A Cabling Formula for the 2-Loop Polynomial of Knots†

By

Tomotada OHTSUKI∗

Abstract

The 2-loop polynomial is a polynomial presenting the 2-loop part of the logarithm of the Kontsevich invariant of knots. We show a cabling formula for the 2-loop polynomial of knots. In particular, we calculate the 2-loop polynomial for torus knots.

§1. Introduction

The Kontsevich invariant is a very strong invariant of knots (which dominates all quantum invariants and all Vassiliev invariants) and it is expected that the Kontsevich invariant will classify knots. A problem when we study the Kontsevich invariant is that it is difficult to calculate the Kontsevich invariant of an arbitrarily given knot concretely. It has recently been shown [20, 9, 6]1 that the infinite sum of the terms of the logarithm of the Kontsevich invariant with a fixed loop number is presented by using polynomials (after appropriate normalization by the Alexander polynomial). In particular, it is known2 that

1This article is an invited contribution to a special issue of Publications of RIMS commemorating the fortieth anniversary of the founding of the Research Institute for Mathematical Sciences.

2000 Mathematics Subject Classification(s): 57M27, 57M25.

Key words: knot, 2-loop polynomial, Kontsevich invariant, cabling.

†This article is an invited contribution to a special issue of Publications of RIMS commemorating the fortieth anniversary of the founding of the Research Institute for Mathematical Sciences.

∗RIMS, Kyoto University, Kyoto 606-8502, Japan.
e-mail: tomotada@kurims.kyoto-u.ac.jp

1It was conjectured by Rozansky [20]. The existence of such rational presentations has been proved by Kricker [9] (though such a rational presentation itself is not necessarily a knot invariant in a general loop degree). Further, Garoufalidis and Kricker [6] defined a knot invariant in any loop degree, from which such a rational presentation can be deduced.

2This follows from the theory of [2] on the MMR conjecture. See also [9, 6] and references therein.

© 2004 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
the 1-loop part is presented by the Alexander polynomial. The polynomial giving the 2-loop part is called the 2-loop polynomial. The values of the 2-loop polynomial has been calculated so far only for particular\(^3\) classes of knots.

In this paper, we give a cabling formula for the 2-loop polynomial (Theorem 4.1), which presents the 2-loop polynomial of a cable knot (see Figure 1) of a knot \(K\) in terms of the 2-loop polynomial of \(K\). In particular, we calculate a formula of the 2-loop polynomial for torus knots (Theorem 3.1). This formula and the cabling formula are also obtained independently by Marché [14, 15].

\[\text{Figure 1. A cable knot of a knot}\]

This paper is organized as follows. In Section 1 we review the definition of the 2-loop polynomial. In Section 2 we calculate the 2-loop polynomial of torus knots as the 2-loop part of the primitive part of the cabling formula of the Kontsevich invariant of the trivial knot. In Section 3 we give a cabling formula for the 2-loop polynomial. In Section 4 we show relations to some Vassiliev invariants. In Section 5 we present the \(sl_2\) reduction of the 2-loop polynomial by a 1-variable reduction of it.

The author would like to thank Andrew Kricker, Thang Le, Lev Rozansky, Julien Marché, Stavros Garoufalidis, Dror Bar-Natan for valuable discussions and comments. He is also grateful to the referee for careful comments.

§2. The Kontsevich Invariant and the 2-Loop Polynomial

The 2-loop polynomial is a polynomial presenting the 2-loop part of the logarithm of the Kontsevich invariant. In this section, we review its definition and a cabling formula of the Kontsevich invariant.

An open Jacobi diagram is a uni-trivalent graph such that a cyclic order of the three edges around each trivalent vertex of the graph is fixed. Let \(A(*)\) be

\(^{3}\)A table of the 2-loop polynomial for knots with up to 7 crossings is given by Rozansky [21]. The 2-loop polynomial of knots with the trivial Alexander polynomial can often been calculated by surgery formulas [6, 10].
the vector space over \mathbb{Q} spanned by open Jacobi diagrams subject to the AS and IHX relations; see Figure 2 for the relations.

\[
\text{The AS relation: } \quad \begin{array}{c}
\includegraphics[scale=0.5]{AS_relation.eps}
\end{array} = - \begin{array}{c}
\includegraphics[scale=0.5]{AS_relation.eps}
\end{array}
\]

\[
\text{The IHX relation: } \quad \begin{array}{c}
\includegraphics[scale=0.5]{IHX_relation.eps}
\end{array} = \begin{array}{c}
\includegraphics[scale=0.5]{IHX_relation.eps}
\end{array} - \begin{array}{c}
\includegraphics[scale=0.5]{IHX_relation.eps}
\end{array}
\]

Figure 2. The AS and IHX relations

The Kontsevich invariant $Z^\sigma(K)$ of a framed knot K is defined in $\mathcal{A}(\ast)$; for a definition\footnote{In literatures, the Kontsevich invariant is often defined by $Z(K)$ in the space $\mathcal{A}(S^1)$. The version $Z^\sigma(K)$ is defined to be the image of $Z(K)$ by the inverse map σ of the Poincare-Birkhoff-Witt isomorphism $\mathcal{A}(\ast) \to \mathcal{A}(S^1)$.} see e.g. [17]. It is known [12] that the value of the Kontsevich invariant for each knot is group-like, which implies that it is presented by the exponential of some primitive element. That is, $Z^\sigma(K)$ is presented by the exponential of a primitive element, where a primitive element of $\mathcal{A}(\ast)$ is a linear sum of connected open Jacobi diagrams.

For example, it is shown [4] that the Kontsevich invariant of the trivial knot, denoted by Ω, is presented by

$$Z^\sigma(\text{the trivial knot}) = \Omega = \exp_\sqcup(\omega),$$

where \exp_\sqcup denotes the exponential with respect to the disjoint-union product, and ω is defined by

$$\omega = \frac{1}{2} \log \frac{\sinh(x/2)}{x/2}.$$

Here, a label of a power series $f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$ implies

$$f(x) = c_0 + c_1 + c_2 + c_3 + \cdots,$$

where a label is put on either of the sides of an edge, and the corresponding
legs are written in the same side of the edge.\(^5\) Note that \(f(x) = \left| f(-x) \right| \) by the AS relation, in the notation of this paper.

