} D^*(0,\eta).
\end{array}
\]

\[
\Psi_z(\mathcal{M}[\frac{1}{x}]) = \alpha^{-1} R(\tilde{i} \circ \pi)_{\ast}(\tilde{i} \circ \pi)^{-1}(DR(\mathcal{M}[\frac{1}{x}])).
\]

Lemma 4.2. \(\chi(IR_{x=0}(\mathcal{M}[\frac{1}{x}] e^\cdot_\ast)(0,0)) = \chi(\Psi_z(\mathcal{M}[\frac{1}{x}])(0,0)) \).

Lemma 4.3. \(\chi(\Psi_z(\mathcal{M}[\frac{1}{x}])(0,0)) = - \sum_i m_i I_{(c,\infty)}(Z_i, \mathbb{P}^1 \times \{\infty\}) \).

Proof of Lemma 4.1. Let us first show that

\[
IR_{x=0}(\mathcal{M}[\frac{1}{x}] e^\cdot_\ast) = R\Gamma_{x=0}(IR_{z=0}(\mathcal{M}[\frac{1}{x}] e^\cdot_\ast)).
\]

Let \(\eta \) be the inclusion of \(\mathbb{C} \times \mathbb{C}^* \) in \(\mathbb{C}^2 \). By definition,

\[
IR_{z=0}(\mathcal{M}[\frac{1}{x}] e^\cdot_\ast) = \text{cone} \left(DR(\mathcal{M}[\frac{1}{x}] e^\cdot_\ast) \to R\eta_* \eta^{-1}(DR(\mathcal{M}[\frac{1}{x}] e^\cdot_\ast)) \right)
\]

\[
= \text{cone} \left(DR(\mathcal{M}[\frac{1}{x}] e^\cdot_\ast) \to R\eta_* (DR(\mathcal{M}[\frac{1}{x}] e^\cdot_\ast))_{\mathbb{C} \times \mathbb{C}^*} \right).
\]

Now, consider the following diagram:

\[
\begin{array}{c}
\mathbb{C} \times \mathbb{C}^* \xrightarrow{\eta} \mathbb{C}^2 \\
\mathbb{C}^* \times \mathbb{C}^* \xrightarrow{\eta'} \mathbb{C}^* \times \mathbb{C}.
\end{array}
\]
As \(\mathfrak{M} \) is regular, we have:

\[
R\eta_* (\text{DR}(\mathfrak{M}[\frac{1}{x}])(\mathbb{C} \times \mathbb{C})) = R\eta_* R\eta'_* (\text{DR}(\mathfrak{M})(\mathbb{C} \times \mathbb{C}))
\]

\[
= RJ_* R\eta'_* (\text{DR}(\mathfrak{M})(\mathbb{C} \times \mathbb{C})).
\]

But \(R\Gamma_{x=0} R\eta_* = 0 \). Then:

\[
R\Gamma_{x=0} (IR_{z=0}(\mathfrak{M}[\frac{1}{xz}])(\mathbb{C} \times \mathbb{C}))) = R\Gamma_{x=0} (\text{DR}(\mathfrak{M}[\frac{1}{xz}](\mathbb{C} \times \mathbb{C}))
\]

\[
= IR_{z=0}(\mathfrak{M}[\frac{1}{x}](\mathbb{C} \times \mathbb{C})),
\]

by definition of irregularity complex.

Then, we are led to prove that the complexes \(R\Gamma_{x=0} (IR_{z=0}(\mathfrak{M}[\frac{1}{xz}](\mathbb{C} \times \mathbb{C}))) \) and \(IR_{z=0}(\mathfrak{M}[\frac{1}{x}](\mathbb{C} \times \mathbb{C})) \) have the same characteristic function at \((0,0)\).

