
Publ. RIMS, Kyoto Univ.
30 (1994), 233-248

Oriented Z4 Actions without Stationary Points

By

Tamio KARA*

§ 0. Introduction

Let Z2k denote the cyclic group of order 2k (k^2). In [8], we have studied
the theory W * ( Z Z k ' , A f ) of almost free Z2k actions on closed Wall manifolds,
i. e., an element g^Z2k has no fixed point on the manifolds unless g is 1 or the
unique element of order two. When k=2, such objects are the stationary point
free ("proper") Z± actions and the above theory is denoted by W*(Z4 ; p).

On the other hand let Q*(ZL ; p) be the theory of oriented (orientation-
preserving), stationary point free Z± actions, which has been studied in [16].
Letting fl* be the oriented cobordism ring, then

Theorem (R. E. Stong). For the map a : Q*(Z± ; />)— >fl* which forgets actions
on manifolds, the image Im (a) is precisely the ideal of classes a^Q* having
even Eider characteristic.

This was proved in [16] for arbitrary stationary point free Z»k actions,
but the proof is reduced to the case k=2.

In connection with this result, we treat here the restriction map r ; Q*(Z± ; p)
->Q*(Z2; All) induced by Z2cZ4 where Q*(Z2; All) is the theory of all oriented
involutions.

In section 1, we first state some basic facts on Q*(Z± ; p), and summarize
the theories W*(ZZ; — ) in [13] which are important to further arguments.

We show in section 2 that the image of r lies in a homology Hp(d) which
is obtained from two differentials /3 and d on the relative theory W*(Z2 ; rel).
The kernel € of the induced map r* : Q*(Z± ; p)^Hp(d) consists of the images
of two types of extensions from Q*(Z2 ; All) and £T2, the torsion part of order
2 in Q*(Z± ; p) studied in [8]. Hence an embedding r* : Q*(Z± ; p)/gc+Hp(d) is
obtained (Theorem 2.4). In conclusion of this section, we calculated the homo-
logy Hft(d) (Proposition 2.7).

From these, in section 3 we obtain a necessary and sufficient condition for
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an element in Q*(Z2°, All) to belong to the image of r (Theorem 3.1). Using
this, we give some examples which belong to Im (r) (Example 3.3) and a neces-
sary condition for an element in Q*(Z2; All) to come from the theory Q*(Z4; All)
of all oriented Z4 actions (Proposition 3.4). We return to the embedding r* in
section 2, and show an example which doesn't belong to Q (Example 3.5).
Next we consider an Q* algebra 31* generated by the standard involutions on
the complex projective spaces CP(ri) and determine the ideal <3*={y^3l*\y^
Im(r)} by using the above example (Theorem 3.7). Some torsion elements y
in J* come from those x of order 4 in Q*(Z±; p): that is, those which don't
belong to 8. We show that such elements x also have order 4 in Q*(Z±; All)
(Theorem 3.9 and Example 3.10). Finally we give examples such that they
don't belong to 8 and their restriction don't belong to J# (Proposition 3.12).

The author would like to thank the referee for his many valuable comments.

§ 1. Preliminaries

As an oriented analogue of the unoriented bordism theory %l*(Z2; All) of
all involutions on closed manifolds in Conner and Floyd [6, Sec. 28], the theory
Q*(Z2; All) of all oriented involutions on closed oriented manifolds has been
introduced and studied by Rosenzweig [14], Conner [5], Stong [17], and
Kosniowski and Ossa [13]. The basic notations of this theory are found there,
so we omit these here. Next we summarize the theory Q*(Z4; p) of oriented,
stationary point free Z± actions, which has been studied in Conner and Floyd
[6, (45.5)] and Stong [16]. On the other hand Rowlett [15] contains some
results on this theory as a special case of even-order group actions. Detailed
results have been obtained for the corresponding theory %l*(Z4; p) in the un-
oriented category by Beem [2]. In theories Q*(G', —) we denote by [M, £] the
bordism class of an oriented G action t on a (closed) oriented manifold M in
general (here G=Z2 or Z4 with generator t).

Definition 1.1. Let & and s be the maps defined by e(\_M, A])=[ZiXz2M,
z'Xid] and s([M, ^])=[51Xz2M, zXid] for each [M, 4]efl*(Z2; All) where S1

is the unit circle with Z± action i=V—L On the other hand, let d : Q*(Z2; All)
->G*,!(Z2; All) be the map given by d([M, A^)=[_S1Xz2 M, -Ixid]. Then the
relation r°s = d holds for the restriction map r in Introduction.

We list some basic properties of the theory Q*(Z±; p):

(1.2) The composition e°r (resp. r°e) is the multiplication by 2 in Q*(Z4; p)
(resp. Q*(Z*\All)) (cf. [15, Prop. 4.2]), hence
(1.3) e : fl*(Z2; All)^R2=Q^(Z,; p)®R2 with the inverse map e~l^(l/2)r where
R2 is the subring of Q generated by Z and 1/2.
(1.4) If x is torsion free in Q*(Z±; p), so is r(x) in Q*(Z2; All). Equivalently,
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if y is a torsion free in Q*(ZZ; All), so is e(y) in Q*(Z4; p).
(1.5) A torsion element in Q*(Z± ; p) is of order 2 or 4.

By (1.3), Q*(Z4 ; p)(g)R2 is freely generated (over Q*(g)R2) by the class
{[Z4, /], s(C2/+2)!/} where C2 i+ 2=C2 m i + 2x ••• xC2 7 ? 7 p + 2 is the monomial on C2 m + 2

defined at (1.8) for each I=(mlf ••• , mp) with m^ ••• ^mp^0 (cf. [5, p. 101]).
On the other hand, the above (1.5) is obtained from (1.2) and the following:
(1.6) Any torsion element in Q*(ZZ; All) is of order 2 (cf. [14, Theorem 3.4]).

