The Converse of Minlos’ Theorem

Dedicated to Professor Tsuyoshi Ando on the occasion of his sixtieth birthday

By

Yoshiaki OKAZAKI* and Yasuji TAKAHASHI**

Abstract

Let \mathcal{M} be the class of barrelled locally convex Hausdorff space E such that E_b' satisfies the property B in the sense of Pietsch. It is shown that if $E \in \mathcal{M}$ and if each continuous cylinder set measure on E' is $\sigma(E',E)$-Radon, then E is nuclear. There exists an example of non-nuclear Fréchet space E such that each continuous Gaussian cylinder set measure on E' is $\sigma(E',E)$-Radon. Let q be $2 \leq q < \infty$. Suppose that $E \in \mathcal{M}$ and E is a projective limit of Banach space $\{E_\alpha\}$ such that the dual E_α' is of cotype q for every α. Suppose also that each continuous Gaussian cylinder set measure on E' is $\sigma(E',E)$-Radon. Then E is nuclear.

§1. Introduction

Let E be a nuclear locally convex Hausdorff space, then each continuous cylinder set measure on E' is $\sigma(E',E)$-Radon (Minlos’ theorem, see Badrikian [2], Gelfand and Vilenkin [4], Minlos [11], Umemura [20] and Yamasaki [21]). We consider the converse problem. Let E be a locally convex Hausdorff space. If each continuous cylinder set measure on E' is $\sigma(E',E)$-Radon, then is E nuclear? The partial answers are known as follows.

(1) If E is a σ-Hilbert space or a Fréchet space, then the answer is affirmative (see Badrikian [2], Gelfand and Vilenkin [4], Minlos, [11], Mushtari [12], Umemura [20] and Yamasaki [21]).

(2) If E is barrelled and if E is a projective limit of L^0-embeddable Banach spaces, then the answer is affirmative (see Millington [10], Mushtari [12], Okazaki and Takahashi [14]).
In this paper, we shall extend the case (1) for more general locally convex spaces. We introduce a class \mathcal{M} in Section 4. \mathcal{M} is the class of all barrelled locally convex Hausdorff space E such that the strong dual E'_b satisfies the property B in the sense of Pietsch (Pietsch [15] 1.5.5). The class \mathcal{M} contain LF-spaces, barrelled DF-spaces and inductive limits of them. We prove the next theorem.

Theorem. Let $E \in \mathcal{M}$. If each continuous discrete 1-stable cylinder set measure on E' is $\sigma(E', E)$-Radon, then E is nuclear.

For the Gaussian cylinder set measures, the following result is well-known.

(3) Let E be a σ-Hilbert space. If each continuous Gaussian cylinder set measure on E' is $\sigma(E', E)$-Radon, then E is nuclear (see Gelfand and Vilenkin [4], Minlos [11], Umemura [20] and Yamasaki [21]).

In general, we can not conclude that E is nuclear even if each continuous Gaussian cylinder set measure on E' is $\sigma(E', E)$-Radon. We give a counter example. In this case, we prove the next result.

Theorem. Let $2 \leq q < \infty$ be fixed and $E \in \mathcal{M}$. Suppose that E is a projective limit of Banach spaces $\{E_{\alpha}\}$ such that the dual E'_{α} is of cotype q for every α. Suppose also that each continuous Gaussian cylinder set measure on E' is $\sigma(E', E)$-Radon. Then E is nuclear.

§2. Preliminaries

Let E be a locally convex Hausdorff space and E' be the topological dual of E. Denote by E'_b (resp. E'_s) the dual with the strong dual topology $\beta(E', E)$ (resp. weak * topology $\sigma(E', E)$). The strong bidual of E is denoted by $(E'_b)''$. Let μ be a cylinder set measure on E'. Then we say that μ is a continuous cylinder set measure if the characteristic functional

$$\mu^\wedge(x) = \int_{E'} e^{i(x, \omega)} d\mu(\omega), \quad x \in E,$$

is continuous on E.

The cylinder set measure μ on E' is called a continuous discrete p-stable cylinder set measure on E' if the characteristic functional $\mu^\wedge(x)$ is given by

$$\mu^\wedge(x) = \exp(-\|T(x)\|_p^p), \quad x \in E,$$

where $T : E \to \ell_p$ is a continuous linear operator and $0 < p \leq 2$. In the sequel, we consider only the cases $p = 1$ and 2. In the case where $p = 2$, μ is called a continuous Gaussian cylinder set measure. See Linde [7].
Let F, G be normed spaces and $0 < q, r < \infty$. A linear operator $S: F' \to G'$ is called (q,r)-summing if for every $\{a_n\} \subset F'$ with $\sum_{n=1}^{\infty} \|S(a_n)\|_G < \infty$ for every $x \in F$, it holds that $\sum_{n=1}^{\infty} \|S(a_n)x\|_G < \infty$. A linear operator $T: F \to G$ is called (q,r)-summing if for every $\{x_n\} \subset F$ with $\sum_{n=1}^{\infty} \|x_n\|_F < \infty$ for every $a \in F'$, it holds that $\sum_{n=1}^{\infty} \|T(x_n)a\|_G < \infty$. In the case where $r = q$, S and T are called r-summing, see Pietsch [15], Schwartz [18] and Tomczak-Jaegermann [19].

