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Affine Algebras
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Tatsuva AKASAKA* and Masaki KASHIWARA*

Abstract

We present a conjecture on the irreducibility of the tensor products of fundamental

representations of quantized affme algebras. This conjecture implies in particular that the

irreducibility of the tensor products of fundamental representations is completely described by the

poles of /^-matrices. The conjecture is proved in the cases of type An} and C(
n

1}.

0, Introduction

In this paper we study finite-dimensional representations of quantum affine
algebras. It is known that any finite-dimensional irreducible representation is
isomorphic to the irreducible subquotient of a tensor product 0 »V(fttv) av

containing the highest weight (Drinfeld [7]. Chari-Pressley [2]). Here V(irt) is
the fundamental representation corresponding to the fundamental weight 7tt and
av are spectral parameters. Moreover {(TIIV\ ap)}v is uniquely determined up to
permutation. This gives a parameterization of the isomorphic classes of
finite-dimensional irreducible representations.

However it is not known for example what is the character of those

irreducible representations except the complete result for A[1} ([2]) and some
other results due to Chari-Pressley ([2, 3, 4]). We have even not known when
^Vfatjav itself is irreducible.

In this paper we propose a conjecture on the irreducibility of ^vV(7rtv) av

and prove this conjecture for A(n} and Cn}-
For x, y^C(q), let us denote x<y \ix/y does not have a pole at q~Q. We

denote by ut the highest weight vector of V(7Ct).
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Conjecture 1.
(1) If ai<-*-<a;v, then V(nn)ai®-°°®V(7tiN)aN is generated by utl®—®utir as
a C/J (g) -module.
(2) If ai> -">aN, then any non-zero C/i (g) -submodule of V (7Ctl) ai ® •• • ®
1^(7^)0^ contains MII^-'^M^.

Here f/J(g) is the quantum affine algebra without derivation (see §1.1).
This conjecture implies in particular the following consequences.

Claim 1. If ai^az, then the normalized R-matrix

tfJ^Gr. y): V M X®V (n>> y-»V (n,) y®V (K^ x

does not have a pole at(x, y} = (a\, a2) .

Here R™r(x, y) is so normalized that it sends ut®u} to Uj®Ut.

Claim 20 V(-rtl^ai®"°®V(jiiN)aN is irreducibk if and only if the R-matrix

f f iCr , y ) : VfaJ&VfaJr+V

does not have a pole at (x, y) = (a», au) for any 1< v,

Claim 3= Assume that R™T
iu (x, y} has no pole at (x, y) = (av, au) for any 1

< /^<y<JV. Then the submodule generated by un&) ••• &)utN is an irreducible
submodule of F(7rzl)f l i ; 0 ••• 0 V(7itN)aN. Conversely, any finite -dimensional irre-
ducible integrable module is obtained in this way.

Claim 4. // M and Mr are irreducible finite- dimensional integrable U'q (g) -
modules, then M®M'Z is an irreducible U'Q(Q) -module except for finitely many z.

The plan of the paper is as follows In §1, we fix notations and explain the
results used after. We announce non published results but they can be directly

checked for the An} and C(n} cases. In §2, we announce the main conjecture and
discuss its consequences. In §3, we reduce the main conjecture to another

auxiliary conjecture, which will be proved in the case An} and Cn} in §4. In the
appendix, we shall calculate the explicit form of the normalized ^-matrices and

the universal .ft -matrices between fundamental representations of A™ and CiD.
The authors are grateful to K. Takemura for his helpful comments on this

work.

1.1. Quantized algebras,, Let (a,,) ?je/ be a generalized Cartan
matrix of affine type. We choose a Q-vector space t of dimension #7+1 and
simple roots a/^t* and simple coroots ht^t such that (ht, a,) =al}. We assume
further that a, and ht are linearly independent. Set Q=I]2Zaf and Qv=Zi/Z/iz .
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Let 5=2a,-ai be the smallest positive imaginary root and let c = ]Ca^%^Qv be

the center. Set t?i = t*/Q5 and let cl: t*-»t* be the projection. We set t*° = Ue
t*;(C,^>-0} andtS° = cl(t*°).

We take a non-degenerate symmetric bilinear form( ' , e ) on t* such that

^ for any ie/ and Jet*.
\ j , f i /

We normalize it by

(1.1) (c, X) = (5, 2) for any Jet*

We identify sometimes t and t* by this symmetric form.
Let us take a (weight) lattice Pcit* such that at ^P and hi^P* for every i

e/. We assume further that P contains At satisfying (hj, A) — <5f, and that Pfl
Q3=Zfl. We set Pci=P/Z5ct*lt P°= U ep; (c, ^) -0} c t*°f and P& = cl (P°) dt^0.
Note that the dual lattice of Qv coincides with Pcl~®fe/Zcl (At) .

Let 7 be the smallest positive integer such that

(1.2) r(a,, a,)/2e=Z fo rany i^ j .

Then the quantized affine algebra Uq(o) is the algebra over k = Q(<?1/r)

generated by the symbols et, ft (i e /) and q (h} (h G 7"^*) satisfying the
following defining relations.

(1) 0(fc)=l for h = Q.

(2) q(hl)q(h2)=q(hl + h2) for h^ h2<Ey~lP*.
(3) For any i^/ and fcef^P*.

q(h)eiq(h)-l=q(h-^et and

(4) k /J =5(,
i::- for i, ye/. Here qt=q<«'«*'2 and h=<

0i— 0f

(5) (Serre relations) For i

4=0

Here b = 1 — (hi, a,} and

W ,= («,*-«,-*) / («?,-9r1) , [fe] «!= [1] ,- [ft] ,

We denote by L^(g) the subalgebra of f7, (g) generated by et,f,(i^l) and
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In this paper we consider only £/i(g). A Uq (g) -module M is called
integrable if M has the weight decomposition M=®x&pcl Ma where M* = (u ̂ M; q
(h)u=q(h'x}u} , and if M is £/ff (g) , -locally finite (i.e. dim [/«(g), %<°° for every

M^Af) for every i^/. Here Uq(o)t is the subalgebra generated by #,,// and ft.
We use the coproduct A of Uq (g) given by

(1.3) A(q(h))=q(h)®q(h),
(1.4)
(1.5)

so that the lower crystal bases behave well under the corresponding tensor
products ([12]).

L2o Finite-dimensional representations,, Let WCAut( t*) be the Weyl
group, and let /: W— *% be the length function. Since d is invariant by W, we

have the group homomorphism c!0: W~ > Aut (t*°) . Let Wc\ C Aut (t*°) be the
image of W by clo- Then Wc\ is a finite group. Let us take t0^/ such that Wc\ is

generated by clota) (i e /o — /\ (io) ) and that a«=l. Such an i'0 is unique up to
Dynkin diagram automorphism. Hereafter we write 0 instead of to.

Let us denote by W0 the subgroup of W generated by s* (i ^/o = /\ {0}).
Then W0 is isomorphic to Wci. The kernel of W~^WC\ is the commutative group

(t(& ; f e Qci n Qc
vi} . Here Qci = clfe) = S^/ZcKaJ and Q% = cl(Qv) =

l (ht) and £(£) is the automorphism of t* given by

=^+ (5, ^)r- (r, $6

for ?7 et*such that cl (?')=£
The following lemma is well-known.

Lemma 1.1. L^^ ?eQcl n Q£ and w^ WQ,
(i) If ? 15 dominant (with respect to /o) ,

(ii) If ? 15 regular and dominant, then we have

Let us choose ti such that Wci is generated by clc(s,) (i^I\{ii}) and that a(1

= 1. For any z^k\{0], let <p(z) be the automorphism of f/J(g) given by

= q(h).



QUANTUM AFFINE ALGEBRA OF LEVEL 0 843

For a Uq (g) -module Af, let Mz be the lfq (g) -module with M as its underlying
0(Z)

fe-vector space and with C/J(g) - »l^(g)— »End (M) as the action of C/i(g). Then
M*-*M2 is a functor satisfying (M&JV) Z=MZ®NZ. This definition extends to the
case £^#\{0} for a field extension K^k.

If M is a finite-dimensional integrable U'g (g) -module, then the weights of M
are contained in P&.

1.3. Fundamental representations. We set nt — c\(At — a Mo) for i^/0.
Then (7Ti)ie/0 forms a basis of PCI- We call TTZ a fundamental weight (of level 0).

For i ^ /o, there exists an irreducible integrable U'q(o) -module V(rCi}
satisfying the following properties.

(1) The weights of V(TT/) are contained in the convex hull of Wc\nt.
(2) dim Kfo )*, = !.

(3) For any JJL €E Wci7T/ c PJi, we can associate a non-zero vector uu of
weight // such that

for any;^/.
Then F(7T2) is unique up to an isomorphism. Moreover V(jtt) has a global
crystal base. We call F(TTZ) a fundamental representation. Then V(TTZ) has a

non-degenerate symmetric bilinear form ( • / ) such that ^*— /* and fq(h] —q(h).
Hence the duality is given as follows. Let WQ be the longest element of WQ. Then
for i^Io there exists i*^/o such that

(Remark that i*-^i* with 0* = 0 gives a Dynkin diagram automorphism.) Then
the right dual of Ffzrj is V(7Ct*)p* with the duality morphisms:

(1.6) k-*V(nl*)P*®V(7t,} and V(xt)<8>Vr(xt*)p*-*k

with p*= (-1) WMqW. Here p and pv are defined by: (ht,p) =1 and <pv, a,-> =

1 for every i^L Usually (p, S) = 2ze/a^ is called the dual Coxeter number and
(pv, d) =^teiat the Coxeter number.

Let mt be a positive integer such that

We have mt= (a,-, az) /2 in the case where g is the dual of an untwisted affine
algebra, and mt — \ in the other cases.

Then for z, z^-K*. we have
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(1.7) V fa) z = V (7tt) g, If and only If zmt =z'

Hence we set

The following theorem is announced by Drinfeld ([7]) in Yangian case,
and its proof is given by Chari-Pressley ([3, 4]).

Theorem L20 Let K ^> k be an algebraically closed field and let M be an
irreducible finite -dimensional U'q (g) K~module. Then there exist ii,...,iN e /o and
Z\,...,ZN e K\ {0} such that M is isomorphic to a unique irreducibe subquotient of

¥(71^ zi) ®-'®V(-KtN; ZN) containing the weight 2£Li ntv. Moreover, {(ii, zi) ,...,
(IN; ZN) } is unique up to permutations.

Definition L3o We call Vdi^ z^ a component of M.

1.4. Extremal vectors, We say that a crystal B over L/J(g) is a regular
crystal if, for any / Cl/? B is isomorphic to the crystal associated with an

integrable Uq(Q/) -module. Here Uq(Q/) is the subalgebra of L^(g) generated by
et, ft and tt (i ̂ /) . This condition is equivalent to saying that the same assertion
holds for any/c/ with two elements (see [15, Proposition 2.4.4]).

By [14] , the Weyl group W acts on any regular crystal. This action S is
given by

if (hti w t(6)><0.

A vector b of a regular crystal B is called i-extremal if ^6 — 0 or / r f c = 0.
We call b an extremal vector if Swb Is j-extremal for any w^W and i^I.

Lemma 1040 For any X, ̂ et*° in the same Wcrorbit, we can find ii,..., i
such that

^=SiN'°tsllA,
(htk, Sik-i'"StiA) >Q for any l<k<N.

Proof. It is enough to prove the statement above for a regular integral
anti-dominant (with respect to /o) weight X and the dominant weight fi ^ WA.

We may assume further ^^QcinQci. Let WQ be the longest element of W0.
By Lemma 1.1, we have
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Take a reduced expression wtf(X) — stN'-'stl. Then for 1 <k<N we have
Sti'"Sik) = J (t U)) — k and hence t(X)sti"

mstk-iOLk is a negative root. Since it is
equal to sti'"stk-iCXk~~ U, sti"'stk.1ak) 8 and Su'"Sjt-i#ft is a positive root, we
conclude

On the other hand we have the equality slN-~sllA=wot(X) A = wQA in t*°. Hence it
is equal to fi. D

For a regular crystal B, b^B and i^I, let us denote by e'f^b the i-highest
weight vector in the i~string containing i. Namely we have

Lemma 1.5. Let B be a finite regular crystal with level 0 (with weight in

(1) For b eB, there arc ii,...,ijv e / snffc tfwrt r™ax- • • e™**b is an extramal
vector,

(2) Any vector in the W~orbit of an extremal vector b of B is written in the

Proof, Let us set F/= (eT^'^ Sax6; ii,...,i/e/}, F= U/>oF/. Replacing b with
with maximal (wt ( f r ' ) , wt(6')) , we may assume from the beginning that

(wt ([>'), wt(b ' ) ) <(wt(5) , wt(5)) for any b' e F. Since (wt(fc') , w t (V))>
(wt(6), w t ( f t ) ) , we have (wt(fe ') , wt ( fc ' ) ) = (wt( f t ) , w t ( 6 ) ) f o r any 6'GF, and
hence any b'^F is i-extremal for every t^J. Moreover the weight of b' is in the
Wcrorbit of wt(5) . Then for any weight [L of F and x such that {/z l f //) <0, 5SI

sends injectively F^ to FStU. Hence # (F^) <# (FS|^), and Lemma 1.4 asserts
that they must be equal. Therefore 5Z: Fu— >FSi(2 is bijective. This shows that F is
stable by all SSt. Thus we have (l) and (2) . D

Lemma 1.6. Let B\ and B2 be two finite regular crystals. Let bi and hi be
vectors in BI and £>2, respectively.

(1) If bi and bz are extremal vectors and if their weights are in the same Weyl
chamber, then b\®b2 is extremal.

(2) Conversely if b\®b2 is extremal, then b\ and b2 are extremal vectors and
their weights are in the same Weyl chamber.

Proof, (l) is obvious because Sw(bi®b2] —Swbi&)Swb2 under this condition.

We shall prove (2). Since e^—e?£*(bi®b^ =?%ax'~??Jxbl®b2 for some
b'2^B2, the preceding lemma implies that b\ is extremal. Similarly b2 is extremal.
It remains to prove that wt(5i) and wt(fr 2) are in the same Weyl chamber. Let
us show first that wt (&i®&2) and wt(bi) are in the same Weyl chamber. We
may assume without loss of generality that wt(bi&)b2) is dominant (with
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respect to /o). Then ^(biQ&bz) — 0 for every t^/o. Hence etbi = 0. Hence wt(&i) is
dominant. Hence wt (bi ® £2) and wt(b\) are in the same Weyl chamber.
Similarly wt(&i®&2) and wt(&2) are in the same Weyl chamber. Thus wt(fci)
and wt (fta) are in the same Weyl chamber. HU

L7. We say that a finite regular crystal B is simple if B
satisfies

(l) There exists A^Pci such that the weights of B are in the convex hull
of WclL

(2) #(a)=i.
(3) The weight of any extremal vector is in WC\X.

Prposition L8o The crystal graph of the fundamental representations is
simple.

The proof will be given elsewhere. However we can easily check this for

the A(
n
D and C? cases.

Lemma 1.9. A simple crystal B is connected.

Proof. In fact, any vector is connected with an extremal vector by Lemma
1.5. D

Lemma 1.10. The tensor product of simple crystals is also simple.

Proof. This immediately follows from Lemma 1.6. L]

Proposition 1.11, Let M be a finite-dimensional integrable U'q(Q)-module
with a crystal base (L, B). Assume the folllwing conditions.
(1.8) B is connected.

(1.9) There exists a weight A &P& such that dim (Mx) = 1.
Then M is irreducible.

Proof. We shall show first that MX generates M. Set N=U'q(§}Mx and N —

(L (1 JV) / (qL n N) CL/<?L. Then N is invariant by et and /«. Hence N contains B,
and Nakayama's lemma asserts that N = M. By duality, any non-zero submodule
of M contains MX. Therefore M is irreducible. D

Corollary 1.12. A finite-dimensional U'q(Q) -module with a simple crystal
base is irreducible.

Corollary 1.13. For ii,..., i^/o, F(7rn)0-°-®F(7r^) is irreducible.

We define similarly an extremal vector of an integrable L'^(g)-module.

Definition 1.14. Let v be a weight vector of an integrable [/J(g) -module.
We call v extremal if the weights of f /J(g)v are contained in the convex hull of
Wwt(v).
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When the weight of v is of level 0 and dominant (with respect to 70), v is
extremal if and only if wt (U'q (Q)V) c wt(t>) + 2*e/0Z<;o cl (a*). In this case, we
call v a dominant external vector.

Since the following proposition is not used in this paper, the proof will be
given elsewhere.

Proposition 1,15. Let v be a weight vector of an integrable f/?(g) -module.
The following two caiiditions are equivalent.

(1) v is an extremal vector.
(2) We can associate a vector vw of weight w wt(iO to each w^W satisfying

the following properties:
(a) Vw=v ifw=c<
(b) If i^I and w^W satisfy (ht, w wt (v)) >0, then etvw~Q and vStW =

f(^t(V)})Vuh

(c) // i e/ and w^W satisfy (ht, wwt(v)) <0, then fiVw — 0 and vStW =
e(-*«uMM>Vuff

The implication (l)=>(2) is obvious.
Let us denote by Uq(b) the subalgebra of Uq(o) generated by £,, and ei(i^

/).
Proposition 1.16. Let M be a finite-dimensional integrable U'Q(Q) -module.

Then any U'q (b) -submodule of M is a U'q (g) -submodule.

Proof. Let N be a Uq (b) -submodule. For any pair of weights A and fi
conjugate by Wc\, there exist i"i,...,t/ such that m/c= — (hik, Sn-fSu^} >0 and JJL—

stl'-stlA by Lemma 1.4. Then el? • • • e™ sends injectively JV^ to N#. Hence we
have dim JVj<dim Ar^. Thus we obtain dim NX = dim Nu. Then the proposition
follows from the following lemma. [U

Lemma 1.17. Let M be a finite-dimensional integrable Uq(§>i2)-module
and let N be a vector subspace of M stable by c and t. If dim JV^dim Nsw for any X
(s is the simple reflection), then N is a Uq (§12) -submodule.

Proof. Any u^N* can be written

with evn — Q. Here n ranges over {w€=Z>o; n+ {h, A)
Let us prove Uq (§(2) v n ̂  N by the descending induction on c— (h, A). We

have 0M = 2w[l"r-c+n]/(w"1)i;M. Hence the induction hypothesis implies Uq($l2)vn

^N for n>Q. Hence we may assume that eu — 0, and then c^O. The surjectivity

of ec: Nsr~+Ni implies the existence of w ^ N^ such that u — e(c)w. Then fw = Q
and Uq («I2) M = l/fl (8I2) w is generated by feww; n > 0} C N. D

Lemma 1.18. L<?£ MI a-nd M2 6g finite-dimensional Uq(o) -modules and let
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Vi and Vz be* non-zero weight vectors of Mi and Mi, If v i®i>2 is extremal, then v\ and

v 2 are extremal and their weights are in the same Weyl chamber (in t*°) .

Proof. We may assume that wt (v\®v^ is dominant. Then for any P^
Uq (b) , we have

Hence the weights of U'q(b)v2 is contained in wt(t>2) +0- Since U'q(b)v2
=Uq(Q)

v2 by Prop 1.16, v2 is an extremal vector with a dominant weight. Similary so is
t'i. n

We denote U n>oC((q1/n)) by k and U n>oC[[q1/n]] by A. Hence k is an

algebraically closed field and ^4 is a local ring. For a, b^k*=k \{0), we write a

<b iia/b^A.
For i'^/o, \etuj denote the dominant extremal vector of V(7Ct).

tere 1. Let ii,..., i/ be elements of /o and a/,..., a\ non-zero elements

of k.
(1) If «!<••• <fl|, then F(7rJai®°--®F(7rJ^ is generated by utl®~-®utl as a
[/i(g)jrmodule.
(2) If a i > ° - ° > a / , then any non-zero U'q(o)k -submodule of V(TCn)ai§§-°° ®
V(KU) ai contains Uil®"'®Uil.

Note that (1) and (2) are dual statements and therefore they are equivalent.
One can compare (1) to the case of Verma modules and (2) to the case of the
dual of Verma modules.

Let us discuss several consequences of this conjecture.
For i, j ^/0, there is an intertwiner

(2.1) tfirGr, j / ) : V(xt)x®V(xJ)1r+V(K,)1l®V(nt)x.

We normalize this such that R sends HI®UJ to iij®Ui. Then we regard it as a
rational function in Or, y). Since it is homogeneous, its pole locus has the form
y/x — constant. We call it the normalized R-matrix. By Corollary 1.13 such an

#?;
orOr, y)is unique,

Corollary 2.1. If ai<az, the normalized R-matrix #?°rGr, y) does not have
a pole at Or, y) = (ax, «2) .

Proof. Suppose that J??,5r(xf y) has a pole at (x, y) — (ai, a2). Let R' be the
non-zero DT?(g)-linear map V(Ttt}ai®V(Kj}a2~^V(Kj)a2®V(7tl}ai obtained after

cancelling the poles of Rfjr (x, y). Then Rf (ut®Uj) =0, and hence Im U?') does
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not have weight 7TZ + 7T/. On the other hand, Conjecture 1(2) implies that Im (??')

contains UJ®HI, which is a contradiction. Hence R*?r Or, y) has no pole at (a\,
a2). D

Corollary 2.2. Let K be a field extension of k, and ii,...,i/ ^ /o, fli ..... a/ ^

(1) 74sswm£ £&a/ ^?^L Or, y) does not have a pole at (r, y) — (av, au) for
<l. Then V (7rn) a i<8>"- 0 V (TT,,) «, is generated by ull®'"®uu as a U'q

(2) Assume that R™** Or, y) does not have a pole at Or, y) — (a^ a#) for !</
</. Then any non-zero U'q (g) K~submodule of V(rcl}] a\®'"® V(ftti) ai contains utl

<E>—®M,,.

Proof. We may assume that K is generated by GI, • • • , a/ over /?. Since k is
an algebraically closed field with infinite transcendental dimension over &, there

exists an embedding K—*k. Hence we may assume K—k.
Since the proof of (2) is similar, we shall only prove (1). We prove (l) by

induction on the number of pairs (y, fi) with V<JJL and ay^a#, which we denote
by n. If w = 0, the assertion follows immediately from Conjecture 1. If n>0, take

v such that av£a»+i. Hence ap+i<ay. Then Corollary 2.1 implies that R?™lfiv(x,

y) does not have a pole at Or, y) — (ay+i, av). Since /??°[y+1 (x, y) does not have a
pole at(x, y) = (ay, a^-ijby the assumption,

and

are inverse of each other. Hence we can reduce the original case to the case
where v and y + 1 are exchanged, in which n is smaller than the original one by
1. Hence the induction proceeds. D

Assume the condition (1) in the preceding Corollary 2.2. Let R be the
intertwiner

R:

sending wz l®"'®wz/ to «i/® •••&«/!, obtained as the product of /??°ftf (a^ au) with

Corollary 2.3. Under the condition (1) in Corollary 2.2, ImG?) is irre-
ducible.

Note that the condition (l) is satisfied if K — k and a i < - - - < a j , and hence
we can apply the corollary in this case.
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Proof. By Corollary 2,2 (l), Im(j?) is generated by the dominant extremal
vector Wi,®'"(8)ttii. Since any submodule of Im (R) contains the same vector by
Corollary 2.2 (2), Im (j?) is irreducible. D

In fact, Im (R) is absolutely irreducible. Let us recall that, for a (not
necessarily algebraically closed) field K containing k, a l/i(g)jr-module M
finite-dimensional over K is called absolutely irreducible if the following
equivalent conditions are satisfied.
(1) For some algebraically closed field K' containing K, K' ® K M is an
irreducible [7i(g)jr "module.
(2) For any algebraically closed field K' containing K, Kf ® K M is an
irreducible £/$(g)ir "module.
(3) M is irreducible and Endc/;(g)x (M) =K.

We denote by m the maximal ideal U n > o q 1 / n C [ [ q l / n ] } oil.

Corollary 2A. For a^kx, y/x — a is a pole of R™T (x, y) if and only if a ^
m and V(itt)®V(it})a is reducible.

Proof. By Corollary 2,1, if y/x = a is a pole of R™T(x, y), then a^m. By a
similar argument to Corollary 2.1, the irreducibility of V(7tt) ® V(itj)a implies

that y/x — a is not a pole of J??;
or (x, y). Now assume that y/x = a^m is not a

pole of £?f Cr, y). Since #£or (a, l)is well defined, R??T(l, a) is invertible. Hence
(i:,)a is irreducible by Corollary 2.3. D

Corollary 2050 L^t A" 5^ an algebraically closed field containing k. If M and
M' are irreducible finite -dimensional integrable U'q(Q) ^-modules, then M§§M'Z is an
irreducible Uq(Q)K~module except finitely many

Proof. Let M(resp. MO be the irreducible subquotient of V

(7Tm)^(resp. V(nti)a&>—®V(Ktto)aJ) such that^°J,(x, y) (resp. /??$*(*, t /))
does not have a pole at(x, y) = (ap, atf) (resp. (x, y) = (a* a^)) for l<v<jji<m
(resp. 1 <u<jJi<m}. Then Corollary 2.3 implies that M is isomorphic to the
image of the ^-matrix

R: V - >W,

where K=y(^ f l) f l l®-®7(7r fja i l l and W= V(ntjam® °"®V(ntl) ai. Similarly
M' is isomorphic to the image of

R': V - >W,

where I/'- F(7Td)fli®--®I/(7Tlfc,)^ and W= V(TI^) a^-^V(^j a[- If 2: is

generic, J??°J'y. (x,y) does not have a pole at (x, y) = (aVtza^) and R™T.tv (x, y)
does not have a pole at (x, y) = (za^, a») . Hence the J?-matrix
is an isomorphism. Hence the image of the composition
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is isomorphic to M(&M'Z and it is irreducible by Corollary 2.3, CU

Hence the intertwiner M®M'Z— >M'z(g)M is unique up to constant.
We give a conjecture on the poles of the ^-matrices.

Conjecture 2. For i, j ^/0, the pole of the normalized ^-matrix #?/r(x, y)

has the form y/x = ±qn for n^ J~1Z with 0<n < (5, p) except Df] (where 7* is

defined in (1.2)). In the Di3) case the third root of unity appears in the
coefficients.

As seen in the appendix, this is true for An} and C«1}.
We can also ask if the following statements are true.

(2.2) j??,or(x, t/)has only a simple pole.

(2.3) If (x, y) = (a, 6) is a pole of R«?T (x, y), then the kernel of #£or (5, a) ;
V(x,)b®V(7tl)a-*V(nt)a®V(7tj)b is irreducible.

30 Reduction of the Conjecture

In this section we shall prove that Conjecture 1 follows from Conjecture 3

below. Let m= U n>0 q
l/nC [ [q1/n] ] be the maximal ideal of J.

Conjecture 30 For every i^/o, there exist A^N, bi,...,bN, ci,
SI,..M SN, ^I,..M ^jve/o, an irreducible finite-dimensional L^(Q)F~ module VF^ and a
f/J (9)* -linear map ^: 7(7Tf) ® F(TTS,) 6/l-* 7(7rJ c,0 14^ for ^ with 1 <[JL<N,
satisfying the following conditions. Define F0 — ©$^-TT,* F(7T,)§ (recall that — TT**
is the lowest weight vector of V(TT,)) and Fu— {i'^Ftf_i|^ (i'®wsj =0} for 0

(1) FJV=fetl

(2) <pu (FV-I
(3) 7(7TSw)^ is not isomorphic to F(TT^)C W .
(4) Vfasi^bu is not a component of W^(see Definition 1.3).
Here usu and w^ are dominant extremal vectors of V(nsu}blt and Wu, respectively.

Let us show that Conjecture 3 implies Conjecture 1 (2) .

For cti,...,ap^kx, let P(a\,.. .,a/>) denote the following statement.

P(ai,...,ap): For indeterminates Xi, • • • , x/, any dominant extremal vector of the
[/i(g)fcdi, ,x,) -module V(nn) xl

is a constant multiple of w/^-

Assuming Conjecture 3, we shall prove the following lemma.
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Lemma 3.1. //ai,..., ap^k* satisfy ai>°->ap, then P(<ZI,..., ap) holds.

Since any non-zero finite-dimensional module contains a dominant extremal
vector, this lemma implies Conjecture 1 (2) . We shall prove this lemma by
induction on p. First assume p>l. Then P(&I,..., ap-i) holds by the hypothesis of

induction. Set K = k (xi,..., x/). Let x be another indeterminate. By the existence
of ^-matrix, 7(^)^0 -® V (^ Xl® F(7TnU® -® Ffe^)^® V(K»)X is
isomorphic to V (nh) Xl ® • • - ® F (TT,,) *i <8> F (TT |P) x ® F (TTU) fll <8> • • • 0 F (TT^) a^.
Hence P(ai, • • • , a^-i) implies that a dominant extremal vector of the Uq(§)K(x)-
module V (nh}Xl® ••• <8> F (TT,,),,® 7 (7T f l) f l l® - <g) F (TT,^)^® F(7rJ^ is a
constant multiple of M;!®-0'®^;/®^!®'-'®^. Then it follows that a dominant
extremal vector of U^Q) ^-module K(7rn)zi® ••• ® F(^;/)^(8) F(7T?1)fll ® ••• ®
FC^-i/^p-i^^fTr^)^ is a constant multiple of ttn®---®^®^!®- ••&«!, except
for finitely many z ^ k. This means that P (ai,...,a/,-i, #) holds except finitely

many z^k. Arguing by induction on the order of the zero of ap, we may assume
from the beginning

(3.1) P(ai,..., ap-i, z) holds for any

Let v be a dominant extremal vector of U'q(^)K- module
fll®""® F(7Ti|,)ap. We shall prove that v is a constant multiple of

We have ^0: F(?rJ ®F(7r^),-^F with y = (-1) '^^V^ by (1.6). Set V
= V(Kn}xl® '°'®V(TCn)xl®V(7itl}ai®''°®V(n>p-l)ap^ Then we have a
morphism

id7'®(<p0)ap: F/®F(7T2,)ap(8)F(7r^)apy-^F/.

Lemma 3020 We have (i&v® (<PO) ap) (v^uip*) =0.

Proof. Assume that w — (idy ® (^o) a*) (r ® w?p*) ^ 0. Then ^ is a
dominant extremal vector of V. Hence w is equal to Uj1®'°'®ihi®Uti®°°°®Utp-i
up to a constant multiple by P(ai ..... ap-i) . Therefore Theorem 1.2 implies that
V(nip*)apy is isomorphic to one of V (KJJ) xi,—,V (KJI) Xi, V(7rtl)ai,—.V(fttp-i)aP~i.
This is a contradiction since y^qA. [U

Since F0 = (w e F (TT,,) ; <£o (u?®t*,,*) = 0} , we have v e F'® (F0) fl,. Now we
shall show v ^ V f ® ( F M ) a p by induction on //. Applying Conjecture 3 with i=i/,,
we have ^(g) -linear maps g>M: V(xtf)®V(xSlt)i,tr^V(ji:tJcll®Wll for l<ju<N
satisfying the conditions (1) — (4) in Conjecture 3. Then this induces a
homomorphism

Suppose that v^V® (F^-i)ap, which is the case when ^

Lemma 3.3. W^ have (idv®(<p»)at) (^®«s«) =0.
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Proof. The proof is similar to the one of the preceding lemma. Suppose that
w= (idv 0 (<p#) ap) (v®us^ is not zero. Write w as v" ®Wu in virtue of the
condition (2) in Conjecture 3, where v" is a non-zero vector of V®V(Tttfi)apc»-
Since v®usit is extremal, so is v"®Wu. Hence v" is a dominant extremal vector
by Lemrna 1.18. Since apc^map, the property P(ai,...,a/>-i, apcu) holds by (3.1),
and hence v" is a nonzero scalar multiple of Ujl®"'®Ujl®Uti®"'®utp®utli.
Then Theorem 1.2 implies that V^TT^)^^ is isomorphic to one of V (7T;1)X1,
...,F(7T;i).r/, ^(TTfJa^.-.^CTr^-Jfl,-!, V^TTfJ^c* or to a component of (W#) flp. It,
however, is not the case because of the conditions (3) , (4) in Conjecture 3 and

D

By this we have v €= V ® (F#) Sp. Applying this process successively, we
obtain v ^ V' ® (FN) aP- Hence we have v €= Y®uip by the condition (1) in
Conjecture 3. Write v as v®ulp, where v is a nonzero vector of Y . Lemma 1.18
implies that v is dominant and extremal. Therefore v is a nonzero scalar
multiple oi Ujl®"m®n]l®utl®

%"®Utp-i by the induction hypothesis on p. We
have deduced the p case from the p~l case.

It remains to prove /> = 0 case, which follows from the following lemma.

Lemma 3«,40 Any dominant extremal vector of the C/i(g)iFui, ,xj -module
^ J X I ^5 a constant multiple of utl&) *"® w,,. /fere Xi ..... x/ ar^

Proo/. It is enough to prove the assertion with xi = ••• = x/ = 1. Let I^r

denote V(7Ttl) &)"•&) V (ft ti) . By Corollary 1.13, F is irreducible. Suppose now
that V has a dominant extremal vector r that is not a constant multiple of ttn®
•••®MU. Then L r^(g)i' does not contain u^®-"®!!,, since wt(L^(g)iO czwt(v) +
2*e/0Z^o cl (ai) , which is a contradiction. CD

Thus we have proved

Proposition 3.5. Conjecture 3 implies Conjecture 1.

4. Proof of Conjecture 3 for Ai1} and C^11

In this section, we shall prove the following theorem.

Theorem 4.1. Conjecture 3 holds if g is XD or Ci1}.

4.L Ai-i Case. For the fundamental representations of L ri(^l«), see

Appendix B.I. We identify crystal bases of the fundamental representations
with the corresponding global bases.

Let us prove Conjecture 3.
Since the i — n~\ case can be reduced to the case i ~ 1 by the Dynkin

diagram automorphism, we assume l < z < w — 1. Set N = i. For l<{ji<N = i, take
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Su=^, tM = i + l, bM=- (—q)l~u+2, Ctt=—q, W^ = F^-i) <_ f f)f-*+i and define (pttfl:
il as the composition (see Lemma B. l):

,

V(ict)®V Or,) (-,).-« - > V (let) <8> F (TTI) <-,,,+i<8> W»
(4.1) i (fc,i)-.«w,

Then it is easy to check that Conjecture 3 holds with

k (1,..., fJL, dfji+l,..., dt) .

4»20 Ci1} Case0 For the fundamental representations of U'q(Cn}), see Appen-
dix C.I.

For 1 <i <», let /?/: F(7r,) ® F(TTI) (-to)i+i-* F (TT,-+I) _9s be (pu) -,s. Let pn:

V din) ®V (KI) (-qs)n+s-^V (rcn-i) -qs be the composition

Here tr is given in(C.l).
For 1 <i <n — 1, set N = i. For 1 <// < JV = t, we set 8^ = fjt, tff = i + l, b(jt

(- qs)
l^+2, Ctt = - qs and Wu = F(TTJU_I) (-^>.-^i. We define ^)^ : F(TTZ)

F(^) (_as)«-^+2— >F(7rz+i)-^s(8)Vl/r^ as the composition:

(4.2)

Note that b&

For i=n, set N=n. For !</^<n, we set s^—^ tu—n — ±, bu—
= — qs and W^ — V (TT^-I) (_^)»-^3. We define (pnrtl: V (TTB) ® F
F(7Tl+i)_?s0W^ as the composition;

(4.3)

Note that
Then we have
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F* = {v&V(ict);pi (v®G (;)) =0 for 1 </<//}.

Then Conjecture 3 easily follows from the following lemma.

Lemma 4.2. Fix 1 <i <n. Then

(4.4) {vGV(Ki);pt(v®G(j))=Q for all l<j<i}=kG(l, — , i).

Proo/. Let £ be the left-hand-side of (4.4). Then E is invariant by ek for
any fe€/0. Let us prove EA — 0 by induction on the weight X ^ T i j . We can easily
check the assertion when A~7tt — at, since V(ni)^=kfiut. If a weight ^ of V(iti)
is not 7Ti~att then X + a^Hi for any k^Io. Therefore any v^Ex satisfies 0/ci1 —
0 for all fc^/o by the induction hypothesis. This implies v = 0. EH

Appendix A. Universal R-Matrix

In this appendix we shall calculate the normalized and universal
J?-matrices of [7j(g) for the fundamental representations following a variant of

the recipe of Frenkel-Reshetikhin [8] in the A%-\ and CiD cases.
Let us choose the following universal ^-matrix. Let us take a base Pv of

Uq (g) and Qv of Uq (g) dual to each other with respect a suitable coupling

between Uq (g) and Uq (g) . Then for U'q (g) -modules M and N define

(A.I) RWff

so that Rm? gives a t/? (g) -linear homomorphism from M&)N to N&)M provided
the infinite sum has a meaning. If M and A" are finite-dimensional integrable

modules, then /?JSjvz converges in the z~adic topology. The existence of the
universal .R-matrix for (M, JV) is proved by [6] (see also [18]). For a scalar a,
the composition

is equal to RWaJta, and we sometimes confuse them.

For irreducible J7j(g) -modules M and N, let us denote by KMN(Z) the R-

matrix M®NZ-»NZ®M normalized by R$& (z) (u®v] =v®u for dominant
extremal vectors u (resp. v) of M (resp. N) . Let duN (z) be the denominator of

RUN(Z). Namely c (z) &k[z, z~l~] is divisible by djuN(z) if and only if c (z)R^(z}

has no poles. Then dMN (z) is uniquely determined modulo k [z, z~l~\ x. Here

k [z, z~l] x is the set of invertible elements of k[z, z~l~\ . Hence

(A. 2) k [ z , z-l}* = (czn] n€=Z f

Since the intertwiner from M&)NZ to NZ<S)M is unique up to a constant multiple
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by Corollary 2.5, we can write

(A . 3) flfflp (z) =CIMN (z) RW£ (*) -

If A and fi are the dominant extremal weight of M and N respectively, we have

(A. 4) a™ (z)e^«.«> (!+**[ [>]]).

For i, j e/o. we denote RTV (z) =#&<*,> (*) , RT U) =*WS,>™c,> (*) , alt (z)

For a finite-dimensional L/J(g) -module M, let M* be the left dual of M and
*M the right dual of M. Hence we have

We have

(A .5) M**=M9-*"» and **M=M(,«-.

We have

V (nt) * = F (TT,*) ̂ *-i and *F (TT,) = V (TT(*) /,*,

where #*=(-l) (^VJ iP)-
Let a|-J>a"be the ring automorphism of lfq(g) given by q~q~l, (et)~~et, (ft)~

=ft, q ( h ) ~ = q ( — h ) . For a L^ (g) -module M, let M" be the U'q (g) -module whose

underlying vector space is M with the new action L/^(g) ~~*l^ (g)-^End (M).
Then (M®N)-=N~®M~ and F(7r,)-=7(7r f) . Hence we have

(A. 6) d;, U) ̂ d,;^-1)- mod fefe, z~l] x.

The conjecture 2 implies

(A .7) d n ( z ) = d l j ( z ) modk[z,z~l]x.

Proposition AoL For irreducible finite- dimensional integrable L^(g)~
modules V and W, we have

(A. 8) av,w(z)a*v,w(z)=
dw*v(z )

Proof. For a U'q(o) -linear homomorphism <j>: V®Wz~~*Wz®V, we shall

define ^r (0): W*®*F-»*F(g)W2 as the composition



QUANTUM AFFINE ALGEBRA OF LEVEL 0 857

The correspondence 0l~>5rr(0) gives an isomorphism

(A. 9)

If we consider them as modules over k [ z , z'1] , then Horn (V®WZ, WZ®V) is

generated by dvw(z)Rvw(z) , and Horn (WZ®*V. *F®W2) is generated by dw,*v

(z-l)Rn^*v(z-1}. Hence we have

(z)R^(z})=dw*v(z-l)RT*v(z-v} mod k[z, z'1] x.

Then the result follows from R^v(z~1) = (W.iirtz))'1 and a well known result

5> (fl u
v
nw GO } = (tfWPV (*) ) -1 (see [8] ) . D

This proposition implies

(A. 10) ^UWX^'^-V^ n modfeb.£- 1 ] x .
dj,t*(p*z )

Applying (A.S)with *V instead of V, we have

(A. 11) a*v.w(
dw,**v(z )

Using (A. 5) we obtain the ^-difference equation

(A. 12)

Write

rf;i fe) = I I (z— xv) and djfl*(z) =

Then by (A.6) , we have

du (z) = I I U~ Sv"1) and dz*,; U) = I I (z — y^"1)
V V

Then using (A.4), we can solve the ^-difference equation (A. 12),

/A 10 r -(nt^ IL (PV; />*2) -o (^*y>; ̂ *2) -
. ;/ \ TT / j-o\ / *o _ j,o\

II y (x*\ p*2) c, (p*2x^; p*2) oo

Here /?*=(-l)'^V'>P) and (2; ^).= n?=o(l-^).

We are going to determine d/; (^) and at} (z) in the A(n-\ and CiD cases.

Remark. We can see easily

(A. 14) dv*,w*(z] =
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Hence

(A. 15) av*,w*(z) =a*v*w(z) —av,

and

(A. 16) di*,J*(z)=dl,j(z).

Appendix B. An-i Case

We shall review the fundamental representations and ^-matrices for An-i.

B.I. representations„ The root data of g = An-i are as
follows.

/={0, !,..., n~l}
[2

(at,a,)=\ ,._.
{-d(i=j

i f i = y

mod n) — 5(i=y —1 mod n) otherwise

Here for a statement P, we define d (P) = 1 or — 1 according that P is true or
false.

Hence by (1.6) the duality morphisms are given by

t ^ tr
k - »V (rcn-i) (-q)*+i®V (KI) and V(7tt}®V(7in-i) (-4*™ - ^.

By [16], the vectors of the crystal base Bk of the fundamental
representation V(itk) (I<k<n) are labeled by the subsets of Z/nZ= {1, • • • , n}
with exactly k elements. For Q<i<n — 1 and tfCZ/wZ, we have

_, N U{t} if i 4-1 €= A' and i
et(K) = .

I u otherwise,

-/ x
10 otherwise.

In the case of the fundamental representations of L^(§lw), all the weights

are extremal. Therefore we have etG(b) =G(e'ib) and f{G (b} —G(ftb} for every
b in the crystal base. Here G(b) is the corresponding global base. Hence we can
and do identify its crystal bases with the corresponding global bases.

We have

We present a lemma that is easily verified by calculation.
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Lemma B.I. For /, fc> 0 such that j +k ^n, there exist following non-zero

(%ln) -linear homomorphisms.
(1) ij>k: V(xM)

given by

#/=/,##=*

/f tf) = * { (v,
(2) pj,k: V(x,)<-,)-*

lo
F(TTO) awc^ F(TTW) ar^? understood to be the trivial representation.

B.2. JJ-matrieeSo We shall recall the result of Date-Okado [5].

Proposition B,2 ( [5] ) . For k, I e/0

min

(B.I) d t ;(z)=

The univeral ^-matrices can be easily obtained by (A. 13) and (B.I).

Proposition B. 3 ([5]). Fork, /e/0={lf --,n — l},we have

( ( — n\ \k-l\~. n2n\ ( ( _ \ 2«-|t-/| ^2wN
— -min(fe . / ) - Jk / /« U ^^ Z,Q)00\\ qj _ Z, q }00(V) — -ymi

*/W q

Appendix C* Ci1} Case

C.I. Fundamental representations. The Dynkin diagram of Cn} is

0 1 2 w - 1o
-2£l £1-62 £2-£3

o-o — o

Here (e/) «=!,...,« is an orthogonal basis of t*° such that (et, et) —1/2. We have

\q if f = 0 or n

1/2

c — hohi
(d.p) = n + 1,
<pv,(3) = 2n,
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Tli = Ai~ AQ — 8i~\ \-£t.

We set qs—q1/2- Hence by (1.6) the duality morphisms are given by

(C.I) k *V(Kt)qi<*+v®V(nt} and V(

We review the crystal base (Lk, Bk) of the fundamental representation V(nk) (I

<k<n) of U'q(C
(n}}. Recall that V(Kk) is as a Uq(Cn) -module isomorphic to the

fe-th fundamental representation of Uq(Cn). Hence by [17], Bk is labeled by

!,..., n, n,..., Ij, i+ (k— /+l) <m* if w,=w,

_ ^
where the ordering on {1 ..... w, n ..... 1} is defined by

(C.2) \< — <n<n< — <l.

On Bk the actions of /, and £ with 0< t<n are defined as follows. As for

write i and t + 1 as +, i -hi and i as — , and others as 0. Then first ignore 0 and

next ignore -h — . Then/^ is obtained by replacing the leftmost 4- with — and
e'tb is obtained by replacing the rightmost — with +.

Lemma C.I. If b is of the form (l, ai ..... a/t-i), then e'ob = (ai,...,a/c_i, 1).

Otherwise e~ob = 0. If b is of the form (ai ..... a*-i, 1), then fob = (1, GI,...^*-I).

Otherwise fQb = 0.

Proof. It is easy to check that Bk is a regular crystal with this definition of

£o and /o. Set/={l, 2, • • • , n — l}c/. Then Bk decomposes, as a crystal over g/ —
Aw_i. into irreducible components with multiplicity 1. Hence there is a unique
way to draw 0~arrows on the crystal Bk over C«. D

The following proposition can be checked by a direct calculation.

Proposition C020 For IJLV with [JL + v <n, there exist following non-zero

U'q(Cn}) -linear maps:

it*) (-q}~^

Co20 Normalized R-matrices. Let us calculate ^-matrices between a

fundamental representation and the vector representation of UQ(C^) . First
recall that we have the following decomposition as Uq (Cn) -modules;

(C.3)

Here V(HQ) is understood to be the trivial representation and V(7rn+i) to be 0.

Therefore the ^-matrix Rn
k?(x, y) : V(xk)x<g>V(Xi) ,r+V(7Ci) y®V(nk) x can be
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written as #2?r(x, y) =P7r J t + f f l®7i (yM P«« © 72 (y/*) P**-i, where P* is a
Uq(Cn) -linear projection from F(7rJ®7(7Ti) to V(TT) in V(7Ti)®V(7r fc) with TT
= 7r/t + 7Ti, TTfc+i Ol" TTfc-i.

Let ut and Ml(i = 0, 1, 2) be highest-weight vectors in the Uq(Cn) "modules
V(xk)<8>V(ni) and V(Ki)®V(xk) with highest weights 7Tfr + id (i = 0) , 7T*+i(i =
1), 7r*_i(i = 2) . Remark that if k~ n we ignore 7tk+i, MI, wi and 7i(y/x). We set
Qi=fofi""fn-ifnfn-i"'fk+i and Qz=fofi'"fk-i' Then Qfi^ is proportional to MO

because its weight is TTA + TTI. Let us first determine 71, assuming that k^n.
The following lemma is by direct calculation and we leave it to the reader.

In the sequel G means the lower global base (cf. [12, 13] ) .

Lemma C.3. Let b be an element of V(nk) ® F(TTI) which is a tensor
product of two loiver global bases of V^TT*) and V(n\) and has the weight itk+i-
Then Q{ b=£Q if and only if b = bi' = G(l ..... k)®G(k + l) or b = b2'- = G(2t...,k + l)

®G(1). Mororver Qi bi~q~ly~luo and Qib2
 = x~W where we set wo = G(l,..., fe) ®

Lemma C.4. // we write u\ — b\-\- Zi&^&i a&6, where b runs over the set of
tensor products of two lower global bases, then a&2~ (~qs)k.

Proof. There are relations

et(G(l ..... i + l,...,k + l)®G(i + l)-qsG(l ..... C.,fe+D®G (t)) =0
for l<i<k.

It follows that ab2= (—qs)
 k. D

By these lemmas we have Qin\ — (q^ly~l + (~ qs)
kx~1) MO in V (rck) 0

TOrO.
Similary we obtain the following two lemmas.

Lemma C.5a Let b be an element of V(it\) ® V(n^ which is a tensor
product of two loiver global bases of V(TTI) and V(iLk) and has the weight ftk+i.
Then Qi 6^0 if and only if b = b{ ' = G (1) ®G (2 ..... k + l) or b = b'2 ' = G (k + l) 0

G (1 ..... k) . Moreover Qib\ — q^lx~lufQ and Qib'2
 = y~lu'o, where we set U'Q = G (1) 0

G ( l . . . . . k ) .

Lemma C.6. If we write u'\ — b\ H~ 2fi*&f abb, where b runs over the set of
tensor products of two lower global bases, then a^— (~qs}

k.

By these lemmas we have in V(

(C.4)

Therefore we have
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(C 5)^•"°'

Next let us determine 72- For brevity, we assume that k=£n in the following four
lemmas.

Lemma C.7, Let b an element of V(Ttk) ®Vr(7Ti) which is a tensor product of
two lower global bases of V(TC^) and V(rc\) and has the weight Ttk-i- Then Q2b=£Q

if and only if b = b3 '•= G (!,...,&) ®G (k) or b = b4' = G(2 ..... k, F)®G(l). Moreover

3— q72y~lu0 and Q2b*~x~l[2\iUo, where we set MO~

This lemma is by direct calculation and we leave it to the reader.