Example.
(1.7) For m^l, define an oriented Z± action T on the complex projective space
CP(2m+2) by

L (L^O • £1 • ^2 * "" * £2777+1 • ^2771 + 2 j)-— L^o * ^2 * 2i I "• '. Zzm-rZ '• Zzm + ij •

We note that the only stationary point of T is *=[! : 0: ••• : 0]. Then Tx •••
XT acts on CP(2)m+1 with one stationary point (*, ••• , *), and the action at
this point is the same as the action at the point * of T on CP(2m+2). By
excising neighborhoods of these points of CP(2m+2) and (CP(2))m+1 (suitably
oriented), and fitting together along the resulting boundaries, we get an orient-
able manifold V2m^ with the stationary point free Z4 action T (cf. [6, p. 142]).
(1.8) Let Cn = [_CP(n), /n] be an element in Q*(Z4 ; All) defined by

and put Cn = [CP(n), ^n] in Q*(Z2', All) where ^n = /5.

We see that Cn doesn't come from a stationary point free Z4 action. If n
is even, this follows from Theorem in Introduction. See Theorem 3.7 in general.

Next we view the bordism theories W*(G ; — ) as an equivariant analogue
of the Wall cobordism ring W* in Wall [19]. Our objects are Wall manifolds
of type (G, 1) in the sense of Komiya [11] and Stong [17]. An oriented G
action (M, t) falls into this category. Suppose that M admits an orientation-
reversing involution R which commutes with t. Then
(1.9) S1XRM=S1xM/—lxR with G action idX£ has the induced Wall struc-
ture of type (G, 1) as j8([Slx*M, idXf])=[M, f] where /3 : W*(G ; -)->
£?#_i(G; — ) is the Bockstein homomorphism.

This induces a universal coefficient sequence :

i jB
(1.10) 0 — > Q*(G ; -)<g)Za — > W*(G ; -) — * Tor (Q^(G ; -), ZB) — > 0

(c/. [17, Prop. 6.1]).

Now we summarize the theory W*(ZZ', —) which is denoted by O™(—) in
[13].
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(1.11) As regards (1.10) p(W*(Z2; All))=Tor Q*(Z2; All), the torsion part of
Q*(ZZ; All) and the above i induces embedding i: Tor Q*(ZZ; All^W^Z*; ./4/0
by (1.6).
(1.12) There is a splitting W*(Z2; 4//)=Im(**)®Qi2) as W* modules in the
usual long exact sequence (**, /*, 3) for the triple (All, Free, 0), where Im (i*)
is the image of the free involutions and freely generated by [Z2, —1] as a
WV£* module. Here £* is the ideal of x<=W* having even Euler characteristic,
so W*/E*=%z[.Wi'], Wi = [CP(2)~\ as a Z2 polynomial ring. On the other hand,
Qg} is the kernel of a map q\ W*(Z2; ,4//)-»Im (f*) with q°l=id for the inclusion
~i:Im(i*)c+W*(Zt',All). The definition of <? is as follows: q(y)=%(y)[C P(2)]n-
[Z2, -1] if dini3/=4n and ?(;y)=0 otherwise (Here Z([M, 4])=*([MA4]), the
Euler characteristic modulo 2 of the orbit space M/A.) (cf. [13, Theorem 3.2,
Cor. 6.4, Cor. 7.5 and Sec. 8]).

Denote the theory W*(Z2; All, Free) by W*(Z2; rel). From the above,
(1.13) there is an embedding /*: Q$>c+W*(Zi', rel) (cf. [13, Sec. 9]), and
(1.14) the images d(W*(Zz; All)) and p(W*(Z*; All))=Tor Q*(Z2; All) are con-
tained in Q^2) by definition and [13, Lemma 8.2].
(1.15) W*(Z2;rel) is the free W* module generated by the class {fjwe/7},
^^C^X ••• X f ^ g p where F consists of all sequences of integers (»=(nl, ••• n z p )
of even length with n^ ••• ^nzp^0. Here {£„, n^Q} is the class such that
each £2n is the canonical line bundle over the real projective space RP(2n), and
^2n+i = d(^zn) by the map d as Definition 1.1 (cf. [12, Lemma 3.4.3]). From this
d(j-Zn+i)=Q and d acts on ^ by the derivation (cf. [9, Lemma 1], [1, Theorem
3] and [18, Prop. 3.3]). In this way the properties on d are inherited from the
corresponding unoriented theory %l*(Z2', rel) via the embedding W*(Z2;rel)c*
%l*(Zz;rel). On the other hand j8(£2n)=0 and J8(<?2n+i)=62n (cf. (1.9)), and 0 also
acts on £<„ by the derivation (cf. [13, Theorem 4.2]). The map £ commutes
with d in W*(Z2; rel).

According to the above derivations, let Hd or Hp be the homology of the
complex W*(Z2; rel) with differential d or £}, respectively. Then
(1.16) Hd^W^J2

Zm m^O] as a free W* algebra (cf. [1, Lemma 7]), and
(1.17) #/3 = C*[fim+1!?n^O] as a free C* algebra where C* is the Z2 poly-
nomial ring on the class \[CP(2n)~] \n^l}.

Denote by B* the module of W* indecomposables in W*(Z2; rel), then
W*(Zzm,rel)^W*®z2B* as graded differential algebras. Thus Hp^C*®z2

#*(£*, j8) by the Kunneth formula since H*(W*, 0)s(fl*/Tor fl*)®Z2sC* (cf.
[19, Lemma 13]). Then (1.17) is obtained from H*(B*, j8)^Z2Klm+1 m^O] (cf.
[13, Lemma 5.2]).
(1.18) For the class {Cn\ in (1.8),

(i) y*(Cam+1)=fira+|im4-", and
(ii)
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in W*(Z2', rel) where dm+l is the part of W* decomposables (cf. [13, Lemma 5.1]).

