Note on the Spectrum of Some Schrödinger Operators*

By
Teruo Ushijima†

§ 0. Introduction

Recently S. T. Kuroda has developed a new stationary method of perturbation of continuous spectra using the technique of factorization of the perturbation term ([2], [3]). The object of this note is to show that his theory can be applied to n-dimensional Schrödinger operators which have first order differentiations with variable coefficients. Namely we consider the differential operator:

$$L = \sum_{j=1}^{n} \left(\frac{\partial}{i\partial x_j} + b_j(x) \right)^2 + q(x)$$

where b_j and q are real valued functions. The case of $n \geq 3$ will be treated in this note. This problem has been already treated by Kuroda ([4]) in the case of $b_j(x) = 0$. In this case our work agrees with his result.

The author expresses his hearty thanks to Professor S. T. Kuroda and Professor T. Ikebe who kindly read the draft of this note and gave him valuable advices.

§ 1. Statement of the Results

Let H_0 be the self-adjoint realization of $-\Delta$ in $L^2(\mathbb{R}^n)$, where domain $\mathcal{D}(H_0) = \mathcal{D}^2_{L^2}(\mathbb{R}^n)$. We consider the following conditions:

Received July 18, 1968.
Communicated by S. Matsuura.
* This work was partly supported by the Sakkokai Foundation.
† Department of Pure and Applied Sciences, Institute of Mathematics, Faculty of General Education, University of Tokyo.
For some constants a, p_1, and p_2 satisfying

$$a > \frac{n}{2}, \ 2n > p_1 > n \quad \text{and} \quad 2n > p_2 > \max \left(2, \frac{n}{2} \right),$$

it holds that

$$\begin{align*}
(1 + |x|^a) b_j(x) & \in L^{p_j}(\mathbb{R}^n) \quad (1 \leq j \leq n), \\
(1 + |x|^a) q'(x) & \in L^{p_2}(\mathbb{R}^n),
\end{align*}$$

where $b_j(x)$ are continuously differentiable functions and

$$q'(x) = \sum_{j=1}^{n} \left(\frac{\partial}{\partial x_j} b_j(x) + b_j'(x) \right) + q(x).$$

For some p_3 with $n > p_3 > 2$, it holds that

$$\begin{align*}
(1 + |x|^a) b_j(x) & \in L^{p_j}(\mathbb{R}^n) \quad (1 \leq j \leq n), \\
(1 + |x|^a) q'(x) & \in L^{p_3}(\mathbb{R}^n).
\end{align*}$$

Theorem. (a) Under assumption (I), we have:

The restriction L on S, the totality of rapidly decreasing functions, has a unique self-adjoint extension H_1, with $\mathcal{D}(H_1) = \mathcal{D}^1_2(\mathbb{R}^n)$. The absolutely continuous part of H_1 is unitarily equivalent to H_0.

(b) Assuming further (II), we have:

The singular spectrum of H_1 consists of non zero eigenvalues of finite multiplicity and possibly zero. Negative eigenvalues have not a finite limiting point. Zero is the only possible finite limiting point for positive eigenvalues if they exist.

Now we resume results of Kuroda. Let H_j ($j = 0, 1$) be self-adjoint in a separable Hilbert space \mathcal{H}, $R_j(z) = (H_j - z)^{-1}$ be its resolvent for nonreal z. Let $\sigma(H_j)$ be its spectrum. Let $\mathcal{H}_{j,ac}(\mathcal{H}_{j,s})$ be the subspace of absolute continuity (of singularity) with respect to H_j. These concepts have been defined in Chapt. X of [1]. Then $\mathcal{H}_{j,ac}$ and $\mathcal{H}_{j,s}$ are closed linear subspaces of \mathcal{H}, are orthogonal complements to each other and reduce H_j. If $\mathcal{H}_{j,ac} = \mathcal{H}$, H_j is said to be absolutely continuous. $H_{j,ac}(H_{j,s})$ be the restriction of H_j to $\mathcal{H}_{j,ac}(\mathcal{H}_{j,s})$. The set $\sigma(H_{j,ac})(\sigma(H_{j,s}))$ is the absolutely continuous (the singular) spectrum of H_j and is denoted by $\sigma_{ac}(H_j)(\sigma_s(H_j))$. We
Note on the spectrum of some Schrödinger operators

denote by \mathcal{B} the space of all bounded linear operators from \mathcal{D} into \mathcal{D} having the uniform operator topology. For any linear operator T its domain (or range) is represented as $\mathcal{D}(T)$ (or $\mathcal{R}(T)$).

Consider the following conditions on H_j.

(K. 1) $\mathcal{D}(H_j)=\mathcal{D}(H_0)=\mathcal{D}$.

(K. 2) There exist linear operators A and B such that: (a) A lies in \mathcal{B}, and is invertible with the range being dense in \mathcal{D}, (b) $\mathcal{D}(B) \subseteq \mathcal{D}(R_0(z)A)$ for any nonreal z, (c) $(H_i-H_0)u=ABu$ for $u \in \mathcal{D}(B) \cap \mathcal{D}$.

