Wave Operators for $-\Delta$ in a Domain with Non-Finite Boundary

Dedicated to Professor Atuo Komatu in honor of his 60th birthday

By

Teruo IKEBE

§ 1. Introduction

Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$ be a domain (open connected set) exterior to obstacles such that the obstacles, not necessarily finite in number, form a closed set enclosed in a cylinder $S_{r_0} = \{ x = (x_1, \ldots, x_n) = (\bar{x}, x_n) \in \mathbb{R}^n : |x| < r_0, r_0 > 0 \}$. The complement of S_{r_0} is, therefore, contained in Ω. We consider the differential operator $-\Delta$ on $C_0^\infty(\Omega)$, which will be denoted by A. It is easy to see that A is a well-defined, non-negative definite operator in the Hilbert space $L_2(\Omega)$, so that it has at least one self-adjoint extension. Let H be any such extension. We are to compare H with the operator H_0 in $L_2(\mathbb{R}^n)$ defined as follows: $D(H_0) = \{ u \in L_2(\mathbb{R}^n) : |\xi|^2 \hat{u}(\xi) \in L_2(\mathbb{R}^n) \}$, $(H_0 u)^{\wedge}(\xi) = |\xi|^2 \hat{u}(\xi)$ for $u \in D(H_0)$, where \hat{u} denotes the Fourier transform of u, i.e.,

\[\hat{u}(\xi) = (2\pi)^{-n/2} \text{lim. } \int e^{-i\xi \cdot x} u(x) dx. \]

H_0 is also known to be the unique self-adjoint extension of the negative Laplacian defined on $C_0^\infty(\mathbb{R}^n)$. Let J be the bounded linear map: $L_2(\mathbb{R}^n) \to L_2(\Omega)$ defined by

\[J u = \chi \hat{u}(\xi) \hat{\chi}(\xi) \text{ for } \chi \in C_0^\infty(\mathbb{R}^n), \]

\[\int |\xi|^2 \hat{u}(\xi) \hat{\chi}(\xi) d\xi = \chi \hat{u}(\xi) \hat{\chi}(\xi) \text{ for } \chi \in C_0^\infty(\mathbb{R}^n). \]

Received July 11, 1968.
Communicated by S. Matsuura.

* Mathematical Institute, Faculty of Science, Kyoto University.
1) $C_0^\infty(\Omega)$ is the set of all infinitely differentiable functions with compact support in Ω.
2) We may say that different boundary conditions give rise to different H.
3) $D(A)$ denotes the domain of A.
4) $\text{l.i.m. } \int_{|x| < R} = \text{limit in the mean for } R \to \infty \text{ of } \int_{|x| < R} dx.$
(1.2) \((fu)(x) = u(x)\), \(x \in \Omega\).

Then the wave operator \(W_{\pm} = \pm (H, H_0; J)\) for the pair \((H, H_0)\) and the identification operator \(J\) is defined to be the strong limit

\[(1.3) W_{\pm}(H, H_0; J) = s-lim_{t \to \pm \infty} e^{itH} Je^{-itH_0} \]

if it exists. Now we assert the following

Theorem. The wave operators \(W_{\pm}\) exist and are isometries.

The existence of the isometric wave operators \(W_{\pm}\) implies that there is a subspace \(M\) in \(L^2(\Omega)\) reducing \(H\) such that the part of \(H\) in \(M\) is unitarily equivalent with \(H_0\) (see Kato [2]). Consequently, the absolutely continuous spectrum of any self-adjoint extension of \(A\) is never empty and contains at least \([0, \infty)\), since \(H_0\) is known to have the absolutely continuous spectrum \([0, \infty)\). This property is thus independent of whatever (homogeneous) boundary condition may be attached to \(-\Delta\) in \(\Omega\).

In closing this Introduction we mention that the existence and some related properties of the wave operators have been obtained for a bounded (set of) obstacle(s) (see, e.g., Ikebe [1], Lax-Phillips [3] and Shenk [4]).

§ 2. A Decay Principle

If \(\varphi(x)\) is a (measurable) function defined on \(\mathbb{R}^n\) or \(\Omega\), let us denote by \(\varphi\) the operator of multiplication by \(\varphi(x)\).

