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General Existence Theorems for Orthonormal
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Abstract

Methods from noncommutative harmonic analysis are used to develop an abstract theory of
orthonormal wavelets. The relationship between the existence of an orthonormal wavelet and
the existence of a multi-resolution is clarified, and four theorems guaranteeing the existence of
wavelets are proved. As a special case of the fourth theorem, a generalization of known results
on the existence of smooth wavelets having compact support is obtained.

Introduction

We give in this paper an abstract approach to the theory of orthonormal
wavelets and multi-resolutions. Although the classical context for wavelets
and multiresolutions has normally been tied to Euclidean space and Fourier
analysis (see the references), we are presenting here a more general picture,
whose proofs rely on abstract harmonic analysis in the form of unitary group
representations and Von Neumann algebras of operators. In this manner we
separate the conceptually simple algebraic ideas from the more technical ana-
lytic ones. Let us describe the general setting.

Definition. By an (internal) affine structure on a (separable) Hilbert space
H we shall mean a (countable discrete) group F of unitary operators on H
and another unitary operator 6 on H for which: d'^yS is an element of F
for every 7 e F.

Definition. We refer to the elements 7 of F as translations (even though
F need not be abelian), refer to the operator d as a dilation, and we call the
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pair (F, 6) the affine structure on H. We do not assume that 5y5~l belongs
to F for every y e F\ i.e., we do not assume that F is normalized by 8.
Ordinarily, we expect the subgroup 7\ = 8~1F8 to be a proper subgroup of
F; i.e., that the index d of the subgroup F1 in F will be larger than 1, but
we do not require this. For an internal affine structure to exist, the group
F must contain a chain of subgroups (jTj = {8~1F81}, each isomorphic to jT,
for which the index of Ft in /^ is a constant independent of L Ordinarily,
e.g., when /\ is a proper subgroup, we would expect Q Ft = {e}, but again
we do not require this. Note that not every group F contains such a chain
of subgroups, e.g., (rigid) lattice subgroups in simple Lie groups of rank > 1.
Hence, not every countable group F can be part of an internal affine structure.

Definition,, Let (F, 8) be an affine structure on a Hilbert space H. A
wavelet relative to this affine structure is a finite set {^ l5...,^n} of vectors
in H such that the collection {8j(y(\l/i))} forms an orthonormal basis of H,
where —oo <j< oo, y e F, and 1 < i < n. We may refer to the wavelet {î J
as a (F, d)-wavelet.

The classical example of an internal affine structure on a Hilbert space
is where H = L2(E), F is the group of unitary operators on H determined by
translations by integers, and 8 is the unitary operator determined by dilation
by 2:

8f(x) = v/2/(2x).

Other examples can similarly be constructed using dilation by some other
positive integer a. More generally, H can be taken to be L2(X, ju), F a group
that is determined by some group of measure-preserving transformations of
X, and A some point transformation of X for which 8~^F8 ^ F. This general-
ization includes such things as H = L2(G) for G a graded nilpotent Lie group,
F a certain discrete subgroup of G, and 8 a homogeneous dilation of the
graded group.

Our theorems show the existence of wavelets, given certain additional
(typical) hypotheses. An important related definition ([mal] [ma2]) is the
following.

Definition. Let (F, 8) be an affine structure on a Hilbert space H. A
sequence

{Vj} , - o o < j < o o ,

of closed subspaces of H is called a multi-resolution of H if
(1) Vj c= 7j+1 for all j.
(2) S(Vj) = Vj+1 for all j.
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(3) dense in H and f) Vj = {0}.
(4) The subspace V0 is invariant under each y e F.

Note that, unless H is the trivial 0-dimensional Hilbert space, we must
have that, for any multi-resolution {Vj}, Vj is a proper subspace of Vj+l.

Another useful bit of notation in connection with a multi-resolution is
the following. For each integer j, let Wj denote the orthogonal complement
of the subspace Vj in the subspace Vj+1. It is then evident that

(1) S(Wj) = WJ+l9 and
(2) H is the direct sum 0JL-00 Wj of the subspaces {Wj}.

As an elementary relationship among these ideas, we have:

Proposition 0.1. Let H, F, and 6 be as in the above. Suppose there exists
a (F, d)-wavelet {\I/19 ...,\l/n} for H. Then:

(1) There exists a multi-resolution of H.
(2) The natural representation on H of the cyclic group A, generated by

the dilation <5, is equivalent to a multiple of the regular representation
of A) and that multiple is n times the cardinality of F.

