Oriented \mathscr{Z}_{4} Actions without Stationary Points

By
Tamio Hara*

§ 0. Introduction

Let $\boldsymbol{Z}_{2 k}$ denote the cyclic group of order $2^{k}(k \geqq 2)$. In [8], we have studied the theory $W_{*}\left(\boldsymbol{Z}_{2 k} ; A f\right)$ of almost free $\boldsymbol{Z}_{2 k}$ actions on closed Wall manifolds, i. e., an element $g \in \boldsymbol{Z}_{2 i}$ has no fixed point on the manifolds unless g is 1 or the unique element of order two. When $k=2$, such objects are the stationary point free ("proper") \boldsymbol{Z}_{4} actions and the above theory is denoted by $W_{*}\left(\boldsymbol{Z}_{4} ; p\right)$.

On the other hand let $\Omega_{*}\left(\boldsymbol{Z}_{1} ; p\right)$ be the theory of oriented (orientationpreserving), stationary point free \boldsymbol{Z}_{4} actions, which has been studied in [16]. Letting Ω_{*} be the oriented cobordism ring, then

Theorem (R.E. Stong). For the map $\sigma: \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) \rightarrow \Omega_{*}$ which forgets actions on manifolds, the image $\operatorname{Im}(\sigma)$ is precisely the ideal of classes $\alpha \in \Omega_{*}$ having even Euler characteristic.

This was proved in [16] for arbitrary stationary point free $\boldsymbol{Z}_{2 k}$ actions, but the proof is reduced to the case $k=2$.

In connection with this result, we treat here the restriction map $r ; \Omega_{*}\left(\boldsymbol{Z}_{1} ; p\right)$ $\rightarrow \Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ induced by $\boldsymbol{Z}_{2} \subset \boldsymbol{Z}_{4}$ where $\Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ is the theory of all oriented involutions.

In section 1 , we first state some basic facts on $\Omega_{*}\left(\boldsymbol{Z}_{1} ; p\right)$, and summarize the theories $W_{*}\left(\boldsymbol{Z}_{2} ;-\right)$ in [13] which are important to further arguments.

We show in section 2 that the image of r lies in a homology $H_{\beta}(d)$ which is obtained from two differentials β and d on the relative theory $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$. The kernel \mathcal{E} of the induced map $r_{*}: \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) \rightarrow H_{\beta}(d)$ consists of the images of two types of extensions from $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ and \coprod_{2}, the torsion part of order 2 in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ studied in [8]. Hence an embedding $r_{*}: \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) / \mathcal{E} \subset_{\rightarrow} H_{\beta}(d)$ is obtained (Theorem 2.4). In conclusion of this section, we calculated the homology $H_{\beta}(d)$ (Proposition 2.7).

From these, in section 3 we obtain a necessary and sufficient condition for

[^0]an element in $\Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ to belong to the image of r (Theorem 3.1). Using this, we give some examples which belong to $\operatorname{Im}(r)$ (Example 3.3) and a necessary condition for an element in $\Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ to come from the theory $\Omega_{*}\left(\boldsymbol{Z}_{4} ; \mathrm{All}\right)$ of all oriented \boldsymbol{Z}_{4} actions (Proposition 3.4). We return to the embedding r_{*} in section 2, and show an example which doesn't belong to \mathcal{E} (Example 3.5). Next we consider an Ω_{*} algebra Ω_{*} generated by the standard involutions on the complex projective spaces $\boldsymbol{C} P(n)$ and determine the ideal $\mathscr{I}_{*}=\left\{y \in \mathcal{R}_{*} \mid y \in\right.$ $\operatorname{Im}(r)\}$ by using the above example (Theorem 3.7). Some torsion elements y in \mathscr{I}_{*} come from those x of order 4 in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$: that is, those which don't belong to \mathcal{E}. We show that such elements x also have order 4 in $\Omega_{*}\left(\boldsymbol{Z}_{4} ;\right.$ All $)$ (Theorem 3.9 and Example 3.10). Finally we give examples such that they don't belong to \mathcal{E} and their restriction don't belong to \mathscr{I}_{*} (Proposition 3.12).

The author would like to thank the referee for his many valuable comments.

§ 1. Preliminaries

As an oriented analogue of the unoriented bordism theory $\mathfrak{N}_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ of all involutions on closed manifolds in Conner and Floyd [6, Sec. 28], the theory $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ of all oriented involutions on closed oriented manifolds has been introduced and studied by Rosenzweig [14], Conner [5], Stong [17], and Kosniowski and Ossa [13]. The basic notations of this theory are found there, so we omit these here. Next we summarize the theory $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ of oriented, stationary point free \boldsymbol{Z}_{4} actions, which has been studied in Conner and Floyd [6, (45.5)] and Stong [16]. On the other hand Rowlett [15] contains some results on this theory as a special case of even-order group actions. Detailed results have been obtained for the corresponding theory $\mathfrak{R}_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ in the unoriented category by Beem [2]. In theories $\Omega_{*}(G ;-)$ we denote by [M, t] the bordism class of an oriented G action t on a (closed) oriented manifold M in general (here $G=\boldsymbol{Z}_{2}$ or \boldsymbol{Z}_{4} with generator t).

Definition 1.1. Let e and s be the maps defined by $e([M, A])=\left[\boldsymbol{Z}_{4} \times{ }_{Z_{2}} M\right.$, $i \times \mathrm{id}]$ and $s([M, A])=\left[S^{1} \times_{z_{2}} M, i \times\right.$ id $]$ for each $[M, A] \in \Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ where S^{1} is the unit circle with \boldsymbol{Z}_{4} action $i=\sqrt{-1}$. On the other hand, let $d: \Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ $\rightarrow \Omega_{*+1}\left(\boldsymbol{Z}_{2} ; A l l\right)$ be the map given by $d([M, A])=\left[S^{1} \times{ }_{z_{2}} M,-1 \times \mathrm{id}\right]$. Then the relation $r \circ s=d$ holds for the restriction map r in Introduction.

We list some basic properties of the theory $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$:
(1.2) The composition e \circ (resp. $r \circ e$) is the multiplication by 2 in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ (resp. $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All)) (cf. [15, Prop. 4.2]), hence
(1.3) $e: \Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right) \otimes R_{2} \cong \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) \otimes R_{2}$ with the inverse map $e^{-1}=(1 / 2) r$ where R_{2} is the subring of \boldsymbol{Q} generated by \mathbb{Z} and $1 / 2$.
(1.4) If x is torsion free in $\Omega_{*}\left(\boldsymbol{Z}_{\star} ; p\right)$, so is $r(x)$ in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$. Equivalently,
if y is a torsion free in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All), so is $e(y)$ in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$.
(1.5) A torsion element in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ is of order 2 or 4 .

By (1.3), $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) \otimes R_{2}$ is freely generated (over $\Omega_{*} \otimes R_{2}$) by the class $\left\{\left[\boldsymbol{Z}_{4}, i\right], e\left(C_{2 I+2}\right) \mid I\right\}$ where $C_{2 I+2}=C_{2 m_{1}+2} \times \cdots \times C_{2 m} p_{p^{+2}}$ is the monomial on $C_{2 m+2}$ defined at (1.8) for each $I=\left(m_{1}, \cdots, m_{p}\right)$ with $m_{1} \geqq \cdots \geqq m_{p} \geqq 0$ (cf. [5, p. 101]). On the other hand, the above (1.5) is obtained from (1.2) and the following:
(1.6) Any torsion element in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All) is of order 2 (cf. [14, Theorem 3.4]).

Example.

(1.7) For $m \geqq 1$, define an oriented \boldsymbol{Z}_{4} action T on the complex projective space $\boldsymbol{C} P(2 m+2)$ by

$$
T\left(\left[z_{0}: z_{1}: z_{2}: \cdots: z_{2 m+1}: z_{2 m+2}\right]\right)=\left[\bar{z}_{0}:-\bar{z}_{2}: \bar{z}_{1}: \cdots:-\bar{z}_{2 m+2}: \bar{z}_{2 m+1}\right] .
$$

We note that the only stationary point of T is $*=[1: 0: \cdots: 0]$. Then $T \times \cdots$ $\times T$ acts on $\boldsymbol{C P}(2)^{m+1}$ with one stationary point ($*, \cdots, *$), and the action at this point is the same as the action at the point $*$ of T on $\boldsymbol{C} P(2 m+2)$. By excising neighborhoods of these points of $\boldsymbol{C} P(2 m+2)$ and $(\boldsymbol{C} P(2))^{m+1}$ (suitably oriented), and fitting together along the resulting boundaries, we get an orientable manifold $V^{2 m+2}$ with the stationary point free \boldsymbol{Z}_{4} action T (cf. [6, p. 142]). (1.8) Let $C^{n}=\left[\boldsymbol{C} P(n), I_{n}\right]$ be an element in $\Omega_{*}\left(\boldsymbol{Z}_{4} ;\right.$ All $)$ defined by

$$
I_{n}\left(\left[z_{0}: z_{1}: \cdots: z_{n}\right]\right)=\left[i z_{0}: z_{1}: \cdots: z_{n}\right] \quad(n \geqq 1),
$$

and put $C_{n}=\left[\boldsymbol{C} P(n), A_{n}\right]$ in $\Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ where $A_{n}=I_{n}^{2}$.
We see that C_{n} doesn't come from a stationary point free \boldsymbol{Z}_{4} action. If n is even, this follows from Theorem in Introduction. See Theorem 3.7 in general.

Next we view the bordism theories $W_{*}(G ;-)$ as an equivariant analogue of the Wall cobordism ring W_{*} in Wall [19]. Our objects are Wall manifolds of type ($G, 1$) in the sense of Komiya [11] and Stong [17]. An oriented G action (M, t) falls into this category. Suppose that M admits an orientationreversing involution R which commutes with t. Then
(1.9) $\quad S^{1} \times{ }_{R} M=S^{1} \times M /-1 \times R$ with G action id $\times t$ has the induced Wall structure of type $(G, 1)$ as $\beta\left(\left[S^{1} \times{ }_{R} M\right.\right.$, id $\left.\left.\times t\right]\right)=[M, t]$ where $\beta: W_{*}(G ;-) \rightarrow$ $\Omega_{*-1}(G ;-)$ is the Bockstein homomorphism.

This induces a universal coefficient sequence:
$(1.10) \quad 0 \longrightarrow \Omega_{*}(G ;-) \otimes \boldsymbol{Z}_{2} \xrightarrow{i} W_{*}(G ;-) \xrightarrow{\beta} \operatorname{Tor}\left(\Omega_{*-1}(G ;-), \boldsymbol{Z}_{2}\right) \longrightarrow 0$
(cf. [17, Prop. 6.1]).
Now we summarize the theory $W_{*}\left(\boldsymbol{Z}_{2} ;-\right)$ which is denoted by $\mathcal{O}_{*}^{(2)}(-)$ in [13].
(1.11) As regards (1.10) $\beta\left(W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)\right)=\operatorname{Tor} \Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All), the torsion part of $\Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ and the above i induces embedding i : Tor $\Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right) C_{>} W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ by (1.6).
(1.12) There is a splitting $W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)=\operatorname{Im}\left(i_{*}\right) \oplus Q_{*}^{(2)}$ as W_{*} modules in the usual long exact sequence (i_{*}, j_{*}, ∂) for the triple (All, Free, 0), where $\operatorname{Im}\left(i_{*}\right)$ is the image of the free involutions and freely generated by $\left[\boldsymbol{Z}_{2},-1\right]$ as a W_{*} / E_{*} module. Here E_{*} is the ideal of $x \in W_{*}$ having even Euler characteristic, so $W_{*} / E_{*}=\boldsymbol{Z}_{2}\left[w_{4}\right], w_{4}=[\boldsymbol{C P}(2)]$ as a \boldsymbol{Z}_{2} polynomial ring. On the other hand, $Q_{*}^{(2)}$ is the kernel of a map $q: W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right) \rightarrow \operatorname{Im}\left(i_{*}\right)$ with $q \circ \bar{i}=\mathrm{id}$ for the inclusion $\bar{i}: \operatorname{Im}\left(i_{*}\right) \subset W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$. The definition of q is as follows: $q(y)=\bar{\chi}(y)[\boldsymbol{C} P(2)]^{n}$. $\left[\boldsymbol{Z}_{2},-1\right]$ if $\operatorname{dim} y=4 n$ and $q(y)=0$ otherwise (Here $\bar{\chi}([M, A])=\chi([M / A])$, the Euler characteristic modulo 2 of the orbit space M / A.) (cf. [13, Theorem 3.2, Cor. 6.4, Cor. 7.5 and Sec. 8]).

Denote the theory $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All, Free $)$ by $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$. From the above, (1.13) there is an embedding $j_{*}: Q_{*}^{(2)} \hookrightarrow W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$ (cf. [13, Sec. 9]), and
(1.14) the images $d\left(W_{*}\left(\boldsymbol{Z}_{2} ;\right.\right.$ All $)$) and $\beta\left(W_{*}\left(\boldsymbol{Z}_{2} ;\right.\right.$ All $\left.)\right)=$ Tor $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ are contained in $Q_{*}^{(2)}$ by definition and [13, Lemma 8.2].
(1.15) $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$ is the free W_{*} module generated by the class $\left\{\xi_{\omega} \mid \omega \in \Gamma\right\}$, $\xi_{\omega}=\hat{\xi}_{n_{1}} \times \cdots \times \hat{\xi}_{n_{2 p}}$ where Γ consists of all sequences of integers $\omega=\left(n_{1}, \cdots n_{2 p}\right)$ of even length with $n_{1} \geqq \cdots \geqq n_{2 p} \geqq 0$. Here $\left\{\xi_{n} \mid n \geqq 0\right\}$ is the class such that each $\xi_{2 n}$ is the canonical line bundle over the real projective space $\boldsymbol{R} P(2 n)$, and $\xi_{2 n+1}=d\left(\xi_{2 n}\right)$ by the map d as Definition 1.1 (cf. [12, Lemma 3.4.3]). From this $d\left(\xi_{2 n+1}\right)=0$ and d acts on ξ_{ω} by the derivation (cf. [9, Lemma 1], [1, Theorem 3] and [18, Prop. 3.3]). In this way the properties on d are inherited from the corresponding unoriented theory $\mathfrak{R}_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$ via the embedding $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $) \hookrightarrow$ $\mathfrak{R}_{*}\left(Z_{2} ;\right.$ rel $)$. On the other hand $\beta\left(\xi_{2 n}\right)=0$ and $\beta\left(\xi_{2 n+1}\right)=\xi_{2 n}$ (cf. (1.9)), and β also acts on ξ_{ω} by the derivation (cf. [13, Theorem 4.2]). The map β commutes with d in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$.

According to the above derivations, let H_{d} or H_{β} be the homology of the complex $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$ with differential d or β, respectively. Then
(1.16) $H_{d} \cong W_{*}\left[\xi_{2 m}^{2} \mid m \geqq 0\right]$ as a free W_{*} algebra (cf. [1, Lemma 7]), and
(1.17) $H_{\beta} \cong C_{*}\left[\xi_{2 m+1}^{2}!m \geqq 0\right]$ as a free C_{*} algebra where C_{*} is the \boldsymbol{Z}_{2} polynomial ring on the class $\{[\boldsymbol{C} P(2 n)] \mid n \geqq 1\}$.

Denote by B_{*} the module of W_{*} indecomposables in $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$, then $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right) \cong W_{*} \otimes_{\mathbf{z}_{2}} B_{*}$ as graded differential algebras. Thus $H_{\beta} \cong C_{*} \otimes_{z_{2}}$ $H_{*}\left(B_{*}, \beta\right)$ by the Künneth formula since $H_{*}\left(W_{*}, \beta\right) \cong\left(\Omega_{*} / \operatorname{Tor} \Omega_{*}\right) \otimes \boldsymbol{Z}_{2} \cong C_{*}$ (cf. [19, Lemma 13]). Then (1.17) is obtained from $H_{*}\left(B_{*}, \beta\right) \cong \boldsymbol{Z}_{2}\left[\xi_{2 m+1}^{2} \mid m \geqq 0\right]$ (cf. [13, Lemma 5.2]).
(1.18) For the class $\left\{C_{n}\right\}$ in (1.8),
(i) $j_{*}\left(C_{2 m+1}\right)=\xi_{2 m}^{2}+\xi_{0}^{4 m+2}$, and
(ii) $j_{*}\left(C_{2 m+2}\right)=\xi_{2 m+1}^{2}+\xi_{0}^{4 m+4}+\delta_{m+1}$
in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$ where δ_{m+1} is the part of W_{*} decomposables (cf. [13, Lemma 5.1]).

§2. On the Homology $H_{\beta}(d)$

In this section we study the map $r: \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) \rightarrow \Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ induced by the restriction $\boldsymbol{Z}_{2} \subset \boldsymbol{Z}_{4}$. We have studied the theory $W_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ of Wall manifolds with stationary point free \boldsymbol{Z}_{4} actions, and obtained the torsion part \mathscr{F}_{2} of order 2 in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ as the image of the Bockstein homomorphism $\beta: W_{*}\left(\boldsymbol{Z}_{4} ; p\right) \rightarrow$ $\Omega_{*-1}\left(\boldsymbol{Z}_{4} ; p\right)$ in (1.10) (cf. [8, Theorems 1.19 and 2.3]). Let $r_{W}: W_{*}\left(\boldsymbol{Z}_{4} ; p\right) \rightarrow$ $W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ be the restriction as mentioned above. Then

Lemma 2.1.

(1) $r_{W}\left(W_{*}\left(\boldsymbol{Z}_{4} ; p\right)\right)=d\left(W_{*}\left(\boldsymbol{Z}_{2} ;\right.\right.$ All $\left.)\right)$ hence
(2) $r\left(\mathscr{I}_{2}\right)=d\left(\right.$ Tor $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All) $)$.

Proof. As a W_{*} module, $W_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ is generated by the following (i) and (ii):
(i) the parts $\operatorname{Im}(t)$ where $t=e$ and s, the maps from $W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ as Definition 1.1,
(ii) $V(\varepsilon, 2)(\varepsilon=0$ and 1$)$ and $V(q, 2 K)$ for each $q \geqq 2$ and $2 K=\left(2 k_{1}, \cdots, 2 k_{n}\right)$ with $k_{1} \geqq \cdots \geqq k_{n} \geqq 0$.

In the above $V(\varepsilon, 2)$ is defined by $j_{*}(V(\varepsilon, 2))=t\left(\xi_{0}^{2}\right)$ for the map $j_{*}: W_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ $\rightarrow W_{*}\left(\boldsymbol{Z}_{4} ; p\right.$, Free $)$ in [8, Prop. 1.11 (i)] where if $\varepsilon=0$ or 1 , then $t=e$ or s, the map from $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$, respectively. Further, let $\eta_{2 K} \rightarrow \boldsymbol{C} P^{2 K}=\boldsymbol{C} P\left(2 k_{1}\right) \times \cdots \times$ $\boldsymbol{C} P\left(2 k_{n}\right)$ be the product of the canonical complex line bundles $\eta_{2 k_{j}} \rightarrow \boldsymbol{C} P\left(2 k_{j}\right)$ and let $S\left(\eta_{2 K}\right)$ or $D\left(\eta_{2 K}\right)$ be the associated sphere or disk bundle of $\eta_{2 K}$, respectively. Then
(ii-1) $V(2 p+1,2 K)=D^{2 p+2} \times S\left(\eta_{2 K}\right) \cup-\left(S^{2 p+1} \times D\left(\eta_{2 K}\right)\right)$ with an oriented, stationary point free Z_{4} action $T_{V}=-1 \times i \cup-1 \times i$, and
(ii-2) $V(2 p, 2 K)=S^{1} \times{ }_{R} V(2 p-1,2 K)$ with action $\mathrm{id} \times T_{V}$ in (1.9), where R is the reflection in the first coordinate of $D^{2 p}$ (See [8, Def. 1.17 and Theorem 1.19]. $V(q, 2 K)$ is denoted by $V_{(2)}(q, 2 K)$ there.).

It is easy to show that $r(V(2 p+1,2 K))$ vanishes in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ by definition, so does $r_{W}(V(2 \phi, 2 K))$ in $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ naturally. On the other hand $j_{*}\left(r_{W} V(\varepsilon, 2)\right)=r_{W}\left(t\left(\xi_{0}^{2}\right)\right)=0$ in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$ since $r_{W} \circ e=2 \times \mathrm{id}$ from (1.2) and $r_{W} \circ s$ $=d$ from Definition 1.1. Note that $r_{W}(V(\varepsilon, 2)) \in Q_{*}^{(2)}$ since $\operatorname{dim} V(\varepsilon, 2)=2$ or 3 . These imply that $r_{W}(V(\varepsilon, 2))=0$ in $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ by (1.12) and (1.13). Further, $r_{W}(\operatorname{Im}(e))=2 W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)=\{0\} . \quad$ Therefore, $\quad r_{W}\left(W_{*}\left(\boldsymbol{Z}_{4} ; p\right)\right)=r_{W}(\operatorname{Im}(s))=$ $d\left(W_{*}\left(\boldsymbol{Z}_{4} ; A l l\right)\right)$ and the result (1) follows. Multiply both sides of (1) by β, then (2) is obtained by (1.11).