Let \(K\) be a framed knot with 0 framing. (Throughout this paper, we often mean a framed knot with 0 framing also by a knot, abusing terminology.) A connected open Jacobi diagram is called an \(n\)-loop diagram when the first Betti number of the uni-trivalent graph of the diagram is equal to \(n\). The loop expansion of the Kontsevich invariant is given by

\[
\log_{\sqcup} Z^n(K) = \frac{1}{2} \log \frac{\sinh(x/2)}{x/2} - \frac{1}{2} \log \Delta_K(e^x)
\]

\[
+ \sum_{i} \left(\frac{p_{i,1}(e^x)/\Delta_K(e^x)}{p_{i,2}(e^x)/\Delta_K(e^x)} \right) + \text{(terms of (≥ 3)-loop)},
\]

where \(\log_{\sqcup}\) denotes the logarithm with respect to the disjoint-union product, and \(\Delta_K(t)\) is the normalized\(^6\) Alexander polynomial of \(K\), and \(p_{i,j}(e^x)\) is a polynomial in \(e^x\). The 2-loop part is characterized by the polynomial,

\[
\Theta_K'(t_1, t_2, t_3) = \sum_{i} p_{i,1}(t_1)p_{i,2}(t_2)p_{i,3}(t_3).
\]

We call its symmetrization,\(^7\)

\[
\Theta_K(t_1, t_2, t_3) = \sum_{\{i,j,k\} = \{1,2,3\}} \Theta_K'(t_1^i, t_2^j, t_3^k) \in \mathbb{Q}[t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}]/(t_1t_2t_3 = 1),
\]

the 2-loop polynomial of \(K\), which is an invariant\(^8\) of \(K\). (Note that this normalization of \(\Theta_K(t_1, t_2, t_3)\) is 12 times the usual normalization.) \(\Theta_K(t, t^{-1}, 1)\)

\(^5\)Our notation is different from the notation in [6, 10] where a label of an edge is defined by setting a local orientation of the edge that determines the side in which we write the corresponding legs.

\(^6\)We suppose that \(\Delta_K(t)\) is normalized, satisfying that \(\Delta_K(t) = \Delta_K(t^{-1})\) and \(\Delta_K(1) = 1\).

\(^7\)With respect to the symmetry of the theta graph, of order 12.

\(^8\)This is not trivial, since there is another 2-loop trivalent graph, what is called, a “dumbbell diagram”.
is a symmetric polynomial in \(t^{\pm 1} \) divisible by \(t - 1 \) (since \(\Theta_K (1, 1, 1) = 0 \)) and, hence, divisible by \((t - 1)^2 \). We define the reduced 2-loop polynomial by

\[
\hat{\Theta}_K(t) = \frac{\Theta_K(t, t^{-1}, 1)}{(t^{1/2} + t^{-1/2})^2} \in \mathbb{Q}[t^{\pm 1}],
\]

which is a symmetric polynomial in \(t^{\pm 1} \). This gives the \(sl_2 \) reduction of the 2-loop polynomial; see Proposition 6.1.

Let us review the cabling formula of the Kontsevich invariant of [4]. Another version of the Kontsevich invariant, called the wheeled Kontsevich invariant [3], is defined by

\[
Z^w(K) = \partial^{-1} \Omega Z^\sigma(K),
\]

where \(\partial : A(\ast) \to A(\ast) \) is the wheeling isomorphism; see [4]. Here, for open Jacobi diagrams \(C \) and \(D \), \(\partial_C(D) \) is defined to be 0 if \(C \) has more univalent vertices than \(D \), and the sum of all ways of gluing all univalent vertices of \(C \) to some univalent vertices of \(D \) otherwise. We graphically present it by

\[
\partial_C(D) = \begin{array}{c}
\circlearrowleft \\
C \\
\circlearrowleft \\
\text{[Diagram]}
\end{array}
\begin{array}{c}
\circlearrowright \\
D \\
\circlearrowright \\
\text{[Diagram]}
\end{array}.
\]

Let \(\Psi(p) : A(\ast) \to A(\ast) \) be the map which takes a diagram with \(k \) univalent vertices to its \(p^k \) multiple. The \((p, q) \) cable knot of a knot \(K \) is the knot given by a simple closed curve on the boundary torus of a tubular neighborhood of \(K \) which winds \(q \) times in the meridian direction and \(p \) times in the longitude direction (see e.g. [13]); for example see Figure 1. The cabling formula of the Kontsevich invariant is given by

\[
\text{Proposition 2.1} \quad \text{Let ([4], see also [22]). Let } K \text{ be a framed knot with 0 framing, and let } K^{(p,q)} \text{ be the } (p,q) \text{ cable knot of } K \text{ (with 0 framing). Then,}
\]

\[
Z^w(K^{(p,q)}) = \partial^{-1} \Omega Z^\sigma(K) \sqcup \exp\left(\frac{q}{2p} \right) - \frac{q}{48p} \theta \right)
\sqcup \exp\left(- \frac{pq}{2} \right) + \frac{pq}{48} \theta.
\]

§3. The 2-Loop Polynomial of a Torus Knot

In this section, we calculate the 2-loop polynomial of a torus knot, picking up the 2-loop part of the primitive part of the cabling formula of the Kontsevich
invariant of the trivial knot. The 2-loop part of the logarithm of the Kontsevich invariant for torus knots is also calculated10 independently by Marché [14, 15].

