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On a Curvature Condition that Implies
a Cohomology Injectivity Theorem

of Kollár-Skoda Type

By

Takeo Ohsawa
∗

Abstract

The curvature condition for the singular Hermitian metric in a generalized L2

extension theorem on complex manifolds implies also a cohomology injectivity theo-
rem in certain circumstances. This shows that the curvature condition is still available
for the extension theorem in more general situations than before.

§1. Introduction

Let M be a complex manifold, let S ⊂ M be a complex analytic subset,
and let E → M be a holomorphic vector bundle. An extension problem in
complex analysis asks for the conditions on the triple (M, S, E) under which
the restriction map from the set of holomorphic sections of E over M to that
over S is surjective. It is known from a celebrated work of H. Cartan [C]
that this extension problem is solvable for any pair if M is a Stein manifold.
More refined extendability criterion with respect to the sections with growth
conditions has been studied from various viewpoints. As for the L2 spaces of
holomorphic sections, results have been obtained in [O-T], [M], [D-2]. (See also
[O-2, 4, 5, 6].) These are derived by exploiting a “twisted” variant of Nakano’s
identity and described, under natural assumptions on M for smooth S, in terms
of the curvature property of (M, S, E) (cf. [O-5,Theorem 4]).
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566 Takeo Ohsawa

On the other hand, if the singular locus of S is nonempty, it may occur
that some bounded holomorphic functions are not L2 extendable with respect
to a finite measure (cf. [D-M]). Even the presence of an isolated singularity in
S changes the situation in an essential way (cf. §4).

Nevertheless, in some extension problem arising from the classification
theory of algebraic varieties, the curvature condition which arose in the L2

extension theorem is still available to give a sufficient condition for the extend-
ability of certain cohomology classes from singular subvarieties. This can be
observed, for instance, from the works of Tankeev [Tn], Kollár [K], Enoki [E]
and Takegoshi [Tg].

The purpose of the present article is to pursue this point by establishing
the following.

Theorem 1.1. Let M be a weakly 1-complete Kähler manifold, let
(E, h) be a Hermitian holomorphic vector bundle over M , and let (L, b) be a
Hermitian holomorphic line bundle over M . Suppose that the curvature forms
Θh, Θb of h, b satisfy Θh ≥ 0 and Θh−ε IdE ⊗Θb ≥ 0 for some ε > 0, both in the
sense of Nakano. Then, for any nonzero holomorphic section s of L, the kernel
of the multiplication homomorphism s : Hq(M, KM⊗E) → Hq(M, KM⊗E⊗L)
is contained in the closure of zero for any q. Here KM denotes the canonical
line bundle of M .

Since the analytic cohomology groups of holomorphically convex manifolds
are known to be Hausdorff in virtue of Grauert’s direct image theorem and
Remmert’s reduction theorem, the following is an immediate consequence of
Theorem 1.1.

Corollary 1.1. Under the situation of Theorem 1, suppose moreover
that M is holomorphically convex. Then the restriction maps

Hq(M, KM ⊗ E ⊗ L) → Hq(s−1(0), KM ⊗ E ⊗ L)

are surjective for any q. Here s−1(0) is equipped with the structure of complex
analytic space with structure sheaf OM/sOM (L−1).

As for Theorem 1.1, a general result of this type was first established by
Kollár [K] for the nonsingular projective varieties.

It was proved in [Tg] that Theorem 1.1 is true if E = E0 ⊗ F k(k ≥ 1)
and L = F j(j ≥ 1) for some Nakano semipositive vector bundle E0 and a
semipositive line bundle F. Thus Theorem 1.1 strengthens Takegoshi’s result
by weakening the curvature assumptions.
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Since the corollary is an extension theorem from divisors, it is natural to
expect its generalization to higher codimensional cases. Indeed, by a similar
argument we are able to prove the following Skoda type injectivity theorem
(cf. [Sk]).