From this lemma we see that $\operatorname{Im}(r) \subset d\left(W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)\right)$ in particular. Since $\beta(r(x))=0$ for each $x \in \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$, the image $r(x)$ belongs to $\bar{H}_{\beta}(d)$, the homo-
logy of the complex $\left(d\left(W_{*}\left(\boldsymbol{Z}_{2} ;\right.\right.\right.$ All $)$), β). Hence we have natural maps $\bar{r}_{*}: \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) \rightarrow \bar{H}_{\beta}(d)$ and $r_{*}=\bar{j}_{*} \cdot \bar{r}_{*}: \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) \rightarrow H_{\beta}(d)$, the homology of the complex $\left(d\left(W_{*}\left(\boldsymbol{Z}_{2} ;\right.\right.\right.$ rel $\left.\left.)\right), \boldsymbol{\beta}\right)$, through the map $j_{*}: W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $) \rightarrow W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$. The latter homology is comparatively easy to handle.

Lemma 2.2. $\operatorname{Ker}\left(\bar{j}_{*}: \bar{H}_{\beta}(d) \rightarrow H_{\beta}(d)\right)=d(F)$ where $F=\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $) /$ Tor is the torsion free part of $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$.

Proof. If $y \in \operatorname{Ker}\left(\bar{j}_{*}\right)$, then $j_{*}(y)=\beta(d \boldsymbol{\xi})=d(\beta \xi)$ for some $\xi \in W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$. Therefore $\partial(\beta \xi) \in \operatorname{Ker}\left(d: W_{*}\left(\boldsymbol{Z}_{2} ;\right.\right.$ Free $) \rightarrow W_{*+1}\left(\boldsymbol{Z}_{2} ;\right.$ Free $\left.)\right)$ in the exact sequence in (1.12). As a free W_{*} module, $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ Free $)$ is generated by the class $\left\{X(2 n), Y_{2 n+1} \mid n \geqq 0\right\}$ where $Y_{2 n+1}=\left[S^{2 n+1},-1\right]$ or $d(X(2 n))$ in [8, Prop. 1.4]. Since $d\left(\left[S^{2 n+1},-1\right]\right)=0$ by [9, Lemma 1], we have $\partial(\beta \xi)=\sum_{n \geqq 0} M_{2 n+1}\left[S^{2 n+1},-1\right]$ for some $M_{2 n+1} \in W_{*}$. Take $\bar{y} \in W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ such that $j_{*}(\bar{y})=\beta(\xi)-$ $\sum_{n \geq 0} M_{2 n+1} \xi_{0}^{2 n+2}$, then $y=d(\bar{y})$ in $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ since $y, d(\bar{y}) \in Q_{*}^{(2)}$ and $j *(y)=$ $j_{*}(d(\bar{y}))=d(\beta \xi)$ (cf. (1.14)). Further $j_{*}(\beta(\bar{y}))=-\sum_{n \geq 0} \beta\left(M_{2 n+1}\right) \xi_{0}^{2 n+2}$ and $\beta\left(M_{2 n+1}\right)$ $=0$ in W_{*} since $\partial_{\circ} j_{*}=0$. These imply that $\beta(\bar{y}) \in Q_{*}^{(2)}$ vanishes in $W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ hence in Tor $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ by (1.11). Thus $\bar{y} \in \Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$. If \bar{y} is a torsion element, then $\bar{y}=\beta(z)$ for some $z \in W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$. So $y=d(\bar{y})$ vanishes in $\bar{H}_{\beta}(d)$ by definition. Therefore we may consider that $\bar{y} \in F$ and this proves $\operatorname{Ker}\left(\bar{j}_{*}\right) \subset$ $d(F)$. Conversely, take any $y=d(\bar{y}) \in d(F)$. The part F is generated by the following (i) and (ii):
(i) monomials on $C_{2 m+2}$ for $m \geqq 0$ (cf. (1.8)),
(ii) $\left[\boldsymbol{Z}_{2},-1\right]$ and $r_{4 m}(m>1)$ which satisfies $2 r_{4 m}=W_{4 m}\left[\boldsymbol{Z}_{2},-1\right]$ for a suitable generator $W_{4 m} \in \Omega_{4 m}$ of the polynomial algebra $\Omega_{*} /$ Tor Ω_{*}. Note that an element as $W_{4 m} r_{4 n}-W_{4 n} r_{4 m}(m>n>1)$ is a torsion by definition, so it is excluded (cf. [13, Introduction and Theorem 10.1]).

In the first case, we see that $A_{2 m+2}$ in (1.8) is the reduction of the S^{1} action on $\boldsymbol{C} P(2 m+2)$ by $\boldsymbol{Z}_{2} \subset S^{1}$, so $d\left(\left[\boldsymbol{C} P(2 m+2), A_{2 m+2}\right]\right)=\left[S^{1} \times \boldsymbol{C} P(2 m+2)\right.$, id $\left.\times A_{2 m+2}\right]$ $=0$ in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ (cf. [1, Theorem 5]). Further, for each monomial $C_{2 I+2}=$ $C_{2 m_{1}+2} \times \cdots \times C_{2 m_{p^{+}}}$, we see that $j_{*}\left(d\left(C_{2 I+2}\right)\right)$ vanishes in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$ by the derivation of d and the above. Therefore $d\left(C_{2 I+2}\right) \in Q_{*}^{(2)}$ vanishes in $W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ hence in Tor $\Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$. When $C_{g}=[\mathrm{pt}, \mathrm{id}], d\left(C_{\boldsymbol{g}}\right)=\left[S^{1}, \mathrm{id}\right]=0$. In the second case, if $\bar{y}=\left[\boldsymbol{Z}_{2},-1\right]$, then $d(\bar{y})=\left[S^{1},-1\right]=0$. Finally we note that $j_{*}\left(r_{4 m}\right)=$ $\beta(\xi)$ for some $\xi \in W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$ since $j_{*}\left(r_{4 m}\right) \in$ Tor $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)=\beta\left(W_{*}\left(\boldsymbol{Z}_{2} ;\right.\right.$ rel $\left.)\right)$ by the relation in (ii) and [14, Theorem 3.4]. Such a ξ is shown in [13, Sec. 12 and 13] concretely. Hence $d\left(r_{4 m}\right)$ vanishes in $H_{\beta}(d)$, and this completes the proof.
q.e.d.

Lemma 2.3. $\operatorname{Ker}\left(r_{*}\right)=e(F) \oplus\left(\mathscr{I}_{2}+s(F)\right)$.
Proof. We first show that $\operatorname{Ker}\left(\bar{r}_{*}\right)=e(F) \oplus \mathscr{I}_{2}$. Note that $e(F) \oplus \mathscr{I}_{2} \subset \operatorname{Ker}\left(\bar{r}_{*}\right)$ by (1.2), (1.11) and Lemma 2.1 (2). Conversely, suppose that $\bar{r}_{*}(x)=0$ in $\bar{H}_{\beta}(d)$
for $x \in \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$, i. e., $r(x)=\beta(d y)=d(\beta y)$ for some $y \in W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$. Therefore $r(x)=d(\beta y)+2 z$ for some $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ by (1.10). Then $t=x-s(\beta y)-e(z) \in \mathscr{I}_{2}$ by Definition 1.1 and (1.2), and $x=e(z)+(t+s(\beta y)) \in e(F) \oplus \mathscr{I}_{2}$. Thus we have $\operatorname{Ker}\left(\bar{r}_{*}\right)=e(F) \oplus \mathscr{I}_{2}$. The result follows immediately from Lemma 2.2. q.e.d.

Theorem 2.4. There is an embedding $r_{*}: \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) / \mathcal{E} \subset H_{\beta}(d)$ where $\mathcal{E}=$ $e(F) \oplus\left(\mathscr{I}_{2}+s(F)\right)$.

In the above, we see that only C_{*} in (1.17) acts nontrivially on both sides and r_{*} is a C_{*} module homomorphism.

Remark 2.5. The part $s(F)$ in \mathcal{E} consists of torsion elements, since [$\left.S^{1}, i\right]$ is of order 4 in $\Omega_{*}\left(\boldsymbol{Z}_{4} ;\right.$ Free) (cf. [10, Lemma 2.13 (i)]). For part (i) in the proof of Lemma 2.2, note that $s\left(C_{2 I+2}\right) \in \mathscr{I}_{2}$ since its restriction $d\left(C_{2 I+2}\right)=0$ in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ (cf. (1.2)). We see that it never vanishes in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$. In fact, by (1.18 (ii)) $j_{*}\left(C_{2 I+2}\right)=\xi_{0}^{4 \mid I I}+d(\lambda)\left(\bmod W_{*}\right.$ decomposables) for some λ where $\|I\|=m_{1}+\cdots+m_{p}+p$. Hence in $W_{*}\left(\boldsymbol{Z}_{4} ; p\right.$, Free $), j_{*}\left(s\left(C_{2 I+2}\right)\right)=s\left(j_{*}\left(C_{2 I+2}\right)\right)=$ $s\left(\xi_{0}^{4\|I\|}\right)\left(\bmod W_{*}\right.$ decomposables) which doesn't vanish there (cf. [8, Lemma 1.9 (ii) and (iii)]). Therefore $s\left(C_{2 I+2}\right) \pm 0$ in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$. For part (ii), we see that $\left[S^{1}, i\right] \neq 0$ and belongs to \mathscr{I}_{2} (cf. [8, Cor. 1.15]). On the other hand, $s\left(\sum_{m>1} M_{4 m} r_{4 m}\right)$ may be of order 4 for some $M_{4 m} \in \Omega_{*} /$ Tor Ω_{*}.

Now we calculate the homology $H_{\beta}(d)$.
Definition 2.6. For each sequence $(I ; J)=\left(m_{1}, \cdots, m_{p} ; n_{1}, \cdots, n_{q}\right)$ of nonnegative integers with $m_{1} \geqq \cdots \geqq m_{p} \geqq n_{1} \geqq \cdots \geqq n_{q} \geqq 0$, put $\xi_{(I ; J)}=\xi_{2 m_{1}+1}^{2} \cdots$ $\xi_{2 m_{p}+1}^{2} \xi_{2 n_{1}}^{2} \cdots \xi_{2 n_{q}}^{2}$ in $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$. When $p \geqq 1$, each $\xi_{(I ; J)}=d\left(\xi_{2 m_{1}+1} \xi_{2 m_{1}} \xi_{\left(I_{0} ; J\right)}\right) \in$ $d\left(W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)\right), I_{0}=\left(m_{2}, \cdots, m_{p}\right)$, and is a class in the homology $H_{\beta}(d)$. Since $\xi_{(m ; n)}=\xi_{(n ; m)}$ in $H_{\beta}(d)$, the above condition for ($I ; J$) does not lose the generality.