Figure 3. The (5, 3) torus knot

The torus knot $T(p, q)$ of type (p, q) is the (p, q) cable knot of the trivial knot (which is isotopic to $T(q, p)$); for example see Figure 3. It is known, see e.g. [13], that the Alexander polynomial of a torus knot is given by

$$\Delta_{T(p, q)}(t) = \frac{(tpq/2 - t^{-pq/2})(t^{1/2} - t^{-1/2})}{(tp/2 - t^{-p/2})(t^{q/2} - t^{-q/2})}.$$

Theorem 3.1. The 2-loop polynomial of the torus knot $T(p, q)$ of type (p, q) is given by11

$$\Theta_{T(p, q)}(t_1, t_2, t_3) = -\frac{1}{4} \sum_{i,j,k=1,2,3} \psi_{p,q}(t_i)\psi_{q,p}(t_j)\Delta_{T(p, q)}(t_k) \in \mathbb{Z}[t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}]/(t_1t_2t_3 = 1),$$

where $\psi_{p,q}$ is defined by

$$\psi_{p,q}(t) = \Delta_{T(p, q)}(t) \cdot \frac{(tp/2 + t^{-p/2})(t^{1/2} - t^{-1/2})}{tp/2 - t^{-p/2} - q(t^{pq/2} + t^{-pq/2})},$$

$$= (tp/2 - t^{-p/2})(t^{q/2} - t^{-q/2}) \times (tp/2 + t^{-p/2} - t^{-pq/2}).$$

In particular, $\Theta_{T(p, q)}(t_1, t_2, t_3)$ is a polynomial in $t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}$ with integer coefficients of degree $t_1(t_1 - 1)^{(p-1)(q-1)}.$

10Bar-Natan has also obtained some presentation of the wheeled Kontsevich invariant for torus knots (private communication).

11This value coincides with the value in [14, 15]. However, the values of the 2-loop polynomial for some torus knots in Table 2 of [21] have opposite signs to our values. The signs of some values in Table 2 of [21] might not be correct.
Remark. $\psi_{p,q}(t)$ is not a polynomial, but a rational function, while $\Theta_{T(p,q)}(t_1, t_2, t_3)$ is a polynomial. Rozansky [21] suggests that the 2-loop polynomial is a polynomial with integer coefficients; this holds for torus knots by the theorem. He also suggests a conjectural inequality

$$\text{degree}_{t_1}(\Theta_K(t_1, t_2, t_1^{-1}t_2^{-1})) \leq 2g(K),$$

where $g(K)$ denotes the genus of K. Since the genus of $T(p,q)$ equals $(p - 1)(q - 1)/2$ (see e.g. [13]), torus knots give the equality of the above formula.

Remark. The sl_2 reduction of the n-loop part of the primitive part of the Kontsevich invariant is equal to the nth line in the expansion of the colored Jones polynomial; see Section 6. Rozansky [19] has calculated it for torus knots.

For group-like elements $\alpha, \beta \in A(*)$ we write $\alpha \equiv \beta$ if $\log_{\Omega_{\alpha}} \alpha - \log_{\Omega_{\beta}} \beta$ is equal to a linear sum of Jacobi diagrams, either, of (≥ 3)-loop, or, having a component of a trivalent graph (i.e., a component with no univalent vertices).

Proof of Theorem 3.1. Since the torus knot $T(p,q)$ is obtained from the trivial knot by cabling, we have that

$$Z^w(T(p,q)) \equiv \partial^{-1}_\Omega \psi^{(p)} \partial_\Omega (\Omega \cup \exp_{\Omega_{\Omega}}(\frac{q}{2p}\bigcup)) \cup \exp_{\Omega_{\Omega}}(-\frac{pq}{2}\bigcup),$$

by Proposition 2.1. The first term of the right hand side is calculated as follows. From the definition of ∂_{Ω},

$$\partial_{\Omega} \left(\exp_{\Omega_{\Omega}} \left(\frac{q}{2p} \bigcup \right) \cup \Omega \right) = \Omega \cup \exp_{\Omega_{\Omega}} \left(\frac{q}{2p} \bigcup \right).$$

Since any component of Ω has a loop, the (≤ 1)-loop part of the primitive part of the right hand side has no edges between the two Ω’s, and, hence, the exponential of this part is presented by

$$\partial_{\Omega} \exp_{\Omega_{\Omega}} \left(\frac{q}{2p} \bigcup \right) \cup \Omega.$$

Further, its first term is given by

$$\partial_{\Omega} \exp_{\Omega_{\Omega}} \left(\frac{q}{2p} \bigcup \right) \equiv \exp_{\Omega_{\Omega}} \left(\frac{q}{2p} \bigcup \right) \cup \Omega_{\frac{1}{2}x},$$
where the equivalence is obtained in the same way as Lemma 6.3 of [4], and, as in [4], \(\Omega_{\frac{q}{p}} \) denotes the element obtained from \(\Omega \) by replacing open Jacobi diagrams with \(l \) legs by their \((q/p)^l\) multiples. The 2-loop part of the primitive part of the right hand side of (3.1) is equal to a linear sum of diagrams, each of which has precisely one edge between the two \(\Omega \)'s. Hence, it is presented by

\[
\begin{array}{c}
\begin{array}{c}
\bigcirc & \bigcirc & \exp\left(\frac{q}{2p}\right)
\end{array}
\end{array}
\]

Since

\[
\begin{array}{c}
\begin{array}{c}
\bigcirc & D & = & \bigcirc
\end{array}
\end{array}
\]

the previous diagram is equivalent to

\[
\begin{array}{c}
\begin{array}{c}
\bigcirc & \bigcirc
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
f(x) & f\left(\frac{q}{p}x\right)
\end{array}
\end{array}
\]

where \(f(x) \) is given by

\[
f(x) = \frac{d}{dx} \left(\frac{1}{2} \log \frac{\sinh x/2}{x/2} \right) = \frac{1}{4} \frac{e^{x/2} + e^{-x/2}}{e^{x/2} - e^{-x/2}} - \frac{1}{2x}.
\]

Hence, the \((\leq 2)\)-loop part of the primitive part of (3.1) is presented by

\[
\begin{array}{c}
\begin{array}{c}
\partial_{\Omega} \left(\exp\left(\frac{q}{2p}\right) \right) \cup \Omega
\end{array}
\end{array}
\]

\[
\equiv \exp\left(\frac{q}{2p}\right) \cup \Omega \cup \Omega_{\frac{q}{p}} \cup \exp\left(\frac{q}{p}\right).
\]

The map \(\Psi^{(p)} \) sends this to

\[
\begin{array}{c}
\begin{array}{c}
\exp\left(\frac{pq}{2}\right) \cup \Omega_{px} \cup \Omega_{qx} \cup \exp\left(\frac{pq}{2}\right)
\end{array}
\end{array}
\]

