
Publ. RIMS, Kyoto Univ.
30 (1994), 695-727

Nonnormal del Pezzo Surfaces
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Abstract
This paper studies reduced, connected, Gorenstein surfaces with ample-^", assumed to be reducible or

nonnormal. The normalisation is a union of one or more standard surfaces (scrolls and Veronese surfaces),
marked with a conic as double locus. The question is how to glue these together to get a Gorenstein scheme.
In characteristic 0, the results amount to a classification of projective surfaces in the style of the 1880s.
However, the methods involve a study of the dualising sheaf of a nonnormal variety in terms of Rosenlicht
differentials, and there is a subtle pathology in characteristic p due to Mori and S. Goto.

§0. Introduction

0.1 Throughout this paper, a del Pezzo surface is by definition a connected,
2-dimensional, projective ^-scheme X, ^(1) that is Gorenstein and anticanonically
polarised; in other words, X is Cohen-Macaulay, and the dualising sheaf is invertible
and antiample: cox = &x(-l). For example, X = X3 c P3 an arbitrary hypersurface of
degree 3.

Under extra conditions, del Pezzo surfaces are interesting for lots of reasons: for
example, as tangent cones to index 1 canonical 3-fold singularities [C3-f, 2.13]; by the
"Serre correspondence", they could occur as the subschemes in P4 corresponding to
sections of unstable vector bundles over P4 (the nonexistence proof of [Grauert and
Schneider] has a gap). The main motivation for the present study was [Mori,
Proposition 3.9], where the statement that an irreducible del Pezzo surface X has
X ( ^ x ) ^ 0 plays an essential role; I reprove here, in particular, Mori's statement that
an irreducible del Pezzo surface in characteristic 0 has #(^) = 1 (see Corollary 4.10).
This was originally proved by S. Mori and S. Goto (unpublished), and Mori was also
kind enough to correct an imbecility in my proof.

0.2 I assume throughout that X is reduced, but either reducible or (irreducible
and) nonnormal; TT. F — > X is the normalisation. Y has r > Icomponents, and is
marked by an effective Weil divisor C, scheme-theoretically defined by the conductor
ideal ICY = &Y c ^; as a set, C is the codimension 1 double locus of n. By sub-
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adjunction (Proposition 2.3), it's well known that the canonical Weil divisor of Fis
KY =

-KY = ri&x(l) + C = (ample) + (effective).

It's easy to classify the components C c Fwith this property (Theorem 1.1) in terms of
scrolls and P2 , and in particular each connected component of C,^(l) must be
isomorphic to a plane conic.

Write D c X for the subscheme defined by the conductor ideal

IDtX =& = Ann(;r, 0Y/0X) c ^,

and (p:C-*D for the restriction of n. Thus X is obtained by glueing together one or
more components Cl c Yt along a morphism (p:C = UCl — > D . The Cohen-Macaulay
or S2 condition for X is easy: (p &C/&D must have no sections supported at points
(Proposition 2.2), so that the glueing is entirely determined in codimension 1. The
combinatorics of the glueing also turns out to be straightforward (see 1 .3 and Lemma
4.1); in particular if Y is reducible then all the conies Cl are isomorphic.

03 What makes a local ring Gorenstein? We've not heard the last of this ques-
tion. The technical crux of this paper is Theorem 2.6, which characterises the pre-
dualising sheaf cox of a nonnormal scheme X as the sheaf of Rosenlicht differentials,
that is, rational sections of the predualising sheaf 0)Y of the normalisation Fwith poles
along C, and whose residues along C have zero trace on the generic fibres of
(p: C — > D . This gives the necessary and sufficient conditions of Corollary 2.8 on
C d F and (p:C-^D for X to be Gorenstein, for example: coY(C) is an invertible
^y -module, cox is Gorenstein in codimension 1 and 0)c has an ^.-basis
s e ker{Trc/D: (p, coc —> COD } . In codimension 1, where n>0Y localised at a prime
divisor of X is a product of DVRs , the condition for &x c nt&Y to be Gorenstein
translates into an interesting question on subrings &D "half-filling" a product
<p>&c = II A of Artinian quotients of DVRs (see 3.4-5). This result may be useful in
other contexts, since Gorenstein in codimension 1 is the essential prerequisite for
working with conditions such as log canonical singularities on nonnormal schemes.
Even in the classic case of curves over an algebraically closed field (Rosenlicht, Serre),
it gives rise to lots of unsolved problems, and my elementary results Theorem 3.7 may
be new even in this case.

The material on duality and Rosenlicht differentials in §§2-3 is written up in much
more generality than needed for the geometry of del Pezzo surfaces; it is part of a con-
tinuing attempt to write up Grothendieck duality in an absolutely elementary way (see
also [Reid]). §3 is a laundry job on [Serre, Ch. IV, §11]. (I hope that's not lese-
majeste.) I haven't tried to find historically correct attributions for these ideas.

0.4 Working with the Gorenstein condition is easy if all the Cl are reduced, when
Xhas ordinary double points in codimension 1 (see Theorem 3.7, (I) and 4.2-3). But in
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the nonreduced case, the question is quite subtle, and the answer depends on char k. In
any characteristic, Sing X = F is an irreducible curve of degree 1 for the polarisation,
and by Theorem 3.7, (II) the transverse singularity of X along the generic point of F is
a cusp (y2 = x3) if r = 1, a tacnode (y2 = x2y) if r = 2 , and r concurrent lines in A('"1}

with no (r-1) in a hyperplane for r>3 (if r = 3, a plane ordinary triple point
xy(x - y) = 0). If char k = 0 then F = P1 and £>, ^ (1) is isomorphic to a first order
neighbourhood of P1 in Pr, with the morphism q>:\lCl —> D linear on each
component (see Proposition 4.9); this is essentially equivalent to the main result
%(0X) = 1 (see Corollary 4.10, (I)). However, in characteristicp the curve F can have
"wild" cusps (see 4.4, 4.7 and 4.11-12), essentially because the unknown subring
@D c (p*0c is specified by a derivation (Proposition 3.9), and dxp = 0 . Any number of
wild cusps can occur, and x(@x) can t>e arbitrarily negative. Thus for nonnormal
varieties in characteristic p, Gorenstein is a weaker condition than in characteristic 0, a
new kind of pathology discovered by Mori and Goto.

0.5 It follows easily that if char k = 0 then Hl(X,0x(n)) = Q for all n, in
particular #(^) = 1, and a general element *0 e HQ(X,(®x(l)) is a non-zerodivisor for
$x (see Corollary 4.10, (I)); well-known arguments then show (Corollary 4.10, (II))
that X has the usual projective embedding properties of nonsingular del Pezzo surfaces
or curves of genus 1: @x (1) is very ample if deg X > 3, the image is ideal-theoretically
an intersection of quadrics if deg X > 4, and X is a weighted hypersurface or complete
intersection X6 c P(12,2,3), X4 c P(13,2), X3 c P3 or X22 c P4 if deg X < 4. See
1.3-4 for examples.

However, if char k = p then H l ( X , &x) can be arbitrarily large; for an irreducible
surface X this happens only when X has a curve F of cusps, and F itself has "wild"
cusps. In particular, this cannot happen in characteristic > 5 if X has only hypersurface
singularities (see 4.4 and 4.7); I guess that a similar conclusion holds under other
reasonable conditions, e.g., X lifts to characteristic p2.

0.6 Conjecture,, Assume that char k = 0, and that X is \-connected but not
reduced', thenX, ^(1) isprojectively Cohen-Macaulay (that is, H'(X,^x(n)) = 0 for
i = I and all n, and for i = 2 and n > 0), and a general element XQ e HQ(X,<fx(l)) is
(^-regular, so all the projective embedding properties hold as above. Finding the
correct notion of 1-connected in general is part of the problem; for example, if X is
locally a divisor in a smooth 3-fold and X = A + B then ^A(—B) is an invertible sheaf,
and 1-connected means that deg^ ^A(—B) < 0. By adjunction, COA = cox (8) fA(-B),
so that, as in the reduced case, this amounts to j^"1 > (ample Carrier).

0.7 The great debate. Rend, del circolo matematico di Palermo 1 (1887),
p. 382 records the admission to the circle of dottore Pasquale del Pezzo, marchese di
Campodisola. It would be interesting to know why Corrado Segre writing in the same
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volume (p. 218, 220, 221), along with every subsequent Italian writer, spells the
Marquis' name incorrectly with a capital D.

0.8 Acknowledgements. I thank S. Mori for his help, and for encouraging me
to write up my proof, and M. Miyanishi whose 1981 seminars on [Mori] introduced me
to the problem (and to much else besides). The initial version of this paper was
intended for the proceedings of the wonderful Kinosaki conference in Dec 1981, and I
apologise for the delay in writing up the talk; however, as with other products
consumed at Kinosaki, the material undoubtedly improves on maturing for several
years. I'm very grateful to S. Mori and K. Saito for inviting me to Japan, and to RIMS,
Kyoto Univ. for employing me during 1989-1990, when this paper was written.
J. Kollar and N. Shepherd-Barron helped correct an error in the adjunction formula of
Theorem 2.12. Exercise 4.12 answers a question raised by Shepherd-Barron and Kollar.
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§1. The Normalised Variety C c Y

In (1.1-2), /denotes one component of the normalisation of X. As explained in
Theorem 2.3, it follows from subadjunction that -KY = H + C, where H = ^(1) is an
ample Carrier divisor and C > 0 an effective Weil divisor. I tabulate the information on
C c 7 in the following form, to enable the many readers familiar with the result to
skip to the next section.

1.1 Theorem. Pairs Cd Y are listed as follows:

Case

(a)

(b)

(c)

Y,<%(\)

P2 ,^p2(l)

P2,^p2(2)

F^.oA
fora>2

degree (^x(l))2

1

4

a

Class of C

<^p2 (2), that is,
plane conic

^(D

2A, that is,
2 generators,

or if a = 2 only:

Nature of C

(al) smooth conic
(a2) line pair
(a3) double line
smooth conic

(cl) line pair
(c2) double line
(cO) smooth conic
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(d)

(e)

Ffl;1,(0 + l)A + £
f or a > 0

Ffl;2,(a + 2)A + B

a + 2

a + 4

A + £
or if a < 1 only:

5

(dl) line pair
(dO) smooth conic
smooth conic

Here Fa is the usual C. Segre-P. del Pezzo scroll [Segre, del Pezzo 1], A and B its fibre
and negative section; and

is the embedded scroll ¥a.k cPG+2fc+1 of degree a + 2k, with negative section B of
degree k, except for k - 0, when Ffl;0 is the cone over a rational normal curve,
polarised by ^(1) = &(aA) . The two exceptional cases (cO) and (dO) with a = 0 both
correspond to a quadric of P3 with a smooth hyperplane section. Note that a double
generator of a cone is isomorphic to a double line in P2 , for example because it is a
projective cone over a tangent vector k[e]/(£2 ) , or because coc = &c(-l) .

1.2 Proof. This theorem is presumably traditional, but Mori theory gives an amaz-
ingly clean proof. I do a minimal resolution /: S — > Y , set L = f H = f\-KY - C)
and C' = f'C (birational transform); then L is a nef and big Cartier divisor, having
positive intersection number with every component of C' . Write

clearly Z is a Cartier divisor supported on the exceptional locus of /, and
( Ks + C')F > 0 for every exceptional curve F , hence Z > 0. Now Ks + L = -C' - Z is
not nef, so that by the theorem on the cone [Mori, 1 .4 and 2.1] it follows that S has an
extremal rational curve /with (Ks + L)/ < 0 . But / cannot be a (-l)-curve, since a
(-l)-curve m satisfies Ksm = -1, Lm > 0; therefore either S = P2 and deg L < 2 or 5 is
a P1 -bundle and degL < 1 on the fibres. The theorem follows on sorting out the last
possibility. Q.E.D.

1.3 Reassembling the pieces. A nonnormal del Pezzo surface X is obtained by
glueing together a number r > 1 of the building blocks Cl e Yl of Theorem 1.1. How to
ensure that X is Gorenstein is the main theme of §§2-4; since &Y(-KY - C) = ^K(l) is
invertible, Corollary 2.8 reduces this to a question on the glueing morphism

Here I present some classes of examples of the finished product X in the spirit of
the projective geometry of the 1880s. 1 .4 deals with cases specific to deg X < 2, when
&x(l) is not very ample.

(A) Project Ffl.2 c P"+5 to Pfl+4 from a point P in the plane of the conic B but not
on #; the projection has a line /of ordinary double points. The same construction for
the Veronese surface (case (b) of the theorem) is of course the well-known Bordello
surface F(^[4] e P4 of [Semple and Roth, p. 132], which is a complete intersection of
two quadrics with a double line.
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Note that in characteristic 2, two cases occur, since all tangents to a plane conic
pass through a point Q\ the projection (p:B —> / from Q is inseparable, whereas the
projection from any other point not on B is separable.

(B) Let Ct d Yt be any two elements of (al, b, cO, dO, e), not both from (al); that
is, the Cl are smooth conies, and not both of the Y[ are planes. Embed Yl and Y2 into
a common projective space P" such that the subspaces spanned by Y} and Y2 intersect
in the planes of the Cl, and the Ct are identified.

(Cj) Let C c Y be an element of (cl) or (dl) of degree > 3, so that C is a line pair
spanning a plane IT of the projective space P" containing Y with n > 4; make a linear
projection Y -> X c P""1 from a point P e II \ C. In case (cl), X is the projective cone
over a nodal rational curve of degree > 3. This case can be viewed as the degenerate
case r = 1 of the following (C ;) .

(Cr) Let Cl c Yl be any r > 2 elements of (a2, cl, dl), not both from (a2) if r = 2;
that is, the C, are line pairs, and not both the Yl are planes if r = 2. Embed the Yt into
a common projective space as a cycle of surfaces meeting along lines of Ct, with a
common vertex.

In other words, name the lines of the pair Ct as C, = / fu^f ' (the subscripts are
cyclic, so / = r + 1 counts as i = 1). In P", choose a vertex P and r linearly independent
lines mt through P, and embed the Yt so that ^ is glued to m^, and /^ to ml, with

the subspaces spanned by Yt and U7*i Y} intersecting only in the plane of mM and m-,

so that they are as linearly independent as possible. The superfluous notation <^"= /l+l

will be convenient later, so that the two lines of C lying above ml are // and S/'.
(Dj) The projective cone over a cuspidal rational curve of degree > 3. This can be

viewed as a degenerate case of the following (Dr).

(Dr) Let Ct c Yt be any r > 2 elements of (a3, c2), not both from (a3) if r = 2;
that is, the Cl are double lines, and not both the Y, are planes if r = 2. Embed the Yt

into a common projective space meeting along a line, with a single nondegenerate
linear dependence relation between the r planes of Ct.

In other words, in P', choose a line /and r planes nt through / such that any

(r-1) of them span the same Pr. Embed the Yi so that Cl is identified with the

double line 21 c nt, and so that the subspaces spanned by Yi and U7*/ Fy intersect in

nt only.

1,4 Degree 1 and 2» I describe briefly the del Pezzo surfaces of degree 1 and 2,
leaving most of the computations to the reader; a similar description of surfaces of
degree 3,4 and 5 by equations is also possible, and is an interesting exercise.

Consider first degree 1. Let Y = P2 with coordinates u{,u2,u3 and C:(g = 0),
where

q = u2
2 - u{u3, u2

2 - u\ or u2
2.
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It's easy to see that setting x{=ul9 x2=u3, y = q and z = u2q defines a birational

morphism n: Y -> X6 c P(13,2,3), with image X = X6 the sextic hypersurface defined
by

z2 =y3 + xlx2y
2, Z2=y3+xl

2y2 or z2=y3.

In characteristic * 2, the map (p: C -> D = P l : ( y = z = 0) is the quotient by the Z/2
action w2 H> — w2 . In the second and third case, X is a weighted cone over a nodal or
cuspidal rational curve, defined by a polarisation of degree 1 .

In characteristic 2, the same equations still define a normalisation, but in the first
case (p: C-» D is an inseparable cover of P1 by a nonsingular conic; a separable
example is provided by the normalisation of z2 + x{ yz = y3 + x2

2y2 .
It's interesting to observe that whereas for del Pezzo surfaces with isolated

singularities, those of degree 1 are by far the most complicated, in the nonnormal case
those of degree 1 are very few, and simple to describe.

Now for degree 2. It's obvious that if (q = q2(xl,x2,x3) = 0) d P2 is a conic then
the weighted quartic X = X4:(y

2 =q2)d P(13,2) is a del Pezzo surface of degree 2,
consisting of 2 copies of Y = P2 glued along the conic (q = 0).

If Fis irreducible of degree 2, then from the table of Theorem 1.1 it must be a
quadric of P3, with C a hyperplane section. Consider, in characteristic * 2, the plane
quartics /2q with a double line /and q a conic in the following 5 case: a nonsingular
conic not tangent to 4 a nonsingular conic tangent to /, a line pair with vertex not on /'
a line pair with vertex on /but not containing /? or a line pair with /as a component.
Let X = X4:(y

2 = /2#)cP(l3, 2) be the double cover of P2 branched in /V It's
easy to see in the 5 case that the normalisation of X is a surface C c Y of type (dO, dl ,
cO,cl,c2).

1.5 Main theorem. Under the "tame" assumption of 4.1 , the examples of 1 .3-4
provide a complete classification of nonnormal del Pezzo surfaces.

The "tame" condition covers all cases with chark = 0 , or C reduced, or char A: > 5

x}and X locally a divisor in a nonsingular 3-fold; it is equivalent to Hl(X,^x} - 0 or
= l. See 4.4 and 4.1 1-12 for counterexamples in the remaining cases.

§2. Normalisation and Dualising Sheaves

2.0 In this section X is a purely ^-dimensional variety, and n\ Y — > X its normali-
sation. More generally X could be a reduced Noetherian scheme under the assumptions
that the normalisation n\ K— > X is finite and Y has a dualising complex. The most
general category for the dualising complex has never been definitively established, but,
for example, if Fis contained in a Gorenstein ambient scheme then dimensions and
codimensions are well defined ("universally catenary"), and Fhas a dualising com-
plex, whose top cohomology is the predualising sheaf COY .
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The aim is to use Grothendieck duality to describe CDY in terms of a>x and vice
versa. Note that all the sheaves here are coherent ^-modules.

2.1 Write ^ = Pxrn(n>0Y I ffx) c @x and ^ = W-@Yc:@Y for the conductor of
the normalisation, and let DaX and C c Y be the subschemas they define. Then it
follows from the exact diagram

II n n w
0 -> K^ C n>0Y -> <j^c -> 0

that

n,#Y/#x = <t#c/#D and g"

Note that by definition of W it follows that n* &Yl&x is a faithful ^-module.

All this just means that X is the ringed space constructed by glueing a normal
variety 7 along a finite morphism <p:C—> D\ that is, X is the topological space Y
modulo the equivalence defined by cp , and

In general, starting from Y and (p, the resulting ringed space is not necessarily a
quasiprojective scheme (for example, the union of exceptional surfaces in Hironaka's
famous counterexample, or the fibre bundle of cuspidal cubic curves of [Horrocks]); it
is always an algebraic space by [Artin], Theorem 6.1 . In my case this is not a problem,
since cox~

l will be ample.

2.2 Proposition. X satisfies S2 at a scheme-theoretic point PeX of codimen-
sion (height) > 2 if and only if every rational section of &x regular along every
irreducible codimension 1 subscheme through P is regular at P\ or, in other words, for
every scheme-theoretic point Q e X of codimension > 2 such that P e V(Q) is in the
closure ofQ, the &x-submodule &x c:&Y does not have a Q-primary component, that
is,

Proof. The first sentence is standard, see for example [YPG, 3.17-18]; since Fis
normal, a rational section of ^ regular along every irreducible codimension 1 sub-
scheme through P extends as a regular section of n, &y , so that the Q-primary part of
n, tfyl^x is exactly the obstruction to depth0^ > 2 .