Proposition 2.7. $H_{\beta}(d) \cong C_{*}\left\{\left\{\xi_{(I ; J)} \mid I \neq \emptyset\right\}\right\}$ as a free C_{*} modules.
In the same way as (1.17), it is sufficient to prove that
Lemma 2.8. $H_{*}\left(d\left(B_{*}\right), \beta\right) \cong \boldsymbol{Z}_{2}\left\{\left\{\xi_{(I ; J)} \mid I \neq \emptyset\right\}\right\}$ as a \boldsymbol{Z}_{2} vector spaces.
Proof. For each $x \in B_{*}$, we examine the form of $d(x)$ in $H_{*}\left(d\left(B_{*}\right), \beta\right)$. For any sequence $N=\left(n_{1}, \cdots, n_{p}\right)$ of integers with $n_{1}>\cdots>n_{p} \geqq 0$, define B_{N} to be the \boldsymbol{Z}_{2} vector subspace of B_{*} generated by the monomials $\xi=\xi_{2 n_{1}}^{a_{1}} \xi_{2 n_{1}+1}^{b_{1}} \cdots$ $\xi_{2 n_{p}}^{a_{p}} \xi_{2 n_{p} p^{+1}}^{b}$ such that $\left(a_{i}, b_{i}\right) \neq(0,0)$ for each i. Then $B_{*}=\Sigma_{N} B_{N}$ as Z_{2} vector spaces and we may suppose that $x \in B_{N}$ for some N since d and β leave B_{N} invariant by (1.15). Further, note that d and β preserve the length $2 k=\Sigma a_{\imath}$ $+\Sigma b_{i}$ of ξ. Hence we suppose that x is a sum of monomials of the same length $2 k$ (in B_{N}) and use induction on the length of x. For convenience, we repre-
sent x by using the variables $\xi_{2 n}$ and $\xi_{2 n+1}$ (here $n=n_{1}$) for example. Then x may have the following form (i) or (ii), j. e., in (i) the length $a_{1}+b_{1}$ is even and in (ii) that is odd, since d and β never change the length $a_{1}+b_{1}$ in particular:
(i) $x=\xi_{2 n} \xi_{2 n+1}(\Sigma P \cdot p)+\xi_{2 n}^{2}(\Sigma Q \cdot q)+\xi_{2 n+1}^{2}(\Sigma R \cdot r)$ or
(ii) $x=\xi_{2 n}(\Sigma S \cdot s)+\xi_{2 n+1}(\Sigma T \cdot t)$
where $P \cdot p, \cdots, T \cdot t$ are the monomials on $\left\{\xi_{2 n_{i}}, \xi_{2 n_{i}+1} \mid 1 \leqq i \leqq p\right\}$, each of which is divided into the part P, \cdots, or T on the squares $\left\{\xi_{2 n_{i}}^{2}, \xi_{2 n_{i+1}}^{2}\right\}$ and the remaining one p, \cdots, or t which never has both $\xi_{2 n}$ and $\xi_{2 n+1}$. Note that d and β act trivially on the parts P, \cdots, and T. For saving the trouble, we admit x is non homogeneous on the total dimension in B_{N}. When $k=1, x \in B_{N}$ where $N=\left(n_{1}\right)$ or $N=\left(n_{1}, n_{2}\right)$. The former is of type (i), while the latter is of type (ii). If $d(x)$ is a class in $H_{*}\left(d\left(B_{*}\right), \beta\right)$, then $d(x)=\varepsilon \xi_{2 n_{1}+1}^{2}=\varepsilon \xi_{\left(n_{1} ; \xi\right)}\left(\varepsilon \in Z_{2}\right)$ for the case (i) and $\varepsilon \beta d\left(\xi_{2 n_{1}+1} \xi_{2 n_{2}}\right)$ which vanishes in this homology for the case (ii). Suppose that for any $x_{0} \in B_{N_{0}}$ in B_{*} with the length $\leqq 2(k-1), d\left(x_{0}\right)$ is a sum of monomials $\xi_{(I ; J)}$ with $I \neq \emptyset$ in our homology. Let $x \in B_{N}$ be an element with the length $2 k$ for some $N=\left(n_{1}, \cdots, n_{p}\right)$. We first consider the case (i). Unlike (ii), note that p, q and r have even length, so d commutes with β on them (cf. (1.15)). Now by (i),
(2.8.1) $\quad d(x)=\hat{\xi}_{2 n+1}^{2}(\Sigma P \cdot p)+\xi_{2 n} \xi_{2 n+1}(\Sigma P \cdot d(p))+\xi_{2 n}^{2}(\Sigma Q \cdot d(q))+\xi_{2 n+1}^{2}(\Sigma R \cdot d(r))$.

The condition $0=\beta d(x)$ yields that

$$
\begin{align*}
& \Sigma P \cdot \beta(p)+\Sigma R \cdot \beta d(r)=\xi_{2 n}^{2} \eta, \quad \text { and } \tag{2.8.2}\\
& \Sigma P \cdot d(p)+\Sigma Q \cdot \beta d(q)=\xi_{2 n+1}^{2} \eta \tag{2.8.3}
\end{align*}
$$

for some $\eta \in B_{*}$ by comparing the coefficient of $\xi_{2 n}^{2}$ with that of $\xi_{2 n+1}^{2}$ in $\beta d(x)$. Moreover note that $\beta(\eta)=d(\eta)=0$ by multiplying (2.8.2) or (2.8.3) by β or d, respectively. Then

$$
\begin{equation*}
\Sigma P \cdot p=\Sigma R \cdot d(r)+\xi_{2 n} \xi_{2 n+1} \eta+\lambda+\beta(\bar{\lambda}) \tag{2.8.4}
\end{equation*}
$$

by (2.8.2) and the structure of $H_{*}\left(B_{*}, \beta\right)$ in (1.17), where $\bar{\lambda} \in B_{*}$ and λ is a sum of monomials $\boldsymbol{\xi}_{(I ; \boldsymbol{q})}$. Note that

$$
\begin{equation*}
d \beta(\bar{\lambda})=\Sigma Q \cdot \beta d(q) \tag{2.8.5}
\end{equation*}
$$

by (2.8.3). Substituting (2.8.3) and (2.8.4) into (2.8.1), we obtain that

$$
\begin{equation*}
d(x)=\xi_{2 n+1}^{2} \gamma+\beta d\left(\xi_{2 n} \xi_{2 n+1}(\Sigma Q \cdot q)\right)=\xi_{2 n+1}^{2} \gamma \tag{2.8.6}
\end{equation*}
$$

in $H_{*}\left(d\left(B_{*}\right), \beta\right)$, where $\gamma=\lambda+\beta \bar{\lambda}+\Sigma Q \cdot \beta(q)$. Since $d(\gamma)=0$ by (2.8.5), $\gamma=\gamma_{1}+d\left(\gamma_{2}\right)$ where $\gamma_{2} \in B_{*}$ and γ_{1} is a sum of monomials $\xi_{(g ; J)}$ by (1.16). Since $\beta(\gamma)=0$, we have $\beta d\left(\gamma_{1}\right)=0$, i. e., $d\left(\gamma_{1}\right)$ is a class in $H_{*}\left(d\left(B_{*}\right), \beta\right)$ and the length of $d\left(\gamma_{1}\right)=$ $2(k-1)$ by the definition of γ in (2.8.6). Therefore $d(x)$ is the desired form by
induction. For the case (ii), if $d(x)$ is a class in $H_{\beta}(d)$, then $d(x)=$ $\beta d\left(\xi_{2 n_{+1}}(\Sigma S \cdot s)\right)$ by the same way as $k=1$. Next we prove the linear independence of the class $\left\{\xi_{(I ; J)} \mid I \neq \varnothing\right\}$. Suppose that

$$
\begin{equation*}
\sum \varepsilon_{(I, \boldsymbol{f})} \xi_{(I ; \eta)}+\sum_{l(J) \geq 1} \varepsilon_{(I, J)} \xi_{(I ; J)}=\beta(d \eta) \tag{2.8.7}
\end{equation*}
$$

for some $\eta \in W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$ where $\varepsilon_{(I, \boldsymbol{g})}, \varepsilon_{(I, J)} \in\{0,1\}$ and $l(J)=q$ for $J=\left(n_{1}, \cdots, n_{q}\right)$. If $l(J) \geqq 1$, then $\xi_{(I ; J)}=\beta\left(\hat{\xi}_{(I ; J)}\right)$ where $\tilde{\xi}_{(I ; J)}=\hat{\xi}_{(I ; \xi)} \xi_{2 n_{1}+1} \dot{\xi}_{2 n_{1}} \xi_{\left(\xi ; J_{0}\right)}, J_{0}=\left(n_{2}, \cdots, n_{q}\right)$ for $(I ; J)=\left(m_{1}, \cdots, m_{p} ; n_{1}, \cdots, n_{q}\right)$. Hence $\sum \varepsilon_{(I . \varnothing)} \xi_{(I ; \boldsymbol{f})}=0$ in $H_{*}\left(B_{*}, \beta\right)$ and $\varepsilon_{(I, g)}=0$ for any (I, \emptyset) by (1.17). Next we represent (2.8.7) as

$$
\begin{equation*}
\sum_{l(J)=1} \varepsilon_{(I, J)} \xi_{(I ; J)}+\sum_{l(J) \geq 2} \varepsilon_{(I, J)} \xi_{(I ; J)}=\beta(d \eta) . \tag{2.8.8}
\end{equation*}
$$

The left side has the form $\beta(x)$ where

$$
\begin{equation*}
x=\sum_{l(J)=1} \varepsilon_{(I, J)} \tilde{\tilde{\xi}}_{(I ; J)}+\sum_{l(J) \geq 2} \varepsilon_{(I, J)} \tilde{\xi}_{(I ; J)} . \tag{2.8.9}
\end{equation*}
$$

Therefore x has the form:

$$
\begin{equation*}
x=d(\eta)+\sum \varepsilon_{\left(I_{0}, \boldsymbol{\delta}\right)} \xi_{\left(I_{0} ; \boldsymbol{\beta}\right)}+\beta(\bar{\eta}) \tag{2.8.10}
\end{equation*}
$$

for some $\bar{\eta} \in W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$ by using $H_{*}\left(B_{*}, \boldsymbol{\beta}\right)$ again. Multiply this by d, then

$$
\begin{equation*}
\sum_{l(J)=1} \varepsilon_{(I, J)} \xi_{\left(J^{\prime} ; J^{\prime}\right)}+\sum_{l(J) \geq 2} \varepsilon_{(I, J)} \xi_{\left(I^{\prime} ; J^{\prime}\right)}=\beta(d \bar{\eta}) \tag{2.8.11}
\end{equation*}
$$

by (2.8.9) and (2.8.10), where $\left(I^{\prime} ; J^{\prime}\right)=\left(m_{1}, \cdots, m_{p}, n_{1} ; n_{2}, \cdots, n_{q}\right)$ for the above $(I ; J)$. Since $\left(I^{\prime} ; J^{\prime}\right)=\left(I^{\prime} ; \emptyset\right)$ if $l(J)=1$, we have $\varepsilon_{(I, J)}=0$ for any (I, J) with $l(J)=1$ in (2.8.11) in the same way as (2.8.7). Hence the result follows by induction on $l(J)$, and this completes the proof of the lemma.
q.e.d.

§ 3. The Restriction from \boldsymbol{Z}_{4} Actions

We first consider a condition for an element in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ to come from the theory $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ by the restriction r.

Theorem 3.1. Let y be an element in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All) which lies in $Q_{*}^{(2)}$ (cf. (1.12)). In order that $y \in \operatorname{Im}(r)$, a necessary and sufficient condition is that $j_{*}(y)$ $=\Sigma_{I \neq \boldsymbol{f}} C_{(I, J)} \dot{\xi}_{(I ; J)}+\beta d(\lambda)\left(C_{(I, J)} \in C_{*}\right)$ in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$, i.e., $j_{*}(y)$ is a class in $H_{\beta}(d)$.

Proof. Suppose that y has a fixed point data $j_{*}(y)$ as above. Put $\xi_{(I ; J)}=$ $d\left(\bar{\xi}_{(I ; J)}\right)$ as Definition 2.6 and $\eta=\Sigma C_{(I, J)} \bar{\xi}_{(I ; J)}+\beta(\lambda)$. Then we have $\bar{y} \in$ $W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ such that $j_{*}(\bar{y})=\eta-\sum_{n \geqslant 0} M_{2 n+1} \xi_{0}^{2 n+2}$ for some $M_{2 n+1} \in W_{*}$. This implies that $y=d(\bar{y})$ since $y, d(\bar{y}) \in Q_{*}^{(2)}$ and $j_{*}(y)=j_{*}(d(\bar{y}))$. If $j_{*}(y)=\beta d(\lambda)$, then $\bar{y} \in \Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$. Therefore $y=r(s(\bar{y})) \in \operatorname{Im}(r)$ in this case (See the first half of the proof of Lemma 2.2.). Next we suppose that $j_{*}(y) \neq 0$ in $H_{\beta}(d)$,
i. e., it has terms $\xi_{(I ; J)}$ with coefficients in C^{*}. In this case, $\operatorname{dim} y$ is even, i. e., $\operatorname{dim} y \equiv 0$ or $2(\bmod 4)$. Consider the above $s(\bar{y}) \in W_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ again. Then $j_{*}(\beta s(\bar{y}))=s\left(j_{*}(\beta \bar{y})\right)=s\left(\beta \eta-\sum_{n \geqslant 0} \beta\left(M_{2 n+1}\right) \xi_{0}^{2 n+2}\right)$ for the map $j_{*}: W_{*}\left(\boldsymbol{Z}_{4} ; p\right) \rightarrow$ $W_{*}\left(\boldsymbol{Z}_{4} ; p\right.$, Free) in the exact sequence in [8, Prop. 1.11 (i)]. We note that $\beta\left(\bar{\xi}_{(I ; J)}\right)=\xi_{\left(I_{0} ; J_{0}\right)} \quad$ where $\quad\left(I_{0} ; J_{0}\right)=\left(m_{2}, \cdots, m_{p} ; m_{1}, n_{1}, \cdots, n_{q}\right)$ for $(I ; J)=$ ($\left.m_{1}, \cdots, m_{p} ; n_{1}, \cdots, n_{q}\right)$. Therefore if $p \geqq 2, \xi_{\left(I_{0} ; J_{0}\right)} \in \operatorname{Im}(d)=\operatorname{Ker}(s)$ in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$ (cf. [8, Lemma 1.9 (iii)]). So

$$
\begin{equation*}
j_{*}(\beta s(\bar{y}))=s\left(\sum_{J_{0}} C_{J_{0}} \xi_{\left(\xi ; J_{0}\right)}-\sum_{n \geqq 0} \beta\left(M_{2 n+1}\right) \xi_{0}^{2 n+2}\right) \tag{3.1.1}
\end{equation*}
$$

in $W_{*}\left(\boldsymbol{Z}_{4} ; p\right.$, Free $)$ where $C_{J_{0}}=C_{(I, J)}$ with $p=1$. Put

$$
\begin{equation*}
\bar{x}=s(\bar{y})-\left(\sum_{J_{0}} C_{J_{0}} V\left(2,2 J_{0}\right)-\sum_{n \geqq 0} \beta\left(M_{2 n+1}\right) V(2, \underline{0})\right) \tag{3.1.2}
\end{equation*}
$$

in $W_{*}\left(\boldsymbol{Z}_{4} ; p\right)$, where in general $V(2,2 K)$ is defined at (ii-2) in the proof of Lemma 2.1 and $\underline{0}=(0, \cdots, 0)((n+1)$ times of 0$)$, i.e., $\eta_{0}=\boldsymbol{C}^{n+1} \rightarrow\{\mathrm{pt}\}$. Note that $\beta(V(2,2 K))=V(1,2 K)$ by (1.9). Then $j_{*}(\beta \bar{x})=0$ in $W_{*}\left(\boldsymbol{Z}_{4} ; p\right.$, Free $)$ since $j_{*}(V(1,2 K))=Q(1,2 K)=s\left(\eta_{2 K}\right)$ in [8, Prop. $\left.1.8(\mathrm{i})\right]$ and $\eta_{2 K}=\dot{\xi}_{(\boldsymbol{g} ; K)}$ in $\Re_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$ hence in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$ (cf. [3, p. 446]). Therefore $\beta(\bar{x}) \in \mathscr{P}=\operatorname{Ker}\left(j_{*}\right)$ in the above exact sequence. Recall that $\operatorname{dim} \bar{x}=\operatorname{dim} y \equiv 0$ or $2(\bmod 4)$. Hence in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$, $\beta(\bar{x})=2 \alpha$ if $\operatorname{dim} \bar{x} \equiv 0(\bmod 4)$ and $\varepsilon[\boldsymbol{C} P(2)]^{n}\left[S^{1}, i\right]+2 \alpha(\varepsilon \in\{0,1\})$ if $\operatorname{dim} \bar{x} \equiv 2$ $(\bmod 4)$ by the structure of \mathscr{P} and (1.10). We see that α is of order 4 if 2α does not vanish. Such an element may belong to $s(F)$ in \mathcal{E} or $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) / \mathcal{E}$ (cf. Theorem 2.4 and Remark 2.5). If $\alpha \in s(F)$, then $\operatorname{dim} \alpha \equiv 1(\bmod 4)$ and if $\alpha \in$ $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) / \mathcal{E}$, then $\operatorname{dim} \alpha \equiv 0$ or $2(\bmod 4)$ since $r_{*}(\alpha) \neq 0$ in $H_{\beta}(d)$ as $j_{*}(y)$ in this case. Thus, if $\operatorname{dim} \bar{x} \equiv 0(\bmod 4)$, then $\beta(\bar{x})=2 \alpha=0$ and the element \bar{x} (denoted by x_{1}) belongs to $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$. If $\operatorname{dim} \bar{x} \equiv 2(\bmod 4)$, we may consider the case $\beta(\bar{x})=\varepsilon[\boldsymbol{C} P(2)]^{n}\left[S^{1}, i\right]+2 \alpha$ with $\alpha=s\left(\sum_{m>1} M_{4 m} r_{4 m}\right)$ for suitable $M_{4 m} \in \Omega_{*} / \operatorname{Tor} \Omega_{*}$. Note that $2 \alpha=M^{\prime}\left[S^{1}, i\right]$ for some M^{\prime} by the definition of $r_{4 m}$ (See (ii) in the proof of Lemma 2.2.). Therefore $\beta(\bar{x})=M\left[S^{1}, i\right]$ where $M=\varepsilon[\boldsymbol{C} P(2)]^{n}+M^{\prime}$. Now we put

$$
\begin{equation*}
x_{2}=\bar{x}-M \cdot V(0,2) \tag{3.1.3}
\end{equation*}
$$

where $V(0,2) \in W_{2}\left(\boldsymbol{Z}_{4} ; p\right)$ is an element such that $\beta(V(0,2))=\left[S^{1}, i\right]$ (cf. [8, Def. 1.17 and Lemma 2.5]). Then $\beta\left(x_{2}\right)=0$ and $x_{2} \in \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$. Consider now the restriction $r\left(x_{k}\right)$ in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ for $k=1$ or 2 . It is shown in the proof of Lemma 2.1 that $r_{W}(V(2,2 K))$ and $r_{W}(V(0,2))$ vanish in $W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$. Therefore $r_{W}\left(x_{k}\right)=d(\bar{y})=y \in W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ by (3.1.2) and (3.1.3), and $r\left(x_{k}\right)-y=2 z$ for some $z \in \Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ by (1.10). Hence we have $y=r\left(x_{k}-e(z)\right) \in \operatorname{Im}(r)$. The converse follows from Theorem 2.4 and Proposition 2.7. This completes the proof. q.e.d.

Remark 3.2.
(i) In the above theorem, $y \notin Q_{*}^{(2)}$ occurs only if $\operatorname{dim} y=4 n$ by (1.12). In
this case, $y+[\boldsymbol{C} P(2)]^{n}\left[\boldsymbol{Z}_{2},-1\right] \in Q_{*}^{(2)}$ and belongs to $\operatorname{Im}(r)$ if $j_{*}(y)$ is a class in $H_{\beta}(d)$ as above. We see whether $y \in Q_{*}^{(2)}$ or not by using the formula in [4, Chap. III, Theorem 4.3] for example.
(ii) The map $\bar{r}_{*}: \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) \rightarrow \bar{H}_{\beta}(d)$ is epic from the above theorem, hence $\bar{r}_{*}: \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) /\left(e(F) \oplus \mathscr{I}_{2}\right) \cong \bar{H}_{\beta}(d)$ (cf. Lemma 2.3).
(iii) The image of the embedding r_{*} in Theorem 2.4 is properly contained in $H_{\beta}(d)$. For example, $\xi=\xi_{1}^{2}+\xi_{0}^{4}$ is the only fixed point data which includes a class ξ_{1}^{2} in $H_{\beta}(d)$. In fact $j_{*}\left(C_{2}\right)=\xi$. But ξ is not a class in this homology.

Example 3.3. Take any $y \in \operatorname{Im}(r)$ in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$. Then
(i) if $z \in \Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ has a fixed point data

$$
j_{*}(z)=\sum_{(I, J) \neq(\boldsymbol{\theta}, \infty)} M_{(I, J)} \xi_{(I ; J)}+\beta d(\lambda)
$$

in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$ where $M_{(I ; J)} \in \Omega_{*}$, then $z \cdot y \in \operatorname{Im}(r)$. In particular,
(ii) $z^{2} \cdot y \in \operatorname{Im}(r)$ for any $z \in \Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ since $j_{*}\left(z^{2}\right)$ has the above form by [19, Prop. 3].

In (i), note that $j_{*}(z \cdot y)$ has the form in Theorem 3.1. Since $y=d(\bar{y})$ for some $\bar{y} \in W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ by Lemma 2.1 (1), we have $z \cdot y=z \cdot d(\bar{y}) \in Q_{*}^{(2)}$ by the formula in [4] as mentioned above. Thus the result (i) follows. In (ii), if $\operatorname{dim} z$ is even and $z=[M, A]$, then $M \times M$ admits an oriented Z_{4} action I with $I^{2}=A$ defined by $I(a, b)=(A(b), a)$ for $(a, b) \in M \times M$. Consider $[M \times M, I] \cdot x \in$ $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ naturally for $x \in \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ with $r(x)=y$, then it restricts to $z^{2} \cdot y$.

Relating to the above example, let $\Omega_{*}\left(\boldsymbol{Z}_{4} ;\right.$ All) be the theory of all oriented Z_{4} actions. Then

Proposition 3.4. For the restriction $r_{0}: \Omega_{*}\left(\boldsymbol{Z}_{4} ; A l l\right) \rightarrow \Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$, the fixed point data $j_{*}(z)$ of each $z \in \operatorname{Im}\left(r_{0}\right)$ has the form of Example 3.3 (i).

Proof. Let $z=r_{0}(x)$ for some $x \in \Omega_{*}\left(\boldsymbol{Z}_{4} ;\right.$ All $)$ and put $j_{*}(z)=\eta$. Choose any $x_{0} \in \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ such that $j_{*}\left(r\left(x_{0}\right)\right)=\eta_{0} \neq 0$ in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$ (Such an x_{0} is given in the next example 3.5.). Then $d\left(\eta_{0}\right)=0$ since η_{0} is a class in $H_{\beta}(d)$. Moreover $r_{*}\left(x \cdot x_{0}\right)=\eta \eta_{0} \in H_{\beta}(d)$ since $x \cdot x_{0} \in \Omega_{*}\left(Z_{4} ; p\right)$. From these $0=d\left(\eta \eta_{0}\right)=d(\eta) \eta_{0}$ and $d(\boldsymbol{\eta})=0$ in $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$, i. e., η is a class in the homology H_{d}. Hence $\eta=$ $\sum M_{(\varnothing, J)} \xi_{(q ; J)}+d(\bar{\eta})$ for some $\bar{\eta}$ (cf. (1.16)). Further $\beta(\eta)=0$ implies that $\sum \beta\left(M_{(\varnothing, J)}\right) \xi_{(\wp ; J)} \in \operatorname{Im}(d)$. Thus $\beta\left(M_{(\mathscr{g}, J)}\right)=0$, i. e., $M_{(\mathscr{g}, J)} \in \Omega_{*}$ and $d(\bar{\eta})$ is a class in $H_{\beta}(d)$. Hence η has the desired form by Proposition 2.7. q.e.d.

Example 3.5. For $m \geqq 1$, let $V^{a m+2} \in \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ be the element in Example (1.7). It restricts to $C_{2 m+2} \pm\left(C_{2}\right)^{m+1}$ by definition, which is torsion free in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ (cf. the part P_{*} in [13, Introduction]), and so is $V^{2 m+2}$ in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$. Further

$$
\begin{align*}
r_{*}\left(V^{2 m+2}\right) & =j_{*}\left(C_{2 m+2}\right)+j_{*}\left(\left(C_{2}\right)^{m+1}\right) \tag{3.5.1}\\
& =\left(\xi_{2 m+1}^{2}+\xi_{0}^{4 m+4}+\delta_{m+1}\right)+\left(\xi_{1}^{2}+\xi_{0}^{4}\right)^{m+1} \\
& =\xi_{2 m+1}^{2}+\eta+\delta_{m+1}
\end{align*}
$$

where η is the sum of monomials $\left(\xi_{1}^{2}\right)^{a}\left(\xi_{0}^{2}\right)^{b}$ and δ_{m+1} is the W_{*} decomposable part in (1.18 (ii)). Hence $r_{*}\left(V^{2 m+2}\right) \neq 0$ in $H_{\beta}(d)$, and $V^{2 m+2} \notin e(F)$ by Lemma 2.3. Note that the relation $2 V^{2 m+2}=e\left(C_{2 m+2} \pm\left(C_{2}\right)^{m+1}\right)$ holds by (1.2)

Remark 3.6. The part $\delta_{m+1} \in H_{\beta}(d)$ in particular, i. e.,

$$
\delta_{m+1}=\sum_{I \neq \varnothing} C_{(I, J)} \xi_{(I ; J)}+\beta d(\lambda)
$$

in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$ formally where $C_{(I, J)} \in C_{*}$ with $\operatorname{dim} C_{(I, J)}>0$.
Let \mathcal{R}_{*} be an Ω_{*} algebra generated by the class $\left\{C_{n} \mid n \geqq 2\right\}$ in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$. We examine $\mathscr{I}_{*}=\left\{y \in \mathscr{R}_{*} \mid y \in \operatorname{Im}(r)\right\}$. Note that it is an ideal in \mathscr{R}_{*} since any element in \mathcal{R}_{*} comes from $\Omega_{*}\left(\boldsymbol{Z}_{4} ;\right.$ All) (cf. (1.8)). By (1.2), $2 \mathcal{R}_{*} \subset \mathcal{I}_{*}$ and so it is sufficient to study an ideal $\mathcal{I}_{*} \otimes \boldsymbol{Z}_{2}$ in $\mathcal{R}_{*} \otimes \boldsymbol{Z}_{2}$.

Theorem 3.7. $\mathcal{R}_{*} \otimes \boldsymbol{Z}_{2}$ is a free $\Omega_{*} \otimes \boldsymbol{Z}_{2}$ polynomial algebra on the class $\left\{C_{n}\right\}$, and $\mathcal{I}_{*} \otimes \boldsymbol{Z}_{2}$ is an ideal generated by the class $\left\{C_{2 m+2}-\left(C_{2}\right)^{m+1} \mid m \geqq 1\right\}$.

Proof. For each pair $I=\left(m_{1}, \cdots, m_{p}\right), J=\left(n_{1}, \cdots, n_{q}\right)$ of sequences of integers with $m_{1} \geqq \cdots \geqq m_{p} \geqq 0$ and $n_{1} \geqq \cdots \geqq n_{q} \geqq 1$, the fixed point data of the monomial $C_{2 I+2} C_{2 J+1}$ has the following form by (1.18):

$$
\begin{align*}
j_{*}\left(C_{2 I+2} C_{2 J+1}\right)= & \left(\xi_{2 m_{1}+1}^{2}+\xi_{0}^{4 m_{1}+4}+\delta_{m_{1}+1}\right) \cdots\left(\xi_{2 m_{p^{+1}}^{2}}^{2}+\xi_{0}^{4 m_{p}+4}+\delta_{m_{p}+1}\right) \tag{3.7.1}\\
& \times\left(\xi_{2 n_{1}}^{2}+\xi_{0}^{4 n_{1}+2}\right) \cdots\left(\xi_{2 n_{q}}^{2}+\xi_{0}^{4 n_{q}+2}\right) \\
= & \xi_{(I ; J)}+\eta+\lambda+\delta
\end{align*}
$$

in $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$ where η is the sum of monomials except $\xi_{(I ; J)}$ which contain some $\xi_{2 m_{j+1}}^{2}$ (and so do some $\left.\left(\xi_{0}^{2}\right)^{a}\right)$, λ; the sum of monomials $\left(\xi_{0}^{2}\right)^{b} \xi_{\left(\Omega ; J_{0}\right)}$ with $b>0, J_{0} \subseteq J$ and δ is the W_{*} decomposable part. Thus the elements $\left\{C_{2 I+2} C_{2 J+1}\right\}$ correspond to those $\left\{\xi_{(I ; J)}\right\}$ which are linearly independent (over W_{*}) in $W_{*}\left(\boldsymbol{Z}_{2} ;\right.$ rel $)$. Hence $\left\{C_{2 I+2} C_{2 J+1}\right\}$ is an $\Omega_{*} \otimes \boldsymbol{Z}_{2}$ base for $\mathcal{R}_{*} \otimes \boldsymbol{Z}_{2}$ by the embedding $\Omega_{*} \otimes \boldsymbol{Z}_{2} \hookrightarrow W_{*}$ in (1.10). Next we suppose that in $\mathscr{R}_{*} \otimes \boldsymbol{Z}_{2}$ an element $y=$ $\sum_{(I, J)} M_{(I, J)} C_{2 I+2} C_{2 J+1}\left(M_{(I, J)} \in \Omega_{*} \otimes \boldsymbol{Z}_{2}\right)$ belongs to $\operatorname{Im}(r)=\mathcal{I}_{*} \otimes \boldsymbol{Z}_{2}$. Here we consider the homology H_{d} (cf. (1.16)). Then $i_{*}(y)$ is a class in H_{d} and vanishes there by Lemma 2.1 (1). More precisely, let an integer t with $t \geqq 0$ be fixed and put $S_{t}=\left\{(I, J) \mid\right.$ the total dimension of $\left.\xi_{(I ; J)}=t\right\}$. We then have

$$
\begin{equation*}
0=j_{*}(y)=M_{(\mathscr{g} ; \boldsymbol{J})} \cdot 1+\sum_{t>0}\left(\sum_{(I, J) \in S_{t}} M_{(I, J)}\left(\xi_{(I ; J)}+\eta+\lambda+\delta\right)\right) \tag{3.7.2}
\end{equation*}
$$

in H_{d} by (3.7.1) where $1=\hat{\xi}_{(g ; g)}$. Hence $M_{(g ; s)}=0$. Further, if $t>0$, then $\xi_{(I ; J)}$ with $I \neq \emptyset, \eta$ and δ belong to $\operatorname{Im}(d)$ by definition and the fact that each $\delta_{m_{i+1}}$ $\in H_{\beta}(d)$ (cf. Remark 3.6). Therefore

$$
\begin{align*}
0=j_{*}(y)= & \sum_{i>0}\left\{\sum_{\left(\mathscr{(}, J^{\prime}\right) \in S_{t}} M_{\left(\wp, J^{\prime}\right)}\left(\xi_{\left(g ; J^{\prime}\right)}+\lambda^{\prime}\right)\right. \tag{3.7.3}\\
& \left.+\sum_{(I, J) \in S_{t}^{0}} M_{(I, J)}\left(\xi_{0}^{4 I I \|} \xi_{(\wp ; J)}+\bar{\lambda}\right)\right\}
\end{align*}
$$

in H_{d} where $S_{t}^{0}=\left\{(I, J) \in S_{t} \mid I \neq \emptyset\right\},\|I\|=m_{1}+\cdots+m_{p}+p$ and $\bar{\lambda}$ is the remaining part of λ. For each $t>0$, consider the part $\{\cdots\}$. Then it vanishes in H_{d} by definition. First we have $M_{\left(\mathscr{X} J^{\prime}\right)}=0$ in W_{*} hence in $\Omega_{*} \otimes \boldsymbol{Z}_{2}$ for each J^{\prime}. Further, put $S(u, J)=\left\{I \mid(I, J) \in S_{t}^{0}\right.$ with $\left.\|I\|=u\right\}$ for each positive integer u and the sequence J. Then the coefficient of $\xi_{0}^{4 u} \xi_{(g ; J)}+\bar{\lambda}, \sum_{I \in S(u, J)} M_{(I, J)}=0$ for any (u, J) since the length of each monomial in $\bar{\lambda}$ is greater than that $\xi_{0}^{4 u} \xi_{(\xi ; J)}$. We write $y=\sum_{t} y_{t}$ where $y_{t}=\sum_{(I, J) \in S_{t}} M_{(I, J)} C_{2 I+2} C_{2 J+1}$. Then $y_{0}=0$ as mentioned above and for each $t>0$,

$$
\begin{equation*}
y_{t}=\sum_{(u, J)}\left(\sum_{I \in S(u, J)} M_{(I, J)}\left(C_{2 I+2}-C_{2 I_{0}+2}\right) C_{2 J+1}\right) \tag{3.7.4}
\end{equation*}
$$

for suitable $I_{0} \in S(u, J)$. Since $C_{2 I+2}-C_{2 I_{0}+2} \in \widetilde{V}_{*}$, the ideal in $\mathcal{R}_{*} \otimes \boldsymbol{Z}_{2}$ generated by the class $\left\{C_{2 m+2}-\left(C_{2}\right)^{m+1} \mid m \geqq 1\right\}$, we see that $y \in C_{*}$ and $\mathscr{I}_{*} \otimes \boldsymbol{Z}_{2} \subset C V_{*}$. On the other hand, consider the element $V^{2 m+2}$ in Example 3.5. Then $r\left(V^{2 m+2}\right)=$ $C_{2 m+2}-\left(C_{2}\right)^{m+1}$ in $\mathcal{R}_{*} \otimes \boldsymbol{Z}_{2}$. In general an element $V^{2 m+2} C^{2 K+2} C^{2 L+1}$ in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ restricts to $\left(C_{2 m+2}-\left(C_{2}\right)^{m+1}\right) C_{2 K+2} C_{2 L+1}$ in V_{*} where $C^{2 K+2}$ or $C^{2 L+1}$ is a monomial on the class $\left\{C^{2 k_{j}{ }^{+2}}\right\}$ or $\left\{C^{2 l_{j}+1}\right\}$, respectively (cf. (1.8)). Hence $\mathscr{V}_{*} \subset$ $\operatorname{Im}(r)=\mathcal{I}_{*} \otimes \boldsymbol{Z}_{2}$. This completes the proof.
q.e.d.

Corollary 3.8. For a class $\{(I, J)\}$ with $J \neq 0$, let us consider a torsion element $y=\sum_{(I, J)} M_{(I, J)} C_{2 I+2} C_{2 J+1}$ in \mathcal{R}_{*}. Then y comes from a (torsion) elemeni in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ if and only if it is a sum of the polynomials (3.7.4) in \mathscr{R}_{*}. In this case, any counter-image x of y is of order 4 if and only if some $M_{(I, J)}$ in (3.7.4) is a torsion free element such that $i\left(M_{(I, J)}\right) \neq 0$ where $i: \Omega_{*} \rightarrow C_{*}$ is the projection (cf. (1.17)).

Proof. Note that $C_{2 J+1} \in \operatorname{Tor} \Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ since there is an orientationreversing conjugation on each $\boldsymbol{C} P(2 n,+1)$. Therefore, the above theorem applies to this case in \mathcal{R}_{*} (without tensoring \boldsymbol{Z}_{2}) by (1.6) and the first half follows. By (1.4), any counter-image x of y is a torsion element in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$. If such x is of order 2, then $r_{*}(x)=j_{*}(y)=0$ in $H_{\beta}(d)$ by Lemma 2.3 and so is $j_{*}\left(y_{t}\right)$ for each t by the definition of y_{t}. Therefore $i\left(M_{(I, J)}\right)=0$ in C_{*} for any $M_{(I, J)}$ in (3.7.4) since the terms $\left\{\left(C_{2 I+2}-C_{2 I_{0}+2}\right) C_{2 J+1}\right\}$ of y_{t} correspond to those $\left\{\xi_{(I ; J)}-\xi_{\left(I_{0} ; J\right)}\right\}$ which are linearly independent (over $\left.C_{*}\right)$ in $H_{\beta}(d)$ by (3.7.1) and Proposition 2.7. We see that the counter-image $r^{-1}(y)$ consists of torsions of order 2 (or order 4) if $j_{*}(y)=0($ or $\neq 0)$ in $H_{\beta}(d)$, respectively by Lemma 2.3
and (1.5). Hence the second half follows.
q.e.d.

Further, any element x in the above corollary is also of order 4 in $\Omega_{*}\left(\mathbb{Z}_{4} ; A l l\right)$ (cf. [15, Sec. 4]). More generally,

Theorem 3.9. If x is a torsion of order 4 in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ such that $r_{*}(x) \neq 0$ in $H_{\beta}(d)$, then it is also of order 4 in $\Omega_{*}\left(\boldsymbol{Z}_{4} ;\right.$ All $)$.

Proof. Let $r_{*}(x)=\sum_{I \neq \varnothing} C_{(I, J)} \hat{\xi}_{(I ; J)}$ with $C_{(I, J)} \neq 0$ in C_{*} by assumption. Consider $x \cdot x$ in $\Omega_{*}\left(\mathbb{Z}_{4} ; A l l\right) \times \Omega_{*}\left(\mathbb{Z}_{4} ; p\right) \subset \Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$. If x is of order 2 in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; A l l\right)$, so is $x \cdot x$ in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$ and $r_{*}(x \cdot x)=\Sigma_{I \neq \varnothing} C_{(I, J)}^{2} \xi_{(I, I ; J, J)}=0$ in $H_{\beta}(d)$ by Theorem 2.4. This implies that $C_{(I, J)}=0$ for any (I, J) since the elements $\left\{\xi_{(I, I ; J, J)}\right\}$ are linearly independent over C_{*} by the remark in Definition 2.6. This is contrary to the assumption and the theorem follows. q.e.d.

Example 3.10. An element $V^{2 m+2} C^{2 K+2} C^{2 L+1}$ has order 4 in $\Omega_{*}\left(\boldsymbol{Z}_{4} ;\right.$ All $)$ where $m \geqq 1, K=\left(k_{1}, \cdots, k_{p}\right)$ and $L=\left(l_{1}, \cdots, l_{q}\right)$ with $k_{1} \geqq \cdots \geqq k_{p} \geqq 0, l_{1} \geqq \cdots \geqq l_{q}$ $\geqq 1$ and $q \geqq 1$.

We obtain similar examples from y in the second half of Corollary 3.8 in general.

Finally we consider the torsion free part \mathcal{R}_{F} in \mathcal{R}_{*}, i. e., $\mathscr{R}_{F}=$ $\left(\Omega_{*} /\right.$ Tor $\left.\Omega_{*}\right)\left[C_{2 n+2} \mid n \geqq 0\right]$ as a polynomial algebra over $\Omega_{*} /$ Tor Ω_{*} (cf. [13, Introduction]). Then $\mathscr{R}_{F} \otimes \boldsymbol{Z}_{2}=C_{*}\left[C_{2 n+2} \mid n \geqq 0\right]$ which is isomorphic to $H_{*}\left(P_{*}^{(2)}, \beta\right)$ where $P_{*}^{(2)}=W_{*}\left[C_{2 n+2} \mid n \geqq 0\right]$ in the same way as (1.17). Using this, we describe the complementary part $\mathcal{A}=\Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right) \otimes \boldsymbol{Z}_{2} / \mathscr{R}_{F} \otimes \boldsymbol{Z}_{2}$ as an additive group. The map $\left.j_{*}\right|_{P_{*}^{(2)}}: P_{*}^{(2)} \rightarrow W_{*}\left(\mathbb{Z}_{2} ; r e l\right)$ provides an isomorphism $j_{*}: P_{*}^{(2)} \cong j_{*}\left(P_{*}^{(2)}\right)$ by (3.7.1) when $J=0$. In [13, Sec. 5], $j_{*}\left(P_{*}^{(2)}\right)$ is denoted by $P_{*}^{(2)}(r e l)$. Then we have

$$
\begin{equation*}
j_{*}: \mathscr{R}_{F} \otimes \boldsymbol{Z}_{2}=H_{*}\left(P_{*}^{(2)}, \beta\right) \cong H_{*}\left(P_{*}^{(2)}(r e l), \beta\right) \cong H_{\beta} \tag{3.11}
\end{equation*}
$$

through the isomorphism $i_{*}: H_{*}\left(P_{*}^{(2)}(r e l), \beta\right) \cong H_{\beta}$ by [13, Theorem 5.3] (cf. (1.17)). Let $j_{*}^{\prime}: \Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right) \otimes \boldsymbol{Z}_{2} \rightarrow H_{\beta}$ be the natural map, then $\left.j_{*}^{\prime}\right|_{\mathscr{R}_{F} \otimes \mathbb{Z}_{2}}=j_{*}$ and $\mathcal{A}=\operatorname{Ker}\left(j_{*}^{\prime}\right)$ by (3.11). Any torsion element belongs to \mathcal{A} while the torsion free element $r_{4 m}$ also belongs to \mathcal{A} (cf. Proof of Lemma 2.2).

By Theorem 3.7 and the above, each element in $\left(\mathscr{R}_{F} \cap \mathcal{G}_{*}\right) \otimes \mathbb{Z}_{2}$ is a sum of terms $C_{2 I+2}-C_{2 I_{0}+2}$ (here $\|I\|=\left\|I_{0}\right\|$) with coefficients in C_{*}. Thus, for example an element $C_{2 m+2}+\sum_{I} M_{I} C_{2 I+2}\left(M_{I} \in C_{*}\right.$ and $\left.\operatorname{dim} M_{I}>0\right)$ in $\mathcal{R}_{F} \otimes \boldsymbol{Z}_{2}$ doesn't belong to $\mathcal{I}_{*} \otimes \boldsymbol{Z}_{2}$, i. e., it doesn't come from $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$.

Proposition 3.12. For each $m \geqq 1$, there is a torsion free element

$$
y_{2 m+2}=C_{2 m+2}+\sum_{I} M_{I} C_{2 I+2}+\alpha
$$

in $\Omega_{*}\left(\boldsymbol{Z}_{2} ;\right.$ All $)$ such that it comes from $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right) / \mathcal{E}$ and does not belong to \mathcal{I}_{*} where $\Sigma_{I} M_{I} C_{2 I+2}$ is a decomposable element as mentioned above and $\alpha \in \mathcal{A}$.

Proof. For each $m \geqq 1$, put $P_{2 m+1+\varepsilon}=\boldsymbol{R} P\left(\xi_{0}^{2 m+1} \times \xi_{\varepsilon}\right)$, the projective space bundle associated to $\xi_{0}^{2 m+1} \times \xi_{\varepsilon}$ with an involution $R_{2 m+1+\varepsilon}$ induced by the reflection id $\times-1$ on $\xi_{0}^{2 m+1} \times \xi_{\varepsilon}(\varepsilon \in\{0,1\})$. Note that $\beta\left(P_{2 m+2}\right)=P_{2 m+1}$. Put $y_{2 m+2}=$ $d\left(P_{2 m+2} \times P_{2 m+1}\right)$ in $W_{4 m+4}\left(\boldsymbol{Z}_{2} ; A l l\right)$. Then its fixed point data is as follows:

$$
\begin{align*}
j_{*}\left(y_{2 m+2}\right) & =d\left(\left(\xi_{2 m+1}+\xi_{1} \xi_{0}^{2 m}\right)\left(\xi_{2 m}+\dot{\xi}_{0}^{2 m+1}\right)\right) \tag{3.12.1}\\
& =\hat{\xi}_{2 m+1}^{2}+\xi_{1}^{2} \xi_{0}^{1 m}
\end{align*}
$$

in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right)$ by (1.15). Since $j_{*}\left(\boldsymbol{\beta}\left(y_{2 m+2}\right)\right)=0$ in $W_{*}\left(\boldsymbol{Z}_{2} ; r e l\right), \beta\left(y_{2 m+2}\right) \in Q_{*}^{(2)}$ vanishes in $W_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$ hence in Tor $\Omega_{*}\left(\boldsymbol{Z}_{2} ; A l l\right)$. Therefore $y_{2 m+2} \in \Omega_{4 m+4}\left(\boldsymbol{Z}_{2} ; A l l\right)$ and also belongs to $Q_{*}^{(2)}$ by definition (cf. (1.14)). Hence it comes from some $x_{2 m+2} \in \Omega_{4 m+1}\left(\boldsymbol{Z}_{1} ; p\right)$ by (3.12.1) and Theorem 3.1. On the other hand,

$$
\begin{equation*}
j_{*}\left(C_{2 m+2}\right)=\xi_{2 m+1}^{2}+\sum_{K} M_{K} \xi_{(K ; \xi)} \tag{3.12.2}
\end{equation*}
$$

in H_{β} for some $M_{K} \in C_{*}$ with $\operatorname{dim} M_{K}>0$ by (1.18 (ii)) and (1.17). From this, for each sequence $K=\left(k_{1}, \cdots, k_{p}\right)$ with $k_{1} \geqq \cdots \geqq k_{p} \geqq 0$,

$$
\begin{equation*}
j_{*}\left(C_{2 K+2}\right)=\xi_{(K ; \theta)}+\sum_{L} M_{L} \xi_{(L ; \varnothing)} \tag{3.12.3}
\end{equation*}
$$

in H_{β} for some $M_{L} \in C_{*}$ with $\operatorname{dim} M_{L}>0$ by the product of $j_{*}\left(C_{\left.2 k \jmath^{2}\right)}\right)$. Let $\|K\|$ $=k_{1}+\cdots+k_{p}+p$. Then $\|L\|<\|K\|$ for each L in the above. Let $p_{0}=\max \{\|K\|\}$ for the class $\{K\}$ in (3.12.2) and let $\left\{K_{0}\right\}$ be the subset of $\{K\}$ with $\left\|K_{0}\right\|=p_{0}$. Then

$$
\begin{equation*}
j_{*}\left(C_{2 m+2}-\sum_{K_{0}} M_{K_{0}} C_{2 K_{0}+1}\right)=\xi_{2 m+1}^{2}+\sum_{S} M_{S} \xi_{(S ; \xi)} \tag{3.12.4}
\end{equation*}
$$

in H_{β} for some $M_{S} \in C_{*}$ with $\operatorname{dim} M_{S}>0$ by (3.12.2) and (3.12.3) when $K=K_{0}$. Then $\|S\|<p_{0}$ for each S. By easy induction on $\|\cdot\|$, we obtain $\bar{y}_{2 m+2}=C_{2 m+2}$
 $M_{I} \in C_{*}$ with $\operatorname{dim} M_{I}>0$. Put $\alpha=y_{2 m+2}-\bar{y}_{2 m+2}$, then $\jmath^{\prime}(\alpha)=0$ in H_{β}, i. e., $\alpha \in \mathcal{A}$ by construction and (3.12.1). Since $r_{*}\left(x_{2 m+2}\right)=j_{*}\left(y_{2 m+2}\right) \neq 0$ in $H_{\beta}(d)$ by (3.12.1), we see that $x_{2 m+2} \neq \mathcal{E}$ by Theorem 2.4. Since $j_{*}^{\prime}\left(y_{2 m+2}\right)=j_{*}\left(\bar{y}_{2 m+2}\right) \neq 0$ in H_{β} by (3.11), $y_{2 m+2}$ is a torsion free element and so is $x_{2 m+2}$ in $\Omega_{*}\left(\boldsymbol{Z}_{4} ; p\right)$. Assume that $y_{2 m+2} \in \mathcal{J}_{*} \otimes \boldsymbol{Z}_{2}$, then it is a sum of terms $\left(C_{2 I+2}-C_{2 I_{0}+2}\right) C_{2 J+1}$ with coefficients in C_{*} by Theorem 3.7. If $J \nLeftarrow \emptyset$, then such terms belong to \mathcal{A}. So $\bar{y}_{2 m+2}=T(\bmod \mathcal{A})$ where T is a sum of terms $C_{2 I+2}-C_{2 I_{0}+2}$ with coefficients in C_{*} by the definition of α. Hence in $\mathcal{R}_{F} \otimes \boldsymbol{Z}_{2}, \bar{y}_{2 m+2}=T$ by (3.11), i. e., $\bar{y}_{2 m+2} \in$ $\mathcal{I}_{*} \otimes \boldsymbol{Z}_{2}$. This is a contradiction. Hence $y_{2 m+2} \notin \mathcal{I}_{*} \otimes \boldsymbol{Z}_{2}$ and so $y_{2 m+2} \notin \mathcal{I}_{*}$.
q.e.d.

References

[1] Beem, R.P., The action of free G-bordism on G-bordism, Duke Math. J., 42 (1975), 297-305.
[2] -, On the bordism of almost free $\boldsymbol{Z}_{2 k}$ actions, Trans. Amer. Math. Soc., 225 (1977), 83-105.
[3] Beem, R.P. and Wheeler, E.R., The image of unitary bordism in unoriented bordismthe equivariant case, Proc. Ante, Math. Soc., 45 (1974), 445-449.
[4] Bredon, G.E., I Ivtroduction to Compact Transformation Group, Academic Press, 1972.
[5] Conner, P.E., Lectures on the Action of a Finite Group, Lec. Note. in Math., 73, Springer-Verlag, 1968.
[6] Conner, P.E. and Floyd, E.E., Differentiable Periodic Maps, Erg. Math., 33, Springer-Verlag, 1964.
[7] Hara, T., On Wall manifolds with (ε)-free involutions, Publ. RIMS, Kyoto Univ., 22 (1986), 571-582.
[8] -, On Wall manifolds with almost free $Z_{2^{k}}$ actions, Tokyo J. Math., 15 (1992), 461-474.
[9] Hoo, C.S., Remarks on the bordism algebra of involutions, Proc. Amer. Math. Soc., 17 (1966), 1083-1086.
[10] Katsube, Y., Principal oriented bordism algebra $\Omega_{*}\left(\boldsymbol{Z}_{2^{k}}\right)$, Hiroshima Math. J., 4 (1974), 265-277.
[11] Komiya, K., Oriented bordism and involutions, Osaka J. Math., 9 (1972), 165-181.
[12] Kosniowski, C., Actions of Finite Abelian Groups, Pitman, 1978.
[13] Kosniowski. C. and Ossa. E.. The structure of the bordism module of oriented involutions, Proc. London Math. Soc., 44 (1982), 267-290.
[14] Rosenzweig, H. L., Bordism of involutions on manifolds, Illinois J. Math.. 16 (1972), 1-10.
[15] Rowlett, R.J., The fixed-point construction in equivariant bordism, Trans. Amer. Math. Soc., 246 (1978), 473-481.
[16] Stong, R.E., Stationary point free group actions, Proc. Amer. Math. Soc., 18 (1967), 1089-1092.
[17] Wall manifolds, Trans. Amer. Math. Soc., 251 (1979), 287-298.
[18] Su, J.C., A note on the bordism algebra of involutions, Michigan Math. J., 12 (1965), 25-31.
[19] Wall, C.T.C.. Determination of the cobordism ring, Ann. of Math., 72 (1960), 292-311.

[^0]: Communicated by Y. Miyaoka, April 22, 1993.
 1991 Mathematics Subject Classifications: 57R85.

 * Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba 278, Japan.