Further, \(\partial_{\Omega}^{-1} \) sends this (modulo the equivalence) to

\[
\begin{array}{c}
\partial_{\Omega}^{-1} \left(\exp\left(\frac{pq}{2}\right) \cup \Omega_{px} \cup \Omega_{qx} \right) \cup \exp\left(\frac{pq}{2}\right).
\]

\[
\begin{array}{c}
\begin{array}{c}
f(px) & f(qx)
\end{array}
\end{array}
\]
Its first term is graphically shown as

\[\exp \left(\frac{pq}{2} \right) \]

\[\Omega \quad \Omega \]

The 2-loop part of the primitive part of this diagram is calculated similarly as before; for example, when there is precisely one edge between \(\Omega^{-1} \) and \(\Omega_{pq} \), we have the following component,

\[\exp \left(\frac{pq}{2} \right) \]

\[f(px) \quad f(pqx) \]

\[f(qx) \quad f(pqx) \]

Thus, the 2-loop part of the primitive part of (3.3) is equal to

\[\left(\text{the 2-loop part of the primitive part of } \partial_{\Omega^{-1}} \exp \left(\frac{pq}{2} \right) \right) \]

\[f(px) \quad f(pqx) \quad f(qx) \quad f(pqx) \]

\[-p \quad f(pqx) \quad f(pqx) \quad -q \]

\[= pq \quad f(pqx) \quad f(pqx) \quad -p \quad f(pqx) \quad f(pqx) \]

\[-q \quad f(pqx) \quad f(pqx) \]

where the equality is obtained from Lemma 3.1 below. Hence, the 2-loop part of the primitive part of \(Z^w(T(p,q)) \) is given by

\[f(px) \quad f(qx) \]

\[+ pq \quad f(pqx) \quad f(pqx) \]

\[-p \quad f(pqx) \quad f(pqx) \]

\[-q \quad f(pqx) \quad f(pqx) \]
\[
\begin{align*}
\phi_{p,q}(t) &= -\frac{1}{8} \phi_{q,p}(t) \\
\phi_{q,p}(t) &= -\frac{1}{8} \phi_{p,q}(t),
\end{align*}
\]

where we put \(t = e^x \) and \(\phi_{p,q} \) is defined by \(\phi_{p,q}(e^x) = 4(f(px) - qf(pqx)) \), that is,

\[
\phi_{p,q}(t) = \frac{p^{p/2} + t^{-p/2}}{p^{p/2} - t^{-p/2}} - q \cdot \frac{p^{q/2} + t^{-q/2}}{p^{q/2} - t^{-q/2}}.
\]

Therefore, from the definition of the 2-loop polynomial, we obtain the required formula.

By Corollary 3.1 below, the degree of \(\hat{\Theta}_{T(p,q)}(t) \) equals \((p - 1)(q - 1) - 1\). Since \((t^{1/2} - t^{-1/2})^2 \hat{\Theta}_{T(p,q)}(t) = \Theta_{T(p,q)}(t, 1, t^{-1}) \) by definition, \(t_1 \)-degree of \(\Theta_{T(p,q)}(t_1, t_2, t_1^{-1} t_2^{-1}) \) is at least \((p - 1)(q - 1)\). We can show that it is exactly \((p - 1)(q - 1)\) in the same way as the proof of Example 1. \(\square\)

Corollary 3.1. The reduced 2-loop polynomial of the torus knot \(T(p, q) \) is given by

\[
\hat{\Theta}_{T(p,q)}(t) = \frac{1}{2(t^{1/2} - t^{-1/2})^2} \psi_{p,q}(t) \psi_{q,p}(t)
\]

\[
= \frac{1}{2} \cdot \frac{1}{(t^{p/2} - t^{-p/2})^2} \left((t^{p/2} + t^{-p/2}) \cdot \frac{t^{p} - t^{-p/2}}{t^{p/2} - t^{-p/2}} - q(t^{p/2} + t^{-p/2}) \right)
\]

\[
\times \frac{1}{(t^{q/2} - t^{-q/2})^2} \left((t^{q/2} + t^{-q/2}) \cdot \frac{t^{q} - t^{-q/2}}{t^{q/2} - t^{-q/2}} - p(t^{q/2} + t^{-q/2}) \right).
\]

Lemma 3.1. For a scalar \(c \),

\[
\partial_{\Omega}^{-1} \exp_{x} \left(\frac{c}{2} \right) \equiv \exp_{x} \left(\frac{c}{2} \right) \sqcup \Omega_{x}^{-1} \sqcup \exp_{x} \left(\frac{f(cx)}{2} \right) \sqcup \exp_{x} \left(\frac{f(cx)}{2} \right).
\]

Proof. From the definition of \(\partial_{\Omega} \),

\[
\partial_{\Omega} \left(\exp_{x} \left(\frac{c}{2} \right) \sqcup \Omega_{x}^{-1} \right) = \Omega.
\]
A Cabling Formula for the 2-Loop Polynomial

959

Similarly as in the proof of Theorem 3.1, the (≤ 1)-loop part of the primitive part of the right hand side is presented by

$$\partial_{\Omega} \exp_{\alpha}(\frac{c}{2} \bigcup) \sqcup \Omega_{=1}^{-1} \equiv \exp_{\alpha}(\frac{c}{2} \bigcup).$$

Further, the 2-loop part of the primitive part of the right hand side of (3.5) is presented by

$$\omega \exp() \omega \exp_{\alpha}(\frac{c}{2} \bigcup) \equiv -c \exp_{\alpha}(\frac{c}{2} \bigcup).$$

This implies that ∂_{Ω} takes the right hand side of the formula of the lemma to $\exp_{\alpha}(\frac{c}{2} \bigcup)$.