The proposition means the following: think of X as constructed by glueing a nor-
mal ^-dimensional variety Y along a finite morphism (p: C — > D . Then for X to satisfy
S2 , the glueing must all be forced by what happens in codimension 1; that is, C and D
have pure codimension 1 , and ^ c n^Y is determined by the local subrings
&Dr c ((p &c)r at the generic point of each component F of D, so that a given
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/ G n*&Y belongs to @x if and only if its image / G (p*&c belongs to &Dr at the
generic point of each P.

Note that if C is reduced and cp\ C — > D separable, it follows that the glueing is
entirely geometric in nature, that is, ^ consists of all functions on Y constant on the
general geometric fibres of cp . See 4.2-3 for use of these ideas.

The S2 condition (saturated in codimension 1, reflexive, divisorial, etc.) is dis-
cussed for example in [YPG, 3.17-18] or in [Kollar], 2.2. 1 make constant use of the
fact that if ^ is S2 then ^ c n*&Y *s an intersection of codimension 1 primary com-
ponents, and hence so is W = ̂ ^(n,^Y^x). Thus each of ^x/^ , n,@Yl& and
ft* ^Y/^X are Si or torsion-free as ^-modules. This condition can be interpreted as
saying that &D is normal under ^ , that is, rational sections of &D in <p*^ are already
in &D . Similar remarks apply to the duals G)D , (p*ct)c and ker Trc/D (see Remark 2.9),
so that many questions reduce to the stalks of these sheaves at generic points of D.

The S2isation or saturation of a coherent sheaf ^on a scheme Z is the unique
sheaf y with an ^ -linear morphism & — > &' such that &~r is S2 . This is the
same thing as the reflexive hull or double dual of ^ if Z is a normal variety.

2.3 Proposition ("Subadjunction", compare [Mumford]). COY is determined by
Q)x and the conductor as follows:

(the n^Y -module structure is given by multiplication in the first entry of the
The right-hand side is the biggest n*&Y -module contained in cox . It coincides with the
S2isation of the &Y -module & • O)x ifX is Gorenstein in codimension 1 (in fact even
without this hypothesis, see 3.6, Step 3).

In particular, ifX satisfies S2 and cox is invertible then

nMY = ̂ -(Ox and n*cox =^/^(W,Q)^) = (OY(C\

where (OY(C) is the S2isation of 0)Y ® &Y(C), that is, the divisorial sheaf on Y of
rational sections of (OY with poles along C.

2.4 Proof. The adjunction formula in the first sentence is standard use of duality
(see for example Proposition 2.11 of the Appendix for the case of projective
fc-schemes). A homomorphism a: n*.&Y — > cox is of course determined by a(l) , so that

%**, (n*&Y,cox) = [s G cox\fs G cox for all / G n^Y],

which is equal to & • cox on the locus where cox is locally free. The rest is easy: ^
satisfies S2 by the above, and COY by [C3-f, App. to §1 , Theorem 7]; and two coherent
sheaves satisfying 52 that coincide in codimension 1 are equal. Q.E.D.

2.5 Etymology. The name subadjunction is explained as follows: for an irre-
ducible plane curve X of degree d, the canonical class of the resolution or normalisa-
tion Y is the sheaf of ^-modules generated by ^ • &(d - 3) , and the conductor ideal
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*$? itself is determined in terms of adjoint forms, that is, forms vanishing to order m-l
at every m-fold point of X, including infinitely near points (this goes back to Brill and
Noether around 1870, and is also the subject in the 1950s of Gorenstein's thesis and
sections in Kodaira's papers on surfaces). In higher dimension, the canonical class and
plurigenera of the resolution of an irreducible hypersurface with arbitrary singularities
correspond to adjunction ideals that can't be described in such simple terms; however,
by the proposition, the canonical class of the normalisation is determined by the con-
ductor ideal, given exactly as in the curve case by conditions in codimension 1, the
subadjunction conditions.

Subadjunction played a foundational role in the dark ages before Kahler diff-
erentials and the Grothendieck dualising sheaf: the canonical class of a nonsingular
projective variety V was often defined in terms of subadjunction applied to a generic
projection of V as hypersurface. It's clear from Enriques' discussion of subadjunction
and adjunction for singular surfaces in 3-spaces in [Enriques, Ch. Ill, §§6-7] that he
understood pretty well the case of ordinary multiple points, and the difficulties of
working with worse isolated singularities; but it's curious that he does not seem to
know Du Val's work, the most substantial result known at the time.

2 06 The next result solves the converse problem of determining cox in terms of F
and cp: C -> D.

Theorem,, Assume that X is S2 , so that in particular C and D have pure dimension
n - 1 . Then applying the cohomological d-functor %?&t^ (-, Q)x ) to the exact diagram
(*) at the start of §2 gives the commutative diagram with exact rows

0 — > cox — * n,coY(C) —* ^x(^D9cox) —^ 0

u ii TTr (**)
0 — -> n.a>Y — > n Q)Y(C) Res > %*,lx (<p,^c, cox) — > 0

Moreover,

d)D = S2isation of g^/J (&D,a)x)

<prft)c = S2isation of g ,̂1 (<p*0c, cox);

the S2 isation does nothing ifX is Cohen- Macaulay, so that

Q)D = ^! (ffD, cox) and (p+G)c = %&** (<p*#c> ^x) •

In more detail, this means the following:
(1) The composite of the surjection in the exact sequence

0— » n<G) — > 7C,o)(C)->^- ((>0,CQ

and the S2isation %vs* (<p*&c,G)x) c (p^Q)c is a canonically defined "Poincare

residue" map Res = Res YC: 6)Y(C)^> coc.
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(2) The trace map Tr = rYrc/D:(pfcoc — > 0)D , which is canonically defined and sur-

jective,fits into a diagram

S*t(0,(Q) c: Q)

(3) /« these terms,

cox =

2.7 Proof. This all follows formally from the adjunction properties of predual-
ising sheaves (discussed in the appendix). First of all, clearly J%#/K(&D, cox) =
<%%/n(&c, Q)x) = 0 since G)x is torsion-free; %wnf (0X, cox} = Q)x is obvious, and sub-
adjunction gives ^wn, (7Ci0Y9G)x) = 7C*(DY. Next,

This holds because &= n^Y is a n*@Y -module, so any &x -linear homomorphism
from it can only map into a TF^-submodule of 0)x, that is, into n*(DY\ thus the
middle term is

Next, ^-/^ (^x,o)x) = 0 follows from basic properties of &/S, since the stalks of

&x are projective. As just explained, the two functors 3%™, (-,fl)x) and

%&mn^ (-, 7Ttfi)y ) coincide on ^^ -modules, so that the fact that the stalks of n^Y

are projective over n^Y implies that also %&t) (7t*0Y,a)x) = 0.

Finally, the adjunction formula Theorem 2.12 of the Appendix gives that COD is the
52isationof g^1 (0D,a)x) and (p*coc that of ^) (<p^,0}x).

Therefore, applying &/^ (-, cox) to (*) gives the diagram (**) of the theorem.

Q.E.D.

2.8 Corollary. Equivalent conditions:
(i) The predualising sheaf 0)x is an invertible &x -module.
(ii) G)x is invertible in codimension I , and for all P e Y there exists an element

s G ker(Trc/D oResyc):^0)y(C) -> COD such that coY(C) = 0Y • snearP.

(iii) G)x is invertible in codimension 1, COY (C) is invertible, and for all P e C

there exists a basis element s e ker Trc/D:<i^/^ ((p^c,cox) —> <?#/), x (&D,cox) such that

%zs}x((pf&C9G)x) = &c'S near P.

(iv) 0)Y(C) is an invertible ^-module and
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is an invertible ^-module.

Note that when X is Cohen-Macaulay, conditions (iii) and (iv) refer simply to the
kernel of Trc/D: ̂ *ft)c —> Q)D .

Proof, (i) => (ii) or (iv) is clear, since cox=&x-s implies that 0)Y(C) =

n*cox = $y-s by Proposition 2.3, and s e ker(Tr o Res) by Theorem 2.6; and s maps to

an &D -basis of ker Trc/D. (ii) <^> (iii) is clear by the surjectivity of Res in (**), since if

s e coY (C) maps to s = Res s e %&^ ((p^c,cox) then s is an ^-basis of G)Y(C) if and

only if sis an &c -basis of i^^x ((p*&c ,(OX).

(ii) =^ (i) Let Q e X. First suppose that s e ker (Trc/D o ResKC) is an ^,-basis of

G)Y(C) near P for every P lying over 2; required to prove that 0X - s = cox near 2-
This is true after localising at the generic point of a codimension 1 subvariety T c X:
for by assumption, coxr is locally free, and if 5- e mr • coxr then s could not be a basis

of COY (C) above T . The result then follows from the fact that cox is S2 .
By (ii), for each P h-> Q there is an element

sp eker(Trc/D oResrc):^G)y(C)-^ cox

that is an ^ -basis of (OY(C) near P. If the residue field of ^G is infinite, or big
enough compared with the number of P, then a suitable linear combination of the sp

with coefficients in &x Q will be a basis at every P.
It's not hard to deal with the case that ^Q has a finite residue field by making a

finite faithfully flat extension &x Q d &x, Q to increase the residue field, concluding that
cox, is locally free by the above argument, and then using the fact that a finite module
over a local ring which becomes free after a faithfully flat extension was already free
(because free = flat, e.g., [Bourbaki, Cor. II.3.2.5.2]).

(iv) => (i) Outside D and C, obviously 0)x = 0)Y = G)Y(C) ; near D, the exact
diagram (**) can be rewritten

0 — > 7T,ft>y — > Q)x — > kerTrc/D — > 0

ii n n
0 -> n,(oY -> ^G)y(C) -> <^/j (<p^,o>x) -> 0.

The kernel in the top left is cox fl n, CDY = n COY .

Pick an @D -basis s E ker Tr C/D , and s£Q)x mapping to it. I claim that &x • s = (Ox .

Since both &x • s and cox are S2, it's enough to prove this in codimension 1. Now

& • cox d TT. coY by Proposition 2.3, and I will prove in 3.6, Step 3 that equality holds in

codimension 1. Now on the locus where n, (OY = & • cox , I have kerTrc/D

= cox I (& • cox ) = cox ® &D , so that
s bases ker Trc/D => s bases cox

follows from Nakayama's lemma. Q.E.D.
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2.9 Remark. Writing down the trace map Trc/D is an activity that takes place at
the generic point of each component of D, and reduces there to duality for Artinian
local rings. Each of (p*coc and COD is torsion-free, so a subsheaf of its rational sections
(the sheaf made up of direct sums of generic stalks). If F is a component of D, then the
generic stalk &DT is an Artinian local ring, with dualising module Q)DY, and
Tr:<p,fi)cr — » O)Dr is just the ^r-dual of the inclusion 0DT c <p*^r. Thus ker Trc/D

can be described as the subsheaf

ker Trc/D= {5 e (p*coc \ Tr(>r) = 0 e coDr for all T} c (p*coc .

Although Tr C/D has this "birational" description, the condition for ker Tr C/D to be
invertible as an @D -module is nevertheless a delicate biregular question, and under-
standing this in a special case is the main point of §4. A subtle point that causes a lot of
confusion is that Tr CID is only linear over @D ; however, the subring @D is the unknown
in my calculations in §4.

Appendix to §2. Adjunction for a Finite Morphism

2.10 This section is a technical digression. n:Y —> X is a finite morphism of
schemes, not necessarily surjective. By [Hartshorne, Ch. II, Ex. 5.17, (e)], n* identifies
the category of ^-modules on Y with that of ^-modules on X together with an
action of n*&Y ; the map back is the module- to- sheaf construction M \- > M generalised
from affine schemes to affine morphisms. I just say ^-module from now on.

The right adjoint of TT* takes an ^-module & into %&/nf (TT*^,^), made into an
^-module by multiplication in the source by elements of n^\ as written in Holy
Scriptures [Grothendieck-Hakim, Grothendieck-Hartshorne, §4], if i^is the category
of A-modules, and T\^ — > Ab a contra variant functor, then T(M) has a canonical
A-module structure with a e A acting by T(iia), where /J,a is the homothety of multi-
plication by 0; this must be borne in mind throughout. For an ^-module ^ and an
$x -module ^ there is a canonical bifunctorial isomorphism

To use easy characterisations of the predualising sheaf cox I work here only with
quasiprojective ^-schemes. A more sophisticated definition of the dualising complex
makes everything work more generally, somewhat tautologically; but the existence of
the dualising complex is hard in general.

Recall from [Hartshorne, Ch. Ill, §7] that the predualising sheaf (Ox on an
^-dimensional projective scheme X is determined by the following universal mapping
property: there is a ^-linear map "trace" t:Hn(X,ct)x) —> k, and for every coherent
sheaf ^on X, any ^-linear map Hn (X, J^) -» k is induced by a morphism & —> cox ,
so that //"(
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2.11 Proposition ([Hartshorne, Ch. Ill, Ex. 7.2]). Let n\Y -> X be a finite mor-
phism ofprojective k-schemes with dim X = dim Y. Then

ooY=^/Kf (n*0Y,a)x)

and the map 0)Y —> Q)x defined by a h-> a(l) is the trace map for n.

Proof. Let J^be any coherent sheaf on 7; then (omitting the n* for clarity), I get

Hn (Y,&-) = Hn (X, JO A Hom^ (^, cox )

Therefore CDY = ̂ ^ (&Y,G)X) satisfies the universal property of a dualising sheaf on

7. Q.E.D.

2.12 Theorem (Adjunction formula). Let X be a purely n-dimensional quasi-
projective scheme, Q)x a predualising sheaf for X [Hartshorne, Ch. Ill, §7] and
n\ Y —> X a finite morphism, with Y purely of dimension n-r.

(1) Suppose that X is Cohen-Macaulay. Then the predualising sheaf of Y is given
by

(2) Suppose that X is Cohen-Macaulay at every codimension 1 point of Y (this
holds in particular if X satisfies Serre's condition 5^,). Then G)Y is the S2isation
(see 2.2) of ^T ( n«<% , cox ) .

Proof. (1) Suppose X c P^ = P has codimension 5. Then

This 'toxt is the (r + s)th homology sheaf of the complex ^/^ (^J^'), where
cop — > J^" is an injective resolution. But ^ is a sheaf of ^-modules, so that by the
above, I can

I claim that the inner complex ^' = J^/n^ (&x, J^') is essentially an injective
resolution of CDX shifted by s. Indeed, it is easy to see that J^1 injective over ^
implies that ^l - ^^ (^x^

1) is injective as ^-module. Also, because X is
Cohen-Macaulay, the complex J^' has cohomology

fft)y if/ = 5,

0 if i ^ t j .

Thus ^' can be written as a direct sum of two complexes ^ ® ̂ " , where ^ is an
exact complex of injective ^ -modules in degree [0,5] and ^" an injective resolution
of cox starting in degree s. Thus
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g^//p
+* (^ , fl)p ) = g^ (<%,0)x).

(2) follows at once from the fact that COY is 52, and by what I've just said,
coincides with ^^ (^,o)x) in codimension 1. Q.E.D.

2.13 Examples. Here is the well-known case of the theorem with r = 1, and a
counterexample pointed out by Kollar to show that the S2isation is really needed in
Theorem 2.12.

(a) Suppose Y a X is a Cartier divisor; then applying %%-fs to the exact sequence
0 -> <?X(-Y) -*0X-*0Y->Q, gives

0 -> ̂ »(^,G)X) -> 3K*t(&x(-Y\G)x) -> %xt) (^,<wx) -> 0,

that is, g^ (^ , fi)x ) = 6)x (F) / cox - cox (Y) ® ̂ y . Hence if X is S2 then

ft)y=S2isation of gk^(^,0)x) = S2isation of 0)^(7)®^.

(b) Let X be the projective cone over a normally embedded Abelian surface A
and 7 a hypersection through the vertex point O. Then G)x=$x(-Y) and
g^x(^,0)x) = &y by the argument of (a) above. But Fis not normal, so that 0Y is

not 52 ; here COY = & where n\ Y -» Y is the normalisation.

(c) Let Y = Yl + Y2 be Cartier divisors on X as in (a). Then the theorem applies to
the inclusion morphism Yl c Y , giving

G)Y] =^^^(^,fl)y).

It's not hard to evaluate this to be = 0)Y (-Y2 ) ® ̂  .

§3. What Happens In Codimension 1

Duality for finite modules over a local Artinian (0-dimensional) ring is almost as
easy and explicit as for vector spaces over a field. The aim of this section is to apply
this duality to complete the proof of Corollary 2.8, (ii) or (iv) => (i), to translate the
condition for X to be Gorenstein in codimension 1 into a more explicit form, and to
solve this condition in the simplest cases.

Most of the material is copied more or less directly from [Serre, Ch. IV, §11],
although my category is closer to the natural level of generality sought by the true
Bourbakist.

3.1 Notation and assumptions. Except where stated otherwise, I localise
everything throughout §3 at a codimension 1 point of X, that is, at the generic point of
an irreducible codimension 1 locus FaX. Suppose that C<zF localised above
F c X has the decomposition into prime divisors C = £ nEE. Thus &x is a reduced
1 -dimensional local ring, and is a subring of ^ , which is a product of DVRs:
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^ = IIRE» where RE = &YjE is a D VR with local parameter tE.

I suppress n* throughout §3. Write m = mrc:$x for the maximal ideal and
K = k(T) = &xlm for its residue field, the function field of the subscheme F; note that
the residue field k(E) = RE I (tE) of each localisation RE of ^ is a finite extension of
K. The geometric picture of the normalisation is "unzipping" X along its codimension
1 singular locus, and in general the set-theoretic multiple locus of Y —> X can be a
ramified (or even inseparable) cover IIE —> F.

The conductor & has finite colength in $x and ^, and the quotients &D = ̂  / *&
and $c = $y / *& are Artinian rings, with ^ local and $c = IIAE a product of rings of
the form

AE = 0nE=RE/ (tE"E) with nE > 1.

Since &D is Artinian and local, the stalk COD of the dualising sheaf at the generic point
of F is the dualising module of &D, that is, 0)D = Hom^ (^D9kQ) if @D contains a field

kQ such that k 0 c : K i f s L finite extension (hands up those who don't remember how the
^-module structure in the Horn is defined!); and, quite generally, a>D is the injective
hull of the residue field K as ^-module. Thus Horn ̂ (-, &0) in the &0 -algebra case, or

Horn , (-, Q)D) quite generally, is the dualising functor for ^-modules, and I write

M—N to mean M = Horn f (N, CDD ).

In this section the length /(M) of a module M always means its length as an
&D-module, so that, for example, the residue field k(RE) has length
/(&(RE)) = [k(RE):K], and AE in the preceding display has length
/(AE) = nE • [k(RE): K]\ as an A£-module, this has of course a Jordan-Holder compo-
sition series of length only nE defined by the powers of tE, with successive quotients
k(RE\

3.2 Main theoreme In the notation and assumptions o/§2, consider the two
diagrams

&Y(-C) = ( & e ^ c ^ , Oc @ D c ^

and

coY(C) ID cox ID COY coc ^> kerTrc/D z> 0,

the first of which consists of sheaves of &x-modules, and the second of ^-modules,
the corresponding quotients by ^ or Q)Y.

