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Representation Varieties and Character Varieties

By

Kazunori NAKAMOTO*

The aim of this paper is to construct a coarse moduli scheme over Z of
equivalence classes of absolutely irreducible representations of each degree of an
arbitrary group (Theorem 1.3). Roughly speaking, we attach a Z-scheme
structure on the set of equivalence classes of absolutely irreducible represen-
tations. We call this moduli scheme the "character variety". Similarly we can
construct the character varieties for absolutely irreducible representations of
semigroups, monoids, associative algebras, and Lie algebras (Remarks 1.4 and

1.5).
The moduli spaces of representations have been used for describing the

moduli spaces of various geometric objects. For example, the moduli of stable
vector bundles over a compact Riemann surface of genus >2 is described as the
set of equivalence classes of irreducible unitary representations of the funda-
mental group. Another example is the Fricke space, that is, the Teichmuller
space of Riemann surfaces, which is described as the set of equivalence classes
of irreducible representations of the fundamental group in PSL2(M) or SL2(R).
In this way, there are many applications of the character variety from a
geometric viewpoint. However in this article we will forget original geometric
motivations. Our subject is to establish a general framework for describing the
representations of an arbitrary group apart from a geometric viewpoint.

In this paper the discussion is all done over Z, and we deal with rep-
resentations over an arbitrary commutative ring. We introduce the notion of
absolute irreducibility of representations over any commutative ring (Definition
1.1). We also extend the notion of equivalence relation of representations
(Definition 1.2). We remark that there is no condition on groups for con-
structing the character varieties. In the process of the construction we obtain
the following result on the representation theory: for any two absolutely ir-
reducible representations p,p' : F —» GLn(K) with a group F and a commutative
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ring R, they are equivalent if and only if they have the same traces (Theorem
6.12). This theorem, which strengthens the results of Carayol [1] and Serre
[10], implies one of the universal properties of representations independent of
groups and coefficient commutative rings. It is essential for this theorem that
the subalgebra R[p(F)] generated by the image p(F) coincides with the full
matrix ring Mw(jR), that is, p is absolutely irreducible. We succeed in de-
scribing equivalence classes of representations by their invariants (traces, de-
terminants and so on) in the absolutely irreducible case. Investigating abso-
lutely irreducible representations for each group can be reduced to studying the
character varieties of each group. In this article we do not go into the detail on
the case that representations are not absolutely irreducible; we leave that case
until the following papers.

To construct the character variety, we need to introduce the "representation
variety". The representation variety of degree n for a group F is the affine
scheme Repw(jT) parameterizing the representations of degree n for F. The
group scheme PGLW over Z acts on Repw(F) by p i-> P'lpP, where p e Repw(jT)
and PePGLw. The subset consisting of absolutely irreducible representations
is Zariski open in the representation variety, and it is called the "absolutely
irreducible representation part" or the "a.i.r. part". The a.i.r. part coincides
with the subset consisting of properly stable points of the representation variety
by PGLW in the sense of GIT [2]. We can construct the character variety by
taking a universal geometric quotient by PGL« of the a.i.r. part.

Since the representation variety and the character variety are constructed
over Z, they are useful for extending the representation theory over fields or
local rings to the one over any commutative rings. Roughly speaking, they
connect the "local theory" with the "global theory" on representations. For
example, we can apply the character variety to the deformation theory of
representations. This is one of the reasons why we work over Z.

The other reason why we work over Z is that there exist several demands
for describing various objects over any commutative ring by using the character
varieties. In [9], K. Saito tried to construct a general framework for describing
the Teichmuller space of Riemann surfaces as the Fricke space. Since such an
object is described as a real algebraic space, so we can not use the usual
technique of algebraic geometry over algebraically closed fields. Hence he
attempted to construct the character variety over the real number field R or
moreover the integer ring Z. Indeed he constructed the character variety of
degree 2 over Z. In this paper we shall construct the character variety over Z
of every degree.

We note that if 7" is a finitely generated group, then the character variety
for F is of finite type over Z. If the group F is a topological group, for
example, a Lie group, then the character variety for F is very huge because it
contains non-continuous absolutely irreducible representations. If F is a Lie



REPRESENTATION AND CHARACTER VARIETIES 161

group, then we had better consider the character variety for the Lie algebra of F
instead of the one for F. Attention is necessary when we consider the character
variety for a huge group.

Here we refer to related works of others. One is Donkin's important result
in [3]. Donkin showed that the PGL-invariant subring of the coordinate ring
of the space of matrices is generated by coefficients of characteristic polynomials
of matrices over Z (Theorem 2.12). This theorem is essential for constructing
the character varieties of free groups. Indeed, the PGL-invariant subring is
exactly the coordinate ring of the character variety in the free group case, and
this result gives rich information about the coordinate ring.

Next we should refer to King's paper [5]. King constructed the moduli
spaces of ^-stable or $-semistable representations of quivers, which have many
applications to the moduli of vector bundles and so on. He introduced the
notion of ^-stability of modules over the path algebras of quivers. Although
the character varieties can be constructed for an arbitrary associative algebra,
they are not direct generalization of King's moduli spaces, since the character
varieties deal with only absolutely irreducible representations at present.
However the character varieties are closely related to his moduli spaces. In this
article we construct the character variety independently of King's paper.

As an application of the character variety, we can describe several moduli
schemes of vector bundles. Here let us explain a certain relation between the
character variety for the free monoid of rank 2 and the moduli of vector
bundles over P2. Fix some line /o — P2- Let T2 be the free monoid with a
system of free generators {a,/?}. We denote by Mp2(r;0,w)^o"stable the coarse
moduli scheme of //-stable vector bundles over P2 with c\ = 0, c-i — n, rk = r
whose restrictions on t§ are trivial. We denote by Chn(T2)^\T the coarse
moduli scheme of absolutely irreducible representations of degree n for TI such
that &[p(*),p(p)] = r, where [p(*),p(fl] = p(*)p(P) - p(P)p(*\ Then by the
monad construction of vector bundles we see that Mp2(r;0,«)^~stable is iso-
morphic to Chn(T2)^iT if n > r > 2. It is more natural to consider repre-
sentations of quivers for studying //-stable vector bundles with c\ = 0 over P2,
but we can not explain the details here. More details can be found in [7].

The basic conventions of this paper are these: Each commutative ring has
the identity element 1. All homomorphisms of commutative rings take 1 to 1.
If R is a commutative ring and if p is a prime ideal of R, then we denote by
fc(p) the residue field of p,- that is, Rp/pR@. For a commutative ring R, the
general linear group is defined as GLn(R) := {A e Mn(R) \ det(A) E Rx}. The
identity matrix of GLn(R) is denoted by /„. For a group F, we denote by e
the unit of F. For a scheme Z, we denote by /zz the functor Hom(-,Z) from
the category of schemes to the category of sets. We also denote by F(Z,
the ring of global sections on Z.
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§1. Main Theorem

In this section we state the main theorem of this paper: for any group and
for any degree, there exists a coarse moduli scheme of equivalence classes of
absolutely irreducible representations (Theorem 1.3). We call this moduli
scheme the "character variety". To state the main theorem more precisely, we
need to prepare some terminology.