Let G be a Banach space and $2 \leq q < \infty$. G is called of cotype q if there exists $K > 0$ such that for every n and every $z_1, z_2, \ldots, z_n \in G$, it holds that

$$\left(\sum_{n=1}^{\infty} \|z_n\|_G^q \right)^{1/q} \leq K \int_{\Omega} \left(\sum_{n=1}^{\infty} g_n(\omega)z_n \right)_G d\mathcal{P}(\omega),$$

where $\{g_n\}$ is a sequence of independent identically distributed Gaussian random variables on a probability space (Ω, \mathcal{P}) with the characteristic functional $e^{-|t|^2}$, see Linde [7], Maurey and Pisier [9], Tomczak-Jaegermann [19].

Let E be a locally convex Hausdorff space. For a closed absolutely convex neighborhood U of 0, we set $N(U) = \{x \in E: p_U(x) = 0\}$ where $p_U(x) = \inf\{t > 0: x \in tU\}$. Denote by $x(U)$ the equivalence class corresponding to $x \in E$ in the quotient space $E(U) = E/N(U)$. $E(U)$ is a normed space with norm $p[x(U)] = p_U(x)$ for $x \in E$.

For a closed absolutely convex bounded subset A of E, we set $E(A) = \{x \in E: x \in tA \text{ for some } t > 0\}$. $E(A)$ is a linear subspace of E. We put the norm on $E(A)$ by $p_A(x) = \inf\{t > 0: x \in tA\}$ for $x \in E(A)$.

For a neighborhood U of 0 in E, the polar $U^* = \{a \in E^*: \langle a, x \rangle \leq 1 \text{ for every } x \in U\}$ is weakly compact absolutely convex subset of E^*. The normed space $E'(U^*)$ is a Banach space and $E(U)' = E'(U^*)$ by the duality $\langle x(U), a \rangle = \langle x, a \rangle$.

For two zero neighborhoods U, V with $V \subset U$, we define a canonical mapping $E(V,U): E(V) \to E(U)$ by associating $x(U)$ with $x(V)$.

For two closed absolutely convex bounded subsets A and B with $A \subset B$, it holds that $E(A) \subset E(B)$ and the canonical mapping $E(A,B): E(A) \to E(B)$ is defined by $E(A,B)(x) = x$ for $x \in E(A)$.

A locally convex Hausdorff space E is called nuclear if it contains a fundamental system $U_E(E)$ of zero neighborhoods which has the following equivalent properties (see Pietsch [15], 4.1.2):

1. For each $U \in U_E(E)$ there exists $V \in U_E(E)$ with $V \subset U$ such that the canonical mapping $E(V,U): E(V) \to E(U)$ is 2-summing.
2. For each $U \in U_E(E)$ there exists $V \in U_E(E)$ with $V \subset U$ such that the canonical mapping $E'(V^*, U^*): E'(V^*) \to E'(U^*)$ is 2-summing.
A locally convex Hausdorff space E is called dual nuclear if the strong dual E' is nuclear. For other basic notions of locally convex spaces, we refer to Schaefer [17].

§3. Summability and Dual Nuclearity

Let E be a locally convex Hausdorff space and $1 \leq p < \infty$. A sequence $(x_n) \subset E$ is called weakly p-summable if for every neighborhood U of 0, it holds that

$$\varepsilon^p_U((x_n)) = \sup \{(\sum_{n=1}^{\infty} |(x_n, a)|^p)^{1/p} : a \in U^*\} < \infty$$

Denote by $l^p[E]$ the linear space of all weakly p-summable sequences. The topology of $l^p[E]$ given by the seminorms ε^p_U, $U \in U_F(E)$, is called the ε-topology where $U_F(E)$ is a fundamental system of zero neighborhoods of E.

A sequence $(x_n) \subset E$ is called absolutely p-summable if for every neighborhood U of 0, it holds that

$$\pi^p_U((x_n)) = (\sum_{n=1}^{\infty} p_U(x_n)^p)^{1/p} < \infty.$$

Denote by $l^p[E]$ the linear space of all absolutely p-summable sequences. The topology of $l^p[E]$ given by the seminorms π^p_U, $U \in U_F(E)$, is called the π-topology, where $U_F(E)$ is a fundamental system of zero neighborhoods of E. It holds that $(l^p[E], \pi^p) \subset (l^p[E], \varepsilon^p)$, where the inclusion is a continuous injection.

A sequence $(x_n) \subset E$ is called totally p-summable if there exists a closed absolutely convex bounded subset B such that $\sum_{n=1}^{\infty} p_B(x_n)^p < \infty$. Denote by $l^p\langle E \rangle$ the linear space of all totally p-summable sequences. It is clear that $l^p\langle E \rangle \subset l^p[E]$.

It is called that E has property B if for each bounded subset $\mathcal{B} \subset l^1[E]$ there exists a bounded set $B \subset E$ such that $\sum_{n=1}^{\infty} p_B(x_n) \leq 1$ for every $(x_n) \in \mathcal{B}$, see Pietsch [15], 1.5.5. If E has property B, then it holds that $l^1[E] \subset l^1\langle E \rangle$.

The nuclearity of the strong dual E'_b is characterized by the above summabilities as follows.

Lemma 1 (Pietsch [15] Theorem 4.2.11). If E has property B and $l^1[E] = l^1\langle E \rangle$, then E'_b is nuclear.

It is known that the metrizable space or the dual metrizable space has property B (Pietsch [15] Theorem 1.5.8). We prove that the property B is retained by the projective or inductive limit operation.
Proposition 1. (1) If each E_n has property B, then the projective limit $\lim E_n$ has property B.

(2) Let $E = \lim E_n$ be the strict inductive limit. Suppose that each E_n has property B and every bounded set B of E is contained and bounded in E_k for some k (k depends on B). Then E has property B.

Proof. (1) Let \mathcal{B} be bounded in $l^1\{E\}$. Let $\pi_\alpha: E \to E_n$ be the canonical mapping. Then $\pi_\alpha(\mathcal{B}) = \{(\pi_\alpha x)_n : (x_n) \in \mathcal{B}\}$ is bounded in $l^1\{E_n\}$ for every n. By the property B of E_n, there exists a bounded set B_n in E_n such that $\sup \{\sum_{n=1}^m p_{B_n}(\pi_\alpha x) : (x_n) \in \mathcal{B}\} \leq 1$ for every n. We set $B = \{x \in E : \sum_{n=1}^m 2^{-n} p_{B_n} \cdot (\pi_n x) \leq 1\}$. Then B is bounded in E and it holds that $p_B(x) = \sum_{n=1}^m 2^{-n} p_{B_n}(\pi_n x)$. So we have $\sum_{n=1}^m p_B(x_n) \leq \sum_{n=1}^m 2^{-n} < \infty$ for every $(x_n) \in \mathcal{B}$.

(2) Let $\mathcal{B} \subset l^1\{E\}$ be bounded. Then the subset $C = \{x_i^j : i = 1, 2, \ldots, (x_j) \in \mathcal{B}\}$ is bounded in E. There exists k so that $C \subset E_k$ and C is bounded in E_k. Since E induces the topology on E_k, \mathcal{B} is contained in $l^1\{E_k\}$ and bounded in $l^1\{E_k\}$. Hence there exists a bounded subset B in E_k such that $\sum_{n=1}^m p_B(x_n) \leq 1$ for every $(x_n) \in \mathcal{B}$. This proves (2).

We investigate the property B of the strong dual E'_b.

Lemma 2. Let $E = \lim E_n$ be the inductive limit of locally convex spaces. If E is barrelled and if each $(E_n)'_b$ has property B, then E'_b has property B.

Proof. Let $\mathcal{B} \subset l^1\{E'_b\}$ be bounded, that is, $\sup \{\sum_{n=1}^m p_{B_n}(a) : (a) \in \mathcal{B}\} < \infty$ for every bounded subset B in E. Let $\pi_\alpha: E' \to E'_b$ be the canonical mapping. For every n, $\{(\pi_\alpha a) : (a) \in \mathcal{B}\}$ is bounded in $l^1\{(E_n)'_b\}$ since each bounded set in E_n is also bounded in E. For every n, take a closed absolutely convex bounded set $K_n \subset (E_n)'_b$ such that $\sum_{n=1}^m p_{K_n}(\pi_\alpha a) \leq 1$ for every $(a) \in \mathcal{B}$. We set $K = \{a \in E' : \sum_{n=1}^m 2^{-n} p_{K_n}(a) \leq 1\}$. Then K is bounded in E'_b since $\pi_\alpha(K)$ is bounded in $(E_n)'_b$ for every n and E is barrelled (in fact, K^* absorbs each point in E). We have $p_K(a) = \sum_{n=1}^m 2^{-n} p_{K_n}(a)$ for every $a \in E'(K)$. For each $(a) \in \mathcal{B}$, we obtain $\sum_{n=1}^m p_K(a) = \sum_{n=1}^m 2^{-n} (\sum_{n=1}^m p_{K_n}(\pi_\alpha a)) \leq \sum_{n=1}^m 2^{-n} < \infty$. Thus E'_b has property B.

Proposition 2. Let E be either

(1) metrizable,
(2) dual metrizable,
(3) LF-space,
(4) dual LF-space, or
(5) \(E = \lim_{\to} E_n \) and \(E \) is barrelled, where \(E_n \) is one of (1), (2), (3) and (4) above. Then \(E'_b \) has property B.

The next Lemma shall be used in Section 4, Theorem 2.

Lemma 3. Let \(q \) be \(1 \leq q < \infty \). If \(E \) has property B, then for each bounded subset \(\mathscr{B} \subset l^q \{ \mathcal{E} \} \) there exists a bounded set \(B \subset E \) such that \(\sum_{n=1}^{\infty} p_B (x_n)^q \leq 1 \) for every \((x_n) \in \mathscr{B} \).

Proof. Let \(s \) be \(1/q + 1/s = 1 \). Then the family \(\mathscr{A} = \{ (t, x); (x, t) \in \mathscr{B} \text{ and } \| (t, x) \| \leq 1 \} \) is bounded in \(l^q \{ \mathcal{E} \} \) since it holds that for every zero neighborhood \(U \)
\[
\sum_{n=1}^{\infty} p_U (t, x_n) \leq \left(\sum_{n=1}^{\infty} \| t \|^q \right)^{1/q} \leq \left(\sum_{n=1}^{\infty} \| t \|^q \right)^{1/q} \text{ and since } \mathscr{B} \text{ bounded in } l^q \{ \mathcal{E} \}.
\]
By property B, there exists a bounded set \(B \) of \(E \) such that for every \((t, x) \in \mathscr{A} \) it holds \(\sum_{n=1}^{\infty} p_B (t, x_n) \leq \sum_{n=1}^{\infty} \| t \|_q p_B (x_n) \leq 1 \). Thus for every \((u, x) \in \mathscr{B} \) with \(\| u \|_q \leq 1 \), we have \(| \sum_{i} u_i p_B (x_i) | \leq \sum_{i} p_B (| u_i | x_i) \leq 1 \). By the duality of \(l^q \) and \(l^q \), it follows that \(\sum_{n=1}^{\infty} p_B (x_n)^q \leq 1 \) for every \((x_n) \in \mathscr{B} \), which shows the assertion.

§4. Converse of Minlos’ Theorem

Lemma 4. Let \(F, G \) be Banach spaces, \(\psi : G \rightarrow F \) be a continuous linear mapping and \(\psi' : F' \rightarrow G' \) be the adjoint of \(\psi \). Let \((a_i) \subset F' \) be \(\sum_{n=1}^{\infty} \| (x, a) \| < \infty \) for every \(x \in F \) and \(\mu \) be a continuous discrete 1-stable cylinder set measure on \(F' \) with \(\mu (x) = e^{-\sum_{n=1}^{\infty} \| (x, a_n) \|} \). Suppose that the image \(\psi (\mu) \) is \(\sigma (G', G) \)-Radon on \(G' \). Then it holds that \(\sum_{n=1}^{\infty} \| \psi '(a_n) \|_G < \infty \).

Proof. We follow Linde [7], Cor. 6.5.2 and Maurey [8], Prop.2b). For every \(N \) let \(\lambda_N, \tau_N \) be the cylinder set measures on \(G' \) with
\[
\begin{align*}
\lambda_N (z) &= e^{-\sum_{n=1}^{N} \| (z, \psi '(a_n)) \|} \\
\tau_N (z) &= e^{-\sum_{n=N+1}^{\infty} \| (z, \psi '(a_n)) \|}, \quad z \in G.
\end{align*}
\]
Then we have \(\lambda_N \ast \tau_N = \psi (\mu) \) as cylinder set measures, where \(\ast \) denotes the convolution. Since \(\psi (\mu) \) is \(\sigma (G', G) \)-Radon, \(\lambda_N \) and \(\tau_N \) are also \(\sigma (G', G) \)-Radon, see Okazaki [13], Lemma 1.

For \(0 < q < 1 \) it holds that
\[
\int_{G'} \|a\|_{G'}^q \, d\lambda_N(a) = \int_{G'} \|a\|_{G'}^q \, d\lambda_N(a) \, d\tau_N(b)
\]
\[
\leq 2^{-q} \int_{G'} \int_{G'} (\|a + b\|_{G'}^q + \|a - b\|_{G'}^q) \, d\lambda_N(a) \, d\tau_N(b)
\]
\[
\leq 2^{1-q} \int_{G'} \|a\|_{G'}^q \, d\psi'(\mu)(a),
\]
since \(\|2a\|_{G'}^q \leq \|a + b\|_{G'}^q + \|a - b\|_{G'}^q\) and \(\tau_N\) is symmetric, see Hoffmann-Jørgensen [4], Theorem 2.6.

Let \(\{f_n(\omega)\}\) be a sequence of independent identically distributed symmetric 1-stable random variables on a probability space \((\Omega, P)\) with the characteristic functional \(e^{-\imath t t}\). Let \(q\) be fixed such that \(0 < q < 1\). For every \(n\), we set
\[
S_N(\omega) = \sum_{n=1}^{N} \psi'(a_n) f_n(\omega).
\]

\(S_N\) is a random variable which values in a finite-dimensional subspace of \(G'\) and the distribution of \(S_N\) is \(\lambda_N\). If we set
\[
H_N(\omega) = \max_{1 \leq n \leq N} \|\psi'(a_n) f_n(\omega)\|_{G'},
\]
then by Kwapien [6], Remark 1, it follows that
\[
\int_{\Omega} H_N(\omega) \, dP(\omega) \leq 8 \int_{\Omega} S_N(\omega) \|\psi'(\mu)\|_{G'} \, dP(\omega)
\]
\[
= 8 \int_{G'} \|a\|_{G'}^q \, d\lambda_N(a).
\]

Consequently, we have
\[
\int_{\Omega} H_N(\omega) \, dP(\omega) \leq 8 \, 2^{1-q} \int_{G'} \|a\|_{G'}^q \, d\psi'(\mu)(a).
\]

Since \(\psi'(\mu)\) is a 1-stable \(\sigma(G', G')\)-Radon measure on \(G'\) and \(0 < q < 1\), we have
\[
L = \int_{G'} \|a\|_{G'}^q \, d\psi'(\mu)(a) < \infty,
\]
see de Acosta [1], Linde [7], Cor. 6.7.5. Thus we have
\[
\int_{\Omega} \max_{1 \leq n \leq N} \|\psi'(a_n) f_n(\omega)\|_{G'} \, dP(\omega) \leq 8 \, 2^{1-q} L < \infty
\]
for every \(N = 1, 2, \cdots\). Letting \(N \to \infty\), we have
\[
\int_{\Omega} \sup_n \| \psi'(a_n) f_n(\omega) \|_{G'} dP(\omega) < \infty
\]

Hence there exists \(R > 0 \) such that
\[
P(\omega : \sup_n \| \psi'(a_n) f_n(\omega) \|_{G'} \leq R) = \prod_{n=1}^{\infty} \{1 - P(\omega : \| f_n(\omega) \|_{G'} > R / \| \psi'(a_n) \|_{G'})\} > 0,
\]
where we have used the independence of \(\{f_n(\omega)\} \). This implies that
\[
\sum_{n=1}^{\infty} P(\omega : \| f_n(\omega) \|_{G'} > R / \| \psi'(a_n) \|_{G'}) < \infty.
\]

We remark that for every \(n \),
\[
\int_{\Omega} \| \psi'(a_n) f_n(\omega) \|_{G'} dP(\omega) = \| \psi'(a_n) \|_{G'}^{\alpha} \int_{\Omega} \| f_n(\omega) \|_{G'} \alpha dP(\omega) \leq 8 2^{\alpha - \alpha} L_n,
\]
that is, \(\sup_n \| \psi'(a_n) \|_{G'} < \infty \). Furthermore, it is known that
\[
P(\omega : \| f_n(\omega) \|_{G'} > t) \sim t^{-1} \quad \text{as} \quad t \to \infty,
\]
so we obtain for sufficiently large \(R \)
\[
P(\omega : \| f_n(\omega) \|_{G'} > R / \| \psi'(a_n) \|_{G'}) \sim \| \psi'(a_n) \|_{G'} / R.
\]

Hence it follows that \(\sum_{n=1}^{\infty} \| \psi'(a_n) \|_{G'} < \infty \).

Remark 1. If \(\psi'(\mu) \) is Radon with respect to the dual norm of \(G' \), then Lemma 4 is a direct consequence of the fact “every Banach space is of cotype 1-stable”, see Linde [7], Cor. 6.5.2 and Maurey [8], Prop. 2 b).

Lemma 5. Let \(E \) be a barrelled locally convex Hausdorff space. Suppose that each continuous discrete 1-stable cylinder set measure on \(E' \) is \(\sigma(E',E) \)-Radon. Then it holds that \(l^1(E'_\alpha) = l^1(\langle E'_\alpha \rangle) \).

Proof. Let \((a_i) \in l^1[\langle E'_\alpha \rangle] \), that is, \(\sum_{i=1}^{\infty} \langle x, a_i \rangle < \infty \) for every \(x \in E \). Since the semi-norm \(|x| = \sum_{i=1}^{\infty} |\langle x, a_i \rangle| \) is lower semicontinuous on \(E \), \(|x| \) is continuous by the barrelledness. The continuous discrete 1-stable cylinder set measure \(\mu \) on \(E' \) with \(\mu^+(x) = \exp(-\sum_{i=1}^{\infty} |\langle x, a_i \rangle|), x \in E, \) is \(\sigma(E',E) \)-Radon. We can take a \(\sigma(E',E) \)-compact set \(K \subset E'_\alpha \) of the form \(K = U, U \in U_f(E) \), satisfying that \(\mu(K) > 0 \) and \(|\mu^+(x) - 1| < 1/2 \) for \(x \in U \) by the barrelledness and the continuity of \(\mu^+(x) \). Consider the Banach space \(E'(K) = \bigcap nK \) with the unit ball \(K \). By the 0-1 law of a stable measure, it follows that \(\mu(E'(K)) = 1 \), see Dudley and Kanter [3]. Thus \(\mu \)
is a $\sigma(E'(K),E(U))$-Radon measure. We claim that $(a_t) \subset E'(K)$. Take $\ell < \infty$ so that $|\exp(-|t|) - 1| < 1/2$ implies $|t| < \ell$. Hence for every $x \in U$, it follows that $|\langle x, a_t \rangle| < \ell$ and $a_t \in \ell U^* = \ell K$, that is, $(a_t) \subset \ell K$. By Lemma 4, we obtain
\[\sum_{t=1}^{\infty} p_k(a_t) < \infty, \] which shows $(a_t) \in l^1(E'_b).

We introduce a class \mathcal{M} of locally convex spaces as follows. \mathcal{M} is the set of all barrelled locally convex Hausdorff space E such that the strong dual E'_b has property B. \mathcal{M} contain LF-spaces and barrelled DF-spaces. \mathcal{M} is closed under the operation taking a countable inductive limit (Proposition 2).

Theorem 1. Let $E \in \mathcal{M}$ and suppose that every continuous discrete 1-stable cylinder set measure on E' is $\sigma(E',E)$-Radon. Then E is nuclear.

Proof. By Lemma 5, we have $l^1[E'_b] = l^1[E'_b]$. By Lemma 1, it follows that $(E'_b)'_b$ is nuclear. Since E is barrelled, the topology of E is induced from $(E'_b)'_b$, which proves the Theorem.

In Theorem 1, we can not replace “1-stable” by “Gaussian” in general. We give an example later on.

Lemma 6. Let $2 \leq q < \infty$, E be a Banach space and $G = E'_b$ be the dual Banach space. Suppose that G is of cotype q. Let $(a_n) \subset G$ be $\sum_n |\langle x, a_n \rangle|^2 < \infty$ for every $x \in E$. If the continuous Gaussian cylinder set measure μ with $\mu^\land(x) = \exp(-\sum_n |\langle x, a_n \rangle|^2)$ is $\sigma(G,E)$-Radon, then it holds that $\sum_{n=1}^{\infty} |a_n|^q_G < \infty$.

Proof. For every N, let λ_N, τ_N be the cylinder set measures on G with
\[\lambda_N^\land(x) = \exp(-\sum_{n=1}^{N} |\langle x, a_n \rangle|^2), \]
\[\tau_N^\land(x) = \exp(-\sum_{n=N+1}^{\infty} |\langle x, a_n \rangle|^2), x \in E. \]

Then we have $\lambda_N \ast \tau_N = \mu$. Since G is of cotype q, there exists $K > 0$ such that
\[\left[\sum_{n=1}^{N} \|a_n\|^q_G \right]^{1/q} \leq K \int_Q \left[\sum_{n=1}^{N} \|a_n g_n(\omega)\|_G \right] dP(\omega) \]
\[= K \int_G |a|_G d\lambda_N(a) \]
for every N by the manner same to Lemma 4. Since μ is Gaussian, this last integral is finite, which implies the assertion.

Theorem 2. Let q be $2 \leq q < \infty$. Let E be a locally convex Hausdorff space with a fundamental system $\{U_a\}$ of zero neighborhoods such that the dual $E(U_a)' = E'(U_a)$ is of cotype q. Suppose that $E \in \mathcal{A}$ and each continuous Gaussian cylinder set measure on E' is $\sigma(E',E)$-Radon. Then E is nuclear.

Proof. Firstly, we show that $l^2[E_b'] \subset l^q[E_b'] \subset l^q[E_b]$. Let $(a_i) \in l^2[E_b']$, that is, for every zero neighborhood W of E_b', $\sup \{\sum_{i=1}^{\infty} \langle x, a_i \rangle^2 : x \in W'\} < \infty$. Then

$$h(x) = \left(\sum_{i=1}^{\infty} |\langle x, a_i \rangle|^2 \right)^{1/2}$$

is continuous on E since E is barrelled and $h(x)$ is lower semicontinuous. Hence $\exp(-h(x)^2)$ determines continuous Gaussian cylinder set measure μ on E' with $\mu^\alpha(x) = \exp(-h(x)^2)$ taking $T : E \to J_2$ be $T(x) = \langle (x, a_i) \rangle$. By the assumption, μ is $\sigma(E',E)$-Radon and so there exists α such that $\mu(E'(U_a)) = 1$ by the 0-1 law of a Gaussian measure, see the proof of Lemma 5. Since E'_{U_a} is of cotype q it follows that $\sum_{i=1}^{\infty} p_{U_a}(a_i)^q < \infty$ by Lemma 6.

Secondly, we show that each bounded set B in $l^2[E_b']$ is bounded also in $l^q[E_b']$. For every zero neighborhood W in E_b', there exists $M_w > 0$ such that

$$\sup_{a_i, x, x'} \left\{ \sum_{i=1}^{\infty} \langle x, a_i \rangle^2 : x \in W' \right\} < M_w.$$

Suppose that B is not bounded in $l^q[E_b']$, that is, there is a zero neighborhood V in E_b' such that $\sup \{\sum_{i=1}^{\infty} \langle x, a_i \rangle^q : (a_i) \in B \} = \infty$. For every n, take N_n and $(a_i^n) \in B$ such that $\sum_{i=1}^{N_n} \langle x, a_i^n \rangle^q > 2^{nq}$. Remark that $\sup \{\sum_{i=1}^{N_n} \langle x, a_i^n \rangle^q : x \in V' \} \leq C_v^2 < \infty$ since B is bounded in $l^2[E_b']$. Then we have for the sequence $\{1 \leq i \leq N_n, n = 1, 2, \ldots\}$ and for every $x \in V'$, $\sum_{i=1}^{N_n} \sum_{i=1}^{\infty} \langle x, 2^{-n} a_i^n \rangle^2 \leq \sum_{n=1}^{\infty} 2^{-2n} C_v^2 < \infty$. On the other hand, $\sum_{n=1}^{\infty} \sum_{i=1}^{N_n} \langle x, 2^{-n} a_i^n \rangle^q \geq \sum_{n=1}^{\infty} 2^{-nq} 2^{nq} < \infty$, which contradicts to $l^2[E_b'] \subset l^q[E_b]$.

Thirdly, we prove that for every α, there exists β such that $E'(U_{\alpha}, U_{\beta}) : E'(U_{\alpha}) \to E'(U_{\beta})$ is $(q, 2)$-summing. For every α, $A = U_{\alpha}$ is a bounded set in E_b. We set $B = \{(a_i) \in l^2[E_b] : \|a_i\|^2 = \sup \{\sum_{i=1}^{\infty} \langle x, a_i \rangle^2 : x \in W' \}$.
Since \(A \) is bounded in \(E'_b \), \(B \) is bounded in \(E'_b \) by the second step. By Lemma 3, there exists a bounded absolutely convex closed subset \(B \) in \(E'_b \) such that \(\sum_{i=1}^\infty p_{\beta}(a_i)^q \leq 1 \) for every \((a_i) \in B\). We can assume that \(B = U^\beta_\alpha \) for some \(\beta \) with \(U^\beta_\alpha \subset U_\alpha \) since \(E \) is barrelled. So we obtain \((\sum_n p_{U^\beta_\alpha}(a_n)^q)^{1/q} \leq \sup(\langle \sum_n (x,a_n) \rangle^{1/2}; p_{U^\beta_\alpha}(x) \leq 1) \), which shows the assertion.

Lastly, we show that for every \(\alpha \) there exists \(\beta \) such that \(E'(U^\alpha_\alpha, U^\beta_\alpha): E'(U^\alpha_\alpha) \rightarrow E'(U^\beta_\alpha) \) is 2-summing. Let \(\alpha \) be arbitrarily fixed. By the third step, there exists \(\alpha_i \) such that the canonical injection \(E'(U^\alpha_\alpha, U^\alpha_{\alpha_i}) \) is \((q,2)\)-summing. Similarly we can find \(\alpha_2 \) such that \(E'(U^\alpha_{\alpha_i}, U^\alpha_{\alpha_2}) \) is \((q,2)\)-summing. Repeatedly, we can find \(\alpha_1, \alpha_2, \ldots, \alpha_k \) such that \(E'(U^\alpha_{\alpha_{\alpha_1}}, U^\alpha_{\alpha_{\alpha_2}}) \) is \((q,2)\)-summing for every \(i \). Let \(k \) be \(k > q/2 \). Then the \(k \)-composition \(E'(U^\alpha_{\alpha_{\alpha_1}}, U^\alpha_{\alpha_{\alpha_2}}) = E'(U^\alpha_{\alpha_{\alpha_1}}, U^\alpha_{\alpha_{\alpha_2}}) \circ \cdots \circ E'(U^\alpha_{\alpha_{\alpha_k}}, U^\alpha_{\alpha_{\alpha_k+1}}) \) is 2-summing by Tomczak-Jaegermann [19], Theorem 22.5, since each \(E'(U^\alpha_{\alpha_{\alpha_k}}) \) is of cotype \(q \). This completes the proof.

Remark 2. In general, \(E \) is not necessarily nuclear even if each continuous cylinder set measure on \(E' \) is \(\sigma(E', E) \)-Radon. For example, let \(\tau_r \) be the Sazonov topology on the infinite-dimensional Hilbert space \(H \) and consider \(E = (H, \tau_r) \), see Sazonov [16]. Then \(E \) is not nuclear but each continuous cylinder set measure on \(E' \) is \(\sigma(E', E) \)-Radon, see Yamasaki [21], §20.

Counterexample. Let \(E \) be a Fréchet space. Suppose that each continuous Gaussian cylinder set measure on \(E' \) is \(\sigma \)-additive. Then can we conclude that \(E \) is nuclear? The answer is in general negative. We give a counterexample. The following result is well-known, see Schwartz [16].

Lemma 7. Let \(G, F \) be Banach spaces and \(\psi: G \rightarrow F \) be a continuous linear operator. Let \(\psi' \) be the adjoint of \(\psi \) and \(0 < r < \infty \). Suppose that \(\psi' \) is \(r \)-summing. Then for every Gaussian cylinder set measure \(\mu \) on \(F' \), the image \(\psi' (\mu) \) is \(\sigma(G', G) \)-Radon.

Example. Let \(D_j = (n^{-(l/2)^{r_j}})_{l=1}^\infty : \ell_1 \rightarrow \ell_1 \) be the diagonal operator given by
\[
D_j \left((x_n)\right) = (n^{-(l/2)^{r_j}} x_n) = (x_n) \in \ell_1.
\]
Let \(E \) be the projective limit of \(\{\ell_1, D_j\}_{j=1}^\infty \). Explicitly, \(E \) is given by
\[
E = \left\{(x_n) \in \mathbb{R}^\infty : \sum_{n=1}^\infty n^{-(l/2)^{r_j}} |x_n| < \infty \text{ for each } j \right\}.
\]
Let \(E_j = \{(x_n) : |(x_n)_j| = \sum_n n^{-l(2)^{r_j}} |x_n| < \infty \} \) with seminorm \(| \cdot |_j \). Then we have \(E = \cap_j E_j \) and
Then the dual E' is the inductive limit of $\{\ell_\nu, D_j\}$, where $D_j: \ell_\nu \to \ell_\nu$ be $D_j((x_n)) = (n^{-1/2} + k \cdot x_n)$. For every k, the composition $D_k \circ D_{k-1} \cdots \circ D_1: \ell_\nu \to \ell_\nu$ is the diagonal operator $(n^{-1/2+k/2})$, which is not 2-summing for every k. Remark that the diagonal operator $A = (a_n): \ell_\nu \to \ell_\nu$ (or into ℓ_ν is r-summing if and only if $(a_n) \in \ell_r$. Thus E is not nuclear. We remark that each D_j is 2r+2-summing since

$$\sum_{n=1}^{\infty} (n^{-1/2+k})^{2/r^2} = \sum_{n=1}^{\infty} n^{-2} < \infty.$$

By Lemma 7, for each continuous Gaussian cylinder set measure on E' is σ-additive on E'_{r+1} since the natural injection $t_{r+1}: E' \to E'_{r+1}$ is 2r+2-summing. Hence each continuous Gaussian cylinder set measure on E' is also $\sigma(E', E)$-Radon.

Remark 3. In the above example, D_j is in fact defined on ℓ_2^{r+1} into ℓ_2^{r+2} which is also 2r+2-summing. And the composition $D_k \circ D_{k-1} \cdots \circ D_1: \ell_4 \to \ell_2^{r+2}$ is not 2-summing. This shows that, in Theorem 2, we can not relax the condition “$E'(U_a)$ is of cotyple q” by “$E'(U_a)$ is of finite cotype”. In Theorem 2, q must be uniform for every E_a.

References