Proof. If we define Vj to be the closed linear span of the vectors Sk(y(\l/t))9

where —ao<k<j,yeF and 1 < i < AT, then the sequence {Vj} forms a multi-
resolution of H. Indeed, properties 1, 2, and 3 are immediate. We show
that V0 is invariant under F by first showing that Wk is invariant under F
for all k > 0. Property 4 will then follow because V0 is the orthogonal comple-
ment of the /^-invariant subspace ©"=0 ^fe-

lt follows from our definition of the sequence {Vj} that Wk is the closed
linear span of the vectors Sk(y(\l/i))9 for y e F and 1 < i < n. If Y\ e F and
k > 0, we have

^*Wi))) = dk((d-k
nd

k)(y(^))) E Wk

as desired.
Finally, for each fixed y e F and each 1 < i < n, {<5j(y(i^))} forms an ortho-

normal set whose closed linear span is a A -in variant subspace Hy >f of H on
which the action of A is obviously equivalent to the regular representation of
A. Since these subspaces {Hy5J are pairwise orthogonal, this proves part 2.

The converse to part 1 of Proposition 0.1 is not valid in general, as we
shall see by the example below.

Let H = I2 = L2(Z). For each dyadic root of unity A e [0, 1) (exp(27ii2fc/l)
= 1 for some nonnegative integer fc), define a multiplication operator yA on
H by setting

/ 6 12(Z).
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The set F of all these operators {yA} forms a countable group of unitary
operators on H. Finally, let d be the bilateral shift (to the right) on H.
That is,

Then the pair (F, 5) forms an internal affine structure on H. The index of
Ft in F in this case is 2.

Proposition 0.2. There exists no (F, S)-wavelet for the preceding example.
On the other hand, there does exist a multi-resolution of H.

Proof. The representation of the group A in this example is clearly equiv-
alent to the regular representation of A. Since the cardinality of F is not
equal to 1 in this case, and the regular representation of (the abelian group)
A is not equivalent to a proper subrepresentation of itself, it follows from
part 2 of Proposition 0.1 that there can be no (F, <5)-wavelet in this case.

Next, define Vj to be the set of all elements {cn} e H for which cn = 0
for all n>j. Obviously, the sequence {Vj} is a multi-resolution of H. In
fact, in this example, every subspace Vj is invariant under the group F.

Already in this proof we see an application of representation theory to
our subject.

Much of the early work on wavelets has developed from the construction
of a wavelet from a given multi-resolution. See [d], [mal], [ma2], and [me].
In the literature, such multi-resolutions have in addition been assumed to have
a scaling vector.

Definition, Let H9 F, and d be as in the above. If {V^} is a multi-
resolution of H, then {Vj} is said to have a scaling vector if there exists a
vector (j> e V0 such that the collection {y ((/))} for y 6 F forms an orthonormal
basis of V0.

Remark. From our abstract point of view, the existence of a scaling
vector is the assumption that the representation on V0 of F is equivalent to
its left regular representation. In addition, if $ is a scaling vector for the
multi-resolution {Vj}, then ^ is a cyclic vector for the representation on H of
the group G generated by F and d.

In the preceding example, there is clearly a cyclic vector (the sequence
{cn} for which c0 = 1 and cn = 0 otherwise), but there is no scaling vec-
tor. One can see this directly, or we can conclude it as a consequence of
Theorem 1 below. In any event, we see that not every multi-resolution has
a scaling vector. Moreover, it is easy to construct (F, <5)-wavelets for which
the multi-resolution constructed as in Proposition 0.1 has no scaling vector.
Our first theorem (proved in the next section) is a generalization of various
previous results in the literature.



GENERAL EXISTENCE THEOREMS FOR WAVELETS 99

Theorem 1. Let (F, 6) be an internal affine structure on a separable Hilbert
space H. Suppose {Vj} is a multi-resolution of H for which there exists a
scaling vector $. Assume, in addition, that the subgroup F1 = S~1F6 is of finite
index d in F. Then d > 1, and there exists a (F9 d)-wavelet \ j / l 9 . . . , *l/d-i for H.

Of course, the typical problems of interest in this subject have been in
constructing wavelets {i/fj that have certain smoothness or decay properties.
See [d] and [me]. Our first theorem only guarantees (L2) vectors with no
additional attributes, but our second and third theorems address the more
subtle question.

Fix an internal affine structure (F, d) on a separable Hilbert space H.
Now, in addition, suppose that the Hilbert space H contains a dense subspace
D that we think of as a space of distinguished (e.g., smooth or decaying)
vectors. In our context, it is reasonable to assume that D is invariant under
F9 d, and (5"1. We seek a wavelet {^-} for H consisting of vectors from
D. We call such a wavelet a smooth wavelet. As might be expected when
dealing with questions of smoothness, the situation is now considerably more
technical. We make the following natural definitions.