If (/) : R —> S is a homomorphism of commutative rings, then ^ induces the
group homomorphism fa : GLn(R) — > GLn(S) by sending (ay) to ($(ay)). In
particular, for a commutative ring R and a prime ideal p of R, the canonical
ring homomorphism from R to k(p) induces the group homomorphism
GLn(R) — > GLn(k(p)), where k(p) is the residue field of p, that is,

Definition 1.1. Let F be a group and R a commutative ring. A map
p : F — > GLn(R) is called a representation if p is a group homomorphism. We
say that a representation p : F — > GLn(R) is absolutely irreducible if the rep-
resentation pp : F — > GLn(k(p)) is absolutely irreducible for each prime ideal
p e Spec R, where pp is the composite of p and the group homomorphism
GLn(R) — » GLn(k(p)). Recall that a representation p : F — » GLn(k) with a
field k is said to be absolutely irreducible if the representation p : F — » GL,n(k)
induced by p is irreducible, where k is an algebraic closure of k. We abbreviate
"absolutely irreducible representation" to "a.i.r.".

By a group homomorphism p : F — > GLn(F(X, Ox)), we understand a
representation in a scheme X. We say that a representation p in a scheme X is
absolutely irreducible if for each x e X the representation px : F — > GLn(k(x)) is
absolutely irreducible.
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Definition 1.2. For two representations /?,/?' : .T — > GLn(R), we say that p
and p' are equivalent (or p ~ /?') if there exists an ^-algebra isomorphism
a : Mn(R) -> Mn(^) such that o(p(y)) = p'(y) for each y E F.

If /? ~ p' and if /? is absolutely irreducible, then so is p' . If R is a field,
then p ~ p' if and only if p = Pp'P~l for some PeGLn(R) because of the
Skolem-Noether Theorem.

For two representations p and p1 in a scheme X, we say that p and /?' are
equivalent if there exists an (Pj^-algebra isomorphism cr : Mw(^^) — » Mn(0jr)
such that o(p(y)) = p'(y) for each y e 7".

Now we introduce the moduli functor related to the representation theory.
We define the contravariant functor SqstfJ$n(F) from the category of schemes
to that of sets:

F) : (Sch) -» (Sets)

X *-+ {p : r -> GLn(r(X, Ox)) an a.i.r.}/-.

With the functor above we can now state the main theorem:

Theorem 1.3 (The Main Theorem). There exists a coarse moduli scheme
Chw(.F)air over Z associated to the moduli functor $q£#^$n(F). In other words,
there exist a separated scheme Chw(,T)air over Z and a natural transformation
r : S'q£#J'&n(r) —+ hchn(r) lr satisfying the following two conditions.
(i) For any scheme Z, the natural transformation T induces the following
isomorphism:

r),hz) = Hom(/zch,7(r)air ,

(ii) For any algebraically closed field Q, the morphism

is bijective.

We shall call the scheme Chw(/^)air the (absolutely irreducible) character
variety of degree n for F.

Here we give an outline of the proof of the main theorem. We introduce
the representation variety Repw(7") for each group F in §2. The representation
variety R.epn(F) is the affine scheme parameterizing the representations of
degree n for F. The group scheme PGLn canonically acts on the representation
variety by p^P~lpP for peRepn(F) and PePGLn. The coordinate ring
An(r) of Repw(r) has two subring An(F)ch c An(F)PGL", where the first one is
generated by all coefficients of the characteristic polynomials of the universal
representation, and the second one is obtained by taking invariants under the
action of PGLW. The respective spectra of An(F)Ch and An(F)PGL" are denoted
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by Ch®(r) and Chn(F). In §3 we shall show that the subset consisting of
absolutely irreducible representations (the a.i.r. part, which is denoted by
Repw(T)ai r) is Zariski open in the representation variety. For describing the
a.i.r. part we introduce a PGLW -invariant A called a discriminant.
The a.i.r. parts of Ch^(T) and Chn(r) are similarly defined, and they are
denoted by Ch°(T)air and Chw(T)a i r, respectively. Then there exists a
natural morphism nn^r^ij- '• Repw(F)air — > Ch°(F)air. We construct the char-
acter variety by taking a universal geometric quotient of Rep^(T)air by
PGLn. The latter part of this paper (§4- §6) is devoted to proving that n^r^ir
is a universal geometric quotient. For proving this claim, we only have to
prove the case that F is a free group by Theorem 5.1: any morphism
nn,r,A '• Repw(7")^ — > Ch®(r)A is obtained by the base change of the special
morphism nn FI j : Repn(Fw2)j — > Ch°(Fn2)j. In §6 we shall prove that the
action of PGLn on the a.i.r. part is free by using the Skolem-Noether theorem
and Theorem 4.1. The explicit formula in Theorem 4.1 implies that any matrix
can be reconstructed by its PGL«-invariants. From the freeness of the action,
we see that the morphism nn,r,a.ir is a universal geometric quotient (we note that
rc«,r,air is faithfully fiat). Therefore we see that Ch°(r)air is the character
variety. We remark that nn,r,mr is a PGLW -principal fiber bundle and that
ch«°(r)a.i.r. coincides with Chw(r)air .

Remark 1.4. Let T be a semigroup or a monoid. A map p : T — > Mn(R)
is called a representation of T if p is a semigroup (or resp. a monoid) ho-
momorphism. The contravariant functor &qs£J3kn(^£} for T is defined in the
similar way as the group case. Then we can also show that a coarse moduli
scheme Chw(Y)ai r exists for the moduli functor $q34J@ln(T}.

Remark 1.5. Let A be an associative algebra over a commutative ring R.
For a commutative J^-algebra S, we say that a map p : A — > Mn(S) is a
representation of A in Mn(S) if p is an J^-algebra homomorphism. Two
representations p,p' : A — > Mn(S) are called equivalent (or p ~ /?') if there exists
an S-algebra isomorphism a : Mw(5) — » Mn(5) such that a(p(a)} = p'(a) for
each fleyl. We say that a representation /? : ^4 — > MW(*S) is absolutely irre-
ducible if the representation pp : A — > Mw(fc(p)) induced by /? is absolutely
irreducible for each prime ideal p e Spec(S). We introduce the moduli functor
$qs4J9ln(A) from the category of schemes over R to that of sets in the similar
way as the group case.

gqj4J3ln(A) : (Sch//0 ^ (Sets)

X»{p:A-+ Mn(Cx(X}} an a.i.r.}/-.

We can construct the coarse moduli scheme Chn(A)air associated to
A) as a scheme over ^ in the similar way as Theorem 1.3.
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For a Lie algebra g over a commutative ring R, we can also construct the
coarse moduli scheme of equivalence classes of absolutely irreducible repre-
sentations of g. Indeed, it can be constructed as the character variety for the
universal enveloping algebra of g.

§2. Representation Varieties

To construct the character variety, we need to introduce the representation
variety. The representation variety of degree n for a group F is the affine
scheme parameterizing the representations of degree n for F. In this section we
give basic results on the representation variety and introduce several schemes,
which turn out to be the character varieties.

Definition 2.1 (cf. [9]). Let jT be a group and n a positive integer. Let us
consider the polynomial ring Z[ay(y)\y e F, 1 < i,j < n], where the symbols
atj (y) are independent variables. By I(F), we understand the ideal of the
polynomial ring defined by

y,6 E F, 1 <i,j<n
\ k=\

Then we define the representation ring An(F) of degree n for F by

A«(r) := Z\av(y)\y e F, 1 < ij < n]/I(r).

We call the spectrum of An(F) the representation variety of degree n for 7",
denoted by Repn(r).

Definition 2.2. With the same notation as Definition 2.1, we define the
universal representation or of degree n for .T by

ar : r - GLn(An(F))

y^

Here we regard 0,7(7) as an element of the ring An(F) through the canonical
projection Z[0,y(y)|y E 7", 1 < i,j < n] —> An(F). We see that the map or is a
representation because of the definition of An(F).

The next proposition tells us the reason why the scheme Repw(r) and the
representation ar are called the representation variety and the universal rep-
resentation, respectively.

Proposition 2.3. The affine scheme Repw(F) represents the following
contravariant functor from the category of schemes to that of sets:
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Repn(r) : (Sch) - (Sets)

X i— > {p '• r — » GLA2(JT(X, 0;r)) \p is a representation],

where F(X, Ox) is the ring of global sections on X.

Proof. For a scheme X we consider the following map:

Homring(Aw(F), r(X, (9X}} -+ Homgroup(r,

where fa : GLW(AW(F)) — > GLn(r(X,@x)) is the group homomorphism induced
by ^. We easily see that the map is an isomorphism by the definition of op-
From the isomorphism

Hom(Jf,Repw(r)) ^ Homring(Aw(r),F(jr,

we obtain the statement. D

Remark 2.4. In the semigroup (or monoid) case we can also define the
representation variety with the universal property as in Proposition 2.3.

The name of "representation variety" is due to K. Saito in [9]. Remark
that representation varieties are neither irreducible nor reduced in general.
However we will use this name and the name of "character variety" according
to [9].

Remark 2.5. If $ : F\ — •» /2 is a group homomorphism, then ^ induces the
ring homomorphism

Hence the group homomorphism ^ induces the morphism of schemes
^* : Repw(/2) — » Repw(/]). If $ is surjective, then fa is also surjective; in
particular ^* is a closed immersion.

We now introduce some examples of representation varieties.

Example 2.6 (cf. [8]). Let Z[M® m] be the coordinate ring for the space of
m-tuples of n x n matrices (A\,A2, . . . ,Am), that is,

:= Z[^|l < 1,7 < /i, 1 < k < m],

where A^ = (^)\<ij<n- The ring Z[M®m] is isomorphic to the polynomial
ring in n2m variables over Z. Set det^ := fJLi d^^k- Let Z[M® m]dQiA

denote the localization of Z[Mfm] by det^4.
For the free group Fm of rank m with a system of free generators

{ai, . . . ,am}, we consider the following ring homomorphism:
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It is easy to see that the homomorphism is an isomorphism, hence the spectrum
of Z[Mf m}deiA is isomorphic to Repw(Fm). We can also see that SpecZ[M®m]
is isomorphic to Repw(Tm), where Tm is the free monoid of rank m.

Example 2.7. Let us consider the case that F is an arbitrary group.
Suppose that .T is expressed as F//U, where F/ is a free group with a system
of free generators / and R is a set of fundamental relations. Let Z [fj/ Mw]
denote the coordinate ring for the space of # /-tuples of « x n matrices
(Ai)iel. Let det^4 denote the multiplicative system in Z[H/MW] generated
by {dQtAi}j j. As in Example 2.6 we see that Z[n/Mw]deM ^ Aw(F/)3

hence Spec (Z [J17 M,,] deM ) is isomorphic to Repw(F/). Let OF/ : F/ — >

GLwfz[n/Mw]det^ J denote the universal representation of degree n for
F/. Then the representation ring of degree n for F is isomorphic to
Z[n/ M«]dety4//, where / is the ideal of Z[J]/ Mn]deM generated by all entries of
matrices {crF/(<5) — /„ \d e .R}. Hence we have Repw(T) = SpecZ[Q/ M

Remark 2.8. We can easily see that Rep/l(7") is of finite type over Z if F is
a finitely generated group, and that in general case Repn(.T) is the projective
limit of the Repw(/"/), where F' runs through the finitely generated subgroups
of r.

We recall the group scheme PGLW := SpecZ[x,y|l < i,j < «](det(^,)) over ^~
Here we denote by (A(PGLW) :=) Z[xy|l < /, j < n] ̂ det^ ^ the subring of ele-
ments of degree 0 in the graded ring Z[xzy|l <i,j<n]dGi^Xiy There exists a
natural action of PGL« on the representation variety Repw(J'):

Ad : Repw(r) x PGLn -+ Repw(r)

We denote by Ad* : AM(r) — > An(F) ®z A(PGLW) the ring homomorphism
associated to Ad.

We introduce some notation about PGLW -invariants.

Notation 2.9. Let R be a commutative ring. For A eMn(R), we define
d(A),c2(A),...,cn(A)eR by

fet(xln -A)=x"-Cl (A}xn~l + c2(A)x"-2 ---- + (-\}ncn(A}.

For the universal representation crr : F — * GLn(An (/*)), we simply denote
c/(°"r(y)) by c/(y). We specially denote c\(y) and cw(y) by s(y) and J(y),
respectively. The letters s and d mean the initial of "Spur" and "Determi-
nante", respectively.
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Definition 2.10. The subalgebra An(F)ch of the representation ring An(F)
is defined as the subalgebra generated by {c/(y)|l < / < n,y e F} over Z. The
subalgebra of PGLn -invariants An(F)PGLn of An(F) is defined by

Aw(r)PGL" := {x E An(F) | Ad*(x) = x <g> 1 in An(F) ®z A(PGLW)}.

For a commutative ring R, we also define (An(F) ®ZR)PGL" by

{*e An(F) ®zR\Ad*R(x) = x® 1},

where Adjj : An(F) ®ZR — > (An(F) ®zjR) ®z A(PGLW) is the morphism in-
duced by Ad. As in the group case, we define two subalgebras Aw(T)ch and
AW(T)PGL" of the representation ring AW(T) for a semigroup (or a monoid) T.

Notation 2.11. For a group F, we put

Ch°(r): = SpecAw(r)Ch.

It is clear that An(F)Ch c Aw(r)PGL" c An(F). The inclusions of rings induce
the following morphisms, whose composite will be called nn,r'-

nn,r : RepH(r) -> Ch«(r) -+ Chn°(r).

By Example 2.6, we see that the representation ring An(Tm) for the free
monoid Tm is isomorphic to Z[M®m], that is, the coordinate ring for the space
of m-tuples ofnxn matrices (A\,...,Am). We denote Aw(Tm)PGL" by
Z[M®m]PGL". Similarly we denote (Aw(Tm) ®Z^)PGU by R[Mf m]PGL" for a
commutative ring R. Here we quote an important theorem about the ring
Z[Mfw]PGL" from [3].

Theorem 2.12 (S. Donkin [3]). In the same notation as above, the
invariant ring Z[M®m]PGL" is generated by {cj(AtlAi2 • • • Ati) \ I < j < n and
/i, /2, • • •, U e {1,2,. . . , w}} as a Z-algebra. Moreover if Q is any algebraically
closed field, then Q[Mfm]PGL» ^ %[Mfm}PGL« ®ZQ.

The next corollary immediately follows from this theorem.

Corollary 2.13. For the free group ¥m of rank m, we have Aw(F^ch —- m)

From Corollary 2.13 we conclude that two subalgebras An(F)PGL" and
An(F)ch coincide for finitely generated free groups F. In general case we shall
later see that they coincide at least on the absolutely irreducible representation
part; it is not yet known whether two algebras coincide outside the a.i.r. part for
an arbitrary group.
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§ 3. Discriminants

In this section, we describe the subset consisting of absolutely irreducible
representations in the representation variety. We call this subset the "abso-
lutely irreducible representation part" or the "a.i.r. part". To describe it, we
need an invariant A called a discriminant. The discriminant is defined for n2

elements of a group when we consider the representation variety of degree n.
The a.i.r. part is a Zariski open subset where at least one discriminant does not
vanish.

Definition 3.1. Let us consider ordered n2 matrices A\ , AI, . . . , Ani e Mn(R)
with a commutative ring R. Let A^ — (a^ )\<ij<n- The discriminant
A(A\,A2,..., Ani) for A\ , ̂ 2, • • • , Ani is defined as the determinant of the matrix

(1) Ji) fl(i) JD Ji) fl(i) fl(i) \
n au ... fllw a21 ... a2n ... awl ... «„„
(2) (2) (2) (2) (2) (2) (2)n n n // // /7 /vn an ... alw a21 ... a2n ... awl ... awn

Let ai, ok, . . . , aw2 be w2 ordered elements of a group /". The discriminant
A(OL\ , a2, . . . , aw2) for «i , a2, . . . , aw2 is defined by

J(ai , a2, . . . , aw2) := J(crr(ai), crr(a2), . . . , M0^)) e Aw(r),

where ap is the universal representation of degree n for F.

Remark 3.2. For A\,A^ . . . ,^4n2 e Mn(R), we see that

Indeed, consider the following equality and take the determinants of the both
sides:

tr(A2Ai)

n "n

Then we obtain the formula.
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By the discriminant we understand not det(tr(y4 /y47))1<-J.<w2 but
A(A\,Ai,...,Ani) in this paper. For investigating the complement of the
absolutely irreducible representation part in the future (we do not go into the
detail in this paper), the polynomial A(A\,Ai, . . . ,^2) is more reasonable than
det(tr(AiAj))l<i.<n2. Indeed the polynomial dQt(tr(AjAj)) is always reducible,
and hence it is not suitable for describing the complement of the a.i.r. part.

For AI e Mn(R), the discriminant A(A\,Ai,..., Ani) is invertible in R if and
only if {AI , AI, • . . , Ani} is a free basis of Mn(R) over R. The definition of the
discriminant A(A\,... ,Ani) depends on the order of A\, . . . ,Ani. Indeed, if o
is an element of the symmetric group 6^2, then ^(Aff^,A^2)^ - • • ,^a(n2}) —
sgn((?)A(Ai,A2,. . . ,An2). However whether the discriminant A is invertible
depends only on the set {A\,A2, ... ,Ani}.

We see that the discriminant A is PGL« -invariant from the next proposition.

Proposition 3.
for a i , . . . , aw2 eT.

Proposition 3.3. The discriminant A(u.\, . . . ,0^2) is an element of An(F)ch

Proof. Let ¥ni be the free group of rank n2 with a system of free
generators {ai , a2, • • • , (V}. Let q> : Fn2 — * F be the group homomorphism
sending a/ to a/ for 1 <i <n2. Then (p induces the following diagram:

An(Fw2)Ch = AM(Fn2)PGL« -

By Corollary 2.13 we have Aw(Fn2)ch = An(¥ni)
PGLn. The discriminant

A(VL\ , . . . , aw2) is sent to J ( a i , . . . , aw2). So it suffices to show that A :=
A(a,\,... ,aw 2) is an element of AW(FW2)PGL". Moreover we only have to
show that A is an element of (An(Fn2) ® C)PGL", where C is the complex
number field. By Remark 3.2 we see that A2 e (AM(Fw2) ® C)PGL". Since
PGLM has no nontrivial character, so we get A E (An(Pni) ® C)PGL". This
completes the proof. D

Now we define the absolutely irreducible representation part.

Definition 3.4. For n2 elements a i , . . . , aw2 of a group F, we denote
by Repn(/^(aii-->iV) the open subscheme Spec(An(r)J(ai)_v)) of the repre-
sentation variety Repn(,T) = SpecA«(Jn). We define the open subscheme
Repn(r)ai, of RepB(r) by

r)a.i.r. := U
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The open subscheme Repw(Jr)air is called the absolutely irreducible represen-
tation part or the a.i.r. part.

Recall that if p : F — > GLn(k) is a representation with a field k, then p is
absolutely irreducible if and only if the subalgebra k[p(F)] generated by p(F)
coincides with the full matrix ring M.n(k). Therefore the absolute irreducibility
of p is equivalent to the condition that there exist n2 elements {y z}i</<w2 of F
such that {p(y\),p(y<i)-> • - - ->P(y^}} is a basis of Mn(k). Hence we easily see that
Repw(F)air is the subfunctor of Repw(F) consisting of absolutely irreducible
representations.

As in Definition 3.4 we define the a.i.r. parts of Chn(F) and Ch^(T).

Definition 3.5. For elements a i , . . . , a w 2 of a group F, we denote by
CMO^,...,^) the open subscheme Spec((Aw(r)PGL^(aii ^ of Chn(F).
Similarly we denote by Ch^(F)A^ a ^ the open subscheme
Spec((A«(r)c%aii...iV)) of ChQ

n(F). We define the a.i.r. parts by

r. = = U Ch n ( r )^ ( a i i a 2 ) . . . i ) ,

chn°(r),i., : = U Ch°(r),(ai,a2 ..... v).
ai,a2 , . . . ,an2er

Notation 3.6. Let %\ , . . . , aw2 be elements of a group F and let zf be the
discriminant A(a.\, . . . , aw2). Then we get morphisms Repn(T)^ — > Chn(F)^ —*
Ch^r)^ by restricting the morphisms nn,r : Repw(r) -> Chn(r) -^ Ch^(r) in
Notation 2.11; furthermore we get morphisms RepM(T)air _ — > Chw(7")a-i_r _ — >•
Ch°(F)ai r. We shall denote by nn,r,A and nn,p^ii the morphisms Repw(F)^ — >
Chw°(r)/and Repn(r)a lr. -> Chw°(r)a.,,3 respectively.

We shall later show that Chw(r)air = Ch°(T)air and that the morphism
ft«,r,air gives a universal geometric quotient by PGLW. In Section 6 we see that
the scheme Chw(7")air (= Ch^(T)air ) is the character variety, that is, the coarse
moduli scheme of equivalence classes of absolutely irreducible representations.

The next proposition has no direct bearing on the proof of the main
theorem but implies that the a.i.r. part of the representation variety is non-
empty for each free group of rank >2. Furthermore the following stronger
result is also known: if a field A: is a transcendental extension of a prime field or
if k has characteristic 0, then SLn(k) has a fc-dense subgroup which is iso-
morphic to the free group ¥2 of rank 2, and hence this subgroup ¥2 possesses
an absolutely irreducible representation arising from SLn(k) (for proofs see
[12]). Here we give an easy proof of the existence of absolutely irreducible
representations for each free group of rank >2.
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Proposition 3.7. Let k be an arbitrary field. For the free group Fm of rank
m > 2, there exists an absolutely irreducible representation p : ¥m —> GLn(k) for
each positive integer n. Furthermore we may assume that p is a representation in

Proof. First we shall prove the case m = 2. Let {a,/?} be a system of free
generators of ¥2- We define the representation p : ¥2 —> GLn(k) by

/ I 1 0 • • • 0 \ / I 0 0 • • • 0 \
0 1 1 . . . 0

0 0 1 ' - . :

: : '•. '-. 1
\ 0 0 0 • • • I /

1 1 0 ••• 0

0 1 1 "'. 0

\0 0 • • • 1 I /

We show that p is absolutely irreducible. Let {e\,...,en} be the canonical
basis of k®n. Put Vi '•= ®l-=lk- Cj and FF/ := @n

=ik • e/. We can easily see
that any p(a)-invariant subspace of V is either {0} or some Vt (i = 1 ,2 , . . . ,«) .
We can also check that any /7(/?)-invariant subspace is either {0} or some W\.
Since there is no non-trivial subspace invariant under /?(a) and /?(/?), the
representation p is irreducible. We also see that it is absolutely irreducible.