(I) Localised in codimension 1, the aligned c s and z> s correspond to &D -dual
modules

^1^ = ^ ± 0)Y(C)/CDX =COD,

0Y/0>
X=^C/0D -*- cox/Q)Y =kerTrc/D.
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(II) The length of the &D -modules in the top line is < that in the bottom line,
I coY\ and

equality <=> &D = kerTrc/D = cox I 0)Y <=> &x = cox ,

that is, if and only if COX is Gorenstein in codimension 1.

In general (not localising at a codimension 1 point), the first diagram can be taken
to mean duality of reflexive sheaves.

3.3 Remark. In (I), all the equalities are already known from §2, with those on
the left by definition, and those on the right coming from Theorem 2.6, so that the
point is to prove the duality. (II) is the famous inequality n<28 of [Serre, Ch. IV,
§11], where

(here C = £ nEE , with the E prime divisors of Y), and 8 = /(G)X / Q)Y ) ; if n: Y — » X is
the normalisation (resolution) of a singularity P e X of an irreducible projective curve
over an algebraically closed field, then 5 is the genus of the singularity P E X , that is,

8 = 8Pa=h"((Dx)-h
Q(a)Y).

3.4 The proof of the theorem follows closely the arguments of [Serre, Ch. IV,
§11], which are mainly in terms of n: Y — > X , but it's convenient to waste a page of
journal space discussing the following definition, which abstracts away from the
1 -dimensional schemes X and Y, and focuses on the Artinian conductor subschemes D
and C where the magic duality works.

Definition (half-filling of ^). Suppose given a field K, and a number of DVRs
RE, with local parameters tE, whose residue fields k(E) = RE I (tE) are all finite
extensions of K\ let @c = H AE be a product of rings of the form

AE = RE/ (tE
lE ) with nE > 1.

Apart-filling of @c is a subring @D c &c satisfying
(i) @D is a local ring with residue field @D I mD = K\
(ii) 0C I @D is a faithful ^ -module, that is, Ann, (^ / ^D) = 0.

If in addition
(iii) @c I &D = COD as ^-module,

then ^D is a half-filling of ffc.

3.5 Remarks, (a) In practical calculations, the trickiest thing to work with is the
condition that ^D is a subring, since this is nonlinear; see Proposition 3.9 and 4.4 for an
example.
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(b) The local condition (i) means that the image of @D under the composite map
@c ~~ * II RE ~* II KE is the diagonal J^cll^£. This is equivalent to saying that
dim Horn f (&D,K)=l. If K is algebraically closed, it's equivalent to any of the
following: the identity element (!,...,!) 6 ^ is in <^,, but no other idempotent; every
element (/P...,/r) emD has each fE in the maximal ideal tEAE of AE\ every nonunit
of @D is nilpotent.

(c) If Y — > X is a normalisation localised in codimension 1 as at the start of §3, the
conductor subschemes C c F and D c X define a part-filling ^ c= ^ , with (ii) the
definition of the conductor; (iii) will be equivalent to X Gorenstein. (iii) obviously
implies (ii) and also / (&D) = / (&c I &D) . The main point to prove in Theorem 3.2 is
that

(ii) => /(^D) < /(^c / <?D) , and equality =» (iii).

(d) Every part-filling arises as a conductor subscheme for a normalisation
#: F — > X of a reduced Noetherian local scheme X: just take X and F to be Spec of

and

In the purely geometric case, when $D is a K- algebra and K = KE , you can even
assume that each component of Fis = AJ^ , but the more general category also allows
amusing things like reduced divisors on an arithmetic surface with some components
in fibres (characteristic/?) and some horizontal (mixed characteristic). So scheme
theory suggests, for example, glueing together a ring of integers in a number field and a
projective curve over a finite field, constructions which a number theorist may not
immediately think of as natural.

(e) I've forgotten what I wanted to say here. Oh yes, the definition could in
principle be generalised by allowing K and the KE to be finite extensions of a common
subfield kQ , but the extra generality is illusory, e.g., by [Matsumura, Theorem 28.3,
(ii)] in the equal characteristic case.

(f) At cherry blossom time in Kyoto, in connection with the inequality in (II), I
conjectured foolishly that an Artinian ring A having a faithful module M of finite
length should satisfy /(A) < /(M). A counterexample: the ring of In x 2n matrixes
having zero entries except in the top right n x n block, and equal diagonal entries, is
clearly a commutative local fc-algebra of length n2+l having k2" as a faithful module.

3 ,6 I now proceed to prove Theorem 3.2 and other matters of interest in 5 easy
steps. Each step consists of a statement for an abstract part-filling $D c &c , that makes
sense without mention of X and F, then more-or-less trivial consequences for F — > X .

Step 1. ker Tr C/D is the @D-dual of 0C I @D, that is,

0C I ^D— ker{Trc/D:G>c -> COD} = cox I COY.
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is just the restriction from $c to $D , that is, the dual of the inclusion map @jf-+ &c , so

clearly

ker Tr - Hom (& I &,k).

The general case is exactly the same on replacing Hom^o(-,A:0) by Hom^ (-,COD)

throughout. Q.E.D.

Step 2. Therefore S(ffc I &D) = /(ker Trc/D) = /(cox I COY) and the &D-module
ker Trc/D is faithful, that is, Ann^ (ker Trc/D) = 0 ; hence

^ = Ann^ (^y /^) = Ann^ (cox / ct)Y\

Proof. This follows from Step 1, since the dual &D -modules &c I &D and ker Trc/D

have the same length and the same annihilator; and the ^-module structures come
from ffx — »^. Q.E.D

Step 3. For each E, write t'E = (l,...,tE ,...,1) e^; this corresponds to a function

on Ywith zero of order 1 along E, and no zeros along other components. Then for each
E, I claim that

kerTrc/D c z r£ - f i ) c ,

that is, ker Trc/D contains a basis of the localisation COCE = (?CE = AE.

Thus 0)x c: COY(C) contains a local basis of (0Y(C) at the generic point of each E,
that is, an element of G)Y(C) with pole of order exactly nE. Therefore COY(C) is the
S2 isation of &Y - cox ; and COY the S2 isation of & • CQX, so the hypothesis on X can be
omitted in the conclusion of Proposition 2.3. (Note that the last two statements are for
a general variety before localising, but only the local statement in codimension 1
requires proof.)

Proof. Consider the element SE = (Q,...,t'E
E~l ,...,0) e^,. Assuming by contradic-

tion that ker Trc/D cz t'E • (Oc, I prove that

which contradicts Step 2. To do this, I must prove both that multiplication by SE is
zero, and that s'Ee&D. Obviously O ^ ^ e ^ , and the multiplication map
/iv, :@c — > ^ is ^.-linear, therefore ^-linear. The dual ^-linear map coc — > coc

induced by \JLS,E kills t'E-G)c, and therefore by the assumption also
kerTrc/D =Hom^(^c /^D ,cwD ) . Finally, by duality it follows that /^(^c)
= ^ • SE c @D , so that in particular SE e &D . This is the required contradiction.

The remaining assertions follow easily. Q.E.D.
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Step 4. /(^D) < /(ker Trc/D) = /(^fc / ^D) = /(cox I O)Y)\ and if the residue

field has cardinality

card K > number of components E of C,

in particular ifK is infinite, then there exists an inclusion ^)
(-» ker Trc/D = G)x I G)Y .

Proof. For each E, I can pick an element SE e ker Trc/D which is a local basis of

coc at the generic point of E by Step 3 . Under the given condition on the cardinality of
K, it's easy to see that a suitable linear combination s = ^/EsE with fE£&D is a local
basis of G)c at the generic point of every E\ therefore / h-> / • s E 0)c is an injective
map $c — > coc (in fact an isomorphism), so its restriction to @D is also injective.

This proves the inequality /(^) < /(^ /<%>) = /(c0x / COY ) in the case that the

residue field K is infinite. For small K, the inequality (but not the inclusion) reduces
without difficulty to the case of infinite K by the standard trick [Matsumura, p. 114] of
passing to the flat overring &D \- > ^>(;c), which makes the purely transcendental
extension K H> K(x) of the residue field. Q.E.D.

Step 5. The equality /(^) = /(ker Trc/D) = /(o>x / CDY) (or n = 26 in [Serre,
Ch. IV, §1 1]) is a necessary and sufficient condition for &D to be a half -filling of &c ,

or for X to be Gorenstein in codimension 1; dedicated algebraists can find a further
half dozen equivalent conditions in terms of primary decomposition, socles and
honiological algebra.

Proof. kerTrc / D— &CI0D by Step 1, so (iii) in Definition 3.4 implies that
/(^>) = /(ker Trc/D). Conversely, if the lengths are equal, the inclusion
&D<-* ker Trc/D of Step 4 must be an isomorphism, which proves the result if K is big
enough. As before (Corollary 2.8, Proof of (ii) => (i)), to deal with the case of finite
residue field K one has to make a finite faithfully flat extension $x inducing a suffi-
ciently big residue field extension, and argue on a finite module over a local ring which
becomes free after a faithfully flat extension. The last sentence is obvious. Q.E.D.

3.7 The simplest application of these ideas is the description of the codimension 1
behaviour of nonnormal del Pezzo surfaces stated in the introduction. Everything is
still localised at a codimension 1 point of X.

Theorem. (I) Let @C=T[REI (tE"E ) , and assume that nE = 1 for some E. If 0C

has a half-filling &D, then &D = k(T) = K is afield (where Y = Z)red), and &c is either
= K x K , or a quadratic extension field ofK.

That is, ifX is nonnormal and Gorenstein, and C a Y has a reduced component E,
then X has ordinary double points in codimension 1 along F. In characteristic 2, this
includes inseparable ordinary double points , that is, the quadratic extension may be an



NONNORMAL DEL PEZZO SURFACES 715

inseparable cover E —> F, in which case every geometric transverse section of the
singularity of X along F is a cusp; compare 1.3, (A).