Lemma Co80 If we write U2 ~ b% + 2&*&3 abb, where b runs over the set of

tensor products of two lower global bases, then a&4— — ( — qs)
 2n~k+1/ [2] k-i.

Proof. There are relations.

)=0
for i=k,.t., «-"!,

en (G (1,..., /?- lf n) ®G (n) ~q2
sG (1,.., k-l,n) ®G (n) ) =0,

=0
for i=^ ..... n~ 1,

«, (G (1,..., i + 1,..., fe, F) <8>G (i + 1) -^SG (1,..., ii..., k, k} ®G (i) ) -0
for ; = !,..., fr-2.

It follows that a,4=- (-^)2w"^V[2],_i. D

By these lemmas we have in

(C.6) Q2U2- (^

Similarly we obtain the following two lemmas for V (ic\)

Lemma C090 Let b be an element of V(iti) ® V(rCk) which is a tensor
product of two lower global bases of V(rc\) and V(iik) and has the weight ftk-i.

Then Q2b=£Q if and only if b = b'3 : = G (l) ®G (2,..., k, k} or b = bl : = G (fe)<8>G (1,...,

k) . Moreover Qzb's — qJ^'1 [2] IU'Q and Q2^4 = y~1wo, where we set uf
Q = G (1) ®G (l,...,

Lemma Col§0 // we write U2 — bz+ 2&^6§ abb, where b runs over the set of

tensor products of two lower global bases, then ab'4= \~qs)2n~k+2[^]k-i'

By these lemmas we have in V(ni

(C.7) Q2u
f
2= (q7lx~l+ (-
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Therefore up to a multiple of an element of k we have

o\ „ —
&} 72 ~~

~._ /_„ \2n-k+3.x ^ %*' _
y-(-qs)

2n-Mx'

It is easy to check that this expression for y2 still holds even if k=n. So we
obtain the following result.

Theorem C.1L The normalized R-matrix is given by

\—(—fi\k+\ i _ ( \2n-k+3
I V Qs) Z^ i i v QsJ £_r>

"^ z- (~qs)
k+l *™ z~ (-q,)»-M *"

D 4- l-(-qs)n+3zp
Uk+Ttl ' / v n+3 S-Xk-1

z \~qs)

Hence we have

(C.9)
if

We give the explicit form of ^-matrix for the vector representaion.

Proposition C.12. For bi, b2^B(7Ci) we have

if bi = b2,

For l<a<n u

j
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The general dtj with i,j=£l will be calculated at the end of this section with
the aid of the universal J?-matrices.

C.3. Universal ^-matrices. We shall calculate the universal ^-matrices.
By (A. 13) and (C.9), we have

Here we employed the notation

(C.ll) {m}=((-qs)
mz\q?+*)~.

Now we shall calculate dki(z) for l<k. Consider the commutative diagram

i)<-qs>-i
f l

Here

r,.i)l-,,,-iz®^?v((-^)/-y and /t-^?l

We have

RTi (z] (G (1,.., k) ®G (I) =G 0) ®G 11,..., k) .

Chasing the vector G (1 fe) ®G (1 J -1 ) (£>G( / ) of
V (TCI) (-qs)i-iz in the diagram C.12, we obtain the recurrence relation

Solving this, and noticing aki=aik, we obtain the following result.

sition C.13. For k, I €E/0 = {!,..., n}, we have

, = m in (M) (\k-l\] {2n + 2-k-l} {2n + 2+k+l} {4n+4- \k-l

Here we used the notation (m) = ( ( — q s ) M z \ ^f+4)oo.

Co40 Denominators of normalized IS-matrices. In this subsection we

shall prove

Proposition C0140 For l<fe, l<n, we have
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min(k,l,n-k,n~n

(C.13) dtl(z)=

This is already proved in the case 1 = 1. The case k = l=n is proved in [16,
Proposition 4.2.6]. We shall prove this proposition by reduction to those cases.
Let DM(z) be the right hand side of (C.13).

By (A. 6) , we may assume that k> L First let us show that dki(z) is a
multiple of D k i ( z ) . In order to see this, by using Corollary 2,4, it is enough to
show that V(n^)®V(KJ) a is reducible for any root a of D k i ( z ) . For l<i<n—k,
/, we have

V (ick) <8>1' (TT,) (-

Here F(TTO) is understood to be the trivial representation. Then one can easily
see that the composition is not zero but w*®w/ is sent to zero. Hence

(-qs)k-i+zt is reducible. Similarly for l<i<l, let us consider

In this case also, the composition is not zero but iik®ui is sent to zero. Hence
V(7tic)^V(7ti) (-Qs)2n+2-k-i+2t is reducible.

By(A.lO), we have

Hence we obtain

(C.14) dM=Dkl(z)<l>kl(z)

for a polynomial 0*/ U) satisfying

(C . 15) 0t/ U) = 0W ( (-^s)
 2n+VL) mod fe k, z"1] x.

Now we shall use the following lemma.

Lemma C..15, Let V, V", V and W be irreducible L^(g) -modules. Assume
that there is a snrjective morphism V'®V"—*V. Then
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dw.v (z)dw,v" (z)aw,v(z) , dy',w(z}dv",w(z)ay,w(z)
dw,y(z)aw,v (z)aw,v"(z) dv,w(z)av',w(z)avrr,w(z)

are in k [z, z~l] .

Proof. In a commutative diagram

if R' (z) and /?" (z) do not have poles, then so is J? (z) . To see the first assertion, it

is enough to apply this to R' (z) =dw,v (z)Rw*v> (z) , R" (z) =dw,v- (z)Rffi" (z} and

, , , pnnr / \( \ ( \ Kw,v\z) .
aw,v (z)aw,v"(z)

The second assertion can be proved similarly. O

We shall prove 0*/(z) =1 mod k[z, z~l] x.

\ ^n. We prove this by the induction on /. If / = 1, it is already
proved. If £>1 then applying the lemma above to K(TT/-I) (-^-i® V(it\) (-qs)i-i~»
F (iti). we have

" '"1" ^ """1"'"*^- = '-|>1z-1].
~z ak,i

Since

<f>k.i-i (z) =1 implies <pki(z) =1.

Case fe + />n. We shall first reduce the assertion to the k=n case. For k
< n consider a surjection

given by the composition

We have

(-qs)z)du ((-Qs) k~2n~lz)aki (z) _
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Hence 0/t+u (z) =1 implies that <pki(z) is a divisor of z— (—qs)*n+*~k~l- Then
(C.15) implies that ^^/ (z) =1. Hence, the descending induction on k reduces the
problem to the k=n case. We have

Dk,i-i ( ( — q s ) ~ 1 z ) d k j ( ( — qs}
 l~lz) ak,i (z) __ __ /_ \2n+2-k+i

- - * * '

Hence by the similar argument to k + l<n case, (pk.i-i U) — 1 implies that (pki (z)

is a divisor of z~ (—qs)
2n+2'~lc+l. Hence if l^k—n then we can reduce the I case

to the / — I case. This completes the proof of Proposition C.14.
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