§ 2. On the Homology Hp(d)

In this section we study the map r : Q*(Z± ; p)-*Q*(Z2 ; All) induced by the
restriction ZzdZ^. We have studied the theory W*(Z± ; p) of Wall manifolds
with stationary point free Z4 actions, and obtained the torsion part EF2 of order
2 in Q*(Z4 ; p) as the image of the Bockstein homomorphism /5 : W*(Z4 ; £)— >
Q^Ztip) in (1.10) (cf. [8, Theorems 1.19 and 2.3]). Let rw\W*(Z,',p)-+
W*(Z2 ; All) be the restriction as mentioned above. Then

Lemma 2.1.
(1) rw(W*(Zt; p))=d(W*(Z2; All)) hence
(2) r(2i)

Proof. As a W* module, W*(Zt ; p) is generated by the following (i) and

(ii):
(i) the parts Im( f ) where t—e and s, the maps from W*(Z2; All) as De-

finition 1.1,
(ii) F(s, 2) (s=0 and 1) and V(q, 2K) for each q^2 and 2K=(2klf ••• , 2kn)

with k^ ••• ^^7l^0.
In the above F(e, 2) is defined by /*(7(e, 2))=f(f§) for the map y* : W*(Z4 ; />)

^T/K^(Z4; />, Free) in [8, Prop. 1.11 (i)] where if s=Q or 1, then t=e or s, the
map from W*(Z2 ; rel), respectively. Further, let r]2K~^CPZK=CP(2kl)x ••• X
CP(2kn) be the product of the canonical complex line bundles f]zkj-^CP(2kj)
and let S(T^ZK) or D(y2K) be the associated sphere or disk bundle of 572/0 respec-
tively. Then

(ii-1) V(2p+l, 2K) = D2p+zxS(r]ZK)V-(Szp+lxD(y2K)) with an oriented,
stationary point free Z4 action Tv= — lxiU — lXit and

(ii-2) V(2p, 2K)=S1xRV(2p-l, 2K) with action idxTF in (1.9), where R
is the reflection in the first coordinate of Dzp (See [8, Def. 1.17 and Theorem
1.19]. V(q, 2K) is denoted by Vw(qt 2K) there.).

It is easy to show that r(V(2p + l, 2K)) vanishes in Q*(Z2 ; All) by defini-
tion, so does rw(V(2p, 2/0) in W*(Z2 ; All) naturally. On the other hand
j*(rwV(e, 2))=rw(t(&))=Q in W*(Zi\rel) since rw»e=2xid from (1.2) and rw°s
= d from Definition 1.1. Note that rw(V(e, 2))eQiZ) since dim y(e, 2)=2 or 3.
These imply that rw(V(e, 2))=0 in W*(Z2; All) by (1.12) and (1.13). Further,
rw(lm (e)) = 2W*(Z2 ; All) = {0} . Therefore, rw(W*(Z< ; p)) - rw(lm (s)) =
d(W*(Z4 ] All)) and the result (1) follows. Multiply both sides of (1) by /3, then
(2) is obtained by (1.11). q.e.d.

From this lemma we see that lm(r)dd(W*(Z2', All)) in particular. Since
j8(r(jc))=0 for each x<^Q*(Z4; p), the image r(x) belongs to Hp(d), the homo-
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logy of the complex (d(W*(Z2; All}}, £). Hence we have natural maps
r*: Q*(Z4; p)-+Hp(d) and r*—]*°r*: Q*(Z4; p)-»Hp(d), the homology of the
complex (d(W*(Zi; rel)), ft}, through the map /*: W*(Z2; All)->W*(Z2; rel}.
The latter homology is comparatively easy to handle.

Lemma 2.2. Ker(;*: Hp(d}—Hp(d))=d(F) where F=Q*(Z2; All}/Tor is the
torsion free part of Q*(Z2; All}.

Proof. If 3>eKer(;*), then /*(30=j8(d£)=d(0£) for some ^W*(Z2; rel).
Therefore 3(/3f)eKer (d: W*(Z2; Free)-+W*+1(Zt; Free)} in the exact sequence
in (1.12). As a free W* module, W*(Z2; Free) is generated by the class
{X(2n\ Y2n+i n^Q} where r2n+1 = [S2re+1, -1] or d(X(2n)) in [8, Prop. 1.4].
Since d([SZn+1, -1])=0 by [9, Lemma 1], we have 3(0£)=Sn*0 M27Z+1[S2n+1, -1]
for some M2n+1eW%. Take :yeJf*(Z2; A//) such that j *($)=&(£)—
S^0M2ra+1^+2, then jy-^jO in W*(Zt; All) since ;y, d(y)^QS> and ;*(;y)=
J*(d(y))=d(ft) (cf. (1.14)). Further ;*(j8(j?))=-S»2o ^(M2ri+1)f!^

2 and ^(M271+1)
=0 in W# since a»y*=0. These imply that ft(y)^Q^ vanishes in W*(Z2', All)
hence in Tor Q*(ZZ; All) by (1.11). Thus y^Q*(Z2; All). If 5 is a torsion
element, then y — ̂ (z) for some zePF*(Z2; A//). So y = d(y) vanishes in //^(flf)
by definition. Therefore we may consider that y<=F and this proves Ker(/*)c
d(F). Conversely, take any y—d(y}^d(F). The part F is generated by the
following (i) and (ii):

(i) monomials on C2 m + 2 for m^O (cf. (1.8)),
(ii) [Z2, —1] and r4m (m>l) which satisfies 2rim=W4m^Zz, —1] for a sui-

table generator PF4mefl4m of the polynomial algebra Q*/Tor Q*. Note that an
element as W4mr4n—W4nr4m (ra>n>l) is a torsion by definition, so it is excluded
(cf. [13, Introduction and Theorem 10.1]).

In the first case, we see that AZm+z in (1.8) is the reduction of the S1 action
on CP(2m+2) by Z2dS\ so d([CP(2m+2), ^2m+2])=[S1xCT(2m+2), idX^2m+ 2]
=0 in Q*(ZZ;AH) (cf. [1, Theorem 5]). Further, for each monomial C2/+2=
C2 m i + 2X ••• xC2mp+2, we see that j*(d(C2I+2)) vanishes in W*(Z2;rel) by the
derivation of d and the above. Therefore d(C2i+2)<=Q(^ vanishes in W*(Z2; All)
hence in Tor Q*(Z2; All). When C0=[pt, id], rf(C0)=[S1, id]=0. In the second
case, if y—\_Z2} — 1], then d(y)=[S1, — 1]—0. Finally we note that ;*(r4m)=
]8(f) for some ^W^(Z2;rel) since /*(r4m)€=Tor fl*(Z8; rel)=p(W*(Zt; rel)) by
the relation in (ii) and [14, Theorem 3.4]. Such a f is shown in [13, Sec. 12
and 13] concretely. Hence d(r^m) vanishes in Hp(d\ and this completes the
proof. q. e. d.

Lemma 2.3. Ker (r*)=e(F)®(£T2+s(F)).

Proof. We first show that Ker (r*)=e(F)®3:2. Note that e(F)®ET2cKer (r*)
by (1.2), (1.11) and Lemma 2.1 (2). Conversely, suppose that r*(x)=Q in
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for xe£*(Z4;£), i.e., r ( x ) = p ( d y ) = d ( f i y ) for some y^W*(Z2] All}. Therefore
r(x)=d(py)+2z for some Q*(Z2; All) by (1.10). Then t=x-s(py)-e(z)E^<3:2 by
Definition 1.1 and (1.2), and x = e(z)+(tJrs(fty))^e(F)®3:2. Thus we have
Ker (r*)=e(F)@3z. The result follows immediately from Lemma 2.2. q.e.d.

Theorem 2.4. T/zerg fs an embedding r* : Q*(Z± ; p)/€c^Hp(d) where <?—

In the above, we see that only C* in (1.17) acts nontrivially on both sides
and r* is a C* module homomorphism.

Remark 2.5. The part s(F) in 8 consists of torsion elements, since [S1, z]
is of order 4 in £?*(Z4 ; Free) (cf. [10, Lemma 2.13 (i)]). For part (i) in the
proof of Lemma 2.2, note that s(Czi^z)^^z since its restriction d(C2/T2)=0 in
Q*(Zi\All) (cf. (1.2)). We see that it never vanishes in Q*(Z4; p). In fact,
by (1.18 (ii)) y*(C2/+2)=co' l / l l+^(^) (mod W* decomposables) for some /i where
11/11="!!+ - +mp + p. Hence in W*(Z±', p, Free), /*(s(C2/+2)) = s(/*(CB7+B)) =
s(fS11711) (modl/F* decomposables) which doesn't vanish there (cf. [8, Lemma 1.9
(ii) and (Hi)]). Therefore s(C 2 /+ 2 )— 0 in £?*(Z4; p). For part (ii), we see that
[S1, z]^0 and belongs to ET2 (cf. [8, Cor. 1.15]). On the other hand,
s(Sm>i M4mr4m) may be of order 4 for some M4me,Q*/Tor Q*.

Now we calculate the homology Hp(d).

Definition 2.6. For each sequence ( I ] J ) = ( m 1 , ••• , mp; n1} ••• , nq) of non-
negative integers with m^ ••• ̂ mp^n^ ••• ̂  nQ^0, put f U ] J } — ?|mi+i •••
eim^iei^-ein, in W^Z^All). When p^l, each f( /^ ) = rf(^1,if2mi|(/o;J))e
d(W*(Zz ; re/)), IQ-=(mz, ••• , mp), and is a class in the homology Hp(d). Since
I c m j T D ^ u j m ) in Hp(d), the above condition for (/; /) does not lose the generality.

Proposition 2.7. H p ( d ) ^ C * { { ^ ( I . J } 7-^0}} as a free C* modules.

In the same way as (1.17), it is sufficient to prove that

Lemma 2.8. H*(d(B*\ fi)=Zz {{f(/;^ |/^0}} as a Z2 vector spaces.

Proof. For each x<^B*, we examine the form of d(x) in H*(d(B*\ ft).
For any sequence N=(nlt ••• , np) of integers with HI> ••• >?2p^0, define 5^ to
be the Z2 vector subspace of 5* generated by the monomials f— ̂ n^i^i •••
f2a7ip/2?p+i such that (a*, ̂ )^(0, 0) for each i. Then B*=^}N BN as ^2 vector
spaces and we may suppose that x^BN for some N since J and /3 leave 5^
invariant by (1.15). Further, note that d and /3 preserve the length 2k = ^a^

+S6i of f . Hence we suppose that x is a sum of monomials of the same length
2k (in BN) and use induction on the length of x. For convenience, we repre-
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sent x by using the variables fzn and £Zn+i (here n — n^} for example. Then x
may have the following form (i) or (ii), i.e., in (i) the length a-^+bi is even and
in (ii) that is odd, since d and £ never change the length di+bi in particular:

(i) «=f.»f2»+i(SP-/>)+fl»(SO^)+ei»+i(S/?-r) or
(ii) *=

where P-p, ••• , T-t are the monomials on {£27li, ?2n i + i | l^*^/>}, each of which
is divided into the part P, ••• , or T on the squares {fi^, ?in i+i} and the remain-
ing one p, • • • , or t which never has both £27l and ?2n+i. Note that d and £
act trivially on the parts P, ••• , and T. For saving the trouble, we admit x is
non homogeneous on the total dimension in BN. When k—l, x^BN where
N=(ni) or N=(rii, n2}. The former is of type (i), while the latter is of type
(ii). If d(x) is a class in H*(d(B*), £), then d(x)=s^ni+1=e^ni.g) (eeZ2) for
the case (i) and e£d(?2ni+if27ia) which vanishes in this homology for the case (ii).
Suppose that for any x0^BNQ in B* with the length ^2(& — 1), d(xo) is a sum
of monomials £ ( / ; ^ ) with 7^0 in our homology. Let x^BN be an element
with the length 2& for some N=(nif • • • , np). We first consider the case (i).
Unlike (ii), note that p, q and r have even length, so d commutes with /3 on
them (cf. (1.15)). Now by (i),

(2.8. 1) d(x)=8n

The condition Q=fid(x) yields that

(2.8.2) 2P-fl/0+2fl-j8d(r)=£Sn? * and

(2.8.3)

for some rj^B* by comparing the coefficient of £§„ with that of f|n+1 in fid(x).
Moreover note that f}(ij)=d(rj)=Q by multiplying (2.8.2) or (2.8.3) by 0 or rf,
respectively. Then

(2.8.4) 2P-j>=2^-d(r)+f,«e»B+i9+^+j8(2)

by (2.8.2) and the structure of H*(B*, ^8) in (1.17), where Ie5* and 1 is a sum
of monomials f ( / ; 0) . Note that

(2.8.5)

by (2.8.3). Substituting (2.8.3) and (2.8.4) into (2.8.1), we obtain that

(2.8.6) d(x)=5IB

in H*(d(B*\ j8), where r=^+]8J+20-j8((7). Since d(r)=0 by (2.8.5), r=
where 72e£* and 7i is a sum of monomials gu-.j) by (1.16). Since ]8(7')=0, we
have ]8d(7'i)=0, i.e., d(rO is a class in H*(d(B*\ j8) and the length of d(7i)=
2(^ — 1) by the definition of 7 in (2.8.6). Therefore d(*) is the desired form by
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induction. For the case (ii), if d(x) is a class in Hp(d), then d(x)=
fid(j;2nT.i(2}S's)) by the same way as k = l. Next we prove the linear indepen-
dence of the class {?(/., j> I /-£0}. Suppose that

(2.8.7)

for some y^W*(Z2; rel) where s ( / > 0 ) , e (/ i l 7)e{0, 1} and l(J)=q for J=(nlt • • - , ng).
If /(/)^1, then f (/ ;j)=j8(f (/; j>) where f (ijj^lu^&ni+i&n^ < B ; J O > , /0=(n8, • • - , n f f)
for (I;J)=(mlt ••• , rap ; HJ, ••• , ng). Hence Se (/.0)£(/.0)=0 in H*(B*, ff) and
e(/1 0)=0 for any (/, 0) by (1.17). Next we represent (2.8.7) as

(2.8.8)

The left side has the form ^(x) where

(2.8.9) *=

Therefore x has the form :

(2.8.10)

for some r]^W*(Zz', rel) by using H*(B*, ft] again. Multiply this by rf, then

(2.8.11)
Z («/")=!

by (2.8.9) and (2.8.10), where (/'; Jf)=(mly - • - , mp, 7 2 X ; w2, •-, 72,) for the above
(/;/). Since (/';/')=(/'; 0) if *(/)=!, we have e(1.J}=Q for any (/, /) with
/(/)=! in (2.8.11) in the same way as (2.8.7). Hence the result follows by
induction on /(/), and this completes the proof of the lemma. q. e. d.

§3. The Restriction from Z* Actions

We first consider a condition for an element in Q*(Z2; All) to come from
the theory Q*(Z4; p) by the restriction r.

Theorem 3.1. Let y be an element in Q*(Z2; All) which lies in Q(^ (cf.
(1.12)). In order that y^lm(r), a necessary and sufficient condition is that j*(y)

(C(/ f j - )eC*) in W*(Z2;rel), i.e., j*(y) is a class in

Proof. Suppose that y has a fixed point data j*(y) as above. Put f ( / ; i 7 ) =
rf(l(/;j>) as Definition 2.6 and ^ = SC( / ij ) |(j;j )+j8W). Then we have y^
W*(Zz;All) such that /*(jO=i?-Sn*o MZn+i%ln+z for some M2n+1^W*. This
implies that y = d($) since y, d(y)^Q{^ and j*(y)=j*(d(9)). If j*(y)=fld(Z),
then y^Q*(Zz', All). Therefore y=r(s(y))^lm(r) in this case (See the first
half of the proof of Lemma 2.2.). Next we suppose that j*(y)^Q in Hp(d),
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i.e., it has terms <f ( / ; j - ) with coefficients in C*. In this case, dim y is even,
i.e., dim y=Q or 2 (mod 4). Consider the above s(y)^W*(Z4; p) again. Then
y*(^s(5))-s(y*(/3^))-s(^-S^o/3(M2n+0^n+2) for the map y* : W*(Z, ; p) ->
W*(Z± ; />, Free) in the exact sequence in [8, Prop. 1.11 (i)]. We note that
j8(|(/; j>) = £(/o ; j0) where (/0 ; /0) = (wxa, ••• , rap ; mlf n1} ••• , nq) for (/; /) =
(mlf • • • , m p ; n 1 , • • - , nq). Therefore if p^ 2, f( /o ; i / 0> elm (d)=Ker (s) in W*(Z2', rel)
(cf. [8, Lemma 1.9 (in)]). So

(3.1.1)

in W*(Z±', p, Free) where Cj 0=C( / i < 7 ) with p=l. Put

(3.1.2) * = s(30-(SC,,07(2, 2/0)- S /3(M2re+1)F(2, Q))

in W*(Z± ; />), where in general V(2, 2K) is defined at (ii-2) in the proof of
Lemma 2.1 and Q=(0, ••• , 0) ((n+1) times of 0), i.e., i)o=Cn+l-+{pt}. Note
that ^8(7(2, 2K))=V(1, 2K) by (1.9). Then y*(]8jc)=0 in ^*(Z4; p, Free) since
;*(7(1, 2/if))=(?(l, 2K)=s(rj2K) in [8, Prop. 1.8 (i)] and 5?2*=f(0;/o in gi*(Z,; rel)
hence in W*(^2; re/) (cf. [3, p. 446]). Therefore /3(Jc)eS3=Ker (/*) in the above
exact sequence. Recall that dimJc =dim3;=0 or 2 (mod 4). Hence in £?*(Z4; />),
j8(Jc)=2a if d imfEEO (mod 4) and s[CP(2)]n[S1, /]+2a (se{0, 1}) if dim;c^2
(mod 4) by the structure of £> and (1.10). We see that a is of order 4 if 2a
does not vanish. Such an element may belong to s(F) in 8 or Q*(Z± ; />)/<£ (cf .
Theorem 2.4 and Remark 2.5). If aes(F), then dima^l (mod 4) and if ae
Q*(Z4; p)/6, then dima^O or 2 (mod 4) since r#(a)^0 in //^(rf) as j*(y) in this
case. Thus, if d im%=0 (mod 4), then fi(x)=2a=Q and the element x (denoted
by Xi) belongs to Q*(Z4

m,p). If dimjc=2 (mod 4), we may consider the case
^(jc)=£[CP(2)]n[S1, z]+2a with a=s(^m>1M,mr,m) for suitable M4mefl*/Torfi*.
Note that 2a=M/[S1, /] for some M' by the definition of r4m (See (ii) in the
proof of Lemma 2.2.). Therefore j8(f)=M[S1, i] where M=s[CP(2)]n+M/.
Now we put

(3.1.3) *B=Jc-M-V(0, 2)

where 7(0, 2)e^2(Z4 ; p) is an element such that |8(V(0, 2))=[S1, f| (cf. [8,
Def. 1.17 and Lemma 2.5]). Then /3(#2):=0 and x^Q*(Z±',p). Consider now
the restriction r(xk) in Q*(Z2; All) for k=l or 2. It is shown in the proof of
Lemma 2.1 that rw(V(2, 2/0) and ^(7(0, 2)) vanish in W*(Z2; All). Therefore
rw(xk)=d(y)=y^W*(Z2;All) by (3.1.2) and (3.1.3), and r(xk)-y=2z for some
z^Q*(Z2; All) by (1.10). Hence we have y=r(xk — e(z))^lm(r). The converse
follows from Theorem 2.4 and Proposition 2.7. This completes the proof, q. e. d.