Theorem 1.2. Let M be a weakly 1-complete Kähler manifold, let
(E, h) be a Hermitian holomorphic vector bundle over M , and let I be a coher-
ent ideal sheaf of OM . Suppose that there exists a C2 function σ : M → [0,∞)
with σ−1(0) = suppOM/I such that

Θh + (1 + t) IdE ⊗∂∂ log σ ≥ 0

holds on M \ σ−1(0) for 0 ≤ t < ε for some ε > 0 and that

Ix =
{

fx|f is holomorphic on some coordinate neighbourhood

U � x and satisfies that
∫

U

|f |2/σ < ∞
}

.

Then the kernel of the homomorphism

Hq(M, KM ⊗ E ⊗ I) → Hq(M, KM ⊗ E)

is contained in the closure of zero for any q ≥ 0. Here we identify E with
OM (E) for simplicity.

Restricting ourselves to holomorphically convex manifolds we obtain

Theorem 1.3. If M is a holomorphically convex Kähler manifold and
E is a holomorphic line bundle over M equipped with a singular Hermitian
metric h = h0e

−ψ, with h0 ∈ C∞ and ψ ∈ L1
loc, such that Θh ≥ 0 and Θh −

ε IdE ⊗∂∂ψ ≥ 0 for some ε > 0, in the sense of current, then the restriction
map

Hq(M, KM ⊗ E) → Hq(M, KM ⊗ E ⊗ (OM/I(h)))

is surjective for any q, where I(h) denotes the multiplier ideal sheaf of h.

The reader will be reffered to [D-2, Remark 3.2 and Theorem 4.1, Step
4.6] for the supplementary argument to take care of the possible irregularity of
ψ. We note that Theorem 1.3 is a natural generalization of Nadel’s vanishing
theorem [Nd], also in Skoda’s spirit. In §4 we shall give its application to the
analytic Zariski decomposition. It will be shown that, if the canonical bundle of
M admits analytic Zariski decomposition be−ψ with certain curvature property



�

�

�

�

�

�

�

�

568 Takeo Ohsawa

(see §4), then the (ideal) support of the multiplier ideal sheaf of be−ψ does not
contain any isolated point.

The author would like to thank the referee for valuable criticism.

§2. Preliminaries

Let (M, g) be a connected complete Kähler manifold of dimension n, let
Cp,q

0 (M) be the space of C∞(p, q)-forms on M with compact support, and let
∂ be the complex exterior differentiation of type (0, 1) acting on the space of
(p, q)-currents. Let (E, h) be a Hermitian holomorphic vector bundle over M .
By Cp,q

0 (M, E)(resp. Kp,q(M, E)) we denote the space of E-valued C∞(p, q)-
forms with compact support (resp. that of E-valued (p, q)-currents). Metrics
are supposed to be C∞, or differentiable to any necessary order.

For u, v ∈ Cp,q
0 (M, E), let (u, v)(= (u, v)g,h) be the inner product of u and

v defined by the integral

(u, v) =
∫

M

〈u, v〉dV

where 〈u, v〉 denotes the pointwise inner product of u and v with respect to g

and h, and dV the volume form with respect to g. Then we define the L2 norm
‖ u ‖ of u by ‖ u ‖2 (=‖ u ‖2

g,h) = (u, u). Let ω(= ωg) be the fundamental
form of g. By e(ω) we denote the exterior multiplication by ω. The adjoint of
e(ω) with respect to 〈, 〉 will be denoted by Λ. Let ∗ be the star operator with
respect to g. Then, identifying the fiber metric h naturally with a section of
Hom(E, E

∗
), E

∗
being the dual of the complex conjugate E of E, and letting

h operate on Cp,q
0 (M, E) coefficientwise, we have

(u, v) =
∫

M

h(u) ∧ ∗v

where ∗v = ∗v. The curvature of h is defined as an operator by

∂ ◦ h−1 ◦ ∂ ◦ h + h−1 ◦ ∂ ◦ h ◦ ∂

which we identify with the exterior multiplication by a Hom(E, E)-valued
(1, 1)-form, the curvature form of h, denoted by Θh. With respect to a
local coordinate (z1, . . . , zn) of M and a local fiber coordinate of E, Θh is
locally expressed as

Θh =
( ∑

α,β

Θµ

αβν
dzα ∧ dzβ

)
µ,ν

.