Definition. Let H, F, 6, and D be as in the above. A sequence {DJ of
subspaces of D is called a smooth multi-resolution if it satisfies the following:

(1) Dj £ DJ+1 for all j.
(2) 5(Dj) = Dj+1 for all J.
(3) \jDj = D is dense in H and f) Dj = {0}.
(4) D0 is invariant under F.
(5) The sequence {Vj} = {Dj} is a multi-resolution of H, and Dj = DPI Vj

for all j.
The smooth multi-resolution is said to have a scaling vector if there exists a
vector ^ e DO such that the set {y(^)}5 for 7 e F9 forms an orthonormal set
whose linear span is dense in D0.

As we will necessarily be dealing with incomplete inner product spaces,
we introduce the following nomenclature. Suppose G is a group of inner
product preserving linear transformations on an inner product space Y. A
G-subspace of Y is a subspace that is invariant under all elements of G. A
linear transformation U from a G-subspace S of Y into a subspace S' of Y
is called a G-morphism if it is inner product preserving and if it commutes
with each g E G. Two G-subspaces S and S' of Y are called G-equivalent if
there exists a G-morphism of S onto S'.

Now, assume that {Dj} is a smooth multi-resolution having a scaling
vector ^, and let A denote the linear subspace of L2(F) consisting of the set
of functions c(y) for which
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Note that, since <f> e D0, and D0 is invariant under F, the subspace A contains
every function c that has finite support.

Theorem 2. Let H, F, 6, D, {DJ, and A be as in the above. Assume
that {Dj} has a scaling vector $, and define a function he A on F by

As in Theorem 1, assume that the index of the subgroup F1 = d^Fd in F is
a finite integer d. Suppose further that

(1) A satisfies an hereditary property with respect to F^ namely, if c e A
then C\FI E A.

(2) A is a subspace of Ll(F), and c*heA whenever ceA.
(3) The space D0 satisfies the following complementation property: If S is

a closed F-subspace of D0? then D0 is the direct sum S © D0 D S1.
(4) The action of F on D0 satisfies the following cancellation property: If

S1 and S2 are closed F-subspaces of D0 and U is a F-morphism of
Sl onto S2, then there exists a F-morphism V of D0 fl S^ onto D0 H S2 .

(5) Suppose U is a F-morphism of D0 onto a subspace S of D^. Suppose
T is a continuous, injective, linear transformation from a F-subspace
S' of D0 into Dl3 that T commutes with the action of F9 and that
SO r(S') = {0}. Then S' and T(Sf) are F-equivalent subspaces of D1.

Then d > 1, and there exists a smooth wavelet \j/l9 . .., \l/d-i for H; i.e., each ^
is an element of D.

While condition 5 of Theorem 2 appears to be somewhat artificial, it is
closely related to the Gramm-Schmidt arguments used by many authors in
their constructions of wavelets. It could be replaced by a stronger and cleaner
condition, but it represents the minimum that appears to be required here. We
discuss this and other matters in the final section.

Theorem 2 is proved in Section 2. Its hypotheses are quite delicate, but
they are satisfied for example in the classical case cited earlier when D0 consists
of all finite linear combinations of translates by integers of the scaling vec-
tor. In fact, using Theorem 2, it is possible to prove a straightforward result
in the case where F is abelian. Thus, if F is abelian, we call a subspace A
of Ll(F) almost analytic if whenever /e A and / vanishes on a set of positive
Haar measure in the dual group f, then / is identically zero. It is perhaps
worth noting that quasi-analytic functions on the circle have this property.
(See [m] Ch. VIII.)

Theorem 3, Let (F, d) be an ajfine structure on a separable Hilbert space
H, and assume that F is abelian. Suppose {Dj} is a smooth multi-resolution
(relative to a given dense subspace D) of H that has a scaling vector $, and
assume that the associated subspace A is almost analytic, a selfadjoint subalgebra
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of Ll(F\ and closed under complex conjugation. Suppose that A satisfies hy-
pothesis 1 of Theorem 2, and as in Theorems 1 and 2 suppose that the index
of the subgroup F1 = 6~lFd in F is a finite integer d. Then d > 1, and there
exists a (F, d) wavelet \ j / l 9 . . . , \lid^ for H for which each faeD = \J D,.

