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Subcoercive and Subelliptic Operators
on Lie Groups: Variable Coefficients

By

A. P.M. ter ELST*T and Derek W. ROBINSON*

Abstract

Let QI, ••• , ad> be an algebraic basis of rank r in a Lie algebra g of a connected Lie
group G and let At be the left differential operator in the direction ai on the Lp-spaces
with respect to the left, or right, Haar measure, where p £ = [ l , ooj. We consider ra-th
order operators

H= E caA«

with complex variable bounded coefficients ca which are subcoercive of step r, i.e., for
all g^G the form obtained by fixing the ca at g is subcoercive of step r and the ellipticity
constant is bounded from below uniformly by a positive constant. If the principal co-
efficients are ra-times differentiate in Loo in the directions of alt ••• , ad> we prove that
the closure of H generates a consistent interpolation semigroup S which has a kernel.
We show that S is holomorphic on a non-empty ^-independent sector and if H is formally
self-adjoint then the holomorphy angle is ~/2. We also derive 'Gaussian' type bounds
for the kernel and its derivatives up to order m — l.

§ 1. Introduction

Several recent papers have been devoted to the development of a theory
of second-order subelliptic differential operators with real coefficients acting
on functions over a Lie group (see [1], [4], [3], [18], [19], [22], [23]). The
subelliptic theory extends the theory of strongly elliptic operators described at
length in [20] and the purpose of this paper is to further extend the theory
in two different directions. First we generalize the theory to higher-order
operators characterized by a condition of coercivity. Secondly, we allow com-
plex-valued coefficients. The subsequent results then extend our earlier work,
and that of Hebisch [13], [14], on subcoercive operators with constant coef-
ficients to the setting of variable coefficients.
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In the sequel we adopt the general notation used in [20] and [10]. In
particular, G is a Lie group with left Haar measure dg and right Haar measure
dg, but now the representation U is identified with the left regular representa-
tion L on the Lp-spaces, />e[l, °o], with respect to the left, or right, Haar
measure, Lp — LP(G ; dg) or Lp — LP(G ; dg), respectively. We denote the
norm on Lp by | | - j i p and the norm on Lp by | - | | ^ . We assume throughout
that G is connected, but G need not be unimodular. The modular function is
denoted by A. Let alt ••• , ad> be an algebraic basis for the Lie algebra g of
G, i.e., a finite sequence of linearly independent elements of g which generate
g. Thus there is an integer r such that alt ••• , ad- together with all com-
mutators (ad a t l ) ••• (ad a^^Xa^), i3 — 1, ••• , d', where n^r, span the vector
space g. The smallest integer r with this property is referred to as the rank
of the subbasis and a vector space basis is defined to have rank one. Moreover,
the algebraic basis determines in a canonical fashion (see, [20] Section IV. 4c)
a modulus function g>-> g\' on the group. This function in turn determines a
unique local dimension D' such that the ball B'p={g^G: \g '<p\ has Haar
measure \B'P\ satisfying bounds clp

D> <^ Bp\<^czp
Df for all pe<0, 1].

Next for all *e {1, ••• , d'} let Al be the infinitesimal generator of the one
parameter group ^L(exp(ifaJ) from R into Lp or Lp. It will clear from the
context on which space A, acts. We also denote by 4?<^> the pointwise left
derivative in the direction al of a function <p: G-*C. We use multi-index
notation for products of the generators A. For n^N let

If <*=(*!, • • - , i*)e{l, • • - , d ' } * , we define \a\=k and Aa = A,1---Alk. Let J ( d ' )
=\Jn=Jn(d'). Then for each m^N we denote the subspace r\aejnid^D(Aa)
in Lp or Lp, by LPim or L'^m, respectively. We define a norm and a semi-
norm on L'p-m by setting

\\<p\\'p.m= sup \\Any\\p, A/p ; T n(y>)= sup \\A(l<p\\p,
aeJ ? n (^ ' ) i f l i = 7 n

for each <p^L'p.tm and analogously we define | - l l ^ m and Np. m on L*.m. Let
Lp;0o=r\£=i L'p.i7n and define L^ ;oo similarly. We also adopt the corresponding
notation Cf

Q.m for the subspaces C\a&j m(d'^D(Aa) associated with the generators
of left translations on C0=C0(G).

An m-th order form is a function C:Jm(d')-^C such that C(a)^=0 for some
a^Jm(d') with \a\-m. The principal part P of C is the form with P(a)=
C(a) if \a\-m and P(a)=0 if l a | < m . The formal adjoint Cr of C is the

function O : J m(d')-*C defined by Ct(«)=( — D | f l |C(ai) where or*=(«n, ••• , «i)
whenever a=(ii, ••• , in).

Next we want to introduce the concept of subcoercive form of step s, with
Let Q(d', s) denote the nilpotent Lie algebra with d' generators which
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is free of step s, i.e., the quotient of the free Lie algebra with d' generators
«i, • • • , a*' by the ideal generated by the commutators of order at least s + 1.
Further let G=G(d', s) be the connected simply connected Lie group with Lie
algebra q(d', s). Let At be the infinitesimal generator of left translations LG

/v

in LZ(G ; dg) corresponding to at. We deiine

dLo(C)= ^ C(a)A«
n^Jm(d")

as the operator in LZ(G ; dg) with domain LZ-^(G ; dg). We say that C is an
7n-th order subcoercive form of step s if m is even and there exists //>0 such
that

Re(3Lg(/>, y)^v(N2.,m/z(<p)T

for all y>eL2 ;oo(G; dg). The largest such n is called the ellipticity constant
of C.

Now we introduce some new definitions. We want to study operators with
variable coefficients, so we have to introduce forms which depend on the points
of G. Let ??ieJVbe even and let C: Jm(df)xG->C. For all a^J m(d') define
ca: G-*C by ca(g)=C(at g) and for g<=G define Cg : Jm(d')-~>C by Cg(a)=
C(a, g). We refer to the ca as the coefficients of C. Now we call C an ?n-th
order form if ca^.Lx for all a^J m(df) and, moreover, for all g^G there exists
a ^ J m ( d f ) such that C(a, g)^Q and a\=m. If c a eLL ; l a l for all a^J m(df)
we define the formal adjoint CT of C by

where L^(a) is the set of all (^, f)<=Jm(d')z such that ^ is a multi-index ob-
tained from a by omission of some indices and f is the multi-index formed by
the omitted indices, i.e., the (/3, 7) occurring are the pairs of multi-indices in
the Leibniz formula for the multi-derivative Aa of a product. If s^N we call
C a subcoercive form of step s if there exists /^>0 such that for all g^G the
form Cg is a subcoercive form of step s and the ellipticity constant for Ce is
larger than or equal to /*. The maximum of all possible ^ is called the ellip-
ticity constant for C. For g^G let Pg be the principal part of Cg and with

let

m(dL%(Pe)<p, <p)\/(Nf
z.,m/2(<p))2: ^eL2 ; o o(G; dh\ ^0, g^G} .

Then set tfc^arctanC^-1)^, ^/2].
If the form C is subcoercive of step r, where r is the rank of the algebraic

basis ai, ••• , ad ' , we study the affiliated subcoercive operator

S caA
a

ae / m (d ' )

on the Lp-, or L^-, spaces, with domain D(H)=L'Pim or D(H)=Lr$.>m, respec-
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lively. If the formal adjoint Cr is defined we also define H^=dL(C^ to be the
subcoercive operator affiliated with Cr. The main result of this paper is that
if ca<^Lp.>m for all a with \a\=m then the closure H of H generates a con-
tinuous semigroup S which interpolates consistently between the Lp-, and L$-,
spaces and which is holomorphic on each of these spaces in a sector with angle
larger or equal to Be- Moreover, the action of S is determined by an integral
kernel which satisfies appropriate Gaussian bounds and the smoothness prop-
erties typical of elliptic regularity.

In the important case m=2 our results cover operators of the form

#=- 2 CijAiAj+JZdAi+c*
i,j=i i=l

with Cij^L^z, cif CQ^LOO and with the real part of the matrix C=(clj) uniformly
strictly positive-definite, i.e., there is a /*>0, the ellipticity constant, such that
2~1(C + C*)^j«/, in the sense of matrices, uniformly over the group. Then the
corresponding semigroup S has a kernel K satisfying bounds

\Kt(g; /Ol^ar» f 'V'<r6 ( l**-1 | f ) 2 £-3

for all g, /ieG, Z>0. Moreover, if v/^(2/)-1(C-C*)^-i;/ then S, on each of
the Lp-, and L$~, spaces, is holomorphic in a sector with angle larger or equal
to arctanCjenr1). In particular, if the matrix of principal coefficients is hermitian
then S is holomorphic in the open right half-plane.

§2. Smooth Coefficients

In this section we consider m-th order subcoercive operators H = dL(C\
associated with an m-th order subcoercive form C of step r and coefficients
caeC6;0c, acting on the Lp-, and L^-, spaces and examine the heat semigroups
generated by their closures. We prove the existence of these semigroups and
establish that each such semigroup is determined by an integral kernel. By
this we mean that for each £>0 there exists a function Kt^Cb(GxG) which
is rapidly decreasing as \gh~l '—>oo and

= dgKt(g;
JG

for all <p^Lp or ^eL^. Our approach is to first construct a suitable kernel
t*-*Kt as a function over GxG by a parametrix expansion and then use it to
prove the existence of the semigroup. In the course of the analysis we obtain
pointwise bounds on Kt and its left derivatives. These bounds are largely
independent of the smoothness of the ca; they only involve the m-th order
subelliptic left derivatives of the principal coefficients. Subsequently these
bounds can be used to extend the semigroup results to operators with weaker
smoothness of the coefficients and in particular to operators for which the only
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smoothness hypotheses are on the principal coefficients.
Let Kt(g; h) denote the values of K. The kernel should satisfy the gene-

ralized heat equation

on RxGxG with measure d t x d g x d f i , where dt =d/dt, the differential operator
H acts on the variable g and d denotes both the point measure at the origin
of R and at the identity of G. Moreover, one should have Kt(g\ /0=0 for
t<0. Now we aim to construct K with these properties by successive approxi-
mations. Let P be the principal part of the form C. The zero order approxi-
mation K(Q) of K is defined in terms of the kernel K8 of the semigroup Ss

generated by the closure of the principal part Hp
g=-dL(Pg) of the subcoercive

operator Hg — dL(Cg) obtained by fixing the coefficients ca of H with their
values at the point g, i.e.,

Hg= S
aeJm«Lf)

and the corresponding principal part is given by

Hp
a= 2 ca(g)A*

a;\ a\=m

(see [10] Theorem 5.4 and Section 7). Thus (t, h)^Kj(h) is a distribution over
RxG, with measure d t x d f i , satisfying the differential equation

In addition one has A'f=0 for f<0 and K{^C0;eo(G) for t>Q. Further we
define Kf=0 if t=0.

Now the zero-order approximation K(Q) of K is introduced by setting

Formally it then follows that as distribution on RxGxG, with measure dtx
dgxdh,

t(g', h) (2)

where Lt is given by

Lt(g\ h)= S 2 ca(g)(AP8rK{)(gh-1) (3)
-

with A the left derivatives of Kf and 9 the left derivatives with respect to
the exponent variable. Therefore the solution of (1) is formally expressed by
the expansion

X«=2^BJ ( 4 )nso

with the K(n} defined recursively by
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Kln> = -(K<n~l>*L\ (5)

and the convolution product v given by

(<P*</>)t(g ; h)={ ds\
jR jG

Note that /C£
(0)=0=L£ for t^Q. Thus one automatically has A%(71)=0 for f^O.

Now using the estimates and arguments of [4] and [10] we will establish that
K is well defined by this series expansion and satisfies 'Gaussian' bounds.
This is then used to prove that the closure of H generates a continuous semi-
group S with K as kernel.

Theorem 2.1. Let C be an m-th order subcoercive form of step r with
coefficients ca^Cb]00) H — dL(C) and H^ = dL(C^) the operator associated with the
formal adjoint on the dual space.

I. H is closable on each of the Lp-, and Lp-, spaces, //=(#T)*, and the
closures H generate a consistent interpolating semigroup S.

II. 5 is holomorphic in a sector Ao={z^C: \argz\<6} with 0^6 c-
III. The action of St is determined by an integral kernel Kt^Cb(GxG)

and t-*Kt(g; h) is analytic from <0, °o> into C for all g, h^G.
IV. The closure of the formal adjoint H1 of H generates a consistent in-

terpolating semigroup Sf dual to S with a kernel 7CT such that

Kl(g; h)=A(gr1A(h)Kt(h; g}

for all g, h<=G and t<=R.
V. For each n^N the derivative dfKt, with £>0 fixed, is (m—l)-times LTO-

(left-)differentiable in both variables and the derivatives with respect to one
variable are (m—Y)times differentiate with respect to the other.

VI. There exist a, b, £>0 and a)^Q such that

for all n^N, £>0, g, h<=G and all multi-indices a with \a <m where the A
are the left derivatives with respect to the first variable. The values of a, b, c
and a) depend on the coefficients ca through the ellipticity constant jLt and the
parameter

VII. For each />e[l, oo], t>0 one has StLp<^L'p.m^, StLp<^L'p.m^, there
exist a>0 and cw^O, depending on the coefficients ca through p and \\C\\'m, such
that

and A«Kt is the kernel of AaSt, for all a^J m-i(d').
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Proof. Since H is densely defined and //f is densely defined on the dual space
it follows that H is closable. The rest of the proof is now based on analysis of
the parametrix expansion defined formally by (4) and (5) following the general
reasoning of [4] and [10] combined with various general techniques of semi-
group theory.

The first aim is to prove that the recursion relation (5) is well defined and
that the series (4) is convergent on the weighted spaces J7&, p^O, consisting
of the measurable functions <p over GxG for which the norm

is finite. This requires estimates on the associated Li-spaces, X\ and
with norms

JG

and

respectively. The recursion relations (5) then formally give the coupled in-
tegral inequalities

and
rt

' -u IIP II / " I n 0 ( 7 }-s HI || L f g \ \ ' i • \ t )

Therefore to bound the 7f( '° one needs suitable bounds on ||ATJIK. !I/U0)I|£,
\\Li\\\, \\LL\\& and I I L J I ^ . It will then follow from these bounds that the recur-

sion relation (5) is well defined and that the coupled integral inequalities (6)
and (7) can be solved.

The necessary bounds on K(
t
0) and Lt follow from the point wise Gaussian

bounds on Kf(h) and its derivatives with respect to g and h. The bounds on
the derivatives with respect to h are obtained in [10] Theorem 7.1.IV. Ex-
plicitly, for all a^J(d') there exist a, b, co>0 such that

| (AaKj)(h)\ <^at~(D' + l n l ) / m e w t e ~ b ( ( l h l ' ) m t ~ 1 ) 1 ' ^ m ~ ^ ( 8 )

for all /ieG and £>0. But since the constants a, b and co depend continuously
on the ellipticity constant for the form Cg and on the Cg(fi) with /3 =m, we
may assume that the estimates (8) are uniform in g. Note that AaK$^
so convolution products of these kinds of functions are elements of
We also need estimates for derivatives of AaKf with respect to g. For
and &e N let
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fi*(0= {(MI, •" , w*)e<0, °o>* : M!+ ••• +".=0

and let d£? denote Lebesgue measure on this surface.

Lemma 2.2. Let P be a pure m-th order subcoercive form of step r with
coefficients ca^Cb(G) and let Hp=dL(P). Further let a^J m^(d'\ k^{2, ••• ,
m + 1] and a2, ••• , ak^Jm(d') with the constraint \al\+k — l<^ra. For g^G let
Kf be the kernel of the semigroup Sj generated by the closure of the subcoercive
operator H^=dL(Pg) associated with the subcoercive form Pg.

I. There exist a, b, <y>0 such that for all h<=G, all t>0 and all glf ••• ,

dQ(ulf • • •
>

II. Fix gtEG and t>Q. For 0e/, f l l l(d') define Fp : G->C by

Then F^Cf
0liaii-\^ and AfFp=F<r,^ for all

III.

lim f dQ(ul9 -,
i.-.gk-**jQkM

dQ(u1} ••-

for all g^G uniformly for
IV. The function (g, h)^Kf(h) is continuous from GxG into C for all t>Q.

Remark. The main difficulty in handling the integrals in the lemma arises
because one can have \ai\=m for any z"e{2, • • • , k}. Then the integral over
uz has a singularity u^D'/m~l. The contribution u~D'/m is effectively cancelled
by the convolution integral but the u^1 remains and is non-integrable at wz=0.
This problem is exacerbated if one has several multi-indices with \al =m.
But these difficulties can be circumvented by integrating by parts and effectively
passing the derivatives to the left. This is the basic technique that we use in
the proof. Note, however, that a simple counting argument indicates that this
technique is only applicable under the condition \ai\+k — l^m. Non-integrable
singularities are unavoidable if this condition is violated.

Proof. First, let ulf uz, 6>0 and let <p and (/> be measurable functions
which satisfy bounds
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for all g&G. Then we argue that there exist c, a)>Q, depending only on b,
such that

for all geG, where b'=2 1 m / ( m l}b.
The proof is based on the observation that for all &>0 there exist c,

depending only on b such that

t-D>lmt dge-bU\g\">™t-l)l/tm-l)^ceait

for all £>0.
There are two cases to consider. First, assume that u^u%. Then

JG

But \g\'^\h\'+\h-1g\' and therefore

(| k'1^} / ) m / < m - 1 > > 2 ~ m / ( m ~ 1 ) ( | o-| M ^ / C m - l )_ / | ^ I /\

Hence

(( | li \ O771^!1)17

Consequently

9 )

where c and a) depend only on b.
Secondly, suppose that uz<ul and remark that

Using
/ ( m~ 1 )( Iff '\-mlCm-l) _i I y2 i / \ 7

one then obtains

(( | gh ^uT1)1^™-^ +(( | /i | TW g1)17 '77

and estimate (9) follows by a similar calculation.
Now we turn to the estimation of the first integral in the lemma. We

begin by fixing a, b, <y>0 such that for all
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(10;
(AaK f i T ) ( / 2 ) | ^ (

for all t>Q and g^G. Here K f ' 1 is the kernel of the semigroup S f > T generated
by the closure of the subcoercive operator dL((PgT) associated with the form
(Pgy. Note that the constants a, b and co depend only on the ||ca|U, with \a\
—m and the ellipticity constant JJL, in particular this is the case for / i f 1 .

Next we use the equality

Qk(t)=\Ji {(ult ••• , M A )e<0, ty" : u,+ ••• +uh = t, u3^k~lt}

to estimate the integral.
Let t>0 and glt ••• , gk^G. Further let ;'e {1, ••• , h\ and uit ••• ,

Suppose that u^k^tand IIL-\ ----- \-uk = i. For all /e {2, • • - , k] let a'L,
be such that aL = (a'i, a'/y and

if
a, +/-1)VO J

if /^
«! +/-2)VO

Furthermore define the operation 91—>^r on functions over G by

for all gt=G. Then

*iSfy^^

r*A"lKty^^

So by the previous observation, there exist c, br , <*/>(), depending only on
and a), such that

• • • ( 2 ~ 1 M f e _ 1 ) ~ ( l a ^ - i 1 ^ | a ^ l ) / m W f e l a * l / m e " 6 ' ( u / n ' ) m £ " 1 ) 1 / c " l " ] ) e c u ' £ (11)

for all /zeG. Note that al + «2 ^?n— 1, ••• , a"^ 4- aj ^m — 1, | aV | -4- |aj+1

^m, l a j + i + aj+2\^m—l, ••• , \oL'{\<m—\, with obvious modifications if j=l
or ;'=/?. So, with the hat denoting omission of the integral, one obtains
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^ 2 * f l 2 * - 1 c r z ? ' / m g ( * - 1 ) t m * - 1 ^ r | a i l / / n e - 6 ' ( ( I A I ' ) W l t " l ) 1 / C w " 1 ) e ' l l ' f . (12)

This proves Statement I.
Next we prove Statement II. S:nce the estimates (11) are valid uniformly

in h and

it follows from the Lebesgue dominated convergence theorem that F&1 is con-
tinuous, hence F f t leC0. Similarly Fp^CQ for all fi^J \ a i \ ( d ' ).

Now let p < = J ] a i ^ L ( d ' ) and /e {1, ••• , d'} . Then for all li^G and
5- -0 one has

o ( t

Now by the mean value theorem there exist a, 6, w>0 such that for all stE
<0, 1], /zeG and w L > 0 there exists s'e<0, s> such that

So arguing as above one obtains

point wise in li. But also

sup supl s'^F^C

So F^g is differentiate in the Loo-sense by [2] Proposition 3.1.23. Hence Fp is
differentiable in the C0-sense. This proves Statement II.

Next let g~G and ^>0. Then for all <p^Lp one has

= - S (Ch(a}-
a;\a l=m

S (
a; | a |=m

for all h^G where we have used Statement I and Fubini's theorem in the last
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equality. Therefore

' f - u . (13)
a, | a i=m J 0

By Statement I there exists an G>0 such that

J O

for all h^G and ge[l, cx»]. So

\\mAtKt=AtKf (14)
ft-*

in Lj and in Loo. But since A^K^CQ, the limit (14) is valid even in C0.
Now we prove Statement III. For all /e {1, ••• , &} let aj, a'{^Jm-l(d'} be

such that #z = <tf!, of>. Then for all u l t • • • , M A + 1 > 0

lim /I
.-,**-** J

= lim (-l)la '2I+"+|aK4*i/aj^
ei'-'ek-e

(A<*V*Kl»,ir*-''*Aa**

= lim (-l)1^1^^^1/!"!^^*^^^**^^*^^^^ /8

in C0. So Statement III follows by the uniform estimate of (11) and the
Lebesgue dominated convergence theorem.

Finally we prove the joint continuity of (g, h)^Kf(h) for all £>0. Fix
. For all g0, hQ, g, h^G one has

Now Kf* is uniformly continuous and \img^gQ\\K j— A"f°|U=0 by (14). So (g, h)
^>Kf(h) is continuous. D

Proposition 2.3e Assume the conditions and notation of Lemma 2.2. More-
over, suppose ca^Cf

b]m for all a with \a\=m.
L For all t>0, k^{Q, ••• , m—1] and /e {0, ••• , m} such that k+l^m the

function (g, h^Kf(h) is k-times pointwise left-differentiable in g and l-times
left-differentiable in h, in any order, the derivatives are (jointly} continuous and
the derivatives with respect to g commute with those with respect to h.

II. Let jSe/m.^d7) and r^Jm(d') and suppose that | /3| + |rl ^rn. Then
there exist a, b, <y>0 such that
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for all t>Q and g, /ieG. The values of a, b and w depend on the coefficients

ca through the ellipticity constant and the parameter Sa; iai = wl||c a | |~ ; in •

Proof. Fix fi^Jm^(d'). First we prove that for all h^G the function
g^(A?Kf}(h) is (m— |j8|)-times differentiate and that for all 7&Jm-\p\(d'),
I r l ^ O , all £e{2, • • - , 1 7 1+1} and «8, ••• , a k ^ J m ( d f } there exist c&*..,af teC6,
polynomials of degree k — 1 in the A8ca with d^J\r\(d'), such that

lS1 S <#,*,., a,(g)
£=2 o2. -, a/,, * *

(15)

for all t>0 and g, heG. The proof is by induction on \ f \ .
Let i<= {1, • • - , d'}, ̂ >0 and g, /^sG and for sefl set 5-s=exp(— sajg.

Then by (13) one has for s-0

= - S s-'Cc.^.J-
a ; | a |=7n ,

Since the integral is a continuous function of s, by Lemma 2. 2. Ill, the case
1 7- 1=1 follows.

Now let r^Jm-i^-^d'), I r l ^ l and suppose (15) is valid. Let i'e {1, • • - , rf'}.
Then for ail £>0 and g, /ieG, with ^s=exp(— sa t)^ for all s^R, one has
for s=0

dQ(Ui,

Now the integral in the first term is a continuous function of s by Lemma
2.2.III. So by taking the limit s-^0 we obtain the derivative of c&*. . . . a i f e . The
subterms in the second sum need more care. Let az, ••• , ak<=Jm(d') with |a2 |
= ...= | a j k =m. For te{2, ••• , ^} let a{, afe/^d7) be such that a z=<aj,
and

This is possible since 2^l<k<,m— \f}\. Then in C0(G)
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*AazKii*'''*Aa^K^k — An\^1*Aa^K^*''-*AakKik)

gii2r*.-ia5A:sa,2*(.4(af3 jViSij8r* • • • * i a */vs A ;
= - l " Z ' + - M a j f c l 5 "-, Uk) (16)

vS'j8)^/l^

To estimate the term in the last sum one deduces by the argument used in the
proof of equality (13), but with g and h interchanged, that

So

= - S (-l)""uai(^,)-caft , ] « | = m.

Therefore

a

Now Lemma 2.2.1 and a repeated use of (9) and (10; allows one to use Fubini's
theorem and obtain
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- i _ « « ' 2 ' + " + i « * ' dQ(ult -, u

~ ' d u 2 (-D l r t I + I ^i + "+^/,'s-1(c,,tes)-c
« ; | f f | = m

^^

The other three terms in (16) can be handled in a similar, but slightly easier,
manner and one obtains

dQ(ult ••-, ̂ /^'Va^/rs/a^

A new application of Lemma 2.2 establishes that the limit s— >0 exists and the
induction step follows.

In case /3e/7 n_2(of /) , fe/m(d') , *'e {1, ••• , d'} and |^ | -h |r |^m-l it follows
from (15) and Lemma 2. 2. II that h*-+(& A>*Kf)(h) is differentiate and
(.4 I3

rA^/iCf)(/i)=(3 r .4 l .4'3/vf)(/0. So the derivatives with respect to g and h
commute.

Finally, the continuity of (g, /i)— >A' f(h^ follows as in the proof of Lemma
2. 2. IV, using (15) and Lemmas 2. 2. II and 2. 2. III. This proves the proposition.

D

Now we are prepared to give the proof of Theorem 2.1. Recall, we have
a subcoercive form C, possibly with lower order coefficients, P is the principal
part of C, H=dL(C), Hi=dL(&), Hg = d L ( C g ) and Kf is the kernel of the
semigroup Sf generated by the closure of the operator H*g=dL(P,,), the prin-
cipal part of Hg. The proof is divided in several steps.

Step 1. It follows from Proposition 2.3 that there exist a, b, w>0 such
that

for all jSe/m-iCrf ') , f ^ J m ( d f ) and ^>0 such that |j8| + |f| 5j?n. So one can define
the function Lt, t^R by (3). Note that for £<JO the definition of Lt obviously
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makes sense since Kf=Q for ^0, in particular for t=Q. For all t^R and
/zeG fixed the function </> on G defined by (]}(g)—K^(gh~l) is m-times pointwise
differentiable and

for all g^G. Here the operator H in H(p is the pointwise defined differential
operator and the operator Hp

g in (Hp
sKf}(gh~l) is the principal part of the

operator He acting on the function A'feC0(G). So for all <p^C™(RxGxG)
one obtains by the substitution <j}(t, g, h)=<p(t, g, h'lg) and partial integration

dt( dh( dg<p(t,g,
R JG JG

= -( dl\ dh\ dg(dt<]>)(t, g, h)K?(h)+\ dt\ dh\ dgfrt, g, h}(Hp
sK!)(h)

jR JG jG JR JG JG

+ ( dt\ dh\ dg<p(t,g, h ) L t ( g ; h)
JR JG JG

= ( dg\ dt\ dh(-dt+(Hp
e-^TW,g,h)K?(h)

JG JR JG

+ \dt\ dh\ dg<p(t,g, i i ) L t ( g ; h)
JR JG JG

= ( dgflQ, g, e)+{ dt\ dh\ dgy(t, g, h ) L t ( g ; h)JG JR JG JG

= ( dg<p(Q, g, g)+\ dt\ dh\ dg<p(t, g, h)Lt(g; h)
JG JR JG JG

= ( dt\ dh\ dg<p(t,g, h)(8(f)8(gh-^+Lt(g; h))
JR JG JG

where Hp
g-

 U) denotes the operator Hp
g acting on the h- variable. So the dif-

ferential equation (2) is valid as distribution on RxGxG, with measure dtx
dgxdh. Furthermore, one obtains the pointwise estimates

\ <at~D' /

valid for all ^>0 and g, h<^G, with redefined a, b, (o. Hence, by increasing a
and a) if necessary, one establishes bounds
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for all |0^0 and t>Q and with a and a) independent of p and f.
Now arguing as in the proof of the proposition in the appendix of [4] and

Theorem 7.1 in [10J we conclude that indeed the definition (5) of K(
t
n} makes

sense, the function K^ is continuous for all £>0 and n^N0, the series (4) for
Kt converges in £{ and JT£, the function Kt is continuous for all £>0 and Kt

satisfies the bounds of Statement VI of Theorem 2.1 if \a\= n=Q. In the
derivation of these properties we have only used the m-th order derivatives of
the ca with a =m and the bounds only depend on the ellipticity constant and
the parameter I|C||^. It then follows by construction that K satifies the heat
equation (1) and Kt=Q for £<^0. One can deduce even more. The function
t*->Kt on {t^R : t>Q} has an extension to a sector Ad with 0^0C- This follows
because each of the operators H6 = el°H, \0\<6C, is subcoercive and hence the
foregoing construction applied to He yields a solution K 9 of the corresponding
heat equation. But then the extension of K is defined by Kel0t=K6

t for t>Q.
This construction of the kernel for complex t also implies that the "Gaus-

sian" bounds on K extend to the interior of the sector Agc. The bounds on
\KZ with z—eidt, £>0, follow by consideration of the operator Ho if 0 <6C.
But the bounds can be chosen uniform in 0 if \0\^<p<0c- Specifically, there
are a, b>Q and oj^O such that

Kz(g', h)\<La\

for all g, h^G and all non-zero z^A^ with <p<0c where a, b and w again
depend on the coefficients only through the ellipticity constant and the para-
meter \\C\\'m.

At this point we have constructed K as a solution of the appropriate heat
equation and if £>0 the corresponding function is an obvious candidate for the
semigroup kernel. Nevertheless we have not established that K is a semigroup
under convolution and it does not seem that the parametrix expansion is parti-
cularly suited to the proof of algebraic properties. Therefore we adopt a
different tactic and use K8 to establish that the closures of H generate in-
terpolating semigroups on the Lp-, and Lp-, spaces. Then we exploit this
information to prove that the Kt with £>0 is a convolution semigroup.

Step 2. Since K8 satisfies 'Gaussian' bounds one may define the kernel

for all /leC with Re^><w and introduce the corresponding operator rj0) on the
Lp-, or Lp-, spaces by
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(r?><pXg)=(Rf*<pXg). (18)

But the 'Gaussian' bounds on Kf are uniform in g and hence the operator
r]0) satisfies the bounds

|| r J0) I! p^ c(Re X)-1, 'I rj0) || ̂  ^

for a suitable c>0 and all ^eC with Re/^>co and a; sufficiently large. The
values of c and co depend continuously on the ellipticity constant p and ||ca||co
with a —m.

Next we prove that r]0} maps C?(G) into Lf
p]mf~\L^.m if Re 1 is large

enough. Let a^Jm(d') and ^eC"(G). Then with .4n denoting the pointwise
derivatives one obtains for all g^G by (15) and the bounds of Lemma 2.2

where the sum is over all pairs of multi-indices Lb(a) arising from the Leibniz
formula for the multi-derivative Aa of the product. There exist M, tf^O, and
for each j-^J m(d') and se / i n r ( r f ' ) there exists c1>E^C°°(G), such that for all

l)A L(h)= 2 £, e(/i)/l6

£ e J l r l r ( c Z ' )

with | c ? , £ ( / z ) | ^Mealh]l where r is the rank of the algebraic basis alt ••• , a(i-
Then

So

S
, | r ( d ' ) J O JG

l l ^ A r j °VIU^I I^ I !k - W r S S
( / s . ^ e L f i C r t ) e e J | r , r ( d ' ) J o J G

for some c>0 and Rex sufficiently large. Moreover, /Larl0)^ is continuous for
all a^Jm(d'). So rp<p^Lp.m. Since ^(^) grows at most exponentially in |^|7,
it follows similarly that rj0)^^L^ ; m.

Now let ^eC^(G), >ieC and suppose Re>l is sufficiently large. For A/ eJV
let XNt=C?(R) satisfy Org^rgl, ^(0=1 if ^[0, A7], suppX* gC-W-1, /V+l]
and ^OV+0=3Ci(l+0 for all ^e[0, 1]. Moreover, let eM=e~n. Then for
all
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= lira ( dg\ dh\°°dt((lI+Hi)<l>Xg)ei(t)XN(t)<p(h)K?(gh->)
N-*oa JG jG JO

= Urn

Ar-»oo JG J G Jo

= l im( dg{ dh'\dt(<p®v®(eilN))(g, h, ̂ (^(gh^ + L^g; h))
N->oo JG jG JO

=(<p, <[>)+((/>, Q*<p), (19)

where for all tp<^Lp we have defined Qi<peLf by

te-nLt(g; h)<p(h) .

But since LL satisfies 'Gaussian' bounds, the operator Q^ is continuous on Lp

and

for some c>0 and all A^C with Re ^ sufficiently large. So

(20)

for all ^), 0eC~(G). Since C"(G) is <r(LQ, Lp)-dense in Ltt, the equation (20)
is valid for all (p^.Lq and ^eC"(G). But since the right hand side of (20)
depends 0(LP, Lg)-continuously on <p, it follows that r(^<p^D(H) for all
and

for all <p(^Lp. In particular, if Re 2. is so large that ||0^||33_P<1, the operator
I +Qz is invertible, and the range R(U +H) of the operator H-\-H is Lp.

Similarly one may construct operators r l ° ) > r and Ql starting from H1 and

one finds

on Lg. So

for all (f>eD(U+H^). But #r is an extension of H, so

if Re /t is sufficiently large. Consequently one has bounds
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for all ^eC with Re X ^ a)Q with a)0 sufficiently large, since \\(r$)i*y\\p->p=
||rf •T||M^c/(Re;0-1 if Re ̂ CDQ. But if H is replaced by eidH with \0\<0C

one can reason similarly and finally deduce as in the proof of [10] Theorem
5.2 that H generates a holomorphic semigroup on Lp with holomorphy angle
at least 6C. Similarly, the L^-closure of the operator H in Lp generates a
holomorphic semigroup with holomorphy angle at least as large as 6C>

It follows as above that //f also generates a holomorphic semigroup Sf.
Then //T* generates a holomorphic semigroup Sf*. But //9//T* and since a
generator cannot have a strict extension it follows that H=tT[*.

Step 3. Next we prove Statement III. The idea is to identify the kernel
of the semigroup with the distribution K constructed by the parametrix ex-
pansion. First we use K to define a family of bounded operators. For ^0
and (/)^LP define Ttip by

= dhKt(g;
J G

Then by the 'Gaussian' bounds on Kt we see that Tt maps Ll continuously
into LI and Loo continuously into Loo, so by interpolation Tt maps Lp con-
tinuously into Lp. Moreover, \\Tt\\p-,p satