A Trace Formula for Discrete Schrödinger Operators

By

Tomoyuki Shirai*

Abstract

We discuss two types of trace formula which arise from the inverse spectral problem for discrete Schrödinger operators as $L = -\Delta + V(x)$ where V is a bounded potential. One is the relationship between a potential and spectral data, and another is the one between the green function of L and periodic orbits of a state space.

§ 1. Introduction

The trace of the difference of two operators $L = -\Delta + V$ on $L^2(\mathbb{R}^1)$ and L_{α} that is imposed the Dirichlet condition at $x = \mathbb{R}^1$ has a relation

$$\text{Tr} (L - L_{\alpha}) = V(\alpha) = \lambda_0 + \sum_{j=1}^{\infty} \left(\lambda_{2j} + \lambda_{2j-1} - 2\mu_j \right)$$

for a periodic potential V, where $\{ \lambda_j \}$ is the collection of all eigenvalues with periodic and anti-periodic boundary conditions, and $\{ \mu_j \}$ is the collection of eigenvalues of certain Dirichlet Laplacian. It is the well known formula in Hill’s theory for periodic Schrödinger operators. In [2], it has been extended to the class which is called reflectionless potential containing periodic potential. In [4], they studied systematically trace formulas by using the scattering quantity which is called the Krein’s spectral shift function. We will show that similar results as these hold for a discrete Schrödinger operator L on countable set and L_A that is imposed the Dirichlet condition at a finite set A, that is.

Theorem 1.1. Let G be a countable set and let Δ_G be a Laplacian on G. Let V be a real-valued bounded function. Further, let $L = -\Delta_G + V$ and L_A be imposed the Dirichlet condition on a finite set A. Then

$$\frac{1}{|A|} \text{Tr} (L - L_A) = \frac{1}{|A|} \sum_{\alpha \in A} V(\alpha) = \lambda_0 - 1 - \int_{\lambda_0}^{\lambda_\infty} \theta_A(\lambda) d\lambda$$

*Supported by J.S.P.S. Research Fellowships for Young Scientists.
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.
E-mail: shirai@kurims.kyoto-u.ac.jp
where $\theta_A(\lambda)$ is a generalized Krein's spectral shift function.

Especially, if G is \mathbb{Z}^1 and A is a singleton $\{a\}$, then we can explicitly calculate of $\theta_A(\lambda)$, and the almost same relation as (1.1) holds.

In the area of quantum chaos, M. C. Gutzwiller has proposed the so-called Gutzwiller's trace formula [5]. It is the formula which connects the energy level (the spectrum of Schrödinger operators) with the classical periodic orbits. We will show that $\text{Tr}(G_2 - G_A^4)$ can be expanded by the periodic orbits on A where G_2 (resp. G_A^4) is the resolvent of the operator L (resp. L_A).

Theorem 1.2. There exists $\tilde{\lambda} \in \mathbb{R}$ such that for any $\lambda < \tilde{\lambda}$

$$\sum_{x \in G} (g_A(x, x) - g_A^4(x, x)) = \sum_{a \in A} \frac{d}{d\lambda} \log g_A(a, a)$$

$$+ \sum_{\gamma \in \Gamma} \frac{dS_\gamma(\lambda)}{d\lambda} \sum_{n \geq 1} \exp(-nS_\gamma(\lambda) - n\pi i L_\gamma)$$

where Γ is the set of all prime periodic orbits, L_γ is the period of γ and $S_\gamma(\lambda)$ is the length of a periodic orbit γ with respect to the distance d_γ defined by (4.1).

It is thought as a discrete and heat version of the Gutzwiller's trace formula.

§ 2. A Trace Formula for the Inverse Spectral Problem

Let G be a countable set and $P = \{p(x, y)\}_{x, y \in G}$ a transition probability. We assume that the transition probability is (1) m-symmetric, (2) irreducible and (3) simple, i.e., (1) there exists a positive real-valued function $m(x)$ on G such that

$$m(x)p(x, y) = m(y)p(y, x)$$

for any $x, y \in G$, (2) for any $x, y \in G$ there exists a positive integer N such that

$$p^N(x, y) > 0$$

and (3) $p(x, x) = 0$. ((3) is not essential but, for simplicity, we assume it.) Let $l^2(G, m)$ be an l^2-space with respect to the inner product given by

$$\langle f, g \rangle = \sum_{x \in G} m(x)f(x)g(x).$$

We define a discrete Laplacian on $l^2(G, m)$ as follows: for each $x \in G$.

$$\Delta_G \phi(x) = \sum_{r \in G} p(x, r) \phi(r) - \phi(x).$$

Let V be a real-valued bounded function and we define a discrete Schrödinger operator by
Let \(A \subset G \) be a finite subset of \(G \). We consider two problems for our operator, i.e., one is
\[
L \phi (x) = \lambda \phi (x) \quad x \in G
\]
and the other is
\[
\begin{cases}
L_A \phi (x) = L \phi (x) = \lambda \phi (x) & x \in G \setminus A \\
L_A \phi (a) = 0 & a \in A,
\end{cases}
\]
and their domains are \(D(L) = l^2 (G, m) \) and \(D(L_A) = \{ f \in l^2 (G, m) ; f(a) = 0 \text{ for any } a \in A \} \). We denote the fundamental solutions of the associated heat equations by \(p^y(t, x, y) \) and \(p^A(t, x, y) \), respectively, and the associated green functions, that is, the integral kernels of \((L - \lambda)^{-1} \) and \((L_A - \lambda)^{-1} \) by \(g_t(x, y) \) and \(g^A_t(x, y) \), respectively. Remark that in general our heat kernels and green functions are not symmetric functions.