Remark. The hereditary property (hypothesis 1 of Theorem 2) is automati-
cally satisfied in the case of Theorem 3 if the algebra A is closed under
multiplication by characters of F. This is so because F1 has finite index in
F. Theorem 3 has a corollary when d~l(<t>) is a finite linear combination of
jT-translates of $. This special situation is one in which smooth wavelets
having compact support have been constructed.

Theorem 4. Let (F, 6) be an affine structure on a separable Hilbert space
H, and assume that F is abelian and torsion free. Suppose {Vj} is a multi-
resolution that has a scaling vector </>, and that d~l((/>) is a finite linear combina-
tion of F-translates of (/>. As in Theorems 1 and 2, suppose that the index of
the subgroup F1 — d~lF6 in F is a finite integer d. Then d > 1, and there
exists a (F,S) wavelet ^1 , . . . ,^d_1 for H for which each \l/t is a finite linear
combination of vectors of the form 6(y(<f>)).

§ 1. Proof of Theorem 1

In this section we prove Theorem 1. We derive it as a consequence of
a sequence of lemmas.

Lemma 1.1. The action of the group F on the subspace V0 is equivalent
to the left regular representation A of F.

Proof. Since ^ is a scaling vector, there is an obvious identification of
F0 and L2(F\ which is determined by the map y(^) -> X{y}- This identification
clearly effects a unitary equivalence between the action of F on F0 and the
representation A.

Lemma 1.2. The action of the group F on the subspace Ft is equivalent
to a direct sum of d copies of A.

Proof. It follows from our assumptions that the index of the subgroup
jf in the group F1 = 6F6~l is d. Also, because ^ is a scaling vector and d
is unitary, we have that the collection (y1^^))}, as y1 runs over F1, forms
an orthonormal basis of V±. If r j Q 9 . . . , rjd_1 are coset representatives for the
d distinct (right) cosets of F in J"1, then we may decompose the space V1 as
the direct sum of d subspaces N0,..., Nd^ where Nt is the set of all elements
of Fx of the form £yer c

vy(7?i((5(^)))- Clearly, the action of F on each Nt is
equivalent to the left regular representation A of F, and this completes the
proof of the lemma.
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Remark. A more sophisticated argument showing Lemma 1.2, but an
argument more in line with the spirit of this article, goes as follows. As in
the proof of Lemma 1.1, observe that the action of F1 on Fx is equivalent
to the left regular representation A1 of F1. Hence, the action of F on Vl is
equivalent to the restriction to F of A1. But this restriction is known to be
equivalent to d x A. The next lemma is the deep part of the proof of Theorem
1. It relies on the finiteness of the Von Neumann algebra of F. Specifically,
the way in which this finiteness property is used is in the following cancellation
property:

Cancellation Property., Let G be a locally compact group, and let p be a
unitary representation of G whose commutant is a finite Von Neumann algebra.
Suppose that p is equivalent to o^ © cr2, and also p is equivalent to a1©a3.
Then a2 is equivalent to cr3.

(See 3.2.3 Prop. 6 of [dx].) (Note that the cancellation property fails in
general, for example when the left regular representation of G is equivalent
to an infinite multiple of itself.) We shall apply this cancellation property to
a representation p that is a direct sum of d copies of A. Because F is discrete,
the commutant of A, which is the Von Neumann algebra VN(jT) is finite,
whence the commutant of p is finite as well.

Lemma 1.3. The index d must be larger than 1, and the action of F on
the orthogonal complement W0 of V0 in V± is equivalent to a direct sum of
d — 1 copies of A.

Proof. Write p for the representation of F determined by its action on
Kj. Then, by Lemma 1.2, p is equivalent to a direct sum of d copies of
A. (Note that if d were 1 then p would be equivalent to A.) If a denotes
the representation of F determined by its action on FF0, then we have also
that p is equivalent to A® a. Hence, by the cancellation property, we have
that a is equivalent to a direct sum of d — 1 copies of A. Moreover, since
F0 is a proper subspace of Vl9 we have that W0 ^ {0}, and a is a nonzero
representation. This implies that d > 1, and the lemma is proved.

We now complete the proof of Theorem 1 as follows. Write FF0 as a
direct sum (4)?=i Mt of subspaces {Mj on which the action of F is equivalent
to A, and denote by L^: M{ -> L2(F) a unitary operator that effects this equiva-
lence. For each 1 < i < d — 1, let fa = Ui~

1(x{e})- Then, the collection {y(\l/i)}
forms an orthonormal basis for the subspace Mf. Hence, the collection {y(\l/i)}9

for y e F and 1 < i < d - 1, forms an orthonormal basis for the subspace
W0. But then the collection {Ss(y(^i))}9 for — oo <j < oo, y E F, and 1 < i <
d — 1, forms an orthonormal basis for (J) W$ which is H. Therefore, the set
^i , . . . ,^d-i is a (F9 6)- wavelet, as desired.
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§2. Proofs of Theorems 29 3, and 4

First we prove Theorem 2. We argue to some degree along the lines of
the proof of Theorem 1, although we will be forced here to deal with inner
product spaces that are not necessarily complete. Note that the cancellation
property, so important in the proof of Theorem 1, is already evident in hypoth-
esis 4 of Theorem 2.

It follows from hypotheses 3, 4, and 5, by applying d'1 to D0, that the
inner product space D^ satisfies:

(1) If S is a closed /Vsubspace of D_ l9 then D_± is the direct sum

(2) Suppose Sl and S2 are closed /^-subspaces of D_x and that U is a
/Vmorphism of Sx onto S2; i.e., Sx and S2 are /\ -equivalent. Then
there exists a /Vmorphism Ur of D^ H S^ onto D_x H S^ ; i.e., D_x fl «S^
and £)_! H Sf are /^ -equivalent.

(3) Suppose U is a /Vmorphism of D_x onto a subspace S of D0. Sup-
pose T is a continuous, injective, linear transformation from a /\-
subspace S' of D_x into D0, that T commutes with the action of Fl5

and that SnT(S') = {Q}. Then Sf and T(S") are /\ -equivalent sub-
spaces of D0.

Next, let ?70, ..., rjd_l be a set of coset representatives for the right cosets
(7^77) in F, and assume that r\0 is the identity operator / on H. For each
0 < i < d — 1 let Kt be the subspace of D0 consisting of the elements

where the function c belongs to the subspace A. It follows from hypothesis
1 of Theorem 2 that D0 is the direct sum D0 = (+)?=o ^i- Moreover, the map
Wi9 defined on Ki into X0 by

Wt( Z c(y1)7l(r,m}= E c(yi)7lW,
\ 7 l 6 A / y l 6 A

is a ^-morphism of Xf onto K0.
Next, let h (7) be the function on F for which

Vr / J[_4

Observe that h(rj) = (d~l((t)\ r\((j))\ so that if yl9 J2E^i^ then

Z ^(7i?

= 72 and is 0 otherwise. Consequently, making use of hypothesis 2 of
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the theorem, the map W defined by

w

is a J\-morphism of K0 onto D^. Indeed, FF"1 is given by the formula

We will use the following lemma, in which the subspace M0 will corre-
spond to our subspace D_1? and where the unitary operators Ut will correspond
to our operators W o Wt.

Lemma 2.1. Let D0 be an inner product space, and let F1 be a group of
inner product preserving linear transformations of D0 onto itself. Suppose D0

is the orthogonal (algebraic) direct sum M0 © MQ, where M0 is a F ̂ invariant,
closed subspace of D0 that satisfies the following properties.

(1) // S is a closed F^-subspace of M0, then M0 is the direct sum S ® MQ fl
S1.

(2) // S1 and S2 are closed F^-subspaces of M0 and U is a F^-morphism
of S1 onto S2, then there exists a F^morphism U' of the F^sub space
M0r\s^ onto M0nsi.

(3) Suppose U is a F^-morphism of M0 onto a subspace S of D0. Suppose
T is a continuous, injective, linear transformation from a F^-subspace
S' of M0 into D0, that T commutes with the action of Fl9 and that
S n T(S') = {0}. Then Sf and T(S') are Frequivalent subspaces of D0.

Suppose d is an integer >1 and that K0,....lKd_l are pairwise orthogonal
closed F^-subspaces of D0 for which D0 is the direct sum ©?=o Kt and that
for each 0 < i < d — 1 there exists a F^-morphism Ut of K{ onto M0.

Then there exist pairwise orthogonal, F \-invariant, closed subspaces Ml9 . ..,
Md_! of D0, each orthogonal to M0, such that for each 1 < i < d — 1 there
exists a F^-morphism V{ of M{ onto Kt.

Remark. Notice that we do not assert that D0 is the direct sum of the
subspaces (Mj. Indeed, this need not be the case in this generality. How-
ever, we will want this direct sum decomposition to hold in our case, but to
obtain it we will again need to exploit the cancellation property of Section
1, i.e., the finiteness of VN(F).