(K. 3) $S(z)=A^*\{R_0(z)-R_0(z)\}A$ lies in \mathcal{B}, $\lim_{\epsilon \to 0} S(\lambda+i\epsilon)=S(\lambda)$ exists in \mathcal{B}, and this convergence is locally uniform in λ of the real axis.

(K. 4) $Q(z)=BR_0(z)A$ is in \mathcal{B}, and completely continuous for nonreal z.

(K. 5) $\lim_{\epsilon \to 0} Q(\lambda \pm i\epsilon)=Q(\lambda \pm i0)$ exists in \mathcal{B} for any real λ, and $Q(z)$ is a \mathcal{B}-valued continuous function on either the upper or the lower half-plane, including the corresponding edge of the real axis.

(K. 6) The operator $\left\{ \frac{1}{2\pi i} S(\lambda) \right\}^{1/2}$ is Hölder continuous with Hölder exponent $\theta>1/2$ on a closed interval I of real axis, and $Q(z)$ is also Hölder continuous with exponent θ on I^+ or I^-, where $I^+=\{z: \text{Re} z \in I, \text{Im} z \geq 0\}$ and $I^-=\{z: \text{Re} z \in I, \text{Im} z \leq 0\}$.

We can deduce the following theorem as a corollary of Kuroda’s theory ([2], [3]). The outline of the proof will be sketched in §3.

Theorem K. Under conditions (K. 1) to (K. 5) we have:

1° H_0 is absolutely continuous.

2° $\sigma_{ac}(H_0)=\sigma(H_0)$, and $\sigma_s(H_0)$ is a closed null set.

3° There exist wave operators $W_\pm \in \mathcal{B}$ such that: $W_\pm^* W_\pm = 1$, $W_\pm W_\pm^* = P_1$, $H_i W_\pm = W_\pm H_0$ and $W_\pm = s\text{-}\lim_{t \to \pm \infty} e^{itH_i} e^{-itH_0}$ where 1 is the identity operator, and where P_1 is the projection to $\mathcal{D}_{1, ac}$.

Assuming further (K. 6), we obtain:

4° $\sigma_s(H_i) \cap I$ consists of at most a countable number of eigenvalues of finite multiplicity which have no accumulation point interior to I.
§ 2. **Proof of the Theorem**

First we write

\[L = -\Delta + \alpha(x) \left(\sum_{j=1}^{n} \beta_j(x) \frac{\partial}{\partial x_j} + \beta_0(x) \right) \]

where \(\alpha(x) \beta_0(x) = q'(x) = \sum_{j=1}^{n} \left(\frac{\partial}{\partial x_j} b_j(x) + b_j(x)^2 \right) + q(x) \) and \(\alpha(x) \beta_j(x) = -2ib_j(x) \) \((1 \leq j \leq n)\). Define \((Af)(x) = \alpha(x) \cdot f(x), (Bsf)(x) = \beta_0(x)f(x) (B_jf)(x) = \beta_j(x) \frac{\partial}{\partial x_j} f(x) \) \((1 \leq j \leq n)\) then we have formally \(H_1 = H_0 + AB \) for \(B = \sum_{j=1}^{n} B_j \).

From now on we will take \(\alpha(x) = (1 + |x|)^{-\alpha} \), then the operator \(A \) belongs to \(\mathcal{B} \) and satisfies conditions (a) of (K. 2). Operators \(B_j \) with domains \(\{f(x) | f(x) \in L^2, (B_j f)(x) \in L^2 \} \) have closed extensions, which are also denoted by \(B_j \). For the proof of the first part of (a), we have only to show that \(\mathcal{D}(H_0) \) is contained in \(\mathcal{D}(AB) \) and that for any \(\varepsilon > 0 \) there exists \(C_\varepsilon > 0 \) such that for any \(u \in \mathcal{D}(H_0) \)

\[||ABu|| \leq \varepsilon ||H_0 u|| + c_\varepsilon ||u|| \]

(Chapt. V of [1]).

Assume that \(D(B_j) \supset D(H_0^{\mu_j}) \) for \(\mu_j \) with \(0 < \mu_j < 1 \), then we have for \(u \in D(H_0) \) and \(k > 1 \)

\[||B_j u|| = ||B_j R_0 (H_0 + (-1)^{\mu_j} R_0 (H_0 + k)) u|| \leq ||B_j R_0 (H_0 + (-1)^{\mu_j}) || \cdot ||(H_0 + 1)^{\mu_j} R_0 (-k) || \cdot \{ ||H_0 u|| + k ||u|| \} . \]

By the closed graph theorem, \(B_j R_0 (-1)^{\mu_j} \) is bounded. Noticing that for \(k > 1 \)

\[||(H_0 + 1)^{\mu_j} R_0 (-k)|| \leq k^{\mu_j - 1} , \]

we have the estimate that there exists \(C_\varepsilon > 0 \)

\[||B_j u|| \leq \varepsilon ||H_0 u|| + C_\varepsilon ||u|| \]

for \(\varepsilon > 0 \) and \(u \in \mathcal{D}(H_0) \). Since \(A \) is bounded, we will obtain the desired statements if \(\mathcal{D}(B_j) \supset \mathcal{D}(H_0^{\mu_j}) \).

Now we will show the validity of this inclusion for \(1 \leq j \leq n \). Since \(p_i > n \) (condition I), we can choose \(\mu_j \) such that \(p_i > \frac{n}{2 \mu_j - 1} \) and
Note on the spectrum of some Schrödinger operators

501

<\mu_j<1$. If \(u \in D(H_0^{\mu_j}) \), the Fourier transform of \(u(x) \), \(\hat{u}(\xi) \) satisfies
\[(1 + |\xi|^2)^{-\mu_j} \hat{u}(\xi) \in L^q(\mathbb{R}^n) \]. Since \(p_i > n \), we have \(\xi_j (1 + |\xi|^2)^{-\mu_j} \hat{u}, \xi_j \hat{u} \in L^q(\mathbb{R}^n) \) for \(\frac{1}{q} = \frac{1}{p_i} + \frac{1}{2} \). Therefore
\[
\frac{\partial}{\partial x_j} u \in L^q \quad \text{with} \quad \frac{1}{q} = 1 - \frac{1}{q} = 1 - \frac{1}{p_1}. \]
As \(\beta_j \in L^{p_1} \) and \(\frac{1}{p_1} + \frac{1}{2} = \frac{1}{2} \), we have \(B_j u = \beta_j \frac{\partial}{\partial x_j} u \in L^2(\mathbb{R}^n) \).

Next we treat the case \(j = 0 \). Since \(\mu_0 > \frac{n}{2} \), we can choose \(\mu_0 \) satisfying \(\mu_0 > \frac{n + 1}{2} \) and \(0 < \mu_0 < 1 \). Then \((1 + |\xi|^2)^{-\mu_0} \in L^{p_2}(\mathbb{R}^n) \). As \(\hat{u} = (1 + |\xi|^2)^{-\mu_0} (1 + |\xi|^2)^{\mu_0} \hat{u} \), \(\hat{u} \in L^q(\mathbb{R}^n) \) for \(\frac{1}{q} = \frac{1}{p_2} + \frac{1}{2} \). Therefore \(u \in L^q(\mathbb{R}^n) \) with \(\frac{1}{q} = 1 - \frac{1}{q} = 1 - \frac{1}{p_2} \). And finally we have \(B_0 u = \beta_0 u \in L^2(\mathbb{R}^n) \). Thus the first part of (a) has been proved.

Now we start to check conditions (K.1) to (K.5). For \(r > 0 \) we define
\[
R_n(r, z) = c_n \sqrt{z}^{(n/2)-1} r^{1-(n/2)} H_{(n/2)-1}^{(1)} (\sqrt{z} r) \]
with
\[
c_n = i 2^{-(n/2)-1} r^{1-(n/2)}, \quad \Im \sqrt{z} \geq 0
\]
and the \(\nu \)-th Hankel function of first kind \(H_{(n/2)-1}^{(1)}(\zeta) \). Then it holds that for a nonreal or negative number \(z \),
\[
(H_0 - z)^{-1} f(x) = \int_{\mathbb{R}^n} R_n(|x - y|, z) f(y) dy.
\]

The following asymptotic representations are well known:

(H.1) \[H_{(n/2)-1}^{(1)}(\zeta) = -\pi^{-1/2} \Gamma(\nu) \zeta^{-\nu} + O(\zeta^{-\nu}) \quad \text{as} \quad |\zeta| \to 0 \quad \text{with} \quad \Im \zeta \geq 0, \]
(H.2) \[H_{(n/2)-1}^{(1)}(\zeta) = \sqrt{2} (\pi \zeta)^{-(n/2)} e^{i(\zeta - (3\nu - 1)/2) - (\zeta^2/4)} + O(\zeta^{-(n/2)}) \quad \text{as} \quad |\zeta| \to \infty \quad \text{with} \quad \Im \zeta \geq 0. \]

Taking \(\phi(\zeta) \in C^\infty \) such that \(\phi(\zeta) = 1 \) for \(|\zeta| \leq 1 \) and \(\phi(\zeta) = 0 \) for \(|\zeta| \geq 2 \), we have
\[
R_n(r, z) = \phi(\sqrt{z} r) R_n(r, z) + (1 - \phi(\sqrt{z} r)) R_n(r, z) = S_n(r, z) + S_n(r, z).
\]

Let \(\Pi \) be the complex plane which has a cut along the positive real axis from 0 to \(\infty \), including both edges of the cut. Then \(S_n^{(k)}(r, z) \)
can be regarded to be continuous in \((r, z) \in (0, \infty) \times (\Pi \setminus \{0\})\). From (H.1) and (H.2) it holds that:

\[|S_n^{(1)}(r, z)| \leq \text{const}, \quad S_n^{(3)}(r, z) = 0 \quad \text{for} \quad |\sqrt{z} r| \geq 2, \]

and that:

\[|S_n^{(2)}(r, z)| \leq \text{const} \cdot |z|^{(n-2)/4}, \quad S_n^{(2)}(r, z) = 0 \quad \text{for} \quad |\sqrt{z} r| \leq 1. \]

By the identity \(\frac{d}{d\xi}(\zeta^{-\nu} H^{(1)}_\nu(\xi)) = -\zeta^{-\nu} H^{(1)}_{\nu+1}(\xi) \), we deduce that for \(r = \left(\sum_{j=1}^n x_j^2 \right)^{1/2} \),

\[
\frac{\partial}{\partial x_j} R_n(r, z) = -\frac{c_n}{c_{n+2}} \frac{x_j}{r} R_{n+1}(r, z)
\]

where \(S_{n,j}(x; z) = -\frac{c_n}{c_{n+2}} \frac{x_j}{r} S_{n+1}(r, z) \) (\(k = 1, 2, 1 \leq j \leq n \)).

These functions satisfy the estimates of the same type as \(S_{n+1}(r, z) \).

Define \(\Pi_N = \{ z : N^{-1} \leq |z| \leq N, \text{Im} z \geq 0 \} \) for \(N > 1 \), and similarly \(\Pi_N \) for \(\text{Im} z \leq 0 \). Noticing that \(S_n^{(1)}(r, z) = r^{n-2} \phi(\sqrt{z} r) R_n(r, z) \) and that \(S_n^{(2)}(r, z) = r^{n-1/2}(1 - \phi(\sqrt{z} r)) R_n(r, z) \), using the identity \(\frac{d}{d\xi}(\zeta^{-\nu} H^{(1)}_\nu(\xi)) = -\zeta^{-\nu} H^{(1)}_{\nu+1}(\xi) \), we have the following estimates:

\[
\left| \frac{\partial}{\partial z} S_n^{(1)}(r, z) \right| \leq c_N, \quad \text{and} \quad \left| \frac{\partial}{\partial z} S_n^{(2)}(r, z) \right| \leq c_N r
\]

for \(z \in \Pi_N \) where \(c_N \) is some constant depending only on \(N \). Therefore we have

\[
\left| \frac{\partial}{\partial z} S_{n,j}^{(1)}(x, z) \right| \leq c'_N, \quad \text{and} \quad \left| \frac{\partial}{\partial z} S_{n,j}^{(2)}(x, z) \right| \leq c'_N r
\]

for \(z \in \Pi_N \) and \(1 \leq j \leq n \).

Letting \(S_{n,k}(x, z) = S_n^{(k)}(|x|, z) \), we define integral kernels:

\[
Q_{j,k}(x, y; z) = \beta_j(x) S_{n,j}^{(k)}(x - y, z) \alpha(y) |x - y|^{\lambda_{j,k}}
\]

where \(\lambda_{0,j} = n - 2, \lambda_{j,1} = n - 1 (1 \leq j \leq n) \) and \(\lambda_{j,2} = \frac{n - 1}{2} (0 \leq j \leq n) \) and integral operators:
Note on the spectrum of some Schrödinger operators

\[(Q_j^{(\lambda)}(z)f)(x) = \int_{\mathbb{R}^n} Q_j^{(\lambda)}(x, y ; z)f(y)\,dy.\]

Formally we have \(Q(z) = BR_\delta(z) A = \sum_{j=1}^n \sum_{k=1}^n Q_j^{(\lambda)}(z)\). We need:

Lemma. For a given \(\lambda\) satisfying \(n > \lambda > 0\), assume that there exist \(p, q\) such that \(\frac{1}{p} + \frac{1}{q} = 1 - \frac{\lambda}{n}\). Consider an integral operator:

\[(K_\lambda f)(x) = \int_{\mathbb{R}^n} \frac{\beta(x) \gamma(x, y) \alpha(y)}{|x-y|^\lambda} f(y)\,dy,\]

where \(\gamma(x, y)\) is continuous and bounded on \(\mathbb{R}^n\).

If \(\alpha(x) \in L^p(\mathbb{R}^n)\) and \(\beta(x) \in L^q(\mathbb{R}^n)\), then \(K_\lambda\) is a bounded operator in \(L^2(\mathbb{R}^n)\) satisfying

\[\|K_\lambda\| \leq C(p, q) \|\gamma\|_\infty \cdot \|\beta\|_q \cdot \|\alpha\|_p\]

where \(\|\gamma\|_\infty = \sup_{x, y} |\gamma(x, y)|\) and \(\|u\|_p = \left(\int_{\mathbb{R}^n} |u(x)|^p\,dx\right)^{1/p}\).

Moreover if we assume further that \(\alpha(x) \in L^{p'}(\mathbb{R}^n)\) and \(\beta(x) \in L^{q'}(\mathbb{R}^n)\) where \(p'\) and \(q'\) satisfy

\[\frac{1}{2} - \frac{\lambda}{n} \leq \frac{1}{p'} < \frac{1}{2} \quad \text{and} \quad \frac{1}{p'} + \frac{1}{q'} < 1 - \frac{\lambda}{n},\]

then \(K_\lambda\) is completely continuous (due to Kuroda, see lemma 5.3 of [4]).

Proof. Sobolev’s inequality shows that

\[\left| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} g(x)f(y)\,dx\,dy \right| \leq C(P, Q) \|g\|_Q \|f\|_P\]

for \(P > 1, Q > 1, \frac{1}{P} + \frac{1}{Q} > 1\) and \(\lambda = n\left(2 - \frac{1}{P} - \frac{1}{Q}\right)\) ([6]). Let \(\frac{1}{P} = \frac{1}{2} + \frac{1}{p'}\) and \(\frac{1}{Q} = \frac{1}{2} + \frac{1}{q'}\). Substituting the above inequality for \(g = \beta v\) and \(f = \alpha u\) where \(u, v \in L^2(\mathbb{R}^n)\), we have readily the first part of the lemma.

Let \(\chi_N(x)\) be the characteristic function of \(D_N = \{x \mid |x| \leq N\}\). Define \((K_\lambda^{(N,M)}f)(x)\) as

\[\int_{\mathbb{R}^n} \frac{\chi_M(x) \beta(x) \gamma(x, y) \alpha(y) \chi_N(y)}{|x-y|^\lambda} f(y)\,dy.\]

By our assumption on \(p'\) and \(q'\), Kondrašev’s Theorem ([7]) asserts that an integral kernel, \(\frac{\gamma(x, y)}{|x-y|^\lambda}\), determines a completely continuous integral operator from \(L^{p'}(D_N)\) to \(L^{q'}(D_N)\) for \(N < \infty\) with \(\frac{1}{P'} = \frac{1}{p'} + \frac{1}{2}\) and \(\frac{1}{Q'} = \frac{1}{2} + \frac{1}{q'}\). Since we can regard \(\alpha \cdot \chi_N\) as a bounded operator from \(L^2(\mathbb{R}^n)\) to \(L^{p'}(D_N)\) and \(\beta \cdot \chi_N\) as that from \(L^{q'}(D_N)\) to
$L^2(R^n)$, we have that $K_\lambda^{(N,N)}$ is completely continuous from $L^2(R^n)$ to $(L^2(R^n))$. But from the first part of the lemma, we have

$$||K_\lambda - K_\lambda^{(N,N)}|| \leq ||K_\lambda - K_\lambda^{(N,N)}|| + ||K_\lambda^{(N,N)} - K_\lambda^{(N,N)}||$$

$$\leq C(p, q) \{||1 - \chi_N\|_p \|\beta\|_q + ||\chi_N\|_p \|1 - \chi_N\|_q\}$$

$$\to 0 \quad \text{(as N tends to } \infty).$$

Therefore K_λ is completely continuous. Thus the lemma has been proved.

In the above lemma, if we take $\alpha(x) = (1 + |x|)^{-a}$ where $a > \frac{n}{2}$, and $\beta(x) \in L^q$ where q satisfies $\frac{1}{2} - \frac{\lambda}{n} < \frac{1}{q} < \frac{1}{2}$ for $\frac{1}{2} - \frac{\lambda}{n} > 0$ and $\frac{1}{q} < 1 - \frac{\lambda}{n}$ for $\frac{1}{2} - \frac{\lambda}{n} \leq 0$, then $\alpha(x) \in L^p$ for any p with $\frac{1}{p} \leq \frac{1}{2}$.

Since we can choose p and p' appropriately, the above lemma asserts that K_λ is completely continuous in $L^2(R^n)$. More precisely, if $\beta(x) \in L^q$, where q_j satisfy that:

- for $\lambda_1 = n - 1, \quad q_1 > n$,
- for $\lambda_2 = n - 2$, if $n = 3$, then $6 > q_2 > 2$, if $n > 3$, then $q_2 > \frac{n}{2}$,
- for $\lambda_3 = \frac{n - 1}{2}, \quad 2n > q_3 > 2$,

then K_λ are completely continuous. Therefore $Q_j^{(i)}(z)$ are completely continuous if $\beta_0(x) \in L^{q_1} \cap L^{q_2}$ and if $\beta_j(x) \in L^{q_1} \cap L^{q_2}$ ($1 \leq j \leq n$). These being assumed in condition (I), we will obtain (K.4) if the operator $Q(z)$, treated above, coincides with $BR_c(z)A$. We will show this fact. From Sobolev’s inequality it holds that if $f \in L^2$, then

$$\int_{R^n} \frac{\partial}{\partial x_j} R_n(|x - y|, z)\alpha(y)f(y)dy \in L^p \quad \text{for } 1 \geq \frac{1}{p} \geq \frac{1}{2}.$$

This implies that $\mathcal{D}(B) \supseteq \mathfrak{N}(R_c(z)A) ((b) \text{ of (K.2)})$ and that our integral operator $Q(z)$ is equal to $BR_c(z)A$.

Naturally we can define $Q(\lambda \pm i0)$ for $\lambda > 0$ as the integral operator with the kernel $\sum_j Q_j^{(i)}(x, y; \lambda \pm i0) = \lim_{\epsilon \to 0} \sum_j Q_j^{(i)}(x, y; \lambda \pm i\epsilon)$ for $x \neq y$. Also $Q(0)$ can be defined by putting $R_n(r, 0) = (n - 2)^{-1}(2\pi)^{-\frac{3}{2}}$
Note on the spectrum of some Schrödinger operators

505

\[Q^{CN}(z) \]

We denote by \(Q^{CN}(z) \) the operator which is obtained by the replacing \(\beta_j(x) \) by \(\chi_N(x) \beta_j(x) \) and \(\alpha(x) \) by \(\chi_N(x) \alpha(x) \) in \(Q(z) \). As in the proof of the lemma, we can show \(\lim_{N \to \infty} Q^{CN}(z) = Q(z) \) in \(\mathfrak{B} \) uniformly in \(z \) belonging to a bounded set of either the upper or the lower half-plane including the real axis. The asymptotic formula (H.1) asserts that if \(\text{Im} z \), \(\text{Im} z_1 \geq 0 \) (or \(\leq 0 \)) and if \(|z_1|, |z_2| \) and \(|r| \leq N \), we have \(R_n(r, z_1) - R_n(r, z_2) = o(1) \) uniformly as \(|z_1 - z_2| \) tends to zero. This assures that \(Q^{CN}(z) \) is a \(\mathfrak{B} \)-valued continuous function on \(\text{Im} z \geq 0 \) (or \(\text{Im} z \leq 0 \)). Therefore \(Q(z) \) is a \(\mathfrak{B} \)-valued continuous function, which implies (K.5).

As for (K.3), we must consider integral operators \(A^{(k)}(z) \) with kernels: \(A^{(k)}(x, y; z) = \frac{\alpha(x) S_n^{(k)}(x - y, z) \alpha(y)}{|x - y|^{\lambda_{N,k}}} \) \((k = 1, 2)\). Since \(A^{(k)}(z) \) behave similarly to \(Q_0^{(k)}(z) \), we omit to describe the check of this condition.

Finally we will show that (K.6) holds under conditions (I) and (II). Let \(I \) be a closed interval on the real axis which does not contain zero. Since \(\frac{\partial}{\partial z} S_{n,j}^{(1)}(x, z) \) is bounded in \(z \in \Pi_n^\pm \), \(Q_j^{(1)}(z) \) \((0 \leq j \leq n)\) is Lipschitz continuous on \(I^\pm \). Next we notice that for \(z_1, z_2 \in \Pi_n^\pm \)

\[
\left| S_{n,j}^{(2)}(x, z_1) - S_{n,j}^{(2)}(x, z_2) \right| \leq C_n |r|^{1/2}
\]

since \(\left| \frac{\partial}{\partial z} S_{n,j}^{(2)} \right| \leq C_N |r| \). Putting \(\theta = \frac{1}{2} + \varepsilon \) and \(\lambda_\varepsilon = \frac{n}{2} - 1 - \varepsilon \) \((\varepsilon > 0)\), the integral kernel of \(Q_j^{(2)}(z_1) - Q_j^{(2)}(z_2) \) is estimated by const \(|z_1 - z_2|^{(1/2) + \varepsilon} \beta_j(x) \alpha(y) \) for \(z_1, z_2 \in \Pi_n^\pm \). By the lemma if \(\beta_j \in L^q_\varepsilon \) with \(\frac{1 + \varepsilon}{n} < \frac{1}{q_\varepsilon} < \frac{1}{2} \), the above kernel defines a bounded operator \(\mathfrak{B} \). Since we can choose \(\varepsilon \) arbitrarily small, condition (II) asserts that \(Q_j^{(2)}(z) \) is Hölder continuous on \(\Pi_n^\pm \) with the exponent greater than \(1/2 \).

The Hölder continuity of \(\left\{ \frac{1}{(2\pi i)} S(\lambda) \right\}^{1/2} \) has been shown by Kuroda in case \(n = 3 \) ([2]). He used the spherical coordinate representation
of $S(\lambda)$. His method is also valid for $n > 3$ if we take the n-dimensional spherical harmonics instead of the 3-dimensional.

Since $\lim_{\lambda \to \infty} Q(\lambda) = Q(0)$ holds, applying Theorem 1 of [5] to our case, we know that negative eigenvalues do not accumulate at zero. Another conclusions of our theorem follow from the result of Kuroda.

§ 3. Remarks

1. Outline of the proof of Theorem K.

By (K.1) we have the second resolvent equation:

$$R_i(z) = R_o(z) - R_i(z) (H_i - H_o) R_o(z).$$

Since A is bounded ((a) of (K.2)), it holds that

$$R_o(z)A = R_o(z)A - R_i(z) (H_i - H_o) R_o(z)A.$$

Noticing that $\mathcal{D}(B) \cap \mathcal{D}(R_o(z)A) ((b) of (K.2))$, we have

$$(H_i - H_o) R_o(z)A = ABR_o(z)A \quad ((c) of (K.2))$$

$$= AQ(z) \quad ((K.3)).$$

Therefore the following identity is obtained.

$$(3.1) \quad R_i(z)A(1 + Q(z)) = R_o(z)A.$$

Define $G_0(z) \equiv 1 + Q(z)$ for $\text{Im} \, z \neq 0$. If $u \in \mathcal{D}$ satisfies that $u + Q(z)u = 0$ then $v = R_0(z) Au$ satisfies $H_i v = zw$. Since $\text{Im} \, z \neq 0$, self-adjointness of H_i implies that $v = 0$. Hence $u = 0$. Moreover $Q(z)$ is completely continuous ((K.4)). Therefore there exists a bounded inverse of $(1 + Q(z))$. We write $G_i(z) \equiv (1 + Q(z))^{-1}$ for $\text{Im} \, z \neq 0$. Then we have from (3.1) identities

$$(3.2) \quad \begin{cases} R_o(z) AG_i(z) = R_i(z) A, \\ R_i(z) AG_0(z) = R_o(z) A. \end{cases}$$

Let $S_j(z) \equiv A^* \{ R_j(z) - R_j(\bar{z}) \} A$ for $j = 0, 1$ and $\text{Im} \, z \neq 0$. We have

$$A^* \{ R_j(z) - R_j(\bar{z}) \} A = (z - \bar{z}) A^* R_j(\bar{z}) R_j(z) A$$

$$= (z - \bar{z}) (R_j(z) A)^* R_j(z) A.$$
Note on the spectrum of some Schrödinger operators

507

\[(z - \bar{z}) (R_k(z) AG_{j}(z))^* R_k(z) AG_j(z) \quad \text{(by (3.2))} \]

\[= G_j(z)^* A^* \{ R_k(z) - R_k(\bar{z}) \} AG_j(z) \].

This relation is rewritten as

\[(3.3) \quad S_j(z) = G_j(z)^* S_k(z) G_j(z) \]

where \((j, k) = (0, 1)\) or \((1, 0)\).

On the other hand it is well known that for \(\alpha\) and \(\beta\) with

\[-\infty \leq \alpha < \beta \leq \infty,\]

\[\int_a^\beta dE_j(\lambda) = \text{s-lim}_{\epsilon_0} \frac{1}{2\pi i} \int_a^\beta (R_j(\lambda + i\epsilon) - R_j(\lambda - i\epsilon)) d\lambda. \]

From this identity we obtain that for \(u, v \in \mathcal{D},\)

\[(3.4) \quad \int_a^\beta d(E_j(\lambda) A u, A v) d\lambda = \frac{1}{2\pi i} \text{s-lim}_{\epsilon_0} \int_a^\beta (S_j(\lambda + i\epsilon) u, v) d\lambda. \]

For \(j = 0\) condition (K.3) assures that

\[\int_a^\beta d(E_0(\lambda) A u, A v) = \frac{1}{2\pi i} \int_a^\beta (S(\lambda) u, v) d\lambda. \]

By the continuity of \(S(\lambda),\) we can conclude that for any measurable set \(\omega\) of the real line

\[A^* E_0(\omega) A = \frac{1}{2\pi i} \int_\omega S(\lambda) d\lambda \]

(the integration can be performed in the operator topology). This identity implies that \(\mathcal{R}(A)\) is contained in \(\mathcal{D}_{0, a_c}.\) But \(\mathcal{R}(A)\) is dense in \(\mathcal{D}\) and \(\mathcal{D}_{0, a_c}\) is closed. We know \(\mathcal{D}_{0, a_c} = \mathcal{D}.\) This means conclusion 1° of Theorem K.

By (K.5) there exists

\[G_0(\lambda \pm i\epsilon) = \text{lim}_{\epsilon \uparrow 0} G_0(\lambda \pm i\epsilon) = 1 + Q(\lambda \pm i\epsilon). \]

Since \(G_0(z) - 1 = Q(z)\) is completely continuous for \(\text{Im } z \neq 0\) ((K.4)), \(G_0(\lambda \pm i\epsilon) - 1\) is also completely continuous. And \(G_1(z) = G_0(z)^{-1}\) for \(\text{Im } z \neq 0.\) Therefore lemma 6.2 of [3] (or lemma 5.2 of [2]) assures that there exists a bounded inverse of \(G_0(\lambda \pm i0), G_1(\lambda \pm i0),\) for almost every \(\lambda\) of the real axis. We denote by \(e\) the subset of the real line which consists of points \(\lambda\) such that \(G_0(\lambda \pm i0)\) can not be
invertible. Since $G_0(\lambda \pm i0)$ is continuous in λ of the real axis, the complement of e, e' is open. Moreover $G_1(z)$ is continuous on e'^+ and e'^- respectively, where $e'^+(e'^-)=\{z : \text{Re } z \in e', \text{ Im } z \geq 0 \}$ (Im $z \leq 0$). Therefore we have for $\lambda \in e$

$$G_1(\lambda \pm i0) = \lim_{\varepsilon \to 0} G_1(\lambda \pm i\varepsilon) \text{ in } \mathcal{B}.$$

