Equivariant K-Theory and Maps between Representation Spheres

Dedicated to Professor Yasutoshi Nomura on his 60th birthday

By

Katsuhiro Komiya*

§1. Introduction and Statement of Results

The equivariant K-theory has been successfully employed in the study of equivariant maps by Marzantowicz [5], Liulevicious [7] and Bartsch [3]. In the present paper, using the equivariant K-theory, we will obtain a necessary condition for the existence of G-maps $SU \to SW$, where SU and SW are the unit spheres of unitary representations U and W, respectively, of a compact Lie group G.

From Atiyah [1], [2] or Segal [8] we can see that the equivariant K-ring $K_G(SU)$ of SU is isomorphic to $R(G)/\langle \lambda, U \rangle$, the complex representation ring $R(G)$ divided by the ideal $\langle \lambda, U \rangle$ of U in $K_G(pt) = R(G)$. If there exists a G-map $\eta : SU \to SW$, then we obtain a ring homomorphism $\eta : R(G)/\langle \lambda, W \rangle \to R(G)/\langle \lambda, U \rangle$ which coincides with the homomorphism induced from the identity on $R(G)$. This implies that the condition $\lambda, W \in (\lambda, U)$ is necessary for the existence of G-maps $SU \to SW$. If G is abelian, we will reduce this condition to more explicit form.

Let $S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}$ be the circle group of complex numbers with absolute value 1, and Z_n the cyclic group of order n considered as a subgroup of S^1. For any integer i let S^1 and Z_n act on $V_i = \mathbb{C}$ via $(z, v) \mapsto z^i v$ for $z \in S^1$ (or Z_n) and $v \in V_i$. A compact abelian group G decomposes into a cartesian product

$$G = T^k \times Z_{n_1} \times \cdots \times Z_{n_k},$$

where $T^k = S^1 \times \cdots \times S^1$, the cartesian product of k copies of S^1. Letting γ be a sequence $(a_1, \ldots, a_k, b_1, \ldots, b_l)$ of integers, denote by V_γ the tensor product

$$V_{a_1} \otimes \cdots \otimes V_{a_k} \otimes V_{b_1} \otimes \cdots \otimes V_{b_l},$$

1991 Mathematics Subject Classifications: 55N15, 57S99

* Department of Mathematics, Yamaguchi University, Yamaguchi 753, Japan
which can be considered as a representation of G in a natural way. Let Γ be the set of sequences

$$\gamma = (a_1, \ldots, a_k, b_1, \ldots, b_l)$$

with $a_1, \ldots, a_k \in \mathbb{Z}$ and $0 \leq b_j \leq n_j - 1$ for $1 \leq j \leq l$. The set $\{V_\gamma \mid \gamma \in \Gamma\}$ gives a complete set of irreducible unitary representations of G, and so any unitary representation U of G decomposes into a direct sum

$$U = \bigoplus_{\gamma \in \Gamma} V_\gamma^{u(\gamma)},$$

where $u(\gamma)$ is a nonnegative integer and $V_\gamma^{u(\gamma)}$ denotes the direct sum of $u(\gamma)$ copies of V_γ. We can easily see that the fixed point set U^G of U is $\{0\}$ if and only if $u(\gamma) = 0$ for $\gamma = (0, \ldots, 0)$. Let

$$|\gamma| = |a_i| + \cdots + |a_k| + b_1 + \cdots + b_l$$

for any $\gamma = (a_1, \ldots, a_k, b_1, \ldots, b_l) \in \Gamma$.

We are now in a position to state our main theorem.

Theorem 1.1. Let U and W be unitary representations of a compact abelian group G, and decompose into

$$U = \bigoplus_{\gamma \in \Gamma} V_\gamma^{u(\gamma)} \quad \text{and} \quad W = \bigoplus_{\gamma \in \Gamma} V_\gamma^{u(\gamma)}.$$

Assume that there exists a G-map $S_U \rightarrow S_W$. Then

1. if $\dim U = \dim W$, then there is an integer m such that

$$\prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)} \equiv m \prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)} \mod d,$$

where d is the greatest common divisor of n_1, \ldots, n_l, (if $l = 0$, then assume $d = 0$),

2. if $\dim U > \dim W$, then

$$\prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)} \equiv 0 \mod d.$$

From this theorem we obtain the following two corollaries.

Corollary 1.2 (cf. Liulevicious [7], Bartsch [4], Marzantowicz [6]). Let U and W be representations of $G = T^k$ with $W^G = \{0\}$. If there exists a G-map $S_U \rightarrow S_W$, then $\dim U < \dim W$.

Corollary 1.3 (Liulevicious [7], Marzantowicz [6]). Let U and W be representations of $G = \mathbb{Z}_n$ with n any. If G acts freely on S_W and if there exists a G-map $S_U \rightarrow S_W$, then $\dim U < \dim W$.
Remark 1.4. If \(U \) is an orthogonal representation of \(G = T^k \) or \(Z_n \) with \(n \) odd and if \(U^G = \{0\} \), then \(U \) can be considered a unitary representation. In general, if \(U \) is orthogonal then \(U \oplus U \) becomes unitary. Since the join of two \(G \)-maps \(SU \to SW \) gives a \(G \)-map
\[
S(U \oplus U) = SU \ast SU \to SW \ast SW = S(W \oplus W),
\]
Corollaries 1.2 and 1.3 follow for orthogonal representations \(U \) and \(W \).

Remark 1.5. We should refer to a recent paper [6] of Marzantowicz. Using the Borel cohomology theory, he also studies equivariant maps between representation spheres, and obtains a necessary condition for the existence of such maps. A detailed study is done for the case of \(G = T^k \) or \(Z_p \times \cdots \times Z_p \). It is also shown that his condition is sufficient in some case.

§2. A Necessary Condition in Terms of the Euler Classes

Let \(U \) be a unitary representation of a compact Lie group \(G \). The sequence
\[
\cdots \to K^*_c(DU, SU) \to K^*_c(DU) \to K^*_c(SU) \to K^{n+1}_c(DU, SU) \to \cdots
\]
is the long exact sequence of the equivariant \(K \)-theory \(K^*_c \) for the pair \((DU, SU) \) of the unit disk \(DU \) and the unit sphere \(SU \) of \(U \). Segal [8; Proposition 3.2] or Atiyah [2] gives the Thom isomorphism
\[
\varphi : K_c(pt) \to K_c(U) = K_c(DU, SU)
\]
such that \(\varphi \varphi(\xi) = \xi \cdot \lambda_{-i}U \) for \(\xi \in K_c(pt) \), where \(\varphi : K_c(U) \to K_c(pt) \) is the homomorphism induced from the inclusion map \(\varphi : \{pt\} \to U \),
\[
\lambda_{-i}U = \sum_i (-1)^i \wedge U \in K^*_c(pt),
\]
and \(\wedge U \) is the \(i \)-th exterior algebra of \(U \). Since \(K^*_c(DU, SU) = K^*_c(U) \equiv K^*_c(pt) = 0 \) and \(K^*_c(pt) \equiv R(G) \), the sequence (2.1) yields the exact sequence
\[
R(G) \to R(G) \to K_c(SU) \to 0,
\]
where the first homomorphism is given by multiplication by \(\lambda_{-i}U \). This argument is done in the same manner as in Atiyah [1; Lemma 2.7.4, Corollary 2.7.5] where \(G \) is finite abelian.

From the exact sequence (2.2) we obtain

Proposition 2.3. \(K_c(SU) \equiv R(G)/\langle \lambda_{-i}U \rangle \).

Let \(\eta : SU \to SW \) be a \(G \)-map for representations \(U \) and \(W \) of \(G \). Since the sequence (2.1) is functorial, we see that the composite
\[R(G)/(\lambda_\gamma U) \cong K_G(SW) \cong K_G(SU) \cong R(G)/(\lambda_\gamma U) \]

coincides with the homomorphism induced from the identity on \(R(G) \). This implies the following.

Proposition 2.4. If there exists a \(G \)-map \(SU \to SW \), then \(\lambda_\gamma U \in (\lambda_\gamma U) \) in \(R(G) \).

§3. Calculation of \(K_G(SU) \)

In this section we will calculate the ring \(K_G(SU) \) for the case where \(G \) is abelian.

We first recall the following facts about the complex representation rings of \(G \):

1. \(R(S^1) \cong \mathbb{Z}[x, x^{-1}]/(1-xx^{-1}) \), in which the representation \(V_i \) corresponds to \(x^i \) if \(i \geq 0 \) and to \((x^{-1})^{-i} \) if \(i \leq 0 \).
2. \(R(\mathbb{Z}_n) \cong \mathbb{Z}[x]/(1-x^n) \), in which \(V_i \) corresponds to \(x^i \).
3. \(R(G_1 \times G_2) \cong R(G_1) \otimes R(G_2) \).