In the case Fm with m > 2 we get an absolutely irreducible representation
by composing a surjective morphism Fm —» FI and the absolutely irreducible
representation above p : ¥2 —> GL,n(k). The last statement follows from the
construction of p. D

We have thus proved that the absolutely irreducible representation part is
non-empty for the case of the free group of rank m>2.

Corollary 3.8. Let k be a field. For the free group Fm of rank m>2,
there exist n2 elements a i , . . . , aw2 e ¥m such that A(u,\,..., (v) ^ 0 in
Aw(Fm)(x)z/:. In particular Repw(Fm)air is non-empty if m > 2.

§4. Reconstruction of Matrices

In this section we obtain an easy but useful result that any matrices can be
reconstructed by their invariants (Theorem 4.1). As an application of this
theorem, we can see that the ring Aw(/^)^h is a finitely generated algebra over Z
if F is a finitely generated group (Corollary 4.4). Moreover we shall apply
Theorem 4.1 to the proofs of Theorem 5.1 in §5 and Theorem 6.3 in §6.

Theorem 4.1 (Reconstruction of Matrices). Let R be a commutative ring,
and let Ai,A2,.-.,Ani be n2 elements of Mn(R) such that the discriminant
A(A\,A2,...,An2) is an invertible element of R. Then for any X eMn(R) we
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have

X = (A\,A2,..- ,An2)T

where

tr(A\Ai) tr(A\A2)
tr(A2Ai) tr(A2A2) ...

T =

Proof. Since A(A\, . . . ,^2) 6 Rx, the set {A\^...^An2} is a free basis of
Mn(R) over .R (c/ Remark 3.2). Recall that the bilinear form

(X, 7) -> tr(JT7)

is a perfect pairing. The equality easily follows from the fact that
(A\,...,An2)T is the dual basis of (A\,...,An2) with respect to tr(--) . D

Corollary 4.2. L^J^r r/ze same situation as Theorem 4.1, assume that
X, YeMn(R). Then we obtain the equality

tr(XY) = (tv(AlX},...M(An2X}}T

Proof. Using Theorem 4.1, we have

Multiply X from the left and take the traces of the both sides. D

We shall prove that An(T)^h is a finitely generated algebra over Z if F is a
finitely generated group. This fact can be also verified from Donkin's Theorem
(Theorem 2.12) and the invariant theory, but the proof of this paper gives

fVi
explicit generators of An(F)^ .

Theorem 4.3. Let o c \ , . . . , an2 be elements of the free group Fm of rank m
let A be the discrin

generated algebra over Z.
and let A be the discriminant A(CL\, ..., awz). Then An(¥m)/i is a finitely
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Proof. Let ft(x\,...,xn2) denote Ci(x\a?m(a.\) H ----- f- xw2CFF,,7(<v)), where
&pm is the universal representation of degree n for Fm. We easily see that
ft e An(Fm)PGL»[Xl,. . . , x n 2 ] = Aw(Fm)Ch[x!, . . . ,xB2]. By Theorem 4.1 we have

for each

where r = Cs(a/o/))j~</ ,</l2. Here the symbol s(-) is as in Notation 2.9.
Therefore there exist n2 polynomials g\ , . . . , gni in the entries of T and
{ s ( 6 ) \ d E ¥ m } such that

We have thus shown that Aw(Fm)^h is generated by the entries of T, the
coefficients of ft (I <i <ri) and {s(S) \S e Fm} over Z.

We take a system of free generators {/?i, • • • ,/?m} of Fm. For y e F we
define the length of y with respect to {/?1? . . . ,/?m} by

length(y) :=min{/i|y = /»J - - - ^ , e / = ±1}-

Put / := max{length(a/) 1 1 < i < n2} + 1. The theorem follows from the claim
that Aw(Fm)^h is generated by the entries of T, the coefficients of ft, and
{s(S) | length (S) < 2*f}. For the proof of this claim, we only have to prove that
s(y) is contained in the subalgebra generated by these elements if length
(V) > 2f.

Assume that length(y) > 2^. Then we can choose y{ , y2 e Fm such that
y = y{y2, Iength(y1) > /, Iength(y2) > ^ and length (yj +length(y2) = length(y).
By Corollary 4.2 we have

(«! y2)

Since length(az-y! ) < length(y) and Iength(a/y2) < length(y), we can show that
s(y) is contained in the subalgebra generated by the entries of T and
{s(S) | length(J) < 2f} by induction. This completes the proof. D

Corollary 4A Let F be a finitely generated group. For oc\, a 2 , . . . , aw2 6 F
deno

over Z.
we denote z f ( a i , a 2 , . . . , awz) by A. Then Aw(T)^h is a finitely generated algebra

Proof. There exists a surjective group homomorphism (p : ¥m —» F. Take
az- e Fm such that ^(a/) = a/ for 1 < i < n2. Then 9? induces a surjective
homomorphism A«(Fm)^J1-i ~ ^—»An(F)^h. The statement follows from
Theorem 4.3. " Q
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The following corollary shall be used in the next section.

Corollary 4.5. Let oci, a2, . . . , ocw2 be elements of a group F and let A be the
discriminant A(u.\, %2, • • • , <v). Suppose that ¥ni is the free group with a system
of free generators {Si, . . . , aw2}. Let $ : A^F^)^ ^2) -> An(F)(^ denote the
"L-algebra homomorphism induced by the group homomorphism ¥ni — > F sending
a/ to ocifor I < i < n2. Then the ring An(F)(jh is generated by {s(y} y e F} and

as a TL-algebra.

Proof. We denote by $ the subalgebra of Aw(T)jh generated by
e F} and Im^ over Z. It suffices to show that any c/(y) is contained in ^.

Put fi(x\,. . . ,xni] := a(xi(TFH2(<ii) -\ ----- h xn20FH2(&n2)) e Aw(Fw2)jh[xi, . . .,xni\,
where A := A(a\, . . . ,0^2). Sending the coefficients of /J by ^, we have
ff(x\,...,xni) = Ci(xiar(u\} + ••• + xn2ar(^}} e An(r)^h[^i, . . . ,xn2\. By
Theorem 4.1 we have

for each y e T,

where T = (s(ocj(x.j))l<ij<n. Therefore each c/(y) is expressed as a polynomial
in {s(S) 6 e F}, the coefficients of f? and the entries of T. Since the co-
efficients of f^ and the entries of T are contained in Im^, any ct(y) is contained
in 2%. D

§5. Reconstruction of Representations

For any group F and any discriminant A, we shall see later that the
morphism nn,r,A ' ReP«(^)^ ~* Ch«(-Oj gives a universal geometric quotient by
PGLn (§6). For each degree n there exists a special one among these mor-
phisms Tin,r,A- Let ¥ni = < a i , . . . ,<v> be the free group of rank fl2. Set
A := A ( O L \ , . . . , 0^2). The special morphism is nn F 2 j : Repw(Fw2)j —> Ch^(Fw2)j,
which is the so-called "prototype" of degree n. In this section we show that
for any group 7" and any discriminant A, the morphism nn^A '• Repw(r)^ —>
Ch^(r)j is obtained by the base change of the "prototype" (Theorem 5.1).
This result suggests that we may reduce the arbitrary group case to the free
group case for proving that the morphism itn^A gives a universal geometric
quotient.

Theorem 5.1 (Reconstruction of Representations). Let a i , . . . , a w 2 be ele-
ments of a group F and A the discriminant A(a,\,..., <v). Let Fni be the free
group with a system of free generators {a i , . . . , a^}. We denote by q> :¥ni —> F
the group homomorphism sending a/ to a/ for 1 < i < n2. Then the homo-
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morphism (p induces the following diagram which is a fiber product:

Repn(Fn2)j

This theorem follows from the following lemma:

Lemma 5.2. Let us consider the same situation as Theorem 5.1. For any
commutative ring R and any commutative diagram

'
R,

there exists a unique ring homomorphism a : A.n(r)A — » R such that the following
diagram is commutative:

Proof of Lemma 5.2. First we prove the uniqueness of the ring homo-
morphism a. By Theorem 4.1 we see that if a exists, then the corresponding
representation a : F —» GL«(^) is given by

Let /?: FW2 —^ GLn(R) be the representation associated to L We
obtain (/?(aO,. . . ,/?(<v)) - ( < r ( a i ) , . . . , (7(0^2)) and (tr^a^-)))'^.^^ =
(^(1y(a/a/)))1~</J<w2 by the commutativity of the diagram. Put T =

and (Ai,... ,An2) = (p(&i),... ,/?(aw2)). Then we have
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(1) a(y) = (Al,...,An2)T : for each y e F.

This implies the uniqueness of a.
For proving the existence of a, it suffices to show that the map

o : F — » Mn(R) defined by (1) is a representation such that the diagram is
commutative. After the following seven claims, we complete the proof.

Claim 1. The following equality holds:

(cr(ai) , . . . ,a(an 2)) = (A^ . . . ,Ani).

Proof. The statement is verified from the following:

Claim 2. For each 7 e F, we have

\

/ Note that r = (tr^-X/))"1. Multiply the both sides of (1) by
A\,...,An2 from the left and take the traces. Then we obtain the following:

Claim 3. For ye /" and 1 < /, 7 < n2, we have

/ Multiply the both sides of (1) by At from the left and by
A\,...,An2 from the right. Then we obtain
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/ Aia(y)Ai \

Aiff(y)A2

t / \ A I

f ./jl J./T. | ./TL i jrLi^L2^l\ " m " jLi^jiyfi IM. j \

AtAiA2 AtA2A2 ••• AtAn2A2

A A A A A A A A A i

T

/ \l/(s(aiiy)) \

ttefay))

iff \ \ jAtA2An2 • • • t n 2 n 2 \ / s c t n 2 y

Taking the traces of the both sides, we get

\
\l/(s(%2y)}

\

T

Remark that the last equality is obtained by taking the traces of the both sides
of the following and by applying i//:

\

where op is the universal representation for F. This completes the proof of the
claim. •
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Claim 4. For y,6 e F, we have

a(y}a(6] = a(yd}.

Proof. Put

C:=

From the definition of a(8) we get

Aiff(y)ff(S) \ ( Ala(y}Al • • • Ala(y}An2 \ /

T

1*1

Taking the traces of the both sides and using Claim 3, we obtain

*nO \

S~l

\l>(s(a.ni§)) .

Considering the universal representation ar for F, we obtain

By Claim 2, we have .

Therefore we obtain the equality

/ ti(Al0(yS)) \

Vtr^^))/

Since A(A\,... ,An2) e Rx, we conclude that a(y)a(d) = a(y$).
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Claim 5. The following equality holds:

o(e) = In.

Proof. By the definition we have

Using Theorem 4.1, we also obtain

/ii(Ai)

7w = ( ,4 i , . . . ,4,2)7* :

\tr(An2)

This implies that the statement is true. •

By the five claims above, we see that the map a : F —> GLn(R) is a
representation.

Claim 6. For y e F, we have

Proof. By Claim 2 we have

Substituting a^y for y, we can prove Claim 6. For the semigroup (or monoid)
case we can also prove Claim 6 by the definition of a(y) and Corollary
4.2. •

Claim 1. The following diagram commutes:

Proof. We show that two ring homomorphisms \j/ and or o i coincide. By
Corollary 4.5 the ring An(r)^h is generated by {s(y)\y e F} and Im(^) over Z,
where ^(= ^J : Aw(Fw2)jh -» Aw(r)^h is the same morphism as in Corollary 4.5.
Claim 6 implies that the images of s(y) by two morphisms coincide for each
y E F. On the other hand, the fact that /?(«/) = 0-(a,-) implies that two mor-
phisms send each element of Im(^) to the same image. Therefore the diagram
is commutative. •
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We have thus completed the proof of Lemma 5.2. Therefore we have
proved Theorem 5.1. D

§6. Proof of the Main Theorem

Until the previous sections we have prepared several tools for the proof
of the main theorem. In the beginning of this section we prove that the
action of PGL« on Repn(/\ir is free. Next we show that the morphism

rc«,/; air : ReP«COair "* ^n(Oair *s faithfully flat. From these results we
see that Tc^air gives a universal geometric quotient and that moreover it
is a PGL« -principal fiber bundle. Thus we construct the character variety

ch'OO^.^CMOa,.,).
Definition 6.1. We define the following contravariant functor:

F : (Sch) -* (Sets)

Note that Mn(&x) is a sheaf of ^-algebras on X.

We define the natural transformation £ : /ZPGLM — * F in the following way.
For a scheme X, each element a e /zpoLn(^0 is expressed by pairs (Ui,Oi)iEl as
follows: {Ui}iel is an open covering of X and GI e GLn(Gx(Ui)) such that for
each x e e// n t//, two sections o{ and o} coincide up to scalar multiple at a
neighborhood of x. The maps Ad(ov) := err1 . crz are automorphisms of
M«(0jrlc/?) for iel and they are glued together. Therefore we get an auto-
morphism Ad(cr) of Mn(@x)' This correspondence induces a natural trans-
formation, which will be called £. We can easily check that the natural
transformation £ is an isomorphism by the Skolem-Noether Theorem:

Theorem 6.2 (Skolem-Noether). Let R be a local ring. For any R-
algebra isomorphism a : WLn(R) — » M.n(K) there exists P e GLn(R) such that

- P ) .

This theorem is well-known, hence we omit the proof.

Here we show that the group scheme PGL« acts freely on the a.i.r. part.
For ai, . . . , aw2 e F, we denote the discriminant zf(a i , . . . , aw2) by A. Note that

F)j is the scheme representing the functor

(Sch) -> (Sets)

X ^ {p

Then the action of PGLW on Repn(F)A can be interpreted as
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x hPGLn(X)

(p,o) i

Here we remark that /ZPGLM (X) can be regarded as the set of automorphisms of
F(X, (9X] -algebra Mn(F(X, (9X}) through the natural transformation £. The
representation Ad(a)(/?) for r in GLn(F(X,(9x)) is defined by (Ad(<r)(/?))(y) :=
Ad(<7)(/>(y)) for yeT.

Theorem 63, /« the same notation as above, the morphism

CPI, Ad) :

w arc isomorphism.

Proof. It suffices to prove that for any scheme X the map

(P\ > Ad)* : ARep.cn, W x APGL,, (X) -> ^Repw(r), W x^cho(r)j (X) h^vn(r}A (X] is
bijective. Throughout this proof we denote F(X, ®x] by R.

First we show that this map is injective. Suppose that the images of
(p\,o\) and (P2,02) by (pl,Ad)x coincide. Then it is clear that pl = p2.
Put p := pl = p2. The set {p(y) \ y e F] generates the .R-algebra Mn(R),
since A(p(u.\), . . . ,/?(aw2)) e Rx. Therefore the assumption that AA(a\)(p) =
Ad(02)(/?) implies that Ad(cri) = Ad (02) as J^-algebra isomorphisms of Mn(R).
Hence we have a\ =02- Thus the injectivity has been proved.

Next for the surjectivity, it suffices to show that for any (/?,/?') e
h^Pn(r},(X) x/^^^/ZRep^r^W, there exists some a e hPGLn (X) such that
A.d(a)(p) = pf. Note that the discriminants zf(/?(ai),/?(a2), . . . ,/>(<v)) and
zl( /? / (a i ) , /7 / (a2) , . . . , /7 / (a w 2)) are invertible elements of R. Hence the sets
{/?(ai), . . . ,/?(aw2)} and {p1 (OL\) , . . . , p' (u.n2)} are Abases of Mn(R). Now we
define the jR-linear map <j> by

We claim that (f> is an J^-algebra isomorphism. Suppose that ^, \l/' :
A.n(F}A — > jR are the ring homomorphisms corresponding to p and //, re-
spectively. Then we get the commutative diagram:

R.
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Denote by x '• A«(/^h — > R the ring homomorphism determined from the
diagram. By Theorem 4.1 we obtain the following equality:

: for each y e T,

where

The similar equation also holds for /?'. Hence $(p(y)) = p'(y) for each y e F.
In particular we obtain

= P' (*&j)

= Pr(<*i)p'(<*j)

Therefore the linear map ^ is an ^-algebra isomorphism. For the /^-algebra
isomorphism $ : Mn(R) — > Mw(^) there exists a E /ZPGLH(^) sucn tnat Ad(o-) = ^.
In particular Ad(<r)(/?) = /?'. This implies the surjectivity.

We have thus proved the theorem. D

The previous theorem can be extended to the next statement.

Corollary 6.4. In the same notation as above, the morphism

RePn(Oa.i.r. xsPecz PGLn -^l Repw(r)a . r xcho ( r )a i r Repw(r)a i r_

is an isomorphism.

In particular we get the following corollary.

Corollary 6.5. The action ofPGLn on Repn(T)air is free. In other words,
the following morphism is a closed immersion:

, Ad) : Repw(F)air xSpecZ PGLW -> Repw(r)air xSpecZ Repw(r)air .

Remark 6.6. Corollaries 6.4 and 6.5 tell us that any absolutely irre-
ducible representation is a properly stable point in Repw(T) by PGLn with
respect to the canonical linearization on the trivial line bundle in the sense of
GIT [2]. Here we show the converse: i f / ? is not absolutely irreducible, then
p is not properly stable. If x : Spec £2 — * Repw(.F) is a geometric point in
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Repw(T) and if the corresponding representation p : F — > GLn(Q) is not
absolutely irreducible, then p has a non-trivial invariant subspace. With a
suitable basis, we can write

0 P 2 ( y ) J

If the stabilizer of x has dimension >1, then x is not properly stable. Suppose
that the stabilizer of x has dimension 0. Consider the map

0 t l n \ 0 ft(y)A 0
«, 0

We see that it tends to

0 P2(y)

as ? — > 0. Since the closure of the orbit of p contains an another orbit, the
orbit of p by PGLW is not closed. Hence x is not properly stable.

Therefore jteRepw(jT) is properly stable if and only if x is a.i.r.

For proving the existence of the quotient, we show that the morphism
Chw°(r)^ is faithfully flat.

Theorem 6.7. The morphism Rep^r)^ -> ChJ^r)^ is faithfully flat.

Proof By Theorem 5.1, we only have to prove that the "prototype"
n

n,¥n2,A
:RGPn(Fn

7-}A^chn(¥n^~ is faithfully flat. We denote nn^2j by f
First we prove that $ is surjective. It suffices to prove that the morphism (/>Q :
Repw(Fw2)j ®ZO — > ChJ(Fw2)j ®ZO is surjective for any algebraically closed
field Q. From Donkin's Theorem (Theorem 2.12) we get an isomorphism
(An(Fn2) ®z Q)f L« ^ An(Fn2)fL" ®z Q. Hence ja : RepB (F^- ®z Q -
Ch^(Fw2)j®zO is a categorical quotient. From Corollary 6.5 the action of
PGLn is free, so the quotient map gives a geometric quotient. In particular the
quotient map is surjective. This completes the first step.

Secondly we prove that the morphism ^ is flat. We recall that Repw(Fw2)j is
smooth over Z from Example 2.6. Since Repw(Fw2)j(g)z^ — > Ch£(Fw2)j®zf2
is a geometric quotient and the action is free, ChjJ(Fw2)j®z£2 is nonsingular for
any algebraically closed field Q. Therefore ChJ(Fw2)j is smooth over Z. In
particular Ch^(Fni)j is a regular scheme. Any fiber of the morphism $ is
isomorphic to PGLW, so the dimensions of fibers are constant. This implies that
the morphism $ is flat.

We have thus completed the proof. D

We have come to the final stage of the proof of the main theorem.
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Proof of Theorem 1.3.
First we prove that the morphism nn^r^n '• ReP«(^r)a.i.r. ~^ Cri«(T)a.i.r. gives

a universal geometric quotient by PGLW. By Corollary 2.13 and Theorem 6.3
and Theorem 6.7, we see that the prototype nn F 2 j : Repw(Fn2)j —» Ch^(Fw2)j
gives a universal geometric quotient. Theorem 5.1 follows that the morphism

is a universal geometric quotient for an arbitrary group F.
Next we show that Ch^(/")air is a coarse moduli scheme associated to

r). For an element [p] e Spj/SMn(r)(X) with a scheme Jf, pick a
representative /?: F —» GLw(F(lr, ^)) of [/?]. Consider the composite of the
morphism Jf —» Repn(/^)air associated to p and the quotient morphism nn^r^ '
Repw(F)air —> Ch^(r)a i r. Then we obtain an element of hchQ,r^ (X}. This
correspondence induces a natural transformation i: S^J^n(r} —> hcho,r, .
Since Ch^(,T)air is a geometric quotient of Repw(T)air, we can easily see that
the natural transformation T satisfies (i) and (ii) of Theorem 1.3. The sepa-
ratedness of Ch^(/\ir follows from that it is an open subscheme of the affine
scheme Ch°(r). '" D

From the proof of Theorem 1.3 we obtain the next corollary.

Corollary 6.8. The morphism nn,r,w; '• Repw(T)air —> Ch^(.T)air is a
universal geometric quotient by PGLW. Moreover it is a PGLn-principal fiber
bundle.

Remark 6.9. From Corollary 6.8 we have Chw(T) a i r_= Ch°(r)air.
Therefore we have A«(r)^h = Aw(r)^GL". Furthermore An(r)^h is the uni-
versal invariant subring of A«(T)^ by PGL«.

Remark that if F is a finitely generated group, then Chn(/^)air is separated
of finite type over Z (we see that Chw(T)air is quasi-compact because it is the
image of Repw(r)air by *;„,/;air).

Here we name the universal geometric quotient of the a.i.r. part by PGLn,
or the coarse moduli scheme of equivalence classes of a.i.r.

Definition 6.10 (Definition of the character variety). The scheme
Chn(jT)air is called the (a.i.r.) character variety of degree n for F.

Remark 6.11. Suppose that F is a finitely generated group. In general
theory we see that the morphism Repw(/") —> Chw(F) is a uniform categorical
quotient (in particular the scheme Chn(r) is of finite type over Z). For
example, see [2] or [11]. We also call the scheme Chw(JT) the character variety
of degree n for F.

Corollary 6.8 implies that two absolutely irreducible representations
p,p': F —> GLn(R) are equivalent if and only if Cj(p(y}) — Cj(p'(y)) for
1 < j < n and for each y e F. Moreover we obtain the next theorem.
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Theorem 6.12. Let R be a commutative ring and F a group. Let
p,p' : F —> GLn(R) be two representations. Suppose that p is absolutely irre-
ducible. Then

p - p1 & tr(p(y)} = tr(//(y)) for each yeF.

In particular, p' is also absolutely irreducible under these equivalent conditions.

Proof. Suppose that p and p1 are equivalent. Then for each prime ideal
peSpecJ?, we have P~~lpP~p' for a suitable matrix PeGLw on a neigh-
borhood of p. Locally we obtain tr(p(y)} = tr(p'(y}} for each y e F. Hence
the equalities hold globally.

Suppose that tr(/?(y)) = tr(/?'(y)) for each y e F. The absolute irreducibility
of p implies that of p' since for any o q , . . . , aw2 e F we have det(tr(/?(a/o/-))) =
det(tr(/?/(a/o/-))) (cf. Remark 3.2). First we prove the special case: if
det(tr(/?(a/o/))) = det(tr(/?/(af-a/-))) e Rx for some ai, a i , . . . , aM2 e F, then there
exists a unique ^-algebra isomorphism (/>: Mn(R) —» Mn(R) such that
(f)(p(y}) = pf(y] for each y e F. Note that the sets {/?(ai),. . . ,/?(anz)} and
{//(«i),... ,/j'(a/i2)} are .R-bases of Mn(R) over R. We define the ^-linear map
(j): Mn(R) -> Mn(R) by ^(/?(a/)) = //(a/) for i = 1 ,2 , . . . , n2. As in the proof of
Theorem 6.3, we can prove that $ is an jR-algebra isomorphism and that
(t>(p(y)) = p'(y] for each y e F. We easily see the uniqueness of (/).

Next we prove the general case. Since p and p' are absolutely irreducible,
there exist an affine open covering 8pecJR = (J/=1 £// and suitable elements
a ( / } , . . . , a^} e T for i = 1 , . . . , N such that the discriminants zf (/?(a (/}),... ,/?(a^))
and J(//((TI ) , . . . ,p'(o$)) are invertible on each [/,-. From the special case we
obtain unique ^/-algebra isomorphisms (j>t : Mn(Rj) —> Mw(/?/) such that
(t>i(p(y)) = p'(y) for each yeF. Here we denote /"(t/,-, d?c/,) by ^-. From the
uniqueness we see that {^} are glued together. Hence we have the desired
J^-algebra isomorphism ^. This completes the proof. D

The following theorem can be proved as above.

Theorem 6.13. Let A be an associative algebra over a commutative ring
R. Let S be a commutative R-algebra, and let p , p f : A —> Mn(S) be R-algebra
homomorphisms. Suppose that p is absolutely irreducible. Then

p ~ p' <& tr(p(a}} = tr(p'(a)) for each a E A.

In particular, p' is also absolutely irreducible under these equivalent conditions.

The statement in Theorem 6.13 has been proved in [1] and [10] for the case
that R is a local ring and that S = R. Theorem 6.12 and Theorem 6.13 are
generalization of these results.1

The author was informed about these papers by the referees. The author improved the
statement of Theorem 6.12 by helpful suggestions of the referees, although the statement in
Theorem 6.12 was that p ~ p' if and only if Cj(p(y)} = Cj(p'(y}} in the first version.
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Remark 6.14. In Theorems 6.12 and 6.13 we can not avoid the as-
sumption that p is absolutely irreducible. Indeed, let us define p,p':Z—>
GL2(R) by

Then we see that p and p' are not equivalent, however ir(p(m}} = tr(p'(m)) and
det(/?(w)) = det(//(ra)) for each m e Z.

Remark 6.15. We say that the Skolem-Noether Theorem holds in a
commutative ring R if there exists PeGLn(R) such that a = Ad(P) for an
arbitrary 7^-algebra isomorphism a : Mn(R) —» Mn(K). If the Skolem-Noether
Theorem holds in R, then p and p' are equivalent if and only if there exists
PEGLn(R) such that Ad(P)(/>) =/>'.

Here let us consider a sufficient condition that the Skolem-Noether The-
orem holds. We can regard the group scheme PGLn as the open subscheme
{det(Xij) 7^ 0} of the projective space P" -1 = ProjZ[JQ/|l < i,j < n\. Hence
for a scheme X we get

APGL.W

such that the section
of $£®n nowhere vanishes

Here we denote by Pic(X) the Picard group of X, that is, the group of iso-
morphism classes of line bundles on X. We say that (&,{$$}) ~ (£?( {s'ij}} if
the corresponding morphisms from X to P" -1 coincide. If ( J £ , { s i j } l < i j < n ) e
hpGLn(X), then the line bundle $£®n is trivial. In particular if the Picard
group Pic(X) is a torsion free group, then <g is trivial and (•s'/y)1< /y-< / I e
GLn(r(X,(9x)). By the isomorphism £>x '• ^PGU(^) —•* Aut^A_a^Mw(^^), we
see that the Skolem-Noether Theorem holds in a commutative ring R if the
Picard group Pic(SpecjR) is a torsion free group. For example, if R is a UFD,
then the Picard group is trivial and the Skolem-Noether Theorem holds.

We end this paper by introducing the representation variety and the
character variety in the SLW case. The similar statements hold for the SLn case.

Definition 6.16 (The SLW case). Let / denote the ideal of Aw(T)ch

generated by |d(y) — 1 |y e7"}. Here we denote det(crr(y)) by d(y). We set
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We call

Repn(r):=SpecAw(r)

the character variety and the representation variety of degree n for F in SLW,
respectively. The a.i.r. parts Chw(T)air and Repw(T)air are defined in the
similar way as the GLn case.

Remark 6.17. The scheme Repw(jT) is the closed subscheme of Repw(7")
consisting of representations in SLW; the scheme Repw(F)air is the closed
subscheme of Rep77(F)air consisting of absolutely irreducible representations
in SLW. The group scheme PGLW acts on Rep«(F) and Repw(T)air by
p*-*P~lpP, where P E PGLn and /?eRepw(T) or Repw(T)a i r. The schemes
Chn(F) and Chn(r)air are closed subschemes of Chn(F) and Chw(T)ai r,
respectively. There are natural morphisms Repw(jT) —> Chn(F) and

Theorem 6.18. The morphism Repw(T)air —» Chw(T)air is a universal
geometric quotient by the adjoint action of PGLM. Moreover the quotient
morphism is a PGLn-prmcipal fiber bundle. In particular Chw(.F)air is the
coarse moduli scheme for the SLW case.

Proof. The morphism is obtained by the base change of the quotient
morphism in the GLW case. The statement follows from the main theorem.

D
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