Define $S_1(\lambda \pm i0)\equiv \pm G_1(\lambda \pm i0)* S(\lambda) G_1(\lambda \pm i0)$ for $\lambda \in e$. By (3.3) it is obtained that for $\lambda \in e$

$$S_1(\lambda \pm i0) = \lim_{\varepsilon \to 0} S_1(\lambda \pm i\varepsilon) \text{ in } \mathcal{B}.$$

If $(\alpha, \beta) \cap e=\phi$, the equality (3.4) implies that for $u, v \in \mathcal{S}$

$$\int_a^b d(E_1(\lambda) Au, Av) = \pm \frac{1}{2\pi i} \int_a^b (S_1(\lambda \pm i0) u, v) d\lambda.$$

From this identity we conclude that for any closed set ω such that $\omega \cap e=\phi$, it holds that

$$A^* E_1(\omega) A = \pm \frac{1}{2\pi i} \int_\omega S_1(\lambda \pm i0) d\lambda.$$

Using this relation we can conclude that $\sigma_{ac}(H_1)=\sigma(H_0)$, and that $\sigma_s(H_1)\subset e$. This means conclusion 2 of Theorem K. We can also deduce conclusion 3° of Theorem K as in the proof of Theorems 5.1 to 5.4 of [3] (or Theorem 4.1 of [2]). Finally conclusion 4° of Theorem K follows from Theorem 7.1 of [3] (Professor Kuroda kindly informed the author that the condition of Hölder continuity of $Q(z)$ was missing in [3]).

2. Eigenfunction expansions.

Under conditions (K.1) to (K.5), we have more concrete knowledge concerning the spectral representation of $H_{1,ac}$ by Kuroda's criterion. Consider the following integral equation:

$$\phi^\pm(x, \xi) = e^{ist^2} \int_{R^n} \phi^\pm(y, \xi)$$

$$\times \left\{ 2i \sum_{j=1}^n (b_j(y) \frac{\partial}{\partial y_j} - \frac{\partial b_j(y)}{\partial y_j} + b_j(y)) + q(y) \right\}$$

$$\times R_s(|x-y|; |\xi|^2 \mp i0) dy$$
If $|\xi|^2 \in \sigma_s(H_i)$, we can find the unique (x, ξ)-measurable solution of $\varphi^\pm(x, \xi)$ with $\int_{\mathbb{R}^n} (1 + |x|)^{-2\alpha} |\varphi^\pm(x, \xi)|^2\,dx < \infty$. Define $(F^\pm f)(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) \varphi^\pm(x, \xi)\,dx$ for f with $(1 + |x|)^{\alpha} f \in L^2(\mathbb{R}^n)$. Kuroda's abstract theorem (shown in [2]) asserts that F can be extended to an isometric operator from $\mathcal{B}_1(\mathcal{E})$ onto $L^2(\mathbb{R}^n)$, satisfying $(F^\pm P, E(\lambda)|f)(\xi) = \chi_\lambda(\xi)(F^\pm P, f)(\xi)$ where $\chi_\lambda(\xi)$ is the characteristic function of $\{\xi : |\xi|^2 \leq \lambda\}$. Moreover if it holds that $(1 + |x|)^{\alpha} H_i f \in L^2$ for $f \in \mathcal{B}$, then we have for $|\xi|^2 \in \sigma_s(H_i)$,
\[\sum_{j=1}^n \left(\frac{\partial}{\partial x_j} b_j(x) \right)^2 + q(x) \varphi^\pm(x, \xi) = |\xi|^2 \varphi^\pm(x, \xi) \] in the sense of distribution. Some additional information of regularity of $\varphi^\pm(x, \xi)$ will be obtained under appropriate conditions on b_j and q.

3. After this work was completed, the author heard the work of Ikebe-Tayoshi ([8]) from Professor Ikebe. They treated a 3-dimensional Schrödinger operator $L = -\Delta + \sum_{j,k=1}^3 \alpha_{j,k}(x) \frac{\partial^2}{\partial x_j \partial x_k} + \sum_{i=1}^3 \beta_k \frac{\partial}{\partial x_k} + \gamma$. They have established the unitary equivalence of L and $-\Delta$ chiefly using the condition of α_{jk}, β_k and $\gamma \in L^1(\mathbb{R}^3)$. Their method is based on the fact that if $R_1(z) - R_2(z)$ is an operator of the trace class, then the part (a) of our Theorem follows from Kato's criterion (Chapt. X of [1]).

References