(E, h) and Θh are said to be Nakano semipositive, or semipositive in the sense of
Nakano, if hΘ is semipositive as a Hermitian form on the fibers of T 1,0

M ⊗E, T 1,0
M
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being the holomorphic tangent bundle of M . In terms of the local coordinates,
this is equivalent to saying that the quadratic form

∑
α,β,ν,κ

(∑
µ

Θµ

αβν
hµκ

)
ξανξ

βκ

is semipositive. Here hµκ is the local expression of h. In what follows we
shall identify Θh with the curvature operator ∂h−1∂h + h−1∂h∂ and denote
the Nakano semipositivity simply by Θh ≥ 0. It is easy to see that Θh ≥ 0 if
and only if

(1) 〈
√
−1ΘhΛu, u〉 ≥ 0

holds for any u ∈ Cn,1
0 (M, E) and that (1) holds for any (n, q)-form if it holds

for the (n, 1)-forms (cf. [S]).
We put ϑ = −∗∂∗ and define the operators ϑh and ∂h by (∂u, v) = (u, ϑhv)

and (∂hu, w) = (u, ϑw), respectively. These operators are naturally extended
so that they act on the spaces Kp,q(M, E).

Since g is Kählerian, Nakano’s formula says

(2) ∂ϑh + ϑh∂ − ∂hϑ − ϑ∂h =
√
−1(ΘhΛ − ΛΘh)

(cf. [W]).
For any p-form θ on M , let e(θ) denote the exterior multiplication by θ

from the left hand side, and let e(θ)∗ be the adjoint of e(θ) with respect to 〈, 〉.
Then

(3) ∂e(α)∗ + e(α)∗∂ + ϑe(α) + e(α)ϑ =
√
−1(e(∂α)Λ − Λe(∂α))

holds for any (0, 1)-form α (of class C1) on M (cf. [O-5, Lemma 1]).
Combining (2) with (3), for any C2 positive function η on M one has

∂e(η)ϑh + ϑhe(η)∂ − ∂he(η)(ϑ) − (ϑ)e(η)∂h(4)

=
√
−1e(η)((Θh − IdE ⊗e(η−1∂∂η))Λ − Λ(Θh − IdE ⊗e(η−1∂∂η)))

+ e(∂η)ϑh + ∂e(∂η)∗ + ϑe(∂η) + e(∂η)∗∂h.

Therefore, for any u ∈ Cn,q
0 (M, E), the equality

||√ηϑhu||2 + ||√η∂u||2 − ||√ηϑu||2(5)

= (
√
−1η(Θh − IdE ⊗e(η−1∂∂η))Λu, u) + 2Re(e(∂η)ϑhu, u)

holds true.



�

�

�

�

�

�

�

�

570 Takeo Ohsawa

Let Lp,q
(2)(M, E)(= Lp,q

(2)(M, E)g,h) be the space of square integrable E-
valued (p, q)-forms with respect to g and h. Since g is complete, the equality
(5) carries over to the subspace

Dn,q = {u ∈ Ln,q
(2) (M, E)|∂u ∈ Ln,q+1

(2) (M, E) and ϑhu ∈ Ln,q−1
(2) (M, E)}

if Θh − IdE ⊗η−1∂∂η is Nakano semipositive and η + |∂η| is bounded. This
fact, which is now classical, can be shown by approximating the form by
compactly supported ones by multiplying the cut off functions of the form
χR(x) := χ(dist(x0, x)/R)(R > 0), where χ is a C∞ real valued function on R

satisfying χ(t) = 1 for t < 1 and χ(t) = 0 for t > 2, and dist(x0, x) denotes the
distance from a fixed point x0 ∈ M to x (cf. [A-V]).

Even if η + |∂η| is not bounded we have still the following, which we shall
need later.

Lemma 2.1. Suppose that η is bounded and that there exists a constant
ε > 0 such that

(6) ηΘh − IdE ⊗∂∂η − ε IdE ⊗∂η∂η ≥ 0

holds everywhere. Then the equality (5) holds for all u ∈ Dn,q.