From now on, we assume that there exists a positive integer \(M \) such that
\[
\sup_{x \in G} \{ r \in G ; p(x, r) > 0 \} \leq M
\]
where \(|K| \) is the cardinality of a set \(K \). We can regard \(G \) as an infinite graph; then the assumption (2.1) means that the maximum degree is bounded.

To show our trace formula we calculate the trace \(\sum_{x \in G} (p^y(t, x, x) - p^A(t, x, x)) \) in two different ways. We use the following lemma for the first half of the trace formula.

Lemma 2.1. Let \(\{w_t, P_x\} \) be a continuous time random walk with the generator \(\Delta_G \), and \(T_A \) the first hitting time to the set \(A \). Then, as \(t \to 0 \),
\[
E_x[\delta_x (w_t)] = 1 - t + O(t^2)
\]
and
\[
\sum_{x \in G \setminus A} E_x[\delta_x (w_t) ; T_A \leq t] = O(t^2)
\]
where \(\delta_x(\cdot) \) is the indicator function of \(x \in G \).

Proof. Firstly, since \(\Delta_G \) is the generator of \(w_t \) and is bounded, we have
\[
E_x[\delta_x (w_t)] = \sum_{n \geq 0} \frac{t^n}{n!} \Delta_G^n \delta_x(a) = 1 + t (\Delta_G \delta_x) (a) + O(t^2) = 1 - t + O(t^2)
\]
as \(t \to 0 \).

Secondly, we define a metric on \(G \) as follows: for any \(x, y \in G \)
Put $M \geq 1$ as the assumption (2.1). Then it is obvious that the cardinality of a set $\{x \in G; d(x, A) = n\}$ is less than $|A| M^n$. Then we obtain
\[
\sum_{x \in G \setminus A} E_x[\delta_x(w_t); T_A \leq t] = \sum_{n \geq 1} \sum_{x \in G \setminus A} E_x[\delta_x(w_t); T_A \leq t]
\]
\[
\leq \sum_{n \geq 1} |A| M^n P_x[w \text{ has at least } 2n \text{ jumps up to time } t]
\]
\[
= \sum_{n \geq 1} |A| M^n \sum_{k \geq 2n} \frac{e^{-t} t^k}{k!} \leq \sum_{n \geq 1} |A| M^n t^{2n} \leq Ct^2 \quad \text{as } t \to 0.
\]
Here we used the fact that the number of jumps of the random walk up to time t obeys the Poisson law with mean 1.

Now we show the first half of the trace formula.

Proposition 2.2. Let $V(x)$ be a real-valued bounded function on G. Then,
\[
\sum_{x \in G} (p^n V(t, x, x) - p^n V(t, x, x)) = |A| - t \left(\sum_{a \in A} V(a) + |A| \right) + O(t^2) \quad \text{as } t \to 0
\]
where $|A|$ is the cardinality of the set A.

Proof. By the Feynman-Kac formula, we have
\[
p^n V(t, x, x) = E_x[e^{-\int_0^t V(w_s) ds} (1 - \chi_{\{T_A > t\}}) \delta_x(w_t)]
\]
where $\chi_{\{T_A > t\}}$ is the indicator function of a set $\{T_A > t\}$. We consider the trace of the difference of two heat kernels
\[
\sum_{x \in G} (p^n V(t, x, x) - p^n V(t, x, x))
\]
\[
= \sum_{x \in G} E_x[e^{-\int_0^t V(w_s) ds} (1 - \chi_{\{T_A > t\}}) \delta_x(w_t)]
\]
\[
= \sum_{x \in G} \sum_{n \geq 0} \frac{(-1)^n}{n!} E_x \left[\int_0^t V(w_s) ds \right]^n (1 - \chi_{\{T_A > t\}}) \delta_x(w_t) \right].
\]
For $n = 0$, by using Lemma 2.1 we have
\[
\sum_{x \in G} E_x[(1 - \chi_{\{T_A > t\}}) \delta_x(w_t)]
\]
\[
= \sum_{a \in A} E_a[\delta_a(w_t)] + \sum_{x \in G \setminus A} E_x[\delta_x(w_t); T_A \leq t]
\]
\[
= |A| (1 - t) + O(t^2) \quad \text{as } t \to 0.
\]
For $n = 1$, we have
where \(p^0(t, x, y) \) and \(p^\lambda(t, x, y) \) are the heat kernels for the case that the potential \(V \) is identically zero. Using the semigroup property, we have

\[
\sum_{x \in \mathbb{G}} E_x \left[\left(\int_0^t V(w_s) \, ds \right) (1 - \chi_{\{T_s > t\}}) \, \delta_x(w_t) \right]
\]

\[
= \int_0^t ds \sum_{x \in \mathbb{G}} \sum_{y \in \mathbb{G}} (p^0(s, x, y) \, V(y) \, p^0(t-s, y, x) - p^\lambda(s, x, y) \, V(y) \, p^\lambda(t-s, y, x))
\]