Proof. We argue by induction on d, and we note that the case d = 1 is
vacuously true. Assume then that d > 1.
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Case L Suppose that M0H Kd^ = {0}. Write D'0 = 0?~0
2 Kt and set

MQ equal to <2(M0), where Q is the orthogonal projection of D0 onto D0.
Because D0 = D0©Kd_1 , it follows that Q commutes with each y1 E /\ and
maps M0 continuously and injectively onto Q(M0). Hence, by hypothesis 3
of the lemma, there exists a /\-morphism U' of M0 onto M0. The inductive
hypotheses apply, and we let Mi, . . . ,M^_ 2 be pair wise orthogonal closed
/\ -subspaces of D0, each orthogonal to M0, such that for each 1 < i < d — 2
there exists a /\-morphism Vt of M- onto Kt. Note that for 1 < i < d — 2,
we have that M- is orthogonal both to M0 and to Xd_1? whence is orthogonal
to the closed subspace D" spanned by Kd^ and M0. Let Q denote the
projection of D" onto MQ. Then Q maps Kd_v continuously and injectively
onto a subspace S" of MQ, whence, by composing Q with l/^, we have a
continuous, injective linear transformation T = Q o l^ of M0 onto a subspace
S" of MO- By hypothesis 3, there exists a ^-morphism U' of M0 onto the
subspace S" = Md^ of Af£. Set 7,^ = I/A o U'-\ Since Md_x = Q'^d-i)
is orthogonal to each Mf for 1 < i < d — 2, the proof of the lemma is complete
for this first case.

Case 2. For each 0 < i < d — 1, define K\ = K^nM0 . By condition 1,
we may write

i=0

where M^ is 7\ -invariant and equals

Td-i ni

|_i=0 J

Using condition 2, and the fact that there exists for each 0 < i < d — 1 a
/Vmorphism Ut of Kt onto M0, there exist subspaces {K/}, 0 < i, j < d — 1,
7 / z, so that we may write

X £ = 0 X / © X f ,
j=o

where, for each 0 < j < d — 1, j ^ i, there exists a ^-morphism P^J of Xf onto
KJ9 and where there exists a jfi-morphism P^* of Kf onto M^. Notice that
the d2 + d subspaces {K{, K%}9 for 0 < i, j, k < d — 1, are pairwise orthogonal
and /\-invariant.

Let D$ = @i=o Kf. Because M^ is a subspace of £>£, the hypotheses of
the lemma apply to the inner product space D$, subspace M^, set of subspaces
{Kf} and /\-morphisms {WJ*}, and since MfiftK^^ = {0}, we are in a posi-
tion to use the first part, i.e., case 1, of this proof. Hence, there exist pairwise
orthogonal /\-subspaces Mf,. . . , Mf^ of D$9 each orthogonal to M$, such that
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for each 1 < i < d — 1 there exists a /Vmorphism V{* of Mf onto Kf . Now,
for each 1 < i < d — 1, define

d-l
M . — ff^ fck+imodd /TN jur*

i — \T"x k ^^ •*"•*• i m

k=0

Clearly, M£ and Mj are orthogonal if i ^ j, each Mt is orthogonal to

k=0

and, for each 1 <i<d — I, there exists a ^-morphism Vt of Mf onto JQ.
Indeed, the map Vt is the direct product

fc=0

This completes the proof of the lemma.

Now we apply the lemma to our situation. Thus, there exist pairwise
orthogonal /Vsubspaces M1,...9Md,1 of D0, each orthogonal to D_ l5 such
that for each 1 < i < d — 1 there exists a /\-morphism Vt of Mt onto Kt. For
each 1 < i < d — 1, let ^ be the element of M^ such that V^) = n^). Define
ij/. = $((/>}). Then each ^ e D.

Lemma 22. The index d of /\ in F is larger than 1, and ^19 ..., r/fd_!
is a (F, d)-wavelet.

Proof. That d > 1 follows from Theorem 1, since the sequence {DJ is
a multi-resolution of H that has a scaling vector. Let Nt be the closed
subspace of V1 spanned by the vectors {y(^)} for y e F. Note that, because
fa is orthogonal to the subspace D_ l5 each Nt is actually contained in W0 =
V^-nv1. Then the subspaces (JVJ are pairwise orthogonal, and the action of
F on each Nt is equivalent to its regular representation A. Therefore, the
action of F on the direct sum @f=i Nt is equivalent to (d — 1) x A It follows
from the cancellation property of Section 1 that W0 = (J)?=i NI- Therefore,
the vectors {y(\l/i)}9 for y E F and 1 < i < d — 1, span W0, whence the vectors
{<5J(y(^i))} sPan al* °f H. It follows directly that the vectors {5J'(y(^))} form
an orthonormal set for — oo < j < oo, 7 6 F, and 1 < i < d — 1, and so the
proof of Lemma 2.2 and hence Theorem 2 is complete.

Now we derive Theorem 3 from Theorem 2. We assume at this point
that F is abelian and that the subspace A satisfies hypothesis 1 of Theorem
2, is a selfadjoint subalgebra of L1^), consists of almost analytic functions,
and is closed under complex conjugation.

Lemma 23. If S is a nontrivial F-invariant subspace of D0, then S is
dense in D0. That is, there are no nontrivial, closed F-subspaces of D0.
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Proof. As before, we may identify V0 = D0 with L2(F) and therefore D0

with the subspace A. We may prove the lemma by showing that any non-
trivial /"-invariant subspace of A is dense in A. Thus, let p(co) be a member
of A and write S for the T-invariant subspace of A generated by p. If
h E L2(F) is orthogonal to S, then

y(a})p(a))h(a>)da) = 0

for every y E F. But this implies that the Fourier transform of the L1 function
ph is 0, whence p(co)h(co) = 0 for almost all WE F. Now, because A is almost
analytic, we obtain that either p = 0 or h = 0, implying that S is dense in
L2(F) and so is dense in A as claimed.

To complete the proof of Theorem 3, we need only show that hypothesis
5 of Theorem 2 holds, since hypotheses 3 and 4 hold vacuously in this case
and hypothesis 2 is implied by our assumptions on A. We may write

d-l

where L{ consists of all those if/ E D1 for which

^ = Z c(y)yfai(W))) >
c(y) belongs to A, and where rj0, . . . , r j d _ l are coset representatives for F in

~1. The map

is a F-morphism of D0 onto Lt. It then follows from Lemma 2.3 that every
nontrivial T-subspace of Lt is dense in Lt. Observe that if

and

^2
belong to L,-, it follows that the function 0 denned on F by

fl(7) = (yOU ̂ 2)
belongs to the (selfadjoint, conjugate-closed algebra) A. Indeed,

0(7) = 11 c(7l)c(y2)(y(y1('?i

= c 2 *cf(y) .

The fact that hypothesis 5 holds follows from the next lemma.
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Lemma 2.4. If T is a continuous injective linear transformation of D0 into
D1 that commutes with the action of F, then there exists a F-morphism U of
DO onto the range of T.

Proof. As above, write D1 = 0 Li9 and write T(Q = £ 7J(f) as the de-
composition of T(C) relative to the Lf's. Then each Tt is a continuous linear
map of D0 into Lt that commutes with the action of F. We identify, as above,
D0 with the subspace A and F0 = D0 with all of L2(F). Clearly, by definition,
we may also identify each Lt with the subspace A. It follows from Lemma
2.3 that either Tt is injective and onto a dense subspace of Lt or 7] = 0. We
claim that each 7^ is a constant multiple of a /"-morphism Ut. This is certainly
true if 7j = 0. Otherwise, fix i, and let 7J* denote the adjoint operator of
Tt. Then 7]* maps the completion Lt of Lf into the completion F0 of D0. We
show first that, because 7] commutes with the action of F, 7]* actually maps
Lt into D0. Indeed, if i// e Li9 then Tf(\l/) eL2(F). Furthermore

which is an element of A = D0 by the calculation above.
Therefore, 7]* maps Lt into D0, from which it follows that Tf o 7J is a

positive linear transformation of D0 into itself that commutes with the action
of F. Again using Lemma 2.3, we see that this implies that 7]* o 7] = ptl, on
D0 where pt is a positive number. Clearly then Ut = (l/^/pi)^ i§ an isometry
of DO onto the range of Tt that commutes with the action of F. Now define
U-.D^D, by

= Z t/£(C).

This completes the proof of the lemma, and therefore of Theorem 3.

Finally in this section we show that Theorem 4 is a straightforward
consequence of Theorem 3. Given the hypotheses of Theorem 4, let D0 be
the subspace of H consisting of the vectors £"=i c(yi)yi(^>), and let the linear
space A be the set of all functions c(y) having finite support on F. It follows
that A is a selfadjoint subalgebra of Ll(F) and is closed under complex
conjugation. Then set Dj equal to dj(D0). This sequence {Dj is a smooth
multi-resolution of H. Since hypothesis 1 holds by the remark following the
statement of Theorem 3, all that remains to complete the proof is the observa-
tion that when F is torsion-free the trigonometric polynomials (the subspace
A) form an almost analytic subspace.
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§3. Corollaries of the Abstract Approach

As before, let h be the function on F for which

Introduce an L2(/\) valued inner product on L2(F) by (^
for each pair gl9 g2eL2(F) where g%(y) = g2(y~~1)- The following result is
easy to check.

Lemma 3.1. The orthogonality of g with {ji'h\yleFl} is expressed by

Similarly, the orthogonality of g with any other F1 submodule of L2(F) with
cyclic vector gl is expressed by the condition <#, ̂ i)/^ = 0.

Introduce the notation

for g e L2(F).

Lemma 3.2. With D, H, 7", d, (/> as in Theorem 2 the following are equiva-
lent.

(1) There is a smooth (F, d)-wavelet.
(2) There is an inner product preserving map l/:D0-»D0 commuting with

the Fraction such that V(j> = h((/>).
(3) There exist functions gjy j = 1, 2, . . . , d — 1 on F with g^) e D0 such

that with g0 = h,

Proof. In view of our preceding results it is sufficient to show that 3
implies 2. Using the isomorphism of the closure of D0 with L2(F) it is
sufficient to define the required isometry on the image of D0 in L2(F). If
/ e L2(F) then / = £i /* with ft e Kt. Define

It is straightforward to check that U is an isometry.

Remark. If F1 has index two in F then these observations enable us to
determine the range of Q as the range of an isometry. For if rj $ J\ and we
let hl be the restriction of h to the coset rjFi then one easily checks that
Q(6n) (with 8n being the characteristic function of n) is the function / = 6^(1 — hfh)
in L2(F). Let h0 denote the restriction of h to Fl then <fe, h)ri = h$h0 + hfh1
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= 1. Substituting this relation into the definition of/ gives / = dn(hQ — fe1)*/i0.
Assuming h0 is a function of finite support on F1 allows us to conclude that
the range of Q is just S = {a*dq(h0 — hi)*\ae A}. Nevertheless, even without
this assumption, it is easy to see that the function g = dn(h0 — h^* is orthogonal
to D_! and satisfies <#, #>|ri = 1 so that it gives the required wavelet in the
index two case. Now suppose that F is finitely generated, abelian and torsion
free so that it must be a product of n copies of the integers for some n and
hence F/Fl is a direct product of cyclic groups. The main impediment to
verifying condition 5 of Theorem 2 for the abelian case stems from the fact
that we do not have a method of handling cyclic groups of order greater
than two. We note however that we can reformulate the problem of verifying
hypothesis 3 of Lemma 2.1 in more familiar terms.

Let %J9 j = 0, 1, 2, . . . , d — 1 denote the characters in F± with XQ trie trivial
character. Let c: /\ -» f be a cross-section and let X be the image of c in
f. There is an isometry of L2(f) with L2(F1) ® Cd given by sending g e L2(f)
to the vector of functions

+ Xll...,g(cD + xd_,) (3.1)

for CD e X .
The conditions of Lemma 3.1 can be reformulated to read:
(i) the F! -translates of a g E D0 form an orthonormal set if

I ld(G> + X j ) \ 2 = 1

for all co 6 X and hence for all CD E /\ .
(ii) g, g1 G D0 span orthogonal F1 -modules if

The existence of a (F9 6)- wavelet \l/l9...\l/d_1 is equivalent to the existence of
a d x d unitary matrix valued function M on f whose first column is the vector

(a> + x l ) , . . . 9 h ( a > + xd-l)) (3.2)

and whose remaining columns are vectors

for j = 1, 2, ... rf — 1. The relationship is simply that these columns define
functions gl9 g2, ... gd-{ on F with ^ = d(gj((j)}). As a corollary of this we
note the following extension of a theorem of Grochenig [g].

Proposition 3.3. If the function from F to Cd given by (3.2) does not map
onto the d — 1 sphere in Cd then there exists a unitary d x d matrix valued
function M whose first column is given by (3.2) which is as smooth as h (but
not necessarily of compact support as a function on F).
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The proof is identical to that in [g]. Finally we note the approach in
[s]. In our context this amounts to starting with a matrix valued function
M on F with first column given by (3.2) which is bounded away from zero
and then applying a Gram-Schmidt process to the columns to produce a
unitary matrix. This process preserves smoothness but not compact support
properties. We will not describe this process in detail here but refer the
reader to [s].

In our discussion we have not addressed the question of the existence of
a scaling vector. This is the question which has received most attention in
the literature and clearly the existence of these objects needs to be addressed
in our general setting. Finally, Theorem 2 suffers from its lengthy and techni-
cal hypotheses. It would be interesting to discover other theorems, guaran-
teeing the existence of smooth wavelets, that have dissimilar assumptions to
those of Theorem 2. The case where F is non-abelian is however clearly a
situation where more sophisticated techniques are called for (cf [1]).
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