Proof. Given any u ∈ Dn,q, put uk = χku where χk is as above. Then
it is easy to verify, by using the assumption (6), that a subsequence of uk

converges to u with respect to the graph norm of ∂ + ϑh Since supp uk is
compact, there exists a sequence uk,l ∈ Cn,q

0 (M, E) such that uk,l converges to
uk with respect to the graph norm of ∂ +ϑh. For such uk,l, ϑuk,l also converges
because (

√
−1(Θh − IdE ⊗e(η−1∂∂η))Λu, u) ≥ 0 by assumption. Therefore uk

belongs to the domain of ϑ so that (5) also holds for uk. By (6) we have also
that 2Re(e(∂η)ϑhuk, uk) → 2Re(e(∂η)ϑhu, u) as k → ∞. Hence by taking the
limit of (5) for uk we obtain the conclusion.

§3. Harmonic Forms on Weakly 1-complete Kähler Manifolds

Let M be a complex manifold equipped with a plurisubharmonic exhaus-
tion function ϕ. M is said to be Ck-pseudoconvex if ϕ is of class Ck. C0-
pseudoconvex manifolds are simply said to be pseudoconvex. If ϕ is allowed
to have discontinuities, M is called weakly pseudoconvex. C∞-pseudoconvex
manifolds are called weakly 1-complete. (Not so much is known about the
distinction between these classes.)



�

�

�

�

�

�

�

�

Injectivity Theorem of Kollár-Skoda Type 571

In the sequel we assume for simplicity that M is a weakly 1-complete
manifold, although some of the results are extended to the weakly pseudoconvex
case.

Let us fix a weakly 1-complete manifold (M, ϕ) of dimension n equipped
with a complete Kähler metric g. (Note that every weakly 1-complete Kähler
manifold admits a complete Kähler metric (cf. [N]). For any Hermitian holo-
morphic vector bundle (E, h) over M we put

Hp,q(E)(= Hp,q(E)g,h) = {u ∈ Lp,q
(2)(M, E)|∂u = 0 and ϑhu = 0}.

Let (L, b) be a Hermitian holomorphic line bundle over M which has a
nonzero holomorphic section s. We shall first describe a condition on (g, h, b)
under which the inclusion sHn,q(E) ⊂ Hn,q(EL) holds true, by refining the
arguments of Enoki [E] and Takegoshi [Tg].

Let |s| (resp. |s|ϕ) be the pointwise norm of s with respect to the fiber
metric b (resp. be−ϕ). Note that −∂∂ log |s|2 = Θb outside s−1(0).

Let λ : R → [0,∞) be a C∞ convex increasing function such that 4|s|2 <

eλ(ϕ). Then we put

η(= ηε) = − log(|s|2λ(ϕ) + ε) + log(− log(|s|2λ(ϕ) + ε)) +
1
ε

for 0 < ε <
1
4
.

Then, under the curvature conditions that Θh ≥ 0 and Θh−ε0 IdE ⊗Θb ≥ 0

for some ε0 > 0, one can find 0 < ε1 <
1
4

such that

(7) ηΘh − IdE ⊗∂∂η ≥ IdE ⊗η−2∂η∂η

holds for 0 < ε < ε1. This can be shown by differentiating η (cf. [O-5]).
It is clear that η is bounded and hence (7) implies (6).
In this situation we have (5) for all u ∈ Dn,q(q ≥ 0) by Lemma 1. In

particular, for any u ∈ Hn,q(E)g,h we have, combining (5) with (7),

(
√
−1η−2∂η ∧ ∂η ∧ Λu, u) = 0

which immediately implies that ϑh∗(su) = 0 holds for h∗ = he−λ(ϕ)b for all q

because η is a function of |s|λ(ϕ).

Thus we obtain the following.

Proposition 3.1. Let (M, ψ, g) be a weakly 1-complete Kähler manifold
of dimension n, and let (E, h), (L, b), s, λ be as above. Then there exists a



�

�

�

�

�

�

�

�

572 Takeo Ohsawa

complete Kähler metric g∗ on M such that, for any C∞ convex increasing
function ν, sHn,q(E)g∗,he−λ(ϕ) is contained in Hn,q(E ⊗ L)g∗,he−ν(ϕ)−λ(ϕ)b for
all q.