(II) Assume that @C=T[RE I ( t E
2 ) , with all the nE = 2, and that REl(tE)

= k(E) = K for each E; write TE = (tE)l (tE
2)c: RE I ( t E

2 ) for the cotangent space of
RE, a l-dimensional K-vector space. Let &D a &c be a half-filling. Then mD d £ TE is
a K-vector subspace of codimension 1, and if there are > 2 components E, it involves
every summand:

mD <£
E'*E

That is (for varieties over a field, for simplicity), suppose that X is nonnormal and
Gorenstein, and that every component E has multiplicity 2 in C, and maps birationally
to F = Dred c SingX. Then the transverse singularity of X along F is a cusp (y2 = x3)
i f r = I, a tacnode (y2 = x2y) ifr = 2, and r concurrent lines in A(r~l) with no (r -1) in
a hyperplane for r > 3.

In (II), I assume that the residue field extensions are trivial RE I tE - k(E) = K
mainly out of spinelessness; this case is sufficient for my del Pezzo surfaces, since by
Theorem 1.1, the only multiple locuses in C are double lines. More generally,
TE - (*E ) / (IE* ) = &(£) and ^D = ker ¥ > where \i/: X TE —> K is a nonzero multiple of
the trace map Trk(E)/K on each piece.

3.8 Proof. (I) The notation ^C=TIAE with AE = RE I (tE'l£) is as above; since X
is nonnormal, £rc£ -[k(E):K] > 2, so that either there's more than one component £,
or a component with nE > 2 or [k(E) :K] > 2.

The dual statement to the local condition dimHom^ (&D,K) - 1 on &D (see 3.5,
(b)) is that its socle

is l-dimensional over K. Assuming &D c @c is a half-filling, ft)D = @c I @D.
If a component £ of C has nE = I then A£ = &(£) c @c is killed by mD; hence

S = I<nE=lk(E) c ^ is a A>vector subspace of the socle of ^ (as an ^-module).
Consider the projection of 5 to 0C / &D. The local condition means that

K if there are no further components;

0 if there are components with nE>2.

Therefore, if there are no further components, 5 contributes

nE=\

to the AT-dimension of the socle, which leads at once to the conclusion (I).
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If there are components with nE > 2 ,1 look for a contradiction. First, S contributes
X ! [k(E): K] < 1 to the dimension of the socle. It follows that S = K, hence &c is of
the form Kx&c,, and by the local condition @D doesn't meet the first factor, so
projects isomorphically to &D c &c.. But /(^) > /(<%, / ^), so &D c ^, is not a
part-filling by 3.6, Step 4; thus &c. I ffD is an unfaithful ^-module. If n e^, kills
&c, I &D then there is a case division:

Subcase n a unit. Then &c, I &D = 0, which gives ^ = Kx K; this certainly
happens, but not under the current case assumption nE > 2.

Subcase nemD. Then n-@c, c ^ and n - j K " = 0 implies at once that
n-0c =n-(Kx&c,)c:$'D, contradicting the assumption that &c I &D is faithful.

(II) Suppose there are r factors so that &c = TlRE I ( t E
2 ) has length 2r. Thus ^

has length r, and by the local condition, @D c ^ maps to the diagonal £ c !!&(£)
with kernel wiD-&D^VLTE of length (r -1). If r =1 there's nothing more to prove.

The dual of the diagonal map of @D c @c to K c Tlk(E) is the inclusion of the
socle of CQD = ̂ C/&D, which is a map K^>(%TE)/mD with each component
nonzero; by duality this is surjective, so that mD c£FE is a codimension one
subspace involving each summand.

The geometric statement about F —> X is easy to see. For example if r = 1 then
C = 2E, there is a morphism (p:2E —> F which is birational when restricted to E, and
0X c ^K is the ring of functions/such that f\2E e ^. That is, Fis pinched along cp to
give a codimension 1 locus of cusps. Q.E.D.

309 Derivations and case (II) of Theorem 3«,7e I now show how a subring
@D e ^c in case (II) of the Theorem 3.7 is specified in practical calculations. Let
n\ Y —> X be a normalisation of a reduced S2 scheme with (p: C —» D the conductor
locus. Suppose that F = Dred is irreducible, and that above its generic point, n\Y -$ X
falls under case (II) of Theorem 3.7.

The glueing map (p: C —> D can be factored as a composite of two maps; let D+

be the variety homeomorphic to D, but with ^ e <pt &c defined by

@D+ = {{ht}e(p ^c | im/z, ek(E) = K is independent of i}

That is, C—> D+ does only the set-theoretic glueing, leaving the r tangent spaces
generically transversal, whereas D^ —> D squashes up a first order disc in r-space over
k ( T ) into a first order disc in (r-l)-space. Geometrically, D+ corresponds to the
"transversalisation" of the nonnormal locus of X, that is, Y -» X+ -> X where X+ has
a multiple curve with r generically transverse branches.

Although this is not very intuitive, it's important to understand that already on the
generic point, D+ —> D contains nontrivial information of a differential nature: for
example, if r = 1 then C = D+, and q> maps a normal field to Cred c C to a vector field
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onD.

Proposition. Under the above assumptions, there exists a (rational) derivation

such that &D = ker A c &D+ .

See 4.4-5 for a much more concrete description in the particular case of interest.

Proof. Write N^ and N2 for the nilpotent kernels of ^D+ -> @D+ and @D -> ^ ;

this gives the exact diagram

0 -> N2 -> 0D -> ^Dred -> 0

n n n"
o -> #! -> ^D+ -> ^D+d -> o

i 4
0 -> ^ /JV 2 -> ^ D + /^ D .

Looking only at generic stalks, the assumptions in Theorem 3.7, (II) give that

and the left-hand side is a 1 -dimensional vector space over k(E).
Now (a) all the above maps are 0D linear; and (b) since N} c ^D+ is an ideal with

square zero, all the sheaves N^N2 and N{ I N2 in the left-hand column have both

^-module and ^-module structures that are compatible. The fact that

A: 0D+ — > (^red )gen is well defined and a derivation follows formally. Q.E.D.

§4. The Glueing Map <p: C -> D and Proof of Theorem 1.5

4.0 The starting point in this section is a disjoint union

of surfaces Cl c Yt taken from the list of Theorem 1.1 (all defined over the same
algebraically closed field). I study the possibilities for glueing Y by a morphism
cp:C — > D to get a connected Gorenstein surface X\ since n'cox = coY(C) = ^(-1), it
will follow automatically that the invertible sheaf cox~

l is ample, so X is a del Pezzo

surface. The main result Theorem 1.5 can be viewed as a classification of nonnormal
del Pezzo surfaces: under extra conditions they are just the surfaces X described in
1.3-4.

A nice simplifying feature is that I hardly need to work with X and Y at all: given
that COY(C) = ̂ (-1) , it follows by Corollary 2.8, iv that X is Gorenstein if and only if



718 MILES REID

ker{Trc/D: (p.coc —> ct)D] is an invertible ^-module. Technically, the main point is to
determine the map Trc/D, in order to verify the conditions on 5 t(p,G)c that it (a)
belongs to ker Tr, and (b) is an ^-basis of ker Tr.

4.1 The first approximation to Theorem 1.5 is a numerical treatment that consid-
ers only the degrees of the curve components of Sing X and C with respect to the polar-
isations ^(1), ^(1), and the nature of X at the generic point. Note that deg F = 1 or 2
doesn't imply automatically that F is isomorphic to a line or conic, since a priori
<fx(l)is not very ample.

Lemma. One of the following holds (compare 1.3-4):
(A) Sing X = F is irreducible with deg F = 1, and C = n~lY c Y a nonsingular conic
with deg (<p: C —> F) =2; in this case Y is irreducible, and X has ordinary double points
in codimension 1 along F. This includes the possibility of inseparable ordinary double
points in characteristic 2, see the note in Theorem 3.7, (I).
(B) Sing X = F is irreducible with deg F = 2; then Y has exactly 2 components Y^Y2,
the curves C} c Yl and C2 d Y2 are nonsingular conies mapping birationally to F, and
X has ordinary double points in codimension 1 along F.
(C,) Sing X = Y is irreducible with deg F = 1 and C = n~lY d Y a line pair, in this
case Y is irreducible, and X has ordinary double points in codimension 1 along F.
(Cr) X = U[=1 X( is a cycle of r>2 components Xt, where Xl and Xi+l meet generi-
cally transversally along a curve Y l with degF^l (the indexes are taken cyclically,
that is, Xr+l = Xj). Each conductor locus Ct d Yl is a line pair Cl = ̂  u ^', whose two
components map birationally to F£_j and Yt.
(D) Sing X = Y is irreducible with deg F = 1, and the conductor locus Cl d Yl in each
component ofYis a double line; in this case X has the singularities in codimension 1
along F described in Theorem 3.7, (II).

Proof. Each Cl is a conic, so is either reduced or a double line. Above a
component F d Sing X, the behaviour of Y —> X is described by Theorem 3.7, (I) if
7t~lY d C is reduced, or Theorem 3.7, (II) if it consists of double lines.

Because the glueing takes place in codimension 1 by Proposition 2.2, in order for
X to be connected, the components of Fmust be joined together along components of
Ct. If C has a nonsingular conic component, then C —> F is either a double cover of a
curve of degree 1, which implies that Fis connected; or two conies covering a curve of
degree 2, which implies that Y has exactly 2 components. This gives cases (A-B). If

say C, = ^ u /['d 7, is a line pair, then <p: C -> D must glue ^' birationally to some
other line, say ^"= /2 c C2 d Y2, and so on, to form a cycle, giving case (C r).

The remaining possibility is that C —> D is made up of r double lines mapping
generically to D <z X as in Theorem 3.7, (II). Q.E.D.
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4.2 Proof of Theorem 1.5 for reduced C. Case (A) is very easy: the conductor
^ e &x defines the reduced curve T at its generic point, hence everywhere. Therefore
D = F . Since C is normal, the form "D normal under C" of the 52 condition discussed
in Proposition 2.2 implies that D is normal, so D = P1 , and (p: C — > D is isomorphic to
a linear projection of a conic to a line.

Case (B) is similar: each of the two components Cp C2 maps birationally to D = F
under <p; so S2 again implies that D is normal, and the glueing just consists of
identifying C^ and C2 by an isomorphism to D.

Case (C): as before, ^ c ^ defines the reduced curve D = LIT, at each generic
point, hence everywhere, so that D is reduced. According to Lemma 4.1, every
component Ft has exactly two line components // and ^" of C mapping birationally
to it. At last I can use the Gorenstein condition of Corollary 2.8, iii to prove something
nontrivial:

4.3 Claim. There is a unique vertex point P eD such that

(p~l P = {nodes of C},

in other words, all the nodes of the Cl , and no other points, map to P.

The point is the following: cp identifies two lines // and /" - /l+l birationally to
Tt , and each of these has a marked point P'e// and Pf'e/t" , namely the nodes of
Ct= tfv // and Cl+l = fl+l u /^ . The claim is that these two points match up under
the identification. Assuming this, it's clear from the S2 condition that the r components
Ff are all normal, and that they define r linearly independent directions in the tangent
space to D at P. This implies Theorem 1 .5 in case (C).

Proof of Claim 4.3. As pointed out in Remark 2.9, the trace map is birational in
nature. The birational identifications of // and /" with F, under (p identifies the 3
generic stalks of the dualising sheaves, Q>/.gen,&/~gm and 0)r gen ; here the subscript gen

denotes the generic stalk, and I omit the secondary subscript / from now on. The
calculation of Trc/D is trivial, namely

Thus (s', 5") ekerTr if and only if s' = -s".

The birational identification of the nonsingular curves ff and /" extends to a
biregular identification. The elements sr e co/t en and s" e 0)/f, en are rational sections

of co/f and ct)/f, , and if 5-' = -s" then obviously the zeros and poles of s' and s" must
match up under the identification. To get a contradiction, suppose that Qr e^7 and
<2" E^" are identified, where Q' = ̂  n ^7eCf is the node and Q" eC(+1 a nonsingular
point. The Gorenstein condition of Corollary 2.8, iii is that ker Tr contains an &c -basis
of coc at each point of C. I will deduce from this that ker Tr has a section (s',s") over
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the generic point of Ff such that s" is regular at Q", but s' has a pole at Q',
contradicting what I just said.

Let (s'9s") e (O/t 0 (O/H be a section of <p*ft)c at the generic point of F,.

First, Q" is not a node, so ^" = C near 2", and in order for (s',s") to be in (p*a)c

near <p(Q"), clearly s" must be regular at Q". But on the other hand, if
Q' = /t n ^'e Ct is the node of Cz, then an ^ -basis of the stalk of coc at Q' is given

by (s,s') where s e co/ (Q') and s' € co/f(Q') are bases; that is, s' must have a pole at

Q'. This completes the contradiction. Q.E.D.

404 The nonreduced case8 I first describe without proof the argument in the most
important case r = I so that the trusting or exhausted reader can skip the rest of the
paper. By Lemma 4.1, in this case C is a double line C = 2/ c P2, and (p: C —» D = F
a morphism whose restriction to the line / = Cred is birational. The S2 condition that

cp* &cl$[. is torsion-free does not imply F nonsingular.
An affine piece of C is (y2 = 0)cA*3,, so that the generic stalk of @c is

k(x) [y]/(y2), and k(T) = k(x); the map (p: C —> F at the generic point corresponds to
an inclusion

), by f)-*f-h9f'y,

where /' = -j- and hv = h9(x) e k(x);

h = h(p can be arbitrary. In other words, generically (p is a "projection" of the double

line C = 2/ back to the reduced line / ~rF; and the projection of a "normal field" to

/ c C defines a derivation / h-> hf of ̂ , that is, a rational vector field on /.

In this situation, it's clear from the S2 condition that / -» F is one-to-one, and
that ^ c &c is the sheaf of all functions of the form / - hf y e &c, where both / and
hf are regular on /; that is,

thus ^V ^ at the poles of /z, so F is nonnormal there. Clearly % = x-hy is a rational
section of @r that bases the function field, k(T) = k(^). One calculates (see 4.8) that in
terms of the natural bases

„ , dx A dy N j
sc = ResA2/c( ^2 •7) e fi)c and

the trace map Trc/D: coc -> 0)D at the generic point of C is

e cok(r) ,

so that (/ + gy) • 5C e ker Tr <=> g = -(

For (/ + gy) • sc to be a basis of 6)c at a point P e C it's necessary and sufficient
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for/, g to be regular and f ( P ) & 0. Now it's easy to see that at P e / , there exists a
unit / 6 &, with (hf)' e ^ if and only if either h is regular at P, or char& = p and h has
a pole at P of order divisible by p (compare the proof of Theorem 4.6). Using the
Gorenstein criterion Corollary 2.8, iii, the results stated in the introduction follow from
this: if char& = 0 then C —> D must be a linear projection of a conic to a line. But in
characteristic p, the rational function h is allowed to have poles of order = np for any
n > I; at such a pole P e / , it's clear that the local ring is of the form

@YP = k[xl\ [I = 0 mod p, or i > p}](0)

(localised at x = 0), so that T = D has a "wild" cusp. Arbitrary poles of this form can
happen, so Hl(0x) can be arbitrarily large. Clearly the local ring of F at P needs p
generators xp and xnp^,..., xnp+p~l, so that this type of singularity cannot occur if F
is contained in a smooth 3-fold and p>5 (or, more generally, if it's given that
dimTpX < char k). In fact it can be checked (see Exercise 4.12) that in the case when
Fis nonsingular,

Jdim TPX = dim TpT = p if p > 3;

[dim TPT = 2, dim TPX = 3 if p = 2.

Thus in this case, X has hypersurface singularities if char/: = 2 or 3.

4.5 In the general case, C = LL=i C, with each Cl a double line C{ = 2< c P2.
Restricting (p defines a birational map <p,: ̂  —> F = Dred =SingX on each of the
reduced curves; I write / for the normalisation of F, so that the <pf define
isomorphisms ^ = / . Now, as in 3.9, let <p+: C —> D+ be the morphism that glues the
Ct to each other along this isomorphism. In other words, D+ is isomorphic to a first
order infinitesimal neighbourhood of / = P1 a Pr+1 , and Cf a D4" are double lines in
r transverse planes through / . Let x be an affine parameter on / and yl a linear form
in the plane of Cl vanishing along ^ .

u

û
« —

Obviously, the generic stalk of &D+ is k(x)[y]/(y)2 , where y is short for
v p . . . , y r . By Proposition 3.9, ̂ =kerA where A: &D+ — > fc(;c) is a rational
derivation. But any derivation A:£(jt)[y] / (v)2 — > £(;t) over & is of the form

where // = -^,

for some a,bl9...,bre k(x) . Theorem 3.7, (II) contains the assertion that bt*0 for
each /; the case a = 0 is most welcome. A change of basis in k(x) multiplies through
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(a,b) by a nonzero element of k(x) .

4,6 I choose coordinates xi , yt on an affine piece of each Ct , where xt , yt are the
pullback of the coordinates jc, yt on D+ ; a function on Ci is of the form ft + g^.
where fi , gf. are rational functions of x . , and from now on I usually omit mention of the
substitution xt f-» ;c corresponding to the (nameless) identification of ^ and / .

Theorem, ker Trc/D contains a basis of (p*Q)c at P e / (compare Corollary 2.8,
iii) /fara/ 0^/3; zf ^/fcj is a unit of ^ p for all i,j, and either each a/bl is regular at P,
or char k = p and a/bt has a pole at P of order divisible by p.

Proof. An element of (p*coc is of the form

J^ d/c A dy
s(f, £) = Z (// + S/y, ) - s , , where s, = ResA2/c ' , '

i=l ' si

is a basis of coc over $c , and / = (/15 . . . , /r), g = (gl9 . . . , gr). The calculation of
Trc/D given in 4.8 below proves that

s(f,g) € ker Trc/D <=> = for all « > 2 , and - = -ft . (1)
^i ^1 V °\ J 1=1

Assuming (1) the result is easy: in order for s(f,g) to base a>c at each Pz lying
over P e / , each /f must be a unit, and gf regular. Therefore b^b- =/,-//, is a unit
for all / , j. And I must be able to solve

of V
IT ="Zft with ft regular and /j a unit. (2)

Suppose that x is a local parameter at P e / , and that a/b{ = xm • u with u a unit. It's
obvious that regular functions gi can be chosen to solve (2) if and only if the left-hand
side is regular. The left-hand side of (2) is the derivative of fl-u-xm, which up to
multiplying by a nonzero constant is mxm~l +higher order terms. This is not regular if
m < 0 and m ^ 0 e k, so that the condition on a/b{ is necessary. When m < 0,1 can
choose /! such that fl is a unit and fl -u-l has a zero of order > -m at P, so that

ViY-p. = mxm~l + regular terms;
b\ )

if also m = 0 e k then this is regular, so I can solve (2) as before. This proves the
theorem, assuming (1).

4*7 Tame. Using the notation of Theorem 4.6, Dred is nonsingular if and only if
Dred = / = D+d under each P e / , which happens if and only if a/bl is regular, so that
x-(a/bl)yl 6 &D is a local parameter. In local terms (also globally, see 4.11), if
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char k = p then a/bt can have poles of order = np an arbitrary multiple of/?; as discus-
sed at the end of 4.4, it's easy to see that in this case the local ring of Dred is
k[xl | [i = Omodp, or i > np}]P , so that it requires p generators.

With n: Y -> X and (p: C -» D as in (0.2), I say that (p: C -> D (or X itself) is tame
if either C is reduced, or C is nonreduced and Dred nonsingular. Tameness is automatic
under any of the following alternative extra assumptions on X:

(i) The double locus C d Y has a reduced component (see Theorem 3.7), (I)).
(ii)char£ = 0.
(iii) charfc = p > 5 and X is locally a divisor in a nonsingular 3-fold, or, more

generally, charfc = p > dim TPX for all P e X .
(iv) C = IJ Ct with each C, a double line and SingX = Dred = P1 (by definition).
(v) ^(1),D is very ample (since then every component of Dred is isomorphic to

P1 or a plane conic).
(vi) Hl(0x) = 0 or x(#x) = l (see Corollary 4.10).