Remark 3.2.
(i) In the above theorem, y^Q^ occurs only if dim;y=4n by (1.12). In
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this case, y + [C 'P(2)]n[Z2, -l]eQ^2) and belongs to Im(r) if j*(y) is a class
in Hp(d) as above. We see whether y^Q^ or not by using the formula in [4,
Chap. Ill, Theorem 4.3] for example.

(ii) The map r* : Q*(Z± ; p)-+Hp(d) is epic from the above theorem, hence
r*:Q*(Zt',p)/(e(F)®2z)^Hfi(d) (cf. Lemma 2.3).

(iii) The image of the embedding r* in Theorem 2.4 is properly contained
in Hp(d). For example, f =ff+|o is the only fixed point data which includes a
class £? in Hp(d). In fact /*(C2)=f. But ? is not a class in this homology.

Example 3.3. Take any ^elm(r) in £*(Z2 ; All). Then
i if z e £ ? 2 T All has a fixed oint data(i) if ze£?#(2T2; All) has a fixed point data

in W*(ZZ ; re/) where M^^efi*, then z-jyelm(r) . In particular,
(ii) z 2 - ;y<=Im(r) for any z^Q*(Z2; All} since ;'*U2) has the above form by

[19, Prop. 3].

In (i), note that j * ( z - y ) has the form in Theorem 3.1. Since y = d(y) for
some y&W*(Z2;All) by Lemma 2.1 (1), we have z-y=z-d(y)^Qg> by the
formula in [4] as mentioned above. Thus the result (i) follows. In (ii), if
dimz is even and z—\_M, A], then MxM admits an oriented Z4 action / with
P=A defined by I(a, b)=(A(b), a) for (a, b)^MxM. Consider [MxM, /]•*€=
Q*(Z4; p) naturally for jcefl*(Z4; P) with r(x)=y, then it restricts to zz-y.

Relating to the above example, let Q*(Z4 ; All) be the theory of all oriented
Z4 actions. Then

Proposition 3.4. For the restriction r0 : Q*(Z4 ; All)->Q*(Z2 ; All}, the fixed
point data j*(z) of each zelm(r0) has the form of Example 3.3 (i).

Proof. Let z=rQ(x) for some x^Q^Z^ ', All) and put j*(z)—r]. Choose any
xQ<^Q*(Z4; p) such that j*(r(x0))=Y]o^Q in W*(Z2', rel) (Such an x0 is given in
the next example 3.5.). Then d(y0)=Q since rjQ is a class in Hp(d). Moreover

since X ' X Q ^ Q ^ ( Z ^ ; p). From these Q—d(r]r]Q)—d(r])if]Q and
}—^ in W*(Z2;rel), i.e., r] is a class in the homology //d. Hence 57 =

(5) for some 9 (cf. (1.16)). Further j8(iy)=0 implies that
6/). Thus j8(A/(0.j))=0, i.e., M(KtJ^Q* and d(^) is a

class in Hp(d). Hence 07 has the desired form by Proposition 2.7. q. e. d.

Example 3.5. For m^l, let V3m+2efi*(Z4 ; />) be the element in Example
(1.7). It restricts to C2 m + 2±(C2)m + 1 by definition, which is torsion free in
Q*(Zs',All) (cf. the part P* in [13, Introduction]), and so is F2m+2 in Q*(Z, ; p).
Further
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(3.5.1) r*(72-+2)=y*(C2m

where t] is the sum of monomials (ff)a(f§)& and dm+i is the W* decomposable
part in (1.18 (ii)). Hence r*(F2m^O in Hft(d), and V2m+2£e(F) by Lemma 2.3.
Note that the relation 2VZm+z=e(C2m+z±(C2)

m+1) holds by (1.2)

Remark 3.6. The part dm+1^Hp(d) in particular, i.e.,

in W*(Z2;rel) formally where C ( / i l 7 )eC^ with dimC ( / i ( 7 )>0.

Let .&* be an Q* algebra generated by the class {Cn\n^2} in Q*(Z2; All).
We examine <3*={y^<R*\y^lm(r)}. Note that it is an ideal in &* since any
element in &* comes from Q*(Z* ; All) (cf . (1.8)). By (1.2), 2^*c 3* and so
it is sufficient to study an ideal 3*§§ZZ in

Theorem 3.7. <R*®Z2 is a free Q*(&Z2 polynomial algebra on the class

{Cn}, and J*(g)Z2 is an ideal generated by the class {C2m+2—(C2)
m+l

Proof. For each pair I—(ml, • • - , mp), J=(n1} •-, nq) of sequences of integers
with m{^ ••• ^mp^Q and n^ ••• ̂ n^l, the fixed point data of the monomial
^27+2^2,7+1 has the following form by (1.18):

(S.T.I) y*(c2/+2c2[7+1)=(fimi+1+fr i+4+5mi+1) ••• ( fL+ i+?r^4+^+ i )

in W*(Zi\rd) where f] is the sum of monomials except f ( / ; j ) which contain
some glmj+i (and so do some (fo)a), ^; the sum of monomials (fjQ6f(0 ;j0) with
£>0, /0^/ and 5 is the W* decomposable part. Thus the elements {C2I+2C2J+1}
correspond to those {S<i-,jy\ which are linearly independent (over W*) in
W*(Z2;rel). Hence {C2I+ZC2J+1} is an Q*§§Z2 base for 5i*®Z2 by the embed-
ding Q*(&Zd^W* in (1.10). Next we suppose that in &.*§§Z2 an element 3; =
S(/.j) M(I,j)C2I+2C2J+1 (Af(/,j)efl*®Za) belongs to Im (r)=j*(g)Z2. Here we
consider the homology //d (cf. (1.16)). Then i*(y) is a class in Hd and vanishes
there by Lemma 2.1 (1). More precisely, let an integer t with ^0 be fixed
and put St={(I, /) | the total dimension of ^a-j^—t}. We then have

(3.7.2) 0=y*(y)=Af ( f ! f ) . l+S(
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in Hd by (3.7.1) where l=f(0 ;0). Hence M(0;0)=0. Further, if £>0, then |(/;j)
with 7^0, )? and d belong to lm(d) by definition and the fact that each dmi+1

(cf. Remark 3.6). Therefore

(3.7.3) 0=/*(;y)= S i S Md.j.jfo,;,,.) -U')

in 7/d where S?= {(/, /)eSt 7^0} , ||/||=mi + ••• +mp + p and I is the remaining
part of 1 For each f>0, consider the part { • • • } . Then it vanishes in Hd by
definition. First we have M(0iJ^=Q in W* hence in Q*(g)Z2 for each /'.
Further, put S(u, /)={/)(/, /)eS? with ||/|| = w} for each positive integer u and
the sequence/. Then the coefficient of £ou£ca ;,7>+^ S/esu./) Mc/.^^O for
any (M, /) since the length of each monomial in A is greater than that f jMf (0;t7).
We write jy^IL;^ where j>£=S(/, ,neSj M (/ , l / )C2 / + 2C2 o r + 1 . Then 3;0=0 as men-
tioned above and for each t>Q,

(3.7.4) yt= S ( S M ( / i J )(C2 / + 2-C2/0+2)C2J+1)
( M . t / ) I^S(U,J)

for suitable /0eS(w, /). Since C 2 / + 2 — C2/0+2^c^*, the ideal in ^*(g)Z2 generated
by the class {C2m+2-(C2)m+1 |m^l}, we see that ;yecv* and ^(glZgC^*. On
the other hand, consider the element F2m+2 in Example 3.5. Then r(F277l+2)=
C2?7l+2-(C2)wl+1 in ^*(g)Z2. In general an element vZm+2C2K+2CZL+1 in fl*(Z4 ; /))
restricts to (C2?7 l+2-(C2)m+])C2^+2C2L+1 in q;* where C2*~2 or C2L+1 is a mono-
mial on the class {C2^'+2} or {C2lj+1}, respectively (cf. (1.8)). Hence cy* C

This completes the proof. q.e.d.

Corollary 3.8. For a class {(I, /)} with /^0, let us consider a torsion ele-
ment y = ̂ ti,j) Mu,j)CZi+zCZj+i in &*. Then y comes from a (torsion) element
in Q*(Z±; p] if and only if it is a sum of the polynomials (3.7.4) in <R*. In this
case, any counter-image x of y is of order 4 if and only if some M(i,J} in (3.7.4)
is a torsion free element such that i(M(I>J}}^ where i: Q*—>C* is the projection
(cf. (1.17)).

Proof. Note that C 2j-+i^ Tor Q*(ZZ ; All) since there is an orientation-
reversing conjugation on each CP(2nJ

J
rl). Therefore, the above theorem applies

to this case in <R* (without tensoring Z2) by (1.6) and the first half follows.
By (1.4), any counter-image x of y is a torsion element in Q*(Z& ; p). If such
x is of order 2, then r*(x)=j*(y)=Q in Hp(d) by Lemma 2.3 and so is j*(yt}
for each t by the definition of yt. Therefore 2'(M(/>(/))=0 in C* for any MUtJ}

in (3.7.4) since the terms {(C2 / + 2— C2/0+2)C2t7+1} of yt correspond to those
{£(/;</)— f(/0 ; j)} which are linearly independent (over C*) in Hp(d) by (3.7.1)
and Proposition 2.7. We see that the counter-image r~l(y} consists of torsions
of order 2 (or order 4) if j*(y)=§ (or =^0) in Hp(d\ respectively by Lemma 2.3
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and (1.5). Hence the second half follows. q. 0. d.

Further, any element x in the above corollary is also of order 4 in
Q*(Z, ; All) (cf. [15, Sec. 4]). More generally,

Theorem 3.9. // x is a torsion of order 4 in Q*(Z4; p) such that r*(x)=tQ
in Hp(d), then it is also of order 4 in Q*(Z± ; All).

Proof. Let r*(x)=^l¥:B C ( I i J ) t ; u ; j ) with C ( / > J ) ^ 0 in C* by assumption.
Consider x-x in Q*(Z4 ; All)xQ*(Z4 ; p)dQ*(Z± ; p). If x is of order 2 in
Q*(Z4;All), so is x-x in Q*(Z4;p) and r*(*-x)=S/** CJ/.j^/./jj . j^O in
Hft(d) by Theorem 2.4. This implies that C ( / i ( 7 )=0 for any (/, /) since the
elements {fc/, / ;«/ , , / )} are linearly independent over C* by the remark in Defini-
tion 2.6. This is contrary to the assumption and the theorem follows, q. e. d.

Example 3.10. An element vZm+zCZK+zCZL+l has order 4 in Q*(Z4 ; Ail)
where m^l, K=(klf ••• , kp) and L=(/i, ••• , /2) with ^ ••• ̂ kp^0, l^ ••• ^/q

^1 and q^L

We obtain similar examples from y in the second half of Corollary 3.8 in
general.

Finally we consider the torsion free part SIF in &*, i.e., <RF=
(Q*/Tor Q*~)lC2n+2 ^2^0] as a polynomial algebra over Q*/Tor Q* (cf. [13,
Introduction]). Then mF®Z2=C*[C2n+2| n^O] which is isomorphic to H*(P£\ j8)
where Pi2)=W*[C2w+2 |n^O] in the same way as (1.17). Using this, we describe
the complementary part Jl=Q*(Z2 ; All)® Z2/ '&F(& ^2, as an additive group. The
map /*!PC2) : Pi2)-»W*(Z2; rel) provides an isomorphism /*: PiZ)=/*(Pi2)) by
(3.7.1) when /=0. In [13, Sec. 5], ;*(Pi2)) is denoted by P^(rel). Then we
have

(3.11) ;* : <RF®ZZ=H*(P$\ j$)^H*(P$\rd), /3)=^

through the isomorphism z* : H^Pg^rel), fi) = Hp by [13, Theorem 5.3] (cf.
(1.17)). Let ;i: fl*(Z2; All)®Z2-*Hp be the natural map, then yiU^z^;* and
j£=Ker(;4) by (3.11). Any torsion element belongs to JZ while the torsion free
element r4m also belongs to ^ (cf. Proof of Lemma 2.2).

By Theorem 3.7 and the above, each element in (3tFr\<9*)§§Zz is a sum of
terms C 2 J + 2— C2 /0+2 (here ||/|| = ||/0||) with coefficients in (7*. Thus, for example
an element C2m+2+S/ M/C2 /+2 (M/eC* and dimM/>0) in 31F®ZZ doesn't
belong to J^Z2, i.e., it doesn't come from Q*(Z4; p).

Proposition 3.12. For each m^l, there is a torsion free element
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in Q*(ZZ ; All) such that it comes from Q*(Z4 ; p)/€ and does not belong to J#
where S/ M/C2 /+ 2 is a decomposable element as mentioned above and

Proof. For each ra^l, put P2m+i+s= RP(£lm+lX%£), the projective space
bundle associated to <?om + 1Xf e with an involution RZm+i+e induced by the reflec-
tion idx-1 on f^+ 1xf£ (seE{0, 1}). Note that jSCATO+a)=ftm.i. Put yzm+z=
d(Pzm+zXP2m+i) in W4m+4(Zz; All). Then its fixed point data is as follows:

(3-12.1)

in W*(Za;r*/) by (1.15). Since j*(p(ytm+^=Q m W*(Zt;rel), p(ytm+3
vanishes in W*(ZZ ; All) hence in Tor Q*(ZZ ; .4/0- Therefore yZm+z^Q±m+±(Zz ;
and also belongs to Qi2) by definition (cf. (1.14)). Hence it comes from
some xZm+^Qim+i(Zi; p) by (3.12.1) and Theorem 3.1. On the other hand,

(3.12.2) /*(Cam+a)=£lm+1+SMff£ur ; , ,
K

in Hp for some MK^C* with dimM^>0 by (1.18 (ii)) and (1.17). From this,
for each sequence K=(klt ••• , kp) with k^ ••• ^&p^>0,

(3.12.3) ;*(C8/r+a)=f (jr. 0) + S MLfa; 0)
L

in Hp for some MLeC* with dimML>0 by the product of y*(C2ft jJ.a). Let \\K\\
= kt+ ... +kp + p. Then ||L||<||/if|| for each L in the above. Let />0=max{||/f||}
for the class {K} in (3.12.2) and let {K0} be the subset of {K} with ||J^0|| = /?0.
Then

(3.12.4) j*(Ctm+t-^MKoCtKQ+1)=&n+1+3}M8G{Slv
KQ S

in //^ for some M5eC* with dimM5>0 by (3.12.2) and (3.12.3) when K=KQ.
Then \\S\\<p0 for each S. By easy induction on ||-| | , we obtain yZm+z—CZm+z

+ S/M/C2 / + 2 such that j*(yzin^)=&m+i (in Hp) for some / with 1^||/||^/>0 and
M/eC* with dimM/>0. Put ^=3^2771+2— 3^2^+2, then ;i(a)= 0 in /fy, i.e., ae^
by construction and (3.12.1). Since r*(xZm+z)=j*(yZm+z)--£Q in Hp(d) by (3.12.1),
we see that x2m+z£€ by Theorem 2.4. Since /^^^^MJw^^O in //^ by
(3.11), yZm+2 is a torsion free element and so is x,zm+z in Q*(Z4 ; />). Assume
that ^2m+2eJ*(g)Z2, then it is a sum of terms (C 2 / + 2 — CzlQ+z)CZJ+1 with co-
efficients in C* by Theorem 3.7. If /-£0, then such terms belong to Jl. So
yzm+2=T (mod^) where T is a sum of terms C 2 / + 2 — C 2 / 0 + 2 with coefficients in
C# by the definition of a. Hence in 31F®ZZ, yZm+z~T by (3.11), i.e., 3>2m+2e

This is a contradiction. Hence 3>2m+2^*(S^2 and so j2m+2^J*.



248 TAMIO HARA

References

[ 1 ] Beem, R. P., The action of free G-bordism on G-bordism, Duke Math. /., 42 (1975),
297-305.

[2] 1 On the bordism of almost free Z^ actions, Trans. Amer. Math. Soc.,
225 (1977), 83-105.

[ 3 ] Beem, R. P. and Wheeler, E.R., The image of unitary bordism in unoriented bordism-
the equivariant case, Proc. Amei. Math. Soc., 45 (1974), 445-449.

[4] Bredon, G.E., Introduction to Compact Transformation Group, Academic Press,
1972.

[5] Conner, P. E., Lectures on the Action of a Finite Group, Lee. Note, in Math., 73,
Springer-Verlag, 1968.

[6] Conner, P.E. and Floyd, E.E., Differentiate Periodic Maps, Erg. Math., 33,
Springer-Verlag, 1964.

[7] Kara, T.f On Wall manifolds with (£)-free involutions, Publ. RIMS, Kyoto Univ.,
22 (1986), 571-582.

[3] f On Wall manifolds with almost free Z2h actions, Tokyo J. Math., 15
(1992), 461-474.

[9] Hoo, C.S., Remarks on the bordism algebra of involutions, Proc. Amer. Math.
Soc., 17 (1966), 1083-1086.

[10] Katsube, Y., Principal oriented bordism algebra @*(Z2k), Hiroshima Math. /., 4
(1974), 265-277.

[11] Komiya, K., Oriented bordism and involutions, Osaka J. Math., 9 (1972), 165-181.
[12] Kosniowski, C., Actions of Finite Abelian Groups, Pitman, 1978.
[13] Kosniowski, C. and Ossa. E.. The structure of the bordism module of oriented in-

volutions, Proc. London Math. Soc., 44 (1982), 267-290.
[14] Rosenzweig, H.L., Bordism of involutions on manifolds, Illinois J. Math., 16 (1972),

1-10.
[15] Rowlett, R.J. , The fixed-point construction in equivariant bordism, Trans. Amer.

Math. Soc., 246 (1978), 473-481.
[16] Stong, R.E., Stationary point free group actions, Proc. Amer. Math. Soc., 18

(1967), 1089-1092.
[17] .f Wall manifolds, Trans. Amer. Math. Soc., 251 (1979), 287-298.
[18] Su, J.C., A note on the bordism algebra of involutions, Michigan Math. /., 12

(1965), 25-31.
[19] Wall, C.T.C.. Determination of the cobordism ring, Ann. of Math., 72 (1960),

292-311.