Proof of Theorem 1.1. Let λ and g∗ be as above, and let u be any ∂-closed
E- valued (n, q)-form on M such that su = ∂̄v for some v. Then we choose the
above ν in such a way that u ∈ Ln,q

(2) (M, E) and v ∈ Ln,q
(2) (M, E ⊗ L). Let Hu

be the orthogonal projection of u to Hn,q(E). Since u − Hu is in the closure
of the image of ∂, so is s(u − Hu). But sHu ∈ Hn,q(E ⊗ L) by Proposition
3.1, so that sHu coincides with the orthogonal projection of su to Hn,q(E, L),
which must be equal to zero since v ∈ Ln,q−1

(2) (M, E ⊗ L). Therefore Hu = 0,
so that u represents a cohomology class contained in the closure of zero in
Hq(M, KM ⊗ E).

§4. Proof of Theorem 1.2

Let I and σ be as in the statement of Theorem 1.2. In order to argue
as in the proof of Theorem 1.1, we first identify the sheaf cohomology group
Hq(M, KM ⊗ E ⊗ I) with certain ∂-cohomology group on M \ σ−1(0).

For that, let g′ be a complete Kähler metric on M \ σ−1(0) such that, for
any point p ∈ M one can find a neighbourhood U of p, a Hermitian metric
gU on U , and a bounded C∞ function ψ on U \ σ−1(0) satisfying g′ > gU

and g′ = ∂∂ψ on U \ σ−1(0). As such a metric g′ one may take for instance a
metric of the form g+∂∂(

∑
α ρα(log(− log ‖fα‖))−1). Here fα = (fα1, . . . , fαm)

are systems of local generators of I and {ρα}α is a locally finite system of
nonnegative C∞ cut off functions with |∂ρα|g + |∂∂ρα|g � 1 and

∑
α ρα > 0

(‖fα‖2 = |fα1|2 + . . . + |fαm|2) (cf. [O-3]).
Then, by the L2 vanishing theorem of Demailly [D-1] (cf. also [O-1]), one

has

Hq(M, KM ⊗ E ⊗ I) � Hn,q
(2),loc(M, E)g′,h/σ.

Here Hn,q
(2),loc(M, E)g′,h/σ is defined as the quotient of

{
u ∈ Ln,q

(2),loc(M, E)g′,h/σ

∣∣ ∂u = 0
}

by Ln,q
(2),loc(M, E)g′,h/σ∩∂Ln,q−1

(2),loc(M, E)g′,h/σ, where Ln,q
(2),loc(M, E)g′,h/σ stands

for the space of measurable E-valued (n, q)-forms on M \ σ−1(0) which are
square integrable on U \ σ−1(0) for all U � M with respect to g′ and h/σ .
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Let us put

Hn,q(E ⊗ I)g′,h/σ =
{

u ∈ Ln,q
(2) (M, E)g′,h/σ

∣∣ ∂u = ϑh/σu = 0
}

Hn,q(E)g′,h =
{

u ∈ Ln,q
(2) (M, E)g′,h

∣∣ ∂u = ϑhu = 0
}

.

Then, similarly as in the proof of Theorem 1.1, it follows directly from the
curvature assumption that

Hn,q

g′,he
−ν(ϕ)/σ

(E ⊗ I) ⊂ Hn,q
g′,he−ν(ϕ)

holds for any choice of C∞ convex increasing function ν, by modifying in ad-
vance h to he−λ(ϕ) and σ to e−λ(ϕ)σ if necessary.

Therefore, if u represents an element in the kernel of Hq(M, KM⊗E⊗I) →
Hq(M, KM ⊗E), its harmonic part must be zero for some g′ and ν. Therefore
u must be in the closure of zero in Hq(M, KM ⊗ E ⊗ I).

§5. Application and Some Remarks

We shall derive a relation between the curvature property of canonical
bundles and the “size” of the support of the associated multiplier ideal sheaves
as an application of Theorem 1.3. Finally we add some remarks on the relation
of our results with the L2 extension theory.

Definition 5.1. A holomorphic line bundle L → M is said to be pseudo-
effective if there exists a C∞ fiber metric b of L and a locally integrable non-
positive function ψ on M satisfying

(8)
√
−1(Θb + ∂∂ψ) ≥ 0

in the sense of (1, 1)-current.

This notion is the analytic analogue of pseudoeffective divisors (cf. [DPS]).
be−ψ is then called a singular fiber metric of L.

Let Iψ be the sheaf of ideals in OM defined by

Iψ,x =
{

fx

∣∣ ∫
U

e−ψ|f |2 < ∞ for some neighbourhood U of x

}
.

Iψ is coherent (cf. [Nd]).

Proposition 5.1. Let L be a pseudoeffective line bundle over a weakly
1-complete manifold (M, ϕ). Then there exists a C∞ fiber metric b of L and a
locally integrable function ψ on M such that
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(i) sup ψ ≤ 0

(ii)
√
−1(Θb + ∂∂ψ) ≥ 0

(iii) The inclusion H0(M, Lk⊗Ikψ) ⊂ H0(M, Lk) is an isomorphism for every
k ≥ 1.

Proof. Let Mj = {x | ϕ(x) < j}. Then one can find a C∞ fiber metric b

of L and locally integrable functions ψj on Mj satisfying (i), (ii), (iii) for Mj

in such a way that ψj is a decreasing sequence on each Mj0 for j0 ≤ j (cf.
[D-2, Proof of Proposition 8.4]). By taking a sufficiently rapidly increasing
function λ, and replacing b by be−λ(ϕ), one may assume that ψj < ψj+1 + 2−j

on Mj−1. Then the fiber metric be−λ(ϕ) and the function inf ψj satisfies the
required properties.

The singular fiber metric be−ψ as above is called an analytic Zariski
decomposition of L by Tsuji [Tj].

Proposition 5.2. Let M be a holomorphically convex Kähler manifold
with seminegative canonical bundle, and let L be a pseudoeffective line bundle
over M . Suppose that there exists an analytic Zariski decomposition be−ψ of L

such that, for M ′ := M \ supp(OM/Iψ), ψ|M ′ ∈ C∞ and Θb + (1 + ε)∂∂ψ ≥ 0
on M ′ for some ε > 0. Then H0(M, L/IψL) = 0. In particular supp(OM/Iψ)
does not contain any isolated point.

Proof. Since KM ≤ 0 it follows from Theorem 1.3 that the restriction
map H0(M, L) → H0(M, L/IψL) is surjective, whose image is zero by (iii).
Hence H0(M, L/IψL) must be zero.

Proposition 5.3. Let M be a holomorphically convex Kähler manifold
whose canonical bundle is pseudoeffective and admits an analytic Zariski de-
composition be−ψ such that ψ|M ′ ∈ C∞ and

{
Θb + (1 + ε)∂∂ψ

}
|M ′ ≥ 0 for

some ε > 0. Then H0(M, K2
M/IψK2

M ) = 0 . In particular, supp(OM/Iψ) does
not contain any isolated point.

Proof. Since H0(M, K2
M ⊗ I2

ψ) = H0(M, K2
M ) by (iii), one has à fortiori

H0(M, K2
M ⊗Iψ) = H0(M, K2

M ). On the other hand, by Theorem 1.3 we have
the surjectivity of the restriction map H0(M, K2

M ) → H0(M, K2
M/IψK2

M ).
Therefore H0(M, K2

M/IψK2
M ) = 0.
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In the L2 extension theory, it is assumed that either M is a weakly pseu-
doconvex Kähler manifold (cf. [D-2]) or M admits a nowhere dense subset X

whose complement is Stein, such that X is locally negligible with respect to L2

holomorphic functions (cf. [O-5]). The latter is satisfied by a certain class of
non-Kähler manifolds as Hopf manifolds C

n \ {0} /Z(n ≥ 2). An analogue of
Theorem 1.2 is true also in this situation.

Theorem 5.1. Let M be a weakly 1-complete manifold, let (E, h) be a
Hermitian holomorphic vector bundle over M , and let I be a coherent ideal
sheaf over M . Suppose that E and I satisfy the curvature condition as in
Theorem 1.2 and that M contains a nowhere dense closed subset X such that
M \X admits a complete Kähler metric which dominates a Hermitian metric of
M outside X, and that each point of X has a coordinate neighbourhood U such
that every L2 holomorphic function on U \ X is holomorphically extendable to
U . Then the kernel of the homomorphism

ι : H1(M, KM ⊗ E ⊗ I) → H1(M, KM ⊗ E)

is contained in the closure of zero. If moreover M is holomorphically convex,
then ι is injective.

The proof goes similarly as that of Theorem 1.2. Namely, if u represents
an element in the kernel of the homomorphism from H1(M, KM ⊗ E ⊗ I) to
H1(M, KM ⊗E), by restricting u to M \X \ supp(OM/I) we take its harmonic
representative with respect to the sum of the prescribed metric on M \ X and
the Levi form of some function on M \ supp(OM/I) , which is complete, and
a suitable singular fiber metric of E as before. If the curvature condition is
satisfied, then we change the fiber metric as before in order that we can take
the harmonic part of u and conclude its nullity. Since deg u = 1, this proves
that the harmonic part of u with respect to the original metric on M is also
zero. (Remember that the L2 condition for the (n, 0)-forms does not depend
on the choice of the metrics on the manifolds.)

We note that the following is essentially contained in the generalized L2

extension theorem in [O-5].

Theorem 5.2. Under the situation of Theorem 5.1, suppose that M \X

is Stein, (supp(OM/I),OM/I) is nonsingular (i.e. reduced and smooth), and
that X does not contain any component of supp(OM/I). Then the homomor-
phism H1(M, KM ⊗ E ⊗ I) → H1(M, KM ⊗ E) is injective.

We would like to add two remarks on L2 extendability from singular vari-
eties.
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Proposition 5.4. Let D be a bounded pseudoconvex domain in Cn, let
S be a closed complex analytic subset of some neighbourhood of D such that
∂D contains no singular points of S, and let S0 = S ∩ D. Then there exists a
constant C such that, for any L2 holomorphic function f on S0, there exists an

L2 holomorphic function
∼
f on D satisfying

∼
f |S0 = f and

∫
D
|
∼
f |2 ≤ C

∫
S0

|f |2.

Proof. Let Σ be the set of singular points of S contained in D. Since
Σ is a finite set, one can find a constant Ck, for any k ∈ N , such that for
any L2 holomorphic function f on S0 there exists a polynomial Pk satisfying∫

D
|Pk|2 ≤ Ck

∫
S0

|f |2 and

∫
S0

|f(z) − Pk(z)|2 dist(z, Σ)−k ≤ Ck

∫
S0

|f |2.

Here dist(z, Σ) denotes the euclidean distance between z and Σ.
Therefore, to find a required extension f with the L2 norm controle, one

has only to apply the L2 extension theorem of [O-5] for f(z)−Pk(z) by choosing
a sufficiently large k independently of f .

In contrast to this affirmative fact, the uniformity of the L2 extension is
lost if Σ �= φ, as the following example shows.

Counterexample. Let D be the open unit ball |z|2 + |w|2 < 1 in C2, let
S be defined by zw = 0, and let ϕk be a decreasing sequence of C∞ plurisub-
harmonic functions on D converging pointwise to log |z−w|2. Then there exist
no universal constants C such that, for any k and for any holomorphic function
f on S0 such that

∫
S0

e−ϕk |f |2 < ∞, there exists a holomorphic extension fk

of f to D satisfying
∫

D
e−ϕk |fk|2 ≤ C

∫
S0

e−ϕk |f |2. Infact, had there been such
a constant C, the function z(z − w)/(z + w) on S0 would be holomorphically
extendable to D in such a way that the extension vanishes on z = w, which is
clearly impossible.
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[C] Cartan, H., Séminaire: Théorie des fonctions de plusieurs variables, Paris 1951/52.

[D-1] Demailly, J.-P., Estimation L2 pour l’opérateur ∂ d’un fibré vectoriel holomorphe
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