Norm Additivity Conditions for Normal Linear Functionals on von Neumann Algebras

By

Masaharu KUSUDA*

§1. Introduction

Let \(M \) be a von Neumann algebra and let \(\varphi \) and \(\psi \) be bounded linear functionals on \(M \). We then have the norm inequality \(\|\varphi + \psi\| \leq \|\varphi\| + \|\psi\| \). On the other hand, it is well-known that if \(\varphi \) and \(\psi \) are positive, then \(\|\varphi + \psi\| = \|\varphi\| + \|\psi\| \). In general, however, such an equality does not necessarily holds if both \(\varphi \) and \(\psi \) are not positive. The purpose of this paper is to investigate when the norm equality \(\|\varphi + \psi\| = \|\varphi\| + \|\psi\| \) holds for given normal linear functionals \(\varphi \) and \(\psi \). Then the fact to play an essential role is the following:

Let \(M \) be a von Neumann algebra and let \(\varphi \) be a normal linear functional on \(M \). Then we have

\[
\varphi(\cdot) = |\varphi|(v' \cdot), \quad |\varphi|(\cdot) = \varphi(v' \cdot), \quad \text{and} \quad \|\varphi\| = \|\varphi\|
\]

for all partial isometries \(v' \) in \(M \) satisfying that \(\varphi(v') = |\varphi| \), where \(|\varphi| \) denotes the absolute value of \(\varphi \) (c.f. [1, Lemma 2.3]).

In connection with this fact, we may expect that the set of those elements \(x \), in the unit ball of \(M \), with \(\varphi(x) = |\varphi| \) has nice information on norms and absolute values of normal linear functionals on \(M \). In fact, by employing such a set, we will give necessary and sufficient conditions for a pair of normal linear functionals \(\varphi \) and \(\psi \) to satisfy that \(\|\varphi + \psi\| = \|\varphi\| + \|\psi\| \) or that \(|\varphi + \psi| = |\varphi| + |\psi| \) (Theorem 2.1).

§2. Results

Let \(M \) be a von Neumann algebra and let \(\varphi \) be a normal linear functional on \(M \). By the polar decomposition of \(\varphi \), we mean the following expression:

\[
\varphi(\cdot) = |\varphi|(v' \cdot) \quad \text{and} \quad |\varphi|(\cdot) = \varphi(v' \cdot)
\]
for some partial isometry \(v \) in \(M \) and a uniquely positive linear functional \(|\varphi| \) on \(M \) which satisfies that
\[
|\varphi(x)|^2 \leq |\varphi|(|\varphi(x)x|)
\]
for all \(x \) in \(M \) (cf. [2, 3.6.7], [3, 1.14.4], or [4, III. 4.2]). Note that this condition \((*)\) ensures the uniqueness of \(|\varphi| \) (cf. [2, 3.6.7] or [4, III. 4.6]). More precisely, if a positive linear functional \(\psi \) satisfies that
\[
|\psi(x)|^2 \leq |\varphi|(|\varphi(x)x|),
\]
then \(\psi = |\varphi| \). In general, there is some freedom for the choice of \(v \), as is seen from [1, Lemma 2.3]. However, if \(vv' \) is exactly equal to the support projection \(s(|\varphi|) \) of \(|\varphi| \), i.e., the smallest of all projections \(p \) such that \(|\varphi|(p-) = |\varphi|(\cdot) \), then \(v \) is uniquely determined (cf. [3, 1.14.4], [4, III. 4.6]).

Now we set
\[
M_{\varphi} = \{ x \in M \mid ||x|| \leq 1, \varphi(x) = ||\varphi|| \},
\]
which is a non-empty and weakly compact face of the unit ball of \(M \). Hence \(M_{\varphi} \) contains a partial isometry (cf. [2, 1.4.7], [3, 1.6.5], [4, 1.10.2]).

Positive linear functionals \(\varphi \) and \(\psi \) on a \(C^* \)-algebra always satisfy that
\[
|\varphi + \psi| = |\varphi| + |\psi|
\]
and \(\varphi + \psi \) is positive. These are generalized as follows.