Example 1. For the $(p, 2)$ torus knot, Theorem 3.1 implies that

$$\Theta_{T(p, 2)}(t_1, t_2, t_3) = \frac{1}{(t_1 + 1)(t_2 + 1)(t_3 + 1)} \times \left(\frac{p-1}{2}(t_1^p + t_1^{-p} + t_2^p + t_2^{-p} + t_3^p + t_3^{-p}) - \frac{t_1^{p-1} - t_1^{-(p-1)}}{t_1 - t_1^{-1}} - \frac{t_2^{p-1} - t_2^{-(p-1)}}{t_2 - t_2^{-1}} - \frac{t_3^{p-1} - t_3^{-(p-1)}}{t_3 - t_3^{-1}} \right).$$

For example, the coefficients of $\Theta_{T(7, 2)}(t_1, t_2, t_3)$ are as shown in Table 1. Further,

$$\Delta_{T(p, 2)}(t) = \frac{t^{p/2} + t^{-p/2}}{t^{1/2} + t^{-1/2}}, \quad \psi_{p, 2}(t) = \frac{t^{p/2} - t^{-p/2}}{t^{1/2} + t^{-1/2}},$$

$$\psi_{2, p}(t) = \frac{1}{(t^{1/2} + t^{-1/2})(t^{p/2} + t^{-p/2})} \cdot \left((t + t^{-1}) \cdot \frac{t^p - t^{-p}}{t - t^{-1}} - p(t^p + t^{-p}) \right).$$
By Theorem 3.1, we obtain \(\Theta \overset{\text{over (}}{\longrightarrow} \)

Therefore, when \(\{i, j, k\} = \{1, 2, 3\} \), we have that

\[
\frac{1}{2} \left(\psi_{p, 2}(t_i) \Delta T_{(p, 2)}(t_k) + \psi_{p, 2}(t_k) \Delta T_{(p, 2)}(t_i) \right) = \frac{t_j^{p/2} - t_j^{-p/2}}{(t_i^{1/2} + t_i^{-1/2})(t_k^{1/2} + t_k^{-1/2})}.
\]

Therefore,

\[
- \frac{1}{4} \psi_{2,p}(t_j) \cdot \left(\psi_{p, 2}(t_i) \Delta T_{(p, 2)}(t_k) + \psi_{p, 2}(t_k) \Delta T_{(p, 2)}(t_i) \right)
\]

\[
= \frac{1}{(t_i^{1/2} + t_i^{-1/2})(t_j^{1/2} + t_j^{-1/2})(t_k^{1/2} + t_k^{-1/2})} \times \frac{1}{2} \left((p(t_j^p + t_j^{-p}) - (t_j + t_j^{-1}) \cdot \frac{t_j^{p/2} - t_j^{-p/2}}{t_j - t_j^{-1}} \right)
\]

\[
= \frac{1}{(t_i^{1/2} + t_i^{-1/2})(t_j^{1/2} + t_j^{-1/2})(t_k^{1/2} + t_k^{-1/2})} \times \left(\frac{p - 1}{2} (t_j^p + t_j^{-p}) - \frac{t_j^{p-1} - t_j^{-(p-1)}}{t_j - t_j^{-1}} \right).
\]

By Theorem 3.1, we obtain \(\Theta_{T_{(p, 2)}}(t_1, t_2, t_3) \) as the sum of the above formula over \(\{i, j, k\} = \{1, 2, 3\}, \{2, 3, 1\}, \{3, 1, 2\} \), which gives the required formula.

Table 1. The non-zero coefficients of \(t_1^p t_2^p \) in \(\Theta_{T(7, 2)}(t_1, t_2, t_1^{-1} t_2^{-1}) \)
Example 2. In a similar way as the previous example, we have that

\[
\Theta_{T(p,3)}(t_1, t_2, t_3) = \frac{(t_1 - 1)(t_2 - 1)(t_3 - 1)}{(t_1^3 - 1)(t_2^3 - 1)(t_3^3 - 1)} \\
\times \left((p-1)(t_1^p + t_1^{p-2} + t_2 t_1^{p-2} + t_3 t_1^{p-2}) + t_1^{2p} + t_2^{2p} + t_3^{2p} + t_3 t_2^{2p} + t_3^{(p-1)/2} t_2^{(p-1)/2} + t_1^{(p-1)/2} t_2^{(p-1)/2} + t_1^{(p-1)/2} t_3^{(p-1)/2} + t_2^{(p-1)/2} t_3^{(p-1)/2} \right)
\]

and

\[
\hat{\Theta}_{T(p,3)}(t) = \frac{t^3(t^{p/2} + t^{p/2})}{(t^3 - 1)^2} \\
\times \left((p-1)(p^{2p/2} + t^{-3p/2}) - 2 \cdot \frac{t^{3(p-1)/2} - t^{-3(p-1)/2}}{t^{3/2} - t^{-3/2}} \right)
\]

\[
= \frac{p^{p/2} + t^{-p/2}}{(t^{3/2} - t^{-3/2})^3} \\
\times \left((p-1)(t^{3(p+1)/2} - t^{-3(p+1)/2}) - (p+1)(t^{3(p-1)/2} - t^{-3(p-1)/2}) \right).
\]

See also Tables 2 and 3 for the values of \(\Theta_{T(p,q)}\) and \(\hat{\Theta}_{T(p,q)}\) for some \((p, q)\).

§4. A Cabling Formula for the 2-Loop Polynomial

In this section, we give a cabling formula for the 2-loop polynomial. We show the formula by picking up the 2-loop part of the primitive part of the cabling formula of the Kontsevich invariant, modifying the proof of Theorem 3.1. This cabling formula is also obtained independently by Marché [15].