Lemma 2.1. Let \(\varphi(x)\) be a bounded function on \(\mathbb{R}^n\) such that \supp \((\varphi)^{7} \subset S_r\) for an \(r > 0\). Then for any \(u \in L^2(\mathbb{R}^n)\) we have

\[(2.1) \|\varphi e^{-itH_0}u\|_{L^2(\mathbb{R}^n)} \to 0 \quad (t \to \pm \infty). \]

Proof. In order to show (2.1) it is sufficient to prove that (2.1) holds for \(u\) in a fundamental set \(D\), since the operator norm of

6) See footnote 2).
7) \(\text{supp}(f)\) = support of \(f(x)\).
8) The norm of a Hilbert space \(X\) is designated by \(\|x\|_X\).
\(\varphi \exp (-itH) \) is uniformly bounded in \(t \). Let \(D \) be the totality of such functions \(u \) that \(u(x) = f(x)g(x) \) with \(f \in C_c^\infty (\mathbb{R}^n) \) and \(g \in C_c^\infty (\mathbb{R}^l) \). For \(u = f \cdot g \in D \), we have

\[
(\exp(-itH)u)(\xi) = e^{-it||\xi||^2}f(\xi)\hat{g}(\xi),
\]

which implies

\[
e^{-itH_0}u(x) = (2\pi)^{-\frac{n}{2}}\int_{\mathbb{R}^n} e^{ix\cdot\xi}e^{-it||\xi||^2}\hat{f}(\xi)\hat{g}(\xi) d\xi \times
\]

\[
\times \int_{\mathbb{R}^l} e^{ix_n\xi_n - it||\xi_n||^2}\hat{g}_n(\xi_n) d\xi_n.
\]

Fixing \(\xi \) and integrating with respect to \(x_n \) we get

\[
\int_{\mathbb{R}^1} |e^{-itH_0}u(\xi, x_n)|^2 dx_n \leq \text{const.} \varphi(\xi)\|g\|_{L^2(\mathbb{R}^l)}^2 F(\xi, t),
\]

where \(\varphi(\xi) = \sup \{ |\varphi(\xi, x_n)| : x_n \in \mathbb{R}^l \} \) and

\[
F(\xi, t) = \left| \int_{\mathbb{R}^n} e^{ix\cdot\xi - it||\xi||^2}\hat{f}(\xi) \hat{g}(\xi) d\xi \right|^2.
\]

Consequently, noting that \(\varphi(\xi) \) is bounded with compact support in \(\mathbb{R}^{n-1} \), we obtain

\[
||e^{-itH_0}u||_{L^2(\mathbb{R}^{n})} \leq \text{const.} \int_{\text{supp}(\varphi)} F(\xi, t) d\xi.
\]

By the Riemann-Lebesgue lemma \(F(\xi, t) \) tends to 0 as \(|t| \) goes to infinity, and this convergence is uniform in \(\xi \in \text{supp}(\varphi) \). Hence we have the right side of (2.6) tending to 0 in view of the bounded convergence theorem. Q. E. D.

§ 3. Proof of the Theorem

We shall consider \(W_+ \) alone, for \(W_- \) can be handled quite similarly.

Let \(\eta(x) \) be a smooth function on \(\mathbb{R}^n \) satisfying the following conditions: \(0 \leq \eta(x) \leq 1 \); \(\eta(x) = 1 \) in a neighborhood of the boundary of \(\Omega \); \(\text{supp}(\eta) \subset S_r \) for a sufficiently large \(r \). Put \(\zeta(x) = 1 - \eta(x) \). Then \(W(t) = \exp (-itH)J \exp (-itH_0) \) can be written

\[
W(t) = W_+(t) + W_-(t)
\]
with

\(W_1(t) = e^{itH} \eta e^{-itH_0} \), \(W_2(t) = e^{itH} \zeta e^{-itH_0} \).

Since we have

\(\| W_1(t)u \|_{L^2(\Omega)} \leq \| \eta e^{-itH_0}u \|_{L^2(\Omega)} \leq \| \eta e^{-itH_0}u \|_{L^2(\mathbb{R}^n)} \),

it follows from Lemma 2.1 with \(\varphi = \eta \) that for \(u \in L_2(\mathbb{R}^n) \)

\(\| W_1(t)u \|_{L^2(\Omega)} \to 0 \quad (t \to \infty) \).

In order to show the strong convergence of \(W_2(t) \), we first differentiate \(W_2(t)u \), \(u \in D(H_0) \), obtaining

\(dW_2(t)u/dt = ie^{itH}(H\zeta - J\zeta H_0)e^{-itH_0}u \).

Now (3.5) makes sense. Indeed, \(\exp(-itH_0)u \in D(H_0) \) and \(\zeta(x) \) is smooth and bounded, and hence \(\zeta \exp(-itH_0)u(x) \) is twice strongly differentiable. Since in addition \(\zeta(x) \) vanishes identically near the boundary of \(\Omega \), the application of \(J \) to \(\zeta \exp(-itH_0)u \) does not affect the differentiability, and thus \(J\zeta \exp(-itH_0)u \in D(H) \). On the other hand, \(J\zeta H_0 \exp(-itH_0)u \) is meaningful, for \(J \) and \(\zeta \) are bounded operators. Thus (3.5) holds for \(u \in D(H_0) \). Now since

\((HJ\zeta - J\zeta H_0)v = -2J(\text{grad } \zeta) \cdot (\text{grad } v) - J(\Delta \zeta) v \)

for \(v = \exp(-itH_0)u \in D(H_0) \), we have on integrating (3.5)

\(W_2(t)u - J\zeta u = -2i \int_0^t e^{isH}(\text{grad } \zeta) \cdot (\text{grad } e^{-isH_0}u)ds - \\
- i \int_0^t e^{isH}(\Delta \zeta)e^{-isH_0}uds \).