Last we estimate the term for \(n \geq 2 \).

\[
\left| \sum_{n \geq 2} \frac{(-1)^n}{n!} \sum_{x \in \mathbb{G}} E_x \left[\left(\int_0^t V(w_s) \, ds \right)^n (1 - \chi_{\{T_s > t\}}) \, \delta_x(w_t) \right] \right|
\]

\[
\leq \sum_{n \geq 2} \frac{t^n}{n!} \| V \|_{L^\infty} \sum_{x \in \mathbb{G}} E_x \left[\left(1 - \chi_{\{T_s > t\}} \right) \, \delta_x(w_t) \right]
\]

\[
\leq C t^2.
\]

Then, we have

\[
\sum_{x \in \mathbb{G}} (p^\lambda(t, x, x) - p^\lambda(t, x, x)) = |A| - t \left(\sum_{a \in A} V(a) + |A| \right) + O(t^2) \quad \text{as } t \to 0.
\]

Next we will calculate the difference of two green functions for the second half of the trace formula. Before doing that, we prepare a lemma.

Lemma 2.3. Let \(G^\lambda \) be a \(|A| \times |A| \) matrix with the elements \((G^\lambda)_{a,b} = g^\lambda(a, b) \) for \(a, b \in A \). Then \(\det G^\lambda \) is holomorphic in \(\lambda \in \mathbb{C} \setminus \sigma(L) \). Moreover, for \(\lambda \in \mathbb{C} \setminus [\lambda_0, \lambda_\omega] \), the determinant \(\det G^\lambda \) is non-zero, where \(\sigma(L) \) is the spectral set of the operator \(L \), \(\lambda_0 = \inf \sigma(L) \) and \(\lambda_\omega = \sup \sigma(L) \).

Proof. Note that \(g^\lambda(x, y) \) is holomorphic in \(\lambda \in \mathbb{C} \setminus \sigma(L) \). It is obvious by the definition of the determinant that \(\det G^\lambda \) is also holomorphic in \(\lambda \in \mathbb{C} \setminus \sigma(L) \).
where \(\{e_x\}_{x \in \mathcal{G}} \) is an orthonormal basis of \(L^2(\mathcal{G}, m) \) such that
\[
e_x(y) = \begin{cases} m(x)^{-1/2} & \text{if } y = x, \\ 0 & \text{otherwise}, \end{cases}
\]
and \(E(\xi) \) is the resolution of the identity for the operator \(L \). Let \(f_0 \) be an \(|A| \)-dimensional vector such that \(\|f_0\|_A = 1 \), where \(\langle \cdot, \cdot \rangle_A \) is the inner product of \(L^2(\mathcal{A}, m) \). Let \(f \in L^2(\mathcal{G}, m) \) be the extension of \(f_0 \) such that \(\text{supp } f \subset A \), \(f(a) = f_0(a) \) for any \(a \in A \) and \(\|f\| = 1 \). Then we have
\[
\langle f_0, G_{\lambda} f_0 \rangle_A = \langle f, G_{\lambda} f \rangle = \int_{\sigma(L)} \frac{1}{\xi - \lambda} d\mu_\lambda(\xi)
\]
where \(d\mu_\lambda(\xi) = d\|E(\xi)f\|^2 \). We will estimate \(|\langle f, G_{\lambda} f \rangle| \) from below. Firstly, in the case that \(|\text{Im } \lambda| > 0 \), for any \(f \in L^2(\mathcal{G}, m) \), we have
\[
|\langle f, G_{\lambda} f \rangle| \geq \left| \int_{\sigma(L)} \frac{\text{Im } \lambda}{|\xi - \lambda|^2} d\mu_\lambda(\xi) \right|
\]
(2.5)
\[
\geq \frac{|\text{Im } \lambda|}{\max_{\xi \in \sigma(L)} |\xi - \lambda|^2}.
\]
Secondly, when \(\lambda \in \mathbb{R} \setminus [\lambda_0, \lambda_\infty] \), we have
\[
|\langle f, G_{\lambda} f \rangle| \geq \frac{1}{\max(|\lambda - \lambda_0|, |\lambda - \lambda_\infty|)}.
\]
In both cases, there exists a positive constant \(C(\lambda) \) depending only on \(\lambda \) such that \(|\langle G_{\lambda} f, f \rangle| \geq C(\lambda) > 0 \). Then, for any \(\lambda \in \mathbb{C} \setminus [\lambda_0, \lambda_\infty] \), \(\det G_\lambda \neq 0 \).

Remark 2.4. For \(\lambda \in [\lambda_0, \lambda_\infty] \cap \sigma(L)^c \), the determinant \(\det G_\lambda \) may vanish.

Lemma 2.5. \(\lambda \in \mathbb{C} \setminus [\lambda_0, \lambda_\infty] \). Then for any \(x, y \in \mathcal{G} \)
\[
g_{\lambda}(x, y) = g_{\lambda}^*(x, y) = \sum_{a \in A} g_{\lambda}(x, a) (G_{\lambda})^{-1} g_{\lambda}(a, y)
\]
where \((G_{\lambda})^{-1} \) acts on the first variable.

Proof. Let \(F_\lambda(t) = F_\lambda(t, w) = \int_0^t (\lambda + V(w_t)) dt \). If \(\lambda < \inf_{x \in \mathcal{G}} V(x) \), \(F_\lambda(t) \)
\[
\geq 0, \text{ and so } F_\lambda(\infty) = \infty. \text{ For any } \lambda < \inf_{x \in \mathcal{G}} V(x) \text{, by the strong Markov property, we have}
\]
\[
g_{\lambda}(x, y) = E_x \left[\int_0^\infty e^{-F_\lambda(t)} \delta_y(w_t) dt \right]
\]
where \((S_tw)_t = w_{t+s}\). We put
\[f_{x,}\lambda(a) = e^{-F_{\xi}(\lambda)}(x, a)\] for each \(a \in A\). Then,
\[g_\lambda(x, y) - g_\lambda^A(x, y) = \sum_{a \in A} g_\lambda(a, y) \mu_{x, \lambda}(a).\]

Next, in the same way as above, we have
\[g_\lambda(x, a) = \sum_{b \in A} g_\lambda(b, a) \mu_{x, \lambda}(b) \]
for each \(x \in G\) and \(a \in A\).

By Lemma 2.3, there exists an inverse matrix of \(G_\lambda^A\). Then we have
\[\sum_{a \in A} g_\lambda(x, a) (G_\lambda^A)^{-1} g_\lambda(a, y) \]
\[= \sum_{a \in A} \sum_{b \in A} g_\lambda(b, a) \mu_{x, \lambda}(b) (G_\lambda^A)^{-1} g_\lambda(a, y) \]
\[= \sum_{b \in A} \mu_{x, \lambda}(b) \sum_{a \in A} g_\lambda(b, a) (G_\lambda^A)^{-1} g_\lambda(a, y) \]
\[= \sum_{b \in A} \mu_{x, \lambda}(b) g_\lambda(b, y) = g_\lambda(x, y) - g_\lambda^A(x, y).\]

The lemma is obtained by analytic continuation.

Proposition 2.6. Let \(\lambda \in \mathbb{C} \setminus [\lambda_0, \lambda_\infty]\). Then
\[(2.7) \quad \sum_{x \in G} (g_\lambda(x, x) - g_\lambda^A(x, x)) = \frac{d}{d\lambda} \log \det G_\lambda^A.\]

Proof. Since \((G_\lambda^A)^{-1}\) is a linear operator, taking summation over \(x \in G\), we have
\[\sum_{x \in G} (g_\lambda(x, x) - g_\lambda^A(x, x)) = \sum_{x \in G} \sum_{a \in A} g_\lambda(x, a) (G_\lambda^A)^{-1} g_\lambda(a, x) \]
\[= \sum_{a \in A} (G_\lambda^A)^{-1} \frac{d}{d\lambda} G_\lambda^A(a, a) = \text{Tr} \left((G_\lambda^A)^{-1} \frac{d}{d\lambda} G_\lambda^A \right) \]
\[= \frac{d}{d\lambda} \log \det G_\lambda^A.\]
Here we used the fact that \(\frac{d}{d\lambda} (L - \lambda)^{-1} = (L - \lambda)^{-2} \) and \(\det G^\lambda \) is non-zero in \(\lambda \in \mathbb{C} \setminus [\lambda_0, \lambda_\infty] \) by Lemma 2.3.

Next we define a generalized Krein's spectral shift function \(\theta^\lambda (\lambda) \). Recall that for any \(f \in l^2(G, m) \), \(\| (\lambda G + I) f \| \to 0 \) as \(|\lambda| \to \infty \). Then, since \(G^\lambda \) is a finite dimensional matrix, we have

\[
(2.8) \quad \| \lambda G^\lambda + I \| \to 0 \quad \text{as} \quad |\lambda| \to \infty.
\]

Therefore because of the continuity of the determinant, for \(\Im \lambda > 0 \)

\[
(2.9) \quad \det G^\lambda - (-\lambda)^{-|\lambda|} \quad \text{as} \quad |\lambda| \to \infty.
\]

We take the branch of the logarithm so that \(\Im \log \det G^\lambda_{i+\epsilon} \to 0 \) as \(\lambda \to -\infty \).

Let \(\{\nu_k (\lambda)\}_{k=1}^A \) be eigenvalues of \(G^\lambda \). Then, \(\Im \log \det G^\lambda = \sum_{k=1}^A \Im \log \nu_k (\lambda) \).

On the other hand, for each eigenvalue \(\nu_k (\lambda) \), there exists a normalized eigenfunction \(f_k \) such that

\[
(2.4) \quad \nu_k (\lambda) = \langle f_k, G^\lambda f_k \rangle = \int_{\sigma(L)} \frac{1}{\xi - \lambda} \ d\mu_i (\xi).
\]

Here we used (2.4). Then for any \(\Im \lambda > 0 \) and \(1 \leq k \leq A \), \(\Im \nu_k (\lambda) > 0 \), and since the unordered tuple of eigenvalues is continuous in \(\lambda \), by the way of taking the branch of the logarithm, we have

\[
0 < \Im \log \det G^\lambda < |A| \pi.
\]

Hence, by the Fatou's theorem, a limit

\[
(2.10) \quad \theta^\lambda (\lambda) := \lim_{\epsilon \to 0} \frac{1}{\pi |A|} \Im \log \det G^\lambda_{i+\epsilon}
\]

exists for almost every \(\lambda \in \mathbb{R} \) and \(0 \leq \theta^\lambda (\lambda) \leq 1 \). We call it a generalized Krein's spectral shift function.

Lemma 2.7. For almost every \(\lambda \in \mathbb{R} \), \(\theta^\lambda (\lambda) \) exists and \(0 \leq \theta^\lambda (\lambda) \leq 1 \). In particular,

\[
\theta^\lambda (\lambda) = \begin{cases}
0 & \text{if } \lambda < \lambda_0, \\
1 & \text{if } \lambda > \lambda_\infty \end{cases}
\]

Proof. We have already shown the existence and so we will show only the second statement. Since \(\det G^\lambda \) is real-valued for \(\lambda \in \mathbb{R} \setminus [\lambda_0, \lambda_\infty] \), by the definition of the \(\theta^\lambda (\lambda) \), we have

\[
(2.11) \quad \theta^\lambda (\lambda) \in \left\{ \frac{k}{|A|}, k \in \mathbb{Z} \right\}.
\]
For any \(x, y \in \mathbb{G} \), the convergence of the green function \(g_{x+i\epsilon}(x, y) \) as \(\epsilon \to 0 \) is uniform on an arbitrary compact set \(K \subset \mathbb{R} \setminus [\lambda_0, \lambda_\omega] \). Then, as \(\epsilon \to 0 \), \(\text{Im} \log \det G_{x+i\epsilon}^A \) also converges uniformly on compact sets in \(\mathbb{R} \setminus [\lambda_0, \lambda_\omega] \). Consequently, \(\theta_\lambda(\lambda) \) is continuous on \(\mathbb{R} \setminus [\lambda_0, \lambda_\omega] \) and in particular, taking account of (2.11), constant on each open intervals \((-\infty, \lambda_0) \) and \((\lambda_\omega, \infty) \). Furthermore, by the way of taking the branch of the logarithm and (2.9), we conclude the lemma.

Theorem 2.8. Let \(V \) be a real-valued bounded function. Then,

\[
(2.12) \quad \frac{1}{|A|} \sum_{x \in \mathbb{G}} (p^V(t, x, x) - p^\lambda_A(t, x, x)) = e^{-\lambda t} + i \int_{\lambda_0}^{\lambda_\omega} e^{-\lambda t} \theta_\lambda(\lambda) \, d\lambda
\]

where \(\lambda_0 \) (resp. \(\lambda_\omega \)) is the minimum (resp. maximum) of the spectrum of \(L \).

Proof. Since \(p^V(t, x, x) \) is the kernel of the operator \(e^{-tL} \), using the Dunford integral, we obtain the following expression:

\[
\sum_{x \in \mathbb{G}} (p^V(t, x, x) - p^\lambda_A(t, x, x)) = -\sum_{x \in \mathbb{G}} \frac{1}{2\pi i} \int_C e^{-\lambda t} (g_\lambda(x, x) - g^A_\lambda(x, x)) \, d\lambda
\]

where the contour \(C \) is

\[
\{\lambda_0 - \delta + i\xi ; -\epsilon \leq \xi \leq \epsilon\} \cup \{\lambda_\omega + \delta + i\xi ; -\epsilon \leq \xi \leq \epsilon\}
\]

\[
\cup \{\xi \pm i\epsilon ; \lambda_0 - \delta \leq \xi \leq \lambda_\omega + \delta\}
\]

for \(\epsilon > 0 \) and \(\delta > 0 \). The interchange of the summation and the integral over \(C \) can be easily justified.

By Proposition 2.6, we have

\[
\sum_{x \in \mathbb{G}} (p^V(t, x, x) - p^\lambda_A(t, x, x)) = -\frac{1}{2\pi i} \int_C e^{-\lambda t} \frac{d}{d\lambda} \log \det G^A_\lambda \, d\lambda.
\]

Now we calculate the right-hand side.

\[
\frac{-1}{2\pi i} \int_C e^{-\lambda t} \frac{d}{d\lambda} \log \det G^A_\lambda \, d\lambda
\]

\[
= \frac{1}{\pi} \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \text{Im} \left(e^{-(\lambda + i\epsilon)t} \frac{d}{d\lambda} \log \det G^A_{\lambda + i\epsilon} \right) d\lambda
\]

\[
+ \frac{1}{2\pi i} \int_{\lambda_0 - \delta - i\epsilon}^{\lambda_0 - \delta + i\epsilon} e^{-\lambda t} \frac{d}{d\lambda} \log \det G^A_\lambda \, d\lambda
\]

\[
+ \frac{1}{2\pi i} \int_{\lambda_\omega + \delta + i\epsilon}^{\lambda_\omega + \delta - i\epsilon} e^{-\lambda t} \frac{d}{d\lambda} \log \det G^A_\lambda \, d\lambda.
\]
The second and third term of the right-hand side will vanish as $\epsilon \to 0$ since the integrands are analytic in the resolvent set. Integrating the first term by parts, we obtain

$$\frac{1}{\pi} \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \Im \left(e^{-\epsilon \lambda} \frac{d}{d\lambda} \log \det G^{A+\epsilon}_{\lambda} \right) d\lambda$$

$$= \frac{1}{\pi} \left[\Im \left(e^{-\epsilon \lambda} \log \det G^{A}_{\lambda} \right) \right]_{\lambda_0 - \delta}^{\lambda_0 + \delta}$$

$$+ \frac{t}{\pi} \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} \Im \left(e^{-\epsilon \lambda} \log \det G^{A}_{\lambda+\epsilon} \right) d\lambda.$$

Note that $\Im \log \det G^{A}_{\lambda}$ is bounded by (2.9). Using the dominated convergence theorem, as $\epsilon \to 0$, we obtain

$$\frac{1}{|A|} \sum_{x \in G} \left(p^V(t, x, x) - p^A_{\lambda}(t, x, x) \right)$$

$$= -e^{-(\lambda_0 - \delta)\Im} \theta_{\lambda} (\lambda_0 - \delta) + e^{-(\lambda_0 + \delta)\Im} \theta_{\lambda} (\lambda_0 + \delta)$$

$$+ \frac{t}{\pi} \int_{\lambda_0 - \delta}^{\lambda_0 + \delta} e^{-\epsilon \lambda} \theta_{\lambda}(\lambda) d\lambda.$$

Hence, from Lemma 2.7, as $\delta \to 0$, the proof is completed.

Theorem 2.9. Let V be a real-valued bounded function. Then

$$V(a) = \lambda_\omega - 1 - \int_{\lambda_\omega - \delta}^{\lambda_\omega + \delta} e^{-\epsilon \lambda} \theta_{\lambda}(\lambda) d\lambda.$$

Proof. Differentiating both sides of (2.12) and taking the limit $t \to 0$, we have the result because of Proposition 2.2.

§ 3. An Example

We will give an example which can be calculated θ_{λ} explicitly. This example is essentially due to Craig [2]. Let G be a one-dimensional lattice \mathbb{Z}^d and A be a singleton $\{a\}$. V is a n periodic potential, that is, for fixed $n \geq 1$, $V(x) = V(y)$ if $d(x, y) = n$. In this case it is known that the spectrum of L has a finite band structure. Precisely, the spectrum set is a union of finite closed intervals, for some N,

$$\sigma(L) = \bigcup_{0 \leq k \leq N} [\lambda_{2k}, \lambda_{2k+1}].$$
Also, the essential spectrum of L_a is same as that of L and the spectrum of L_a may has eigenvalues. Since the green function $g_2(a, a)$ is taking real value and monotone increasing on each resolvent set $I_k = (\lambda_{2k-1}, \lambda_{2k})$, it has at most one zero on each I_k. If there exists a zero on I_k, we put it as $\mu_k(a)$ which is an eigenvalue of L_a. If $g_2(a, a) > 0$ (resp. < 0) on I_k, we put $\mu_k(a) = \lambda_{2k}$ (resp. λ_{2k-1}).

Now we use much weaker version of the remarkable result in [6].

Theorem 3.1. Let V be a periodic potential. Then, for a.e. $\lambda \in \sigma(L)$,

$$\lim_{\epsilon \to 0} \text{Re } g_{2+i\epsilon}(a, a) = 0.$$

For details, one may refer to [6].

Now we can calculate $\theta_a(\lambda)$ as follows:

$$\theta_a(\lambda) = \begin{cases}
1, & \lambda_{2k-1} < \lambda < \mu_k(a), \\
0, & \mu_k(a) < \lambda < \lambda_{2k}, \\
\frac{1}{2}, & \lambda_{2k} < \lambda < \lambda_{2k+1}.
\end{cases}$$

It follows from Theorem 3.1 and the fact $g_2(a, a)$ is real and monotone increasing on the resolvent set. Then we have the following theorem:

Corollary 3.2. Let G be \mathbb{Z}^1 and V a periodic potential. Then

$$V(a) = \frac{\lambda_0 + \lambda_w}{2} - 1 + \frac{1}{2} \sum_{1 \leq k \leq N} (\lambda_{2k-1} + \lambda_{2k} - 2\mu_k(a)).$$

Proof. By Theorem 2.9 we have

$$V(a) = \frac{\lambda_0 + \lambda_w}{2} - 1 + \int_{\lambda_0}^{\lambda_w} \left(\frac{1}{2} - \theta_a(\lambda) \right) d\lambda.$$

Noting that $\frac{1}{2} - \theta_a(\lambda)$ vanishes on $\sigma(L)$, we have

$$V(a) = \frac{\lambda_0 + \lambda_w}{2} - 1 + \frac{1}{2} \sum_{k=1}^{N} (\lambda_{2k-1} + \lambda_{2k} - 2\mu_k(a)).$$

Remark 3.3. Corollary 3.2 also holds for so-called reflectionless potentials [2].
§ 4. A Discrete Analogue of the Gutzwiller's Trace Formula

Now in order to state a discrete analogue of the Gutzwiller’s trace formula for open system, we define a function d_4 on $V(G) \times V(G)$ as follows: for each $\lambda < \inf_{x \in G} V(x)$

$$d_4(x, y) = -\frac{1}{2} \left(\log E_x[e^{-F_i(T_y)}] + \log E_y[e^{-F_i(T_y)}] \right)$$

where $F_i(t) = F_i(t, w) = \int_0^t (-\lambda + V(w)) \, dt$. Remark that since $g_2(x, y) = E_x[e^{-F_i(T_y)} ; T_y < \infty] g_2(y, y)$ and $E_x[e^{-F_i(T_y)} ; T_y < \infty]$ for $\lambda < \inf_{x \in G} V(x)$,

$$d_4(x, y) = -\frac{1}{2} \log \frac{g_2(x, y) g_2(y, x)}{g_2(x, x) g_2(y, y)}.$$

Lemma 4.1. Let $\lambda < \inf_{x \in G} V(x)$. Then, $d_4(\cdot, \cdot)$ is a distance, that is, $d_4(\cdot, \cdot) : V(G) \times V(G) \to \mathbb{R}^+$ satisfies the following:

1. $d_4(x, y) \geq 0$ and if $d_4(x, y) = 0$ then $x = y$,
2. $d_4(x, y) = d_4(y, x)$,
3. $d_4(x, y) \leq d_4(x, z) + d_4(z, y)$.

Proof. (1) and (2) are trivial. So we will show the triangle inequality (3).

$$E_x[e^{-F_i(T_y)}] = E_x[e^{-F_i(T_y)} ; T_y < T_x] + E_x[e^{-F_i(T_x)} ; T_y > T_x]$$

$$= E_x[e^{-F_i(T_y)} ; T_y < T_x, T_y < \infty] \cdot E_y[e^{-F_i(T_y)}] + E_x[e^{-F_i(T_x)} ; T_y > T_x].$$

Here we used the strong Markov property.

$$-\log E_x[e^{-F_i(T_y)}]$$

$$= -\log (E_x[e^{-F_i(T_y)} ; T_y < T_x, T_y < \infty] \cdot E_y[e^{-F_i(T_y)}] + E_x[e^{-F_i(T_x)} ; T_y > T_x])$$

$$\leq -\log (E_x[e^{-F_i(T_y)} ; T_y < T_x, T_y < \infty] \cdot E_y[e^{-F_i(T_y)}] + E_x[e^{-F_i(T_y)} ; T_y > T_x]).$$

Note that if $0 < x, a, b \leq 1$ then $-\log (ax + b) \leq -\log (a + b) - \log x$. Then we have

$$-\log E_x[e^{-F_i(T_y)}] \leq -\log E_x[e^{-F_i(T_y)}] - \log E_y[e^{-F_i(T_y)}].$$

Similarly, we have

$$-\log E_x[e^{-F_i(T_y)}] \leq -\log E_x[e^{-F_i(T_y)}] - \log E_y[e^{-F_i(T_y)}].$$

Then, we obtain the lemma.

It is easy to see that
We are interested in the detailed asymptotic properties of the family of distances \(\{d_i\} \). However, we just give an easy example of \(\{d_i\} \) which can be explicitly calculated.

Example 4.2. Let \(G \) be a \(d \)-regular tree and \(V \) is identically zero. Let \(\alpha_d = \frac{2\sqrt{d-1}}{d} \). Then as is well known, the spectrum of \(-\Delta_d\) is \([1-\alpha_d, 1+\alpha_d]\).

By an easy calculation we obtain

\[
d_{\lambda}(x,y) = d(x,y) \cdot (-\log m_d(\lambda))
\]

for \(\lambda < 0 \). Here \(d(x,y) \) is the same one defined by (2.2) and

\[
m_d(\lambda) = \frac{d}{2d-2} \left(1 - \frac{\lambda}{\sqrt{1-\lambda^2-\alpha_d^2}} \right).
\]

Especially, as \(\lambda \to 0 \)

\[
\lim_{\lambda \to 0} d_{\lambda}(x,y) = d(x,y) \cdot \log(d-1) \quad \text{if } d \geq 3,
\]

\[
\lim_{\lambda \to 0} d_{\lambda}(x,y) = d(x,y) \quad \text{if } d = 2
\]

and as \(\lambda \to -\infty \)

\[
d_{\lambda}(x,y) \sim d(x,y) \left\{ \log(1-\lambda) + \log d - \frac{1}{4} \left(\frac{\alpha_d}{1-\lambda} \right)^2 - \cdots \right\}.
\]

Now let us show a discrete version of the Gutzwiller's trace formula for our setting. Let \(G_d^\lambda \) be the matrix that was defined in Lemma 2.3. We decompose \(G_d^\lambda \) into two matrices \(D_d^\lambda \) and \(K_d^\lambda \) as follows:

\[
G_d^\lambda = D_d^\lambda (I + K_d^\lambda)
\]

where \(D_d^\lambda \) is the diagonal matrix such that \((D_d^\lambda)_{a,a} = g_d(a,a) \) for \(a \in \Lambda \) and

\[
(K_d^\lambda)_{a,b} = \begin{cases} \frac{g_d(a,b)}{g_d(b,b)} & \text{if } a \neq b, \\ 0 & \text{if } a = b. \end{cases}
\]

Then,

Lemma 4.3. There exists \(\tilde{\lambda} \in \mathbb{R} \) such that for any \(\lambda < \tilde{\lambda} \)

\[
\| K_d^\lambda \| < 1.
\]
Proof. It is obvious by (2.9).

Before we state our theorem, we prepare some notations. Let \(\sigma \) be the shift transformation on \(A^N = \{ a = (a_n)_{n \in \mathbb{N}} : a_n \in A \} \), i.e.,
\[
(\sigma a)_n = a_{n+1} \quad (n \in \mathbb{N}).
\]
Let \(\Sigma \) be the \(\sigma \)-invariant closed subset of \(A^N \) such that
\[
\Sigma = \{ a \in A^N : a_n \neq a_{n+1} \text{ for any } n \in \mathbb{N} \}.
\]
The restriction of \(\sigma \) on \(\Sigma \) will be denoted again by \(\sigma \). For a pair \((\Sigma, \sigma) \) we define
\[
F(n) = \{ a \in \Sigma : \sigma^n a = a \}
\]
\[
P(n) = F(n) \cup \bigcup_{k | n} F(k)
\]
where \(k | n \) means that \(k \) is a divisor of \(n \). For \(a, b \in P(n) \) we define the equivalence relation by
\[
a \sim b \iff \exists 0 \leq k \leq n - 1 \text{ such that } \sigma^k a = b.
\]
Let \(\Gamma_n = P(n) / \sim \) be the equivalence class of \(P(n) \) by \(\sim \). We call an element \(\gamma \) of \(\Gamma_n \) a prime periodic orbits with period \(n \) and denote the period of \(\gamma \) by \(L_\gamma \). The totality of prime periodic orbits is denoted by \(\Gamma \). Then, our theorem is the following:

Theorem 4.4. There exists \(\bar{\lambda} \in \mathbb{R} \) such that for any \(\lambda < \bar{\lambda} \)
\[
\sum_{x \in \mathcal{O}} (g_2(x, x) - g_2(x, x)) = \sum_{a \in A} \frac{d}{d\lambda} \log g_2(a, a)
\]
\[
+ \sum_{r \in \Gamma} \frac{dS_r(\lambda)}{d\lambda} \sum_{n \geq 1} \exp(-nS_r(\lambda) - n\pi i L_\gamma)
\]
where \(S_r(\lambda) \) is the length of a periodic orbit \(\gamma \) with respect to the distance \(d_r \).

Proof. Since \(\|K_\lambda^2\| < 1 \) for \(\lambda < \bar{\lambda} \), we have
\[
\det(I + K_\lambda^2) = \det \exp \log(I + K_\lambda^2) = \exp(\text{Tr} \log(I + K_\lambda^2)).
\]
\[
= \exp \left(- \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{Tr} (K_\lambda^n) \right).
\]
By the definition of \(K_\lambda^2 \), we obtain
\[
\text{Tr} (K_\lambda^n) = \sum_{\gamma \in \Gamma_n} \prod_{i=1}^n E_n[e^{-F_i/T_\gamma(i)}]
\]
where $a_1 a_2 \ldots a_N$ is a periodic point and $a_{N+1} = a_1$. Noting that $S_{\gamma^*}(\lambda) = S_{\gamma}(\lambda) + S_{\gamma}(\lambda)$ we obtain

$$\det(I + K^2_\lambda) = \exp\left(-\sum_{n=1}^{\infty} \frac{1}{n} \sum_{\tau \in \Gamma(n)} e^{-\langle S_{\tau}(\lambda^1 + \pi L)\rangle} \right)$$

$$= \exp\left(-\sum_{n=1}^{\infty} \frac{1}{n} \sum_{\tau \in \Gamma(n)} e^{-\langle S_{\tau}(\lambda^1 + \pi L)\rangle} \right)$$

$$= \exp\left(-\sum_{k=1}^{\infty} \sum_{\tau \in \Gamma} \sum_{m=1}^{\infty} \frac{1}{m} e^{-\langle S_{\tau}(\lambda^1 + \pi L)\rangle} \right)$$

$$= \prod_{\tau \in \Gamma} \left(1 - e^{-\langle S_{\tau}(\lambda^1 + \pi L)\rangle} \right).$$

Hence taking the logarithm and differentiating both sides of the equation above, we complete our proof.

Remark 4.5. For fixed $\lambda < \lambda$ the Fredholm determinant $\det(I - zK^2_\lambda)$ is the reciprocal of the Ruelle zeta function for the potential $U(a) = \langle a_1, a_2 \rangle + i\pi$. Here the Ruelle zeta function $\zeta(z)$ is defined by

$$\zeta(z) = \exp\left(-\sum_{n=1}^{\infty} \frac{z^n}{n} \sum_{\tau \in \Gamma(n)} e^{-\langle S_{\tau}(U)\rangle} \right)$$

where $S_n U(a) = \sum_{k=0}^{n-1} U(\sigma^k a)$ [1].

References