It is known, see e.g. [13], that a cabling formula for the Alexander polynomial is given by

\[
\Delta_{K(p,q)}(t) = \Delta_{T(p,q)}(t) \Delta_K(t^p).
\]

A cabling formula for the 2-loop polynomial is given by
(p, q) : The non-zero coefficients of \(t_1^n t_2^m \) in \(\Theta_T(p,q) (t_1, t_2, t_1^{-1} t_2^{-1}) \) in the fundamental domain

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(3, 2)</td>
<td>-1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(5, 2)</td>
<td>-1</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7, 2)</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>(4, 3)</td>
<td>3</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>-2</td>
<td>3</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>4</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>(5, 3)</td>
<td>-6</td>
<td>4</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>1</td>
<td>-6</td>
<td>-4</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>-2</td>
<td>-6</td>
<td>-4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7, 3)</td>
<td>12</td>
<td>-5</td>
<td>-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-5</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-3</td>
<td>-1</td>
<td>-8</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>6</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4, 4)</td>
<td>-5</td>
<td>4</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>-2</td>
<td>9</td>
<td>-8</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>2</td>
<td>9</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>-2</td>
<td>9</td>
<td>-6</td>
</tr>
<tr>
<td>(7, 4)</td>
<td>-18</td>
<td>7</td>
<td>-1</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>5</td>
<td>-6</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-5</td>
<td>4</td>
<td>-11</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-4</td>
<td>2</td>
<td>-9</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>8</td>
<td>-9</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2. The non-zero coefficients of \(t_1^n t_2^m \) in \(\Theta_T(p,q) (t_1, t_2, t_1^{-1} t_2^{-1}) \) in a fundamental domain \(\{0 \leq 2m \leq n\} \) (see [21]) for \((p, q) \) with \(p \leq 7, q \leq 4 \). The array for each \((p, q) \) is a subset of the full array such as shown in Table 1 and the most left dot is at \((n, m) = (0, 0) \). We can recover the other coefficients for each \((p, q) \) from the presented coefficients by the symmetry of \(\Theta_K(t_1, t_2, t_1^{-1} t_2^{-1}) \).
Table 3. The parts of non-negative powers in $\hat{\Theta}_{T(p,q)}(t)$ for (p, q) with $p \leq 10, q \leq 5$. The remaining part for each (p, q) can recover from the presented part by replacing t with t^{-1}.

Theorem 4.1. Let K be a knot, and let $K^{(p,q)}$ be the (p,q) cable knot of K. Then,

$$
\Theta_{K^{(p,q)}}(t_1, t_2, t_3) = \Theta_{T(p,q)}(t_1, t_2, t_3) + \Theta_K(t^p_1, t^p_2, t^p_3) + \frac{1}{2} \Delta_{T(p,q)}(t_1) \Delta_{T(p,q)}(t_2) \Delta_{T(p,q)}(t_3)
\times \sum_{\{i,j,k\} = \{1,2,3\}} \Delta_K(t^p_i) \cdot t^p_i \cdot \phi_{q,p}(t_j) \Delta_K(t^p_j) \Delta_K(t^p_k).
$$

Proof. We show the theorem, modifying the proof of Theorem 3.1. By Proposition 2.1, we have that

$$Z^w(K^{(p,q)}) \equiv \partial^1_{\Omega^p} \Psi^p(\partial_3 \left(Z^w(K) \sqcup \exp_{\Omega^p} \left(\frac{q}{2p} \int \R \right) \right) \sqcup \exp_{\Omega^p} \left(- \frac{pq}{2} \int \R \right),}$$
where $Z^w(K)$ is presented by
$$Z^w(K) = \Omega \sqcup \exp_\cup \left(-\frac{1}{2} \log \Delta_K(e^x) \right) + \text{(terms of (\geq 2)-loop)}.$$

The 2-loop part of $\log_\cup Z^w(K)$ contributes to the required formula by $\Theta_K(t^p_i, t^p_j, t^p_k)$. We calculate the contribution from the 1-loop part in the following of this proof.

In a similar way as (3.2), we have that
$$\partial_\Omega \left(Z^w(K) \sqcup \exp_\cup \left(\frac{q}{2p} \right) \right) \equiv \exp_\cup \left(\frac{q}{2p} \right) \sqcup \Omega \sqcup \Omega_\frac{2}{x} \sqcup \exp_\cup \left(-\frac{1}{2} \log \Delta_K(e^x) \right) \left(f(x) + g(x) + f\left(\frac{2x}{p} \right) \right),$$
where $g(x)$ is given by
$$g(x) = \frac{d}{dx} \left(-\frac{1}{2} \log \Delta_K(e^x) \right) = -\frac{\Delta_K'(e^x) \cdot e^x}{2\Delta_K(e^x)}.$$
The map $\Psi^{(p)}$ sends this to
$$\exp_\cup \left(\frac{pq}{2} \right) \sqcup \Omega_{px} \sqcup \Omega_{qx} \sqcup \exp_\cup \left(-\frac{1}{2} \log \Delta_K(e^{px}) \right) \left(f(px) + g(px) + f(qx) \right),$$
Calculating its image by ∂_Ω^{-1} in a similar way as in the proof of Theorem 3.1, the error term corresponding to the formula (3.4) is as follows,
$$\begin{align*}
g(px) &\quad f(qx) \\
\phi_{q,p}(t) &\quad -p \\
\frac{1}{4} &\quad \phi_{q,p}(t)
\end{align*}$$

This contributes to the required formula by
$$\sum_{\{i,j,k\} = \{1,2,3\}} \frac{\Delta_K'(t^p_i) \cdot t^p_i}{2\Delta_K(t^p_i)} \cdot \Delta_K(p \cdot \omega)(t_i) \phi_{q,p}(t_j) \Delta_K(p \cdot \omega)(t_j) \Delta_K(p \cdot \omega)(t_k).$$
Noting that \(\Delta_{K(p,q)}(t) = \Delta_{T(p,q)}(t) \Delta_K(t^p) \), we obtain the required formula.

A cabling formula for the reduced 2-loop polynomial is given by

Corollary 4.1. For the notation in Theorem 4.1,

\[
\hat{\Theta}_{K(p,q)}(t) = \hat{\Theta}_{T(p,q)}(t) + \frac{(t)p/2 - t-\nu/2)^2}{(t^2 - t^{-1/2})^2} \cdot \hat{\Theta}_K(t^p) \]

\[- \frac{t^p}{(t^2 - t^{-1/2})^2} \cdot \Delta_{T(p,q)}(t) \Delta_K(t^p) \Delta'_K(t) \psi_{q,p}(t). \]

Proof. The required formula is obtained from the formula of Theorem 4.1 by putting \(t_1 = t, \ t_2 = 1/t \), and \(t_3 = 1 \). \(\square \)