Using the following distinguished triangle,

\[
\xymatrix{ R\Gamma_{x=0}(IR_{z=0}(\mathfrak{M}[\frac{1}{xz}](\mathbb{C} \times \mathbb{C}))) \ar[rr] & & R\Gamma_{x=0}(IR_{z=0}(\mathfrak{M}[\frac{1}{xz}](\mathbb{C} \times \mathbb{C}))) \ar[r]^{[+1]} & IR_{x=0}(\mathfrak{M}[\frac{1}{xz}](\mathbb{C} \times \mathbb{C})),
}
\]

it is sufficient to show that the characteristic function on \(\{x=0\} \) of the complex \(R\Gamma_{x=0}(IR_{z=0}(\mathfrak{M}[\frac{1}{xz}](\mathbb{C} \times \mathbb{C}))) \) is zero.

Now, if \(\mathcal{F} \) is a constructible sheaf on \(X \) and \(P \in \{x=0\} \),

\[
\chi((R\jmath_* J^{-1}\mathcal{F})_P) = \chi((\mathbb{D}(J^{-1}\mathcal{F}))_P) = \chi((J^{-1} \mathbb{D} \mathcal{F})_P) = 0,
\]

where \(\mathbb{D} \) is the Verdier duality (see [11]).

\(\square \)

Proof of Lemma 4.2. This is a particular case of a result of C. Sabbah (cf. Corollary 5-2 of [10]).

\(\square \)

Proof of Lemma 4.3. Denote by \(C^\bullet \) the complex \(\Psi_x(\mathfrak{M}[\frac{1}{x}]) \). By definition,

\[
C^\bullet_{(0,0)} = R(\hat{i} \circ \pi)_* (\hat{i} \circ \pi)^{-1} (\text{DR}(\mathfrak{M}[\frac{1}{x}])(0,0)).
\]

Then, for all \(k \in \mathbb{Z} \),

\[
\mathcal{H}^k C^\bullet_{(0,0)} = \text{indlim}_{(0,0) \in U_{\text{open}}} \text{R}^k \Gamma(U, R(\hat{i} \circ \pi)_* (\hat{i} \circ \pi)^{-1} (\text{DR}(\mathfrak{M}[\frac{1}{x}]))).
\]

As \(\{D(0, \eta_1) \times D(0, \eta_2)\}_{\eta_1, \eta_2} \) is a fundamental system of neighbourhoods of \((0,0)\), we have

\[
\mathcal{H}^k C^\bullet_{(0,0)} = \text{indlim}_{\eta_1, \eta_2} \text{R}^k \Gamma(D(0, \eta_1) \times D(0, \eta_2), R(\hat{i} \circ \pi)_* (\hat{i} \circ \pi)^{-1} (\text{DR}(\mathfrak{M}[\frac{1}{x}]))).
\]
Let Σ be a Whitney stratification associated with the constructible sheaf $DR(\mathcal{M}[1])$. Then, for η_1 and η_2 small enough, there exists a homotopy equivalence $p : (\hat{i} \circ \pi)^{-1}(D(0, \eta_1) \times D(0, \eta_2)) \rightarrow D(0, \eta_1) \times \{\tilde{\eta}\}$ compatible with Σ. Thus, $\mathcal{H}^{0}\mathcal{C}_{(0,0)}^{*} = \text{indlim}_{\eta_1, \eta_2} \Gamma(D(0, \eta_1) \times \{\tilde{\eta}\}, DR(\mathcal{M}[1])).$

Now, as \mathcal{M} is regular, $DR(\mathcal{M}[1]) = RJ, J^{-1}(DR(\mathcal{M})).$ Then,
\[
\mathcal{H}^{0}\mathcal{C}_{(0,0)}^{*} = \text{indlim}_{\eta_1, \eta_2} \Gamma(D(0, \eta_1) \times \{\tilde{\eta}\}, RJ, J^{-1}(DR(\mathcal{M})))
= \text{indlim}_{\eta_1, \eta_2} \Gamma(D^{*}(0, \eta_1) \times \{\tilde{\eta}\}, J^{-1}(DR(\mathcal{M}))).
\]