Theorem 2.1. Let \(M \) be a von Neumann algebra and let \(\varphi \) and \(\psi \) be normal linear functionals on \(M \). Then the following conditions are equivalent:

1. \(M_{\varphi} \cap M_{\psi} \) is not empty.
2. \(|\varphi + \psi| = |\varphi| + |\psi| \).
3. \(\varphi + \psi = |\varphi| + |\psi| \).
4. \(M_{\varphi} \cap M_{\psi} = M_{\varphi + \psi} \).

Proof. We first show that \(M_{\varphi} \cap M_{\psi} \subset M_{\varphi + \psi} \). Without loss of generality, we can assume that \(M_{\varphi} \cap M_{\psi} \) is not empty. For any \(x \) in \(M_{\varphi} \cap M_{\psi} \), we have
\[
|\varphi| + |\psi| = \varphi(x) + \psi(x) = (\varphi + \psi)(x) \leq \varphi + \psi.
\]
Since this mean that \((\varphi + \psi)(x) = |\varphi + \psi|\), we see that \(x \in M_{\varphi + \psi} \).

(1) \(\implies\) (2). Let \(v \) be a partial isometry in \(M_{\varphi} \cap M_{\psi} \). Since \(v \in M_{\varphi + \psi} \), it follows from [1, Lemma 2.3] that
\[
|\varphi + \psi(\cdot) = (\varphi + \psi)(v \cdot) = \varphi(v \cdot) + \psi(v \cdot) = |\varphi(\cdot)| + |\psi(\cdot)|.
\]

(2) \(\implies\) (3). Since \(|\varphi + \psi|, |\varphi| \) and \(|\psi| \) are positive linear functionals, we have
\[
|\varphi + \psi| = |\varphi + \psi| = |\varphi + \psi(1) = (|\varphi| + |\psi|)(1)
\]
\[
= |\varphi(1) + |\psi(1) = ||\varphi|| + ||\psi|| = ||\varphi|| + ||\psi||.
\]

1 As the definition of a polar decomposition, we adopt the (right) polar decomposition mentioned in [2, 3.6.7] and our absolute value \(|\varphi| \) means \(|\varphi| \) in the sense of the (left) polar decomposition mentioned in [3, 1.14.4] and [4, III. §4].
(3) ⇒ (4). We have only to show that $M_{\varphi + \psi} \subset M_{\varphi} \cap M_{\psi}$. Take any x from $M_{\varphi + \psi}$. We then have

$$\varphi(x) + \psi(x) = (\varphi + \psi)(x) = \|\varphi + \psi\| = \|\varphi\| + \|\psi\|.$$

Now denote by $\Re z$ the real part of a complex number z and by $\Im z$ the imaginary part of z, respectively. Since $\|\varphi\| + \|\psi\|$ is a real number, it follows from the above equality that

$$\Re \varphi(x) + \Re \psi(x) = \Re(\varphi(x) + \psi(x)) = \|\varphi\| + \|\psi\|.$$

Here remark that

$$\|\omega\| \geq |\omega(x)| \geq |\Re \omega(x)| \quad (**)$$

for every bounded linear functional ω on M. We thus have

$$0 \leq \|\varphi\| - \Re \varphi(x) = \Re \psi(x) - \|\psi\| \leq 0.$$

Hence we conclude that $\|\varphi\| = \Re \varphi(x)$ and $\|\psi\| = \Re \psi(x)$. This and the inequality (**) show that $\Im \varphi(x) = 0$, i.e., $\|\varphi\| = \varphi(x)$. Similarly we obtain that $\|\psi\| = \psi(x)$. We thus see that $x \in M_{\varphi} \cap M_{\psi}$.

(4) ⇒ (1). Since $M_{\varphi + \psi}$ is not empty, this implication is clear. Q.E.D.

Here recall that positive linear functionals φ and ψ on a C^*-algebra are said to be orthogonal if $\|\varphi - \psi\| = \|\varphi\| + \|\psi\|$.

Corollary 2.2. Let M be a von Neumann algebra and let φ and ψ be positive normal linear functionals on M. Then the following conditions are equivalent:

1. φ and ψ are orthogonal.
2. $M_{\varphi} \cap M_{\psi}$ is not empty.

References