§5. Relations to Vassiliev Invariants

In this section we show some relations to Vassiliev invariants of degree 2, 3. A leading part of the Kontsevich invariant is presented by

\[
\log Z^K = \frac{v_2(K)}{2} + \frac{v_3(K)}{4} + \text{(terms of degree } \geq 4) \]

where the degree of a Jacobi diagram is half the number of univalent and trivalent vertices of the diagram, and \(v_2, v_3 \) are \(\mathbb{Z} \)-valued primitive Vassiliev invariants of degree 2, 3 respectively (see [17]). Since \(\hat{\Theta}_K(1) \) can be presented by the Alexander polynomial; in fact, from the formula of the loop expansion,

\[
v_2(K) = -(\text{the coefficient of } x^2 \text{ in the expansion of } \Delta_K(x^2))
\]

\[= -\frac{1}{2} \Delta''_K(1). \]

Further, since \(\hat{\Theta}_K(1) \) can be presented by the 2-loop polynomial; in fact, we have

Proposition 5.1.

\[
v_3(K) = \frac{1}{2} \hat{\Theta}_K(1).
\]

Proof. Let us consider the map

\[
\begin{align*}
& \begin{cases}
 f_2(x) \\
 f_1(x)
\end{cases} \\
& \begin{cases}
 f_2(x) \\
 f_1(x)
\end{cases} \\
& \begin{cases}
 f_2(x) \\
 f_1(x)
\end{cases} \\
& \begin{cases}
 f_2(x) \\
 f_1(x)
\end{cases}
\end{align*}
\]

\[
\begin{align*}
& \rightarrow \begin{cases}
 f_3(0) \\
 f_2(0)
\end{cases} \\
& \begin{cases}
 f_2(x) \\
 f_1(x)
\end{cases} \\
& \begin{cases}
 f_2(x) \\
 f_1(x)
\end{cases} \\
& \begin{cases}
 f_2(x) \\
 f_1(x)
\end{cases}
\end{align*}
\]
\[\mapsto \frac{1}{6} \sum_{\{i,j,k\}=\{1,2,3\}} f_i(x)f_j(-x)f_k(0). \]

This map takes the 2-loop part of \(\log_{\mathfrak{sl}_2} Z^\sigma(K) \) to \(\frac{1}{12}(e^{x/2} - e^{-x/2})^2 \hat{\Theta}_K(e^x)/\Delta_K(e^x)^2 \), whose coefficient of \(x^2 \) equals \(\frac{1}{12} \hat{\Theta}_K(1) \). Since \(\frac{1}{6} v_3(K) = \frac{1}{12} \hat{\Theta}_K(1) \), this implies the required formula.

Example 3. A cabling formula for \(v_3 \) is given by
\[v_3(K^{(p,q)}) = p^2 \cdot v_3(K) + \frac{1}{12} p(p^2 - 1)q \cdot \Delta'_K(1) + \frac{1}{144} p(p^2 - 1)q(q^2 - 1). \]

Proof. From Proposition 5.1 and Corollary 4.1 putting \(t = 1 \), we have that
\[v_3(K^{(p,q)}) = v_3(T(p,q)) + p^2 \cdot v_3(K) - \frac{p}{2} \Delta'_K(1) \phi'_{q,p}(1). \]

The required formula follows from it, by using
\[v_3(T(p,q)) = \frac{1}{2} \hat{\Theta}_{T(p,q)}(1) = \frac{1}{144} p(p^2 - 1)q(q^2 - 1), \]
\[\phi'_{q,p}(1) = \frac{1}{6} q(1 - p^2). \]

For the value of the first formula, see also [22].

§6. The \(\mathfrak{sl}_2 \) Reduction of the 2-Loop Polynomial

The aim of this section is to show Proposition 6.1, which implies that the \(\mathfrak{sl}_2 \) reduction of the 2-loop part of the logarithm of the Kontsevich invariant is presented by the reduced 2-loop polynomial.

The loop expansion of the colored Jones polynomial

Let us denote by \(J(L; t) \) the Jones polynomial [8] of a link \(L \) defined by
\[t^{-1}V\left(\begin{array}{c} \hline \hline \end{array} ; t \right) - tV\left(\begin{array}{c} \hline \hline \end{array} ; t \right) = (t^{1/2} - t^{-1/2})V\left(\begin{array}{c} \hline \hline \end{array} ; t \right) \]

and by the normalization\(^{12}\) \(J(\text{the trivial knot}; t) = t^{1/2} + t^{-1/2} \), where the three pictures in the above formula denote three oriented links, which are identical.

\(^{12}\)This normalization is the normalization of the quantum \(\mathfrak{sl}_2 \) invariant (see e.g. [17]), which differs from the usual normalization where the value of the trivial knot is 1.
A Cabling Formula for the 2-Loop Polynomial

except for a ball, where they differ as shown in the pictures. The colored Jones polynomial [16], which we denote by $J_k(K; t)$, of a knot K is defined by

$$J(K^{(n)}; t) = \sum_{0 \leq k \leq n/2} c_{n,k} J_{n+1-2k}(K; t)$$

where $K^{(n)}$ denotes the disconnected n cable of K with 0 framing, and $c_{n,k}$’s are scalars characterized\(^{13}\) by $V_2^{\otimes n} = \bigoplus_{0 \leq k \leq n/2} c_{n,k} V_{n+1-2k}$; in particular $J_1(K; t) = 1$ and $J_2(K; t) = J(K; t)$. The colored Jones polynomial in another normalization, which we denote by $V_n(K; t)$, is defined by

$$V_n(K; t) = \frac{J_n(K; t)}{J_n(\text{the trivial knot}; t)} = \frac{t^{1/2} - t^{-1/2}}{t^{n/2} - t^{-n/2}} J_n(K; t).$$

As in [19], based on the expansion

$$V_n(K; e^h) = \sum_{l \geq 0} b^l \sum_{k \geq 0} d_{l,k}(nh)^k,$$

the 1-loop and 2-loop parts of the colored Jones polynomial are given by

$$V^{(1\text{-loop})}(K; e^{nh}) = \sum_{k \geq 0} d_{0,k}(nh)^k,$$
$$V^{(2\text{-loop})}(K; e^{nh}) = \sum_{k \geq 0} d_{1,k}(nh)^k,$$

where the right hand sides are rational functions of e^{nh}, as discussed in [19]. The aim of this section is to present $V^{(2\text{-loop})}(K; t)$ by the reduced 2-loop polynomial of K.

The colored Jones polynomial is obtained from the Kontsevich invariant by\(^{14}\)

$$J_n(K; e^{-h}) = W_{sl_2,V_n}(Z(K)),$$

where W_{sl_2,V_n} denotes the weight system derived from the Lie algebra sl_2 and its n-dimensional irreducible representation V_n, which can be calculated recursively (see [5, 17]) by

$$\begin{align*}
(6.1) & \quad = 2h \left(\begin{array}{c} \hline \rule{0cm}{0.5cm} \hline \end{array} \right) \left(\begin{array}{c} \hline \rule{0cm}{0.5cm} \hline \end{array} \right),
\end{align*}$$

\(^{13}\)This characterization is based on the disconnected cabling formula of quantum invariants (see e.g. [17]). There scalars are concretely presented by $c_{n,k} = \left(\begin{array}{c} n+1 \end{array} \right) - \left(\begin{array}{c} n+1-k \end{array} \right)$.

\(^{14}\)In the left hand side, we put, not $t = e^h$, but $t = e^{-h}$. This difference is derived from the difference of normalization between the colored Jones polynomial and the quantum sl_2 invariants.
(6.2) \[
\begin{array}{c}
\otimes \\
\text{sl}_2
\end{array}
= 4h,
\]

(6.3) \[
\begin{array}{c}
\bigtriangledown \\
\alpha \\
\text{sl}_2
\end{array}
= hC \cdot \alpha,
\]

where we write \(\alpha = \beta \) if \(W_{\text{sl}_2,V_n}(\alpha) = W_{\text{sl}_2,V_n}(\beta) \), and \(C \) denotes the Casimir element of \(\text{sl}_2 \), whose eigenvalue on \(V_n \) is equal to \(\frac{n^2 - 1}{2} \). We apply these recursive relations to

\[
Z^w(K) = \frac{Z^w(O)}{\exp_u \left(-\frac{1}{2} \log \Delta_K(e^x) \right)}
\]

\[
+ \sum_{i} \left(\frac{p_i(e^x)/\Delta_K(e^x)}{p_{i,1}(e^x)/\Delta_K(e^x)} + (\geq 3)-\text{loop part} \right).
\]

The 1-loop part

Lemma 6.1. For a positive integer \(l \),

\[
\begin{array}{c}
\bigotimes \\
\text{sl}_2
\end{array}
= (2C)^{l/2}h^l(1 + (-1)^l).
\]

Proof. If \(l \) is odd, the diagram is equal to 0 by the AS relation, and, hence, the lemma holds. If \(l \) is even, the lemma is proved by induction on \(l \) using (6.1) and (6.3).

Putting \(-\frac{1}{2} \log \Delta_K(e^x) = \sum_{k \geq 0} a_k x^{2k} \), we have that

\[
\exp_u \left(\begin{array}{c}
\bigotimes \\
\text{sl}_2
\end{array} \right) = \sum_{k \geq 0} \exp \left(2a_k(2C)^kh^{2k} \right)
\]
\[\equiv \exp \left(2 \sum_{k \geq 0} a_k (nh)^{2k} \right) = \frac{1}{\Delta_K(e^{nh})}, \]

where we write \(\alpha \equiv \beta \) if \(\log \alpha - \log \beta \) is equal to a linear sum of contributions from \((\geq 3)\)-loop diagrams. Hence,

\[V^{(1\text{-loop})}(K; t) = \frac{1}{\Delta_K(t)}. \]

This is nothing but the Melvin-Morton-Rozansky conjecture proved in [2].

The 2-loop part

Lemma 6.2. Let \(l_1, l_2, l_3 \) be non-negative integers such that at least one of them is positive. Then,

\[L_{l_1, l_2, l_3} = \begin{cases} 0 & \text{if } l_1l_2l_3 \neq 0, \\ 2h(2C)^{l_1+1/2}h^{l_1+1/2}((-1)^{l_1}+(-1)^{l_2}) & \text{if } l_1l_2 \neq 0 \text{ and } l_3 = 0, \\ 4h(2C)^{l_1/2}h^{l_1+1}(1+(-1)^{l_1}) & \text{if } l_1 \neq 0 \text{ and } l_2 = l_3 = 0, \end{cases} \]

where \(\{i, j, k\} = \{1, 2, 3\} \).

Proof. We assume that \(l_1 \geq l_2 \geq l_3 \) without loss of generality. If \(l_1 > l_2 = l_3 = 0 \), then the lemma is obtained from (6.2) and Lemma 6.1. If \(l_2 > l_3 = 0 \), then the lemma is obtained from (6.1) and Lemma 6.1. If \(l_3 > 0 \), then we obtain the lemma by induction on \(l_3 \); we can decrease \(l_3 \) by moving one of \(l_3 \) legs to upper edges by the IHX relation. \(\square \)

By Lemma 6.2,

\[\frac{f_i(x)}{f_j(x)} \equiv 2h \left(f_3(0) \frac{f_j(x)}{f_i(x)} + f_2(0) \frac{f_j(x)}{f_i(x)} + f_1(0) \frac{f_j(x)}{f_i(x)} \right) \]

\[\equiv 2h \sum_{\{i,j,k\} = \{1,2,3\}} f_i(nh)f_j(-nh)f_k(0). \]

Hence, similarly as in the proof of Proposition 5.1, the \(sl_2 \) reduction of the 2-loop part of \(\log_{\mathbb{E}}(Z^w(K)/Z^w(O)) \) is equal to \(h(e^{nh/2} - e^{-nh/2})^2 \hat{\Theta}_K(e^{nh})/(\Delta_K(e^{nh}))^2 \). Therefore, we obtain
Proposition 6.1.

\[V^{(2\text{-loop})}(K; t) = -\frac{(t^{1/2} - t^{-1/2})^2}{(\Delta_K(t))^3} \hat{\Theta}_K(t). \]

This gives a concrete presentation of the formula of [19, Conjecture 2] in terms of the reduced 2-loop polynomial.

References