Let fix η_1 and $\tilde{\eta}$ small enough such that the singular support of \mathcal{M} in $D^{*}(0, \eta_1) \times \{\tilde{\eta}\}$ is a finite number of points. Denote by P_1, \ldots, P_s these points. They are the intersection points of $D^{*}(0, \eta_1) \times \{\tilde{\eta}\}$ and $\cup Z_i$. As $DR(\mathcal{M})|_{P^{*}(0,\eta_1)\times\{\tilde{\eta}\}}$ is a complex of constructible sheaves with respect to the stratification $\{D^{*}(0, \eta_1) \times \{\tilde{\eta}\}\{P_1, \ldots, P_1, P_1, \ldots, P_1\}$, the Euler characteristic of $\Gamma(D^{*}(0, \eta_1) \times \{\tilde{\eta}\}, J^{-1}(DR(\mathcal{M})))$ is equal to:
\[
\chi(\Gamma(D^{*}(0, \eta_1) \times \{\tilde{\eta}\} - \{P_1, \ldots, P_1\}, DR(\mathcal{M}))) + \sum_{i=1}^{l} \chi(D(\mathcal{M})|_{P_i}).
\]

Then, according to the index theorem of Kashiwara (cf. [3]),
\[
\begin{align*}
\chi(\Gamma(D^{*}(0, \eta_1) \times \{\tilde{\eta}\}, J^{-1}(DR(\mathcal{M})))
&= rk(\mathcal{M}) \sum_{i} I_{(0,0)}(Z_i, \{z = 0\}) + \sum_{i} (rk(\mathcal{M}) - m_i)I_{(0,0)}(Z_i, \{z = 0\}) \\
&= - \sum_{i} m_i I_{(0,0)}(Z_i, \{z = 0\}).
\end{align*}
\]

Remark. If f and g are two polynomials in two variables, we can compare Theorem 1.1 and Theorem 1 of [9]. Let us recall this theorem:

Let X be a smooth projective compactification of \mathbb{C}^2 such that there exists $F, G : X \rightarrow \mathbb{P}^1$, two meromorphic maps, which extend f and g. Let us denote by D the divisor $X \setminus \mathbb{C}^2$. Let Γ be the critical locus of (F, G).

Let $c \in \mathbb{P}^1$. We denote by Δ_1 the cycle in $\mathbb{P}^1 \times \mathbb{P}^1$ which is the closure in $\mathbb{P}^1 \times \mathbb{P}^1$ of $(F, G)(\Gamma) \cap (\mathbb{C}^2 \setminus \{c\} \times \mathbb{C})$, where the image is counted with multiplicity and by Δ_2 the cycle in $\mathbb{P}^1 \times \mathbb{P}^1$ which is the closure in $\mathbb{P}^1 \times \mathbb{P}^1$ of $(F, G)(D) \cap (\mathbb{C}^2 \setminus \{c\} \times \mathbb{C})$, where the image is counted with multiplicity.

Theorem 4.1. If f and g are algebraically independent, the irregularity number of $\mathcal{H}^{0}(f_{*}(\mathcal{O}_{\mathbb{C}^2}^c))$ is equal to
\[
I_{(c, \infty)}(\Delta_1, \mathbb{P}^1 \times \{\infty\}) + I_{(c, \infty)}(\Delta_2, \mathbb{P}^1 \times \{\infty\}).
\]
Then, we can prove that the germs Z'_l of irreducible curves in Theorem 1.1 are the germs at (c, ∞) of the irreducible branches of $\Delta_1 \cup \Delta_2$. The multiplicity m_l of $i_+(f, g)_+ (\mathcal{O}_{C^2})$ on $T_{Z'_l} V$ are the multiplicity of Z_k in $\Delta_1 \cup \Delta_2$.

References