From these facts we obtain

Proposition 3.1. If \(G = T^k \times \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_l} \) is a compact abelian group, then

\[R(G) \cong \mathbb{Z}[x_1, x_1^{-1}, \ldots, x_k^{-1}, y_1, \ldots, y_l]/(X, Y), \]

where

\[X = \{1 - x_i x_i^{-1} \mid 1 \leq i \leq k\}, \]
\[Y = \{1 - y_j y_j \mid 1 \leq j \leq l\}, \]

and \((X, Y)\) is the ideal generated by \(X \cup Y \). The isomorphism sends the representation \(V_i \) to the monomial \(x_1^{n_1} \cdots x_k^{n_k} y_1^{n_1} \cdots y_l^{n_l} \) if \(\gamma = (a_1, \ldots, a_k, b_1, \ldots, b_l) \).

Since \(\lambda_\gamma \) is multiplicative, i.e., \(\lambda_\gamma(U_1 \otimes U_2) = \lambda_\gamma U_1 \cdot \lambda_\gamma U_2 \), Propositions 2.3 and 3.1 give the following.

Proposition 3.2. Let \(U = \bigoplus_{\gamma \in \gamma} V_{\nu(\gamma)} \) be a unitary representation of \(G = T^k \times \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_l} \). Then

\[K_G(SU) \cong \mathbb{Z}[x_1, x_1^{-1}, \ldots, x_k^{-1}, y_1, \ldots, y_l]/(X, Y, z_U), \]

where \(z_U = \prod_{\gamma} (1-(xy)^{\nu(\gamma)})(xy)^{\gamma} = x_1^{n_1} \cdots x_k^{n_k} y_1^{n_1} \cdots y_l^{n_l} \) if \(\gamma = (a_1, \ldots, a_k, b_1, \ldots, b_l) \), and \((X, Y, z_U)\) is the ideal generated by \(X \cup Y \cup \{z_U\} \).
§4. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. Let \(G = T^k \times Z_{n_1} \times \cdots \times Z_{n_t} \) be a compact abelian group, and
\[
U = \bigoplus_{\gamma \in \Gamma} V^{\gamma}_U, \quad W = \bigoplus_{\gamma \in \Gamma} V^{\gamma}_W
\]
its unitary representations. Assume that there exists a \(G \)-map \(\eta : SU \rightarrow SW \). If \(W^G \neq \{0\} \), then the theorem is trivially valid. So we assume \(W^G = \{0\} \).

For the representation
\[
V_\gamma = V_{a_1} \otimes \cdots \otimes V_{a_k} \otimes V_{b_1} \otimes \cdots \otimes V_{b_l},
\]
let
\[
\overline{V}_\gamma = V_{\mu_1} \otimes \cdots \otimes V_{\mu_{k'}} \otimes V_{\nu_1} \otimes \cdots \otimes V_{\nu_{l'}},
\]
and
\[
\overline{U} = \bigoplus_{\gamma \in \Gamma} \overline{V}^{\gamma}_\gamma, \quad \overline{W} = \bigoplus_{\gamma \in \Gamma} \overline{V}^{\gamma}_\gamma.
\]
Since \(V_u \equiv V_{\mu_1} \) as real representations, we see \(U \equiv \overline{U} \) and \(W \equiv \overline{W} \). Therefore \(\eta : SU \rightarrow SW \) induces a \(G \)-map \(\overline{\eta} : SU \rightarrow SW \), and then \(\overline{\eta} \) induces a ring homomorphism \(\overline{\eta} : K_G(SW) \rightarrow K_G(SU) \). From Proposition 3.2 we obtain a ring homomorphism
\[
\overline{\eta} : Z[x, x^{-1}, \ldots, x, x^{-1}, y_1, \ldots, y_l]/(X, Y, \overline{\zeta}_U) \rightarrow Z[x, x^{-1}, \ldots, x, x^{-1}, y_1, \ldots, y_l]/(X, Y, \overline{\zeta}_U),
\]
where \(X \) and \(Y \) are as given in Proposition 3.1,
\[
\overline{\zeta}_U = \prod_{\gamma \in \Gamma} (1 - \overline{x} \overline{y}^{\gamma})^{w(\gamma)}, \quad \overline{\zeta}_W = \prod_{\gamma \in \Gamma} (1 - \overline{x} \overline{y}^{\gamma})^{w(\gamma)},
\]
and
\[
\overline{x} \overline{y}^{\gamma} = x^{\mu_1} \cdots x^{\mu_{k'}} y_1^{b_1} \cdots y_{l'}^{b_{l'}}.
\]
As in Proposition 2.4, we see \(\overline{\zeta}_W \in (X, Y, \overline{\zeta}_U) \). Then there are polynomials \(f_j \) (1 \(\leq j \leq l + 1 \)) in \(Z[x, x^{-1}, \ldots, x, x^{-1}, y_1, \ldots, y_l] \) such that
\[
\overline{\zeta}_W = \sum_{j=1}^{l} f_j \cdot (1 - y_j^{n_j}) + f_{l+1} \cdot \overline{\zeta}_U
\]
in \(Z[x, x^{-1}, \ldots, x, x^{-1}, y_1, \ldots, y_l]/(X) \). Multiplying (4.1) by \(x_1^{m_1} \cdots x_k^{m_k} \) for sufficiently large \(m_1, \ldots, m_k > 0 \), we obtain
\[
x_1^{m_1} \cdots x_k^{m_k} \overline{\zeta}_W = \sum_{j=1}^{l} \overline{f}_j \cdot (1 - y_j^{n_j}) + \overline{f}_{l+1} \cdot \overline{\zeta}_U
\]
in \(\mathbb{Z}[x_1,\ldots,x_t,y_1,\ldots,y_l] \), where \(\widetilde{f}_i (1 \leq j \leq l+1) \) are polynomials in \(\mathbb{Z}[x_1,\ldots,x_t,y_1,\ldots,y_l] \). Substituting \(x \) for all of \(x_1,\ldots,x_t,y_1,\ldots,y_l \) in (4.2), we obtain

\[
(4.3) \quad x^m \prod_{\gamma \in \Gamma} (1-x^{\gamma})^{u(\gamma)} = \sum_{j=1}^l g_j(x)(1-x^n) + g_{l+1}(x) \prod_{\gamma \in \Gamma} (1-x^{\gamma})^{u(\gamma)},
\]

where \(m = m_t + \cdots + m_{x_t} \), \(g_j(x) \in \mathbb{Z}[x] (1 \leq j \leq l+1) \) and \(|\gamma| = |a_i| + \cdots + |a_i| + b_1 + \cdots + b_l \) if \(\gamma = (a_1,\ldots,a_t,b_1,\ldots,b_l) \). If \(\dim U \geq \dim W \), we can divide the both sides of (4.3) by \((1-x)^{\Sigma u(\gamma)} \), and obtain

\[
(4.4) \quad x^m \prod_{\gamma \in \Gamma} (1+x+\cdots+x^{\gamma-1})^{u(\gamma)} = h(x) + g_{l+1}(x)(1-x)^{\Sigma u(\gamma)} \prod_{\gamma \in \Gamma} (1+x+\cdots+x^{\gamma-1})^{u(\gamma)},
\]

where \(h(x) = \sum_{j=1}^l g_j(x)(1-x^n)/(1-x)^{\Sigma u(\gamma)} \in \mathbb{Z}[x] \). Since

\[
1-x^{n+1} = (1-x)(1+x+\cdots+x^{d-1})p_j(x)
\]

for any divisor \(d_j \) of \(n_j \) and some \(p_j(x) \in \mathbb{Z}[x] \), we see

\[
\sum_{j=1}^l g_j(x)(1-x^{n_j}) = (1-x)(1+x+\cdots+x^{d-1})\sum_{j=1}^l g_j(x)p_j(x),
\]

where \(d \) is the greatest common divisor of \(n_1,\ldots,n_l \). Since \(1-x \) and \(1+x+\cdots+x^{d-1} \) are prime to each other, \(h(x) = (1+x+\cdots+x^{d-1})q(x) \) for some \(q(x) \in \mathbb{Z}[x] \). Therefore, substituting 1 for \(x \) in (4.4), we obtain

\[
\prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)} = d \cdot q(1) + g_{l+1}(1) \prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)}
\]

if \(\sum \gamma u(\gamma) = \sum \gamma w(\gamma) \), and

\[
\prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)} = d \cdot q(1)
\]

if \(\sum \gamma u(\gamma) > \sum \gamma w(\gamma) \). This completes the proof of Theorem 1.1.

References