If we can show that

\(\int_0^\infty \| (\text{grad } \zeta) \cdot (\text{grad } e^{-itH_0}u) \|dt < \infty \),

(3.9) \(\int_0^\infty \| (\Delta \zeta)e^{-itH_0}u \|dt < \infty \)

for \(u \) in a fundamental set \(D \subset D(H_0) \), then the existence of the strong limit \(W_+ \) will be concluded in virtue of the uniform boundedness in \(t \) of the operator norm of \(W_2(t) \), and of (3.4), (3.1).

As \(D \) we take all functions \(u_a(x) \) for which
(3.10) \[\tilde{u}_a(\xi) = (\prod_{i=1}^{\infty} \xi_i) \exp \left(-|\xi|^2 - i\xi \cdot a \right), \quad a \in \mathbb{R}^n. \]

Obviously \(D \subset D(H_0) \). That \(D \) is fundamental follows from a theorem of Wiener [5] in view of the fact that \(u_a(x) = u(x - a) \), where \(u(x) \) is a constant multiple of \(\prod_{i=1}^{\infty} x_i \exp (-|x|^2/4) \) which is \(\pm 0 \) almost everywhere. If we put

(3.11) \[v(x, t; a) = \exp \left[-|x-a|^2/(4+4it) \right], \]

we have

(3.12) \[e^{-itH_0} u_a(x) = \text{const.} (1 + it)^{-3n/2} \prod_{i=1}^{\infty} (x_i - a_i) v(x, t; a), \]

(3.13) \[(\text{grad } e^{-itH_0} u_a(x))_j = \text{const.} (1 + it)^{-3n/2} \prod_{i=j}^{\infty} (x_i - a_i) v(x, t; a) - (2 + 2it)^{-1} (x_j - a_j) v(x, t; a). \]

A straightforward computation shows that

(3.14) \[|(\Delta \zeta)e^{-itH_0} u_a(x)| \leq \text{const.} \left| 1 + it \right|^{-3(n-1)/2} (\Delta \zeta)^{-1}(\bar{x} - \bar{a}) \left| x - a \right|^{-n-3} \]

(3.15) \[|(\text{grad } \zeta) \cdot (\text{grad } e^{-itH_0} u_a)(x)| \leq \text{const.} \left| 1 + it \right|^{-3(n-1)/2} (\text{grad } \zeta)^{-1}(\bar{x} - \bar{a}) \left| x - a \right|^{-n-1} \times \]

\[\times \left| 1 + it \right|^{-3/2} (1 + |1 + it|^{-1} |\bar{x} - \bar{a}|) (|\bar{x} - \bar{a}| + |x_n - a_n|) v(x_n, t; a_n) \].

Noting the inequality

(3.16) \[\int_{-\infty}^{\infty} \left| 1 + it \right|^{-2p} |x_n|^{2m} |v(x_n, t; a_n)|^2 dx_n \leq \text{const.}, \quad m \geq 0, \]

where \(p \geq m + 1/2 \) and the constant is independent of \(t \), we obtain (3.8) and (3.9) in view of the facts that \(\text{supp } (\Delta \zeta)^{-1} \) and \(\text{supp } (\text{grad } \zeta)^{-1} \) are bounded in \(\mathbb{R}^{n-1} \), and that we have the factor \(|1 + it|^{-3(n-1)/2} \) on the right-hand side of both (3.14) and (3.15). This completes the proof of the existence of \(W_+ \).

It remains to verify the isometry of \(W_+ \). Let \(\chi_s(x) \) denote the characteristic function of \(S \), and let \(CS \) be the complement of \(S \). Then

9) For the definition of the \(\sim \) operation see just below (2.4).
(3.17) \[||W(t)u||_{L^2(\Omega)}^2 = ||J e^{-itH_0}u||_{L^2(\Omega)}^2 = ||\chi_{\Omega} e^{-itH_0}u||_{L^2(\mathbb{R}^n)}^2 \]
\[= ||u||_{L^2(\mathbb{R}^n)}^2 - ||\chi_{\Omega} e^{-itH_0}u||_{L^2(\mathbb{R}^n)}^2. \]

The last term tends to 0 as \(t \to \infty \) by Lemma 2.1, which proves the desired isometry. Q. E. D.

References