4.8 The calculation of Trc/D:(ptQ)c — > CDD. The unpleasant thing is that Trc/D is
^-linear, but not fc(;c)-linear in general; to calculate it, I introduce new coordinates at
the generic points of C that are rational sections of $D c (p*0c . The whole point is to
write down sections of coc in terms of these new coordinates.

Recall that by Proposition 3.9 and 4.5, @D e &D+ is the subring defined by

So in particular

^ = x-(a/bl)yl

and 77, = v, - (bjbl)yl for i = 2, . . . , r

are rational sections of 0D. I've chosen £ and r\l so that they only mess up C,, and
not Cl for / = 2, . . . , r: the pullback of £ to Cj is ^ = jCj -(a/b{)y}, and to C, is
^ = jc, for / > 2; whereas each 77^ for / > 2 pulls back to yt on C, , to - (bt /bl )y{ on C,
and to 0 on all components Cy with j*i.

I have to translate

*(/,£) = I (/, (*, ) + ft (*, )X) ' *, e 'P^c
1=1

into the new coordinates. For this, first define new generic bases

A2/Ci — -^ - c .
Sl

There's not very much to calculate for the terms with i > 2, since ^ =5; and

/,-(-r,) + ftUi)3',-=/I(5I) + ft(^)3',- The fun comes when i = 1; note that dj^
= (1 + (a/*, yyi ) • d^ + (fl/fc, )dVl . Thus
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•Si =

Now using Vj2 = 0 and the Taylor expansion for f l ( x l ) = fl(^l+(a/bl)yl) gives

(/, (*, ) + «i (*, )y, ) • *, = (/, (£, ) + (a/*, )/'?i + «,y, ) • d + (a/6, XK ) • *f

Therefore,

-<- (3)

Proof of (1). Since § is a rational section of ^, the trace Trc/£> on generic sec-
tions is &(£)-linear. Hence I view the generic stalk of <p*a)c as Homk(^((p^c,k(%)).
The trace is just the restriction to @D of elements of Homk(^((p^c,k(^)), so a generic
section of (p+coc is in the kernel of Trc/D if and only if it kills the elements 1 € @D and
rj. 6 ^ for z > 2, that form a &(£)-basis of (^)gen .

Now making the usual identification of coc with differentials, I get that the element
(/,(^) + ft(^)x-)-< is the function on ^c' taking a^ + b^y^^ into the
residue of the product, that is, into the coefficient agt + bfl e k(£) of yl. Now using (3),
it's easy to see that evaluating s(f,g) on 1^ = {1,..., 1} e (p^c and rjf.

The conditions for Trc/Ds(/,g) = 0 are obtained by setting both of these to 0. This
proves (1) and completes the proof of Theorem 4.6. Q.E.D.

4.9 Proposition. Write /,&f (I) for P1. Then in the notation of 4.5, the structure
sheaf of D+ is isomorphic to &D+ =&/ ® 0J"=1 ̂  (-1) as a sheaf of rings, with the second
summand Nl an ideal of square zero.

Set N2 = ker{^> —> @D }; then N2 has an ^-module structure, and, assuming

that X is Gorenstein, N2 = 0f
r~/ ^ (-1). Suppose in addition that X is tame (see 4.7).

Then as a sheaf of rings &D = @, © 0^ ^ (-1). In other words, D, ̂ (1) is isomorphic

to a first order neighbourhood of P1 in Pr, with the morphism cp: O Cl —> D linear on
i component.

Proof. The first part is easy, since ^+ fits in the locally split exact sequence

-> N{ —> &D+ —» ^ —> 0, with A/\ = 0^ ^ (-1), any two local splittings sl and 5-
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differ by a derivation SitJ =sl-sj : 0, -> N, , and Hl (&#>(&, , ty )) = H1 (^^(Q1, , ty ))

= 0.
The 0D+ or ^ -module structure of AT2 comes from the fact that Nl is nilpotent of

square 0. Consider the projection N{ — > Nl/N2 . By the 52 condition NJN2 is a line
bundle over / , and Nl — > Nl/N2 is the map defined by the bl . Since by Theorem 4.6
the bl/b] are units, it follows that each direct summand ^(-1) of A^ (corresponding

to the y, ) maps isomorphically to Nl/N2 , so that Nl/N2 = 0, (-1) . Thus the kernel

N2 is also a direct sum of copies of ^ (-1) .

In the notation of Theorem 4.6, if any of the a/bt is a unit, then I can choose
£ = x - blyl e ^ d &D+ which maps to a local parameter of ^ ; since I'm assuming
this holds for all P, the exact diagram in 3.9 becomes

0 -^ N2 -^ 0D -> ^ -» 0

n n ii
0 -» N -> ^+ -> -> 0

The splitting of @D as a sheaf of rings follows as before. Q.E.D.

4.10 Corollary. (I) Le£ X be a nonnormal del Pezzo surface. Then

and if this holds, Hl (ffx (n)) = 0 for all n.

(II) Assume that X is tame and write n = deg^ (1) X = (&x (I))
2 . Then 0X (1) is very

ample ifn>3, generated by its HQ ifn = 2, and has a single transverse base point ifn
= 1.

Proof of (I). Obviously hQ(&x) = I and h2(0x) = h°(0x(-l)) = 0 , and therefore in

any case %(&x ) = 1 - hl (&x ) . Also n, &YI&X = 9, ^d^o wnicn §ives

now each C{ is a plane conic, so that %(&Y ) = %(&c ) = l for each Cl e Yt , and hence

Z(^x) = X(&D) - But the conclusion of 4.2-3 and Proposition 4.9 is that in the tame
case D is either a line, a conic, a union of linearly independent lines through a point, or
a first order neighbourhood of P1 in Pr . These all have %(&D) = 1 ; for example, in the

last case, #(^>) = X(^ ) = ^ follows from Proposition 4.9.

N2 =(r-l)^(-l) by Proposition 4.9, so that %(N2) = Q, and hence

Z(<?X) = Z(<?D) = Z(^Dred) ' But if ^DredV <?, thei1 ^(^red) ^ ° ' TllUS

lentto
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The rest of (I) is easy: using @D = ̂ , 0 (r - 1)^ (-1) together with easy arguments
on the CicYl implies that both the maps H0(Y,&Y(n))—»H°(C,#c(n))—»
H°(D, <p*0c I <?D(n)) are surjective for n > 0, so that Hl(0x(ri)) = 0 follows from the
short exact sequence 0 -» &x(n) — > @Y(ri) -» <p* &cl$D(ri) — > 0 . For n < 0, just use
duality.

Proof of (II). First, a similar argument to that just given shows that
H0(#x(l)) — »#°(^(1)); since ^(1) is obviously very ample, sections ^(1) embed

D. Next, if Xis reducible, H0($x(l)) embeds every component of Y. For either Yl is a

plane, and H°(^x(l)) embeds Cl c D , hence also 7.. Or Yi is not a plane, in which
case Ic • 0Y (1) is generated by its HQ , which is a direct summand of H°(ID • ^(1)) .

Finally, if X is irreducible, then TT. 7— »X composed with the rational map
corresponding to ^(1) is just the linear projection of FcP"+1 from a point in the
plane of the conic C but not on C. Q.E.D.

4.11 The wild case. Suppose char& = p. Then in the diagram of 3.9,
N{ /N2 = ̂  (-1) , but 0D+ I&D can be ^ (Np - 1) for any N > 0. For this, just take the

derivation ^+ -» &(jc) given by (/, g) [-> of ' + £ gi ,, where 0 e &(*) is a rational

function having poles of order exactly rijp at any points Pj e /(and zeros anywhere

outside the Py). It's clear from the proof of Corollary 4.10 that the corresponding

surface X will have hl(^x) = N(p-l), so %(0x) = l- N(p-l). Shepherd-Barron

kindly points out that the Picard scheme Pic°X of X is simply N(p - 1) copies of the
additive group scheme Ga: in fact by deformation theory, H2(&x) = 0 implies that

Pic°X is reduced of dimension hl(^x)\ and it can't contain Gm or an Abelian variety,

since then X would have cyclic etale covers of arbitrarily large order, which is absurd
in view of the concrete description of X (in the irreducible case, X is homeomorphic in
the etale topology to its normalisation, a rational surface).

4.12 Exercise, (i) Suppose that char& = p > 3, and that Y is smooth with affine
coordinates (;c,y), such that C : (y2 = 0). In the notation of 4.4, let h = x~np-hQ with
hQ = h0 ( jc) a unit and n>l. Show that the local ring &x p is the localisation at 0 of

k[u, Vj , . . . , vp_j ], where u = xp and vf = xnp+i — ih0x
l~ly for i = 1, . . . , p — 1.

[Hint: ^ consists of polynomials of the form f ( x ) - hf'(x)y + g(x, y) y2 , where f ( x )
and hf'(x) are regular, and g(x, v)is arbitrary. Show that

vtVj - unvi+j = unit x xl+J~2y2 ,

and find a similar trick giving the monomials xl y3 .]

(ii) Take p = 3 in (i). Show that

given by (jc, y) h-» (jc3 , jc3n+1 - h0 v, jc3/z+2 - 2/i0xy)
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is the normalisation of the hypersurface X:(u3n+2 + wvj5 + v\ = 0) c A3 , a surface having

cusps in codimension 1 along the parametrised curve (t3,t3n+l,t3n+2) .
(iii) Similarly, if char£ = 2 then

given by (;c, y) h-> (x2 , *2"+1 + y, xy2 )

w r/ze normalisation of X:(u(u2n+l + v2)2 + w2 =0)c A3, a surface with cusps along
(t2 , t2'^1 , 0) . This corresponds to h = - jr2" • /z0 m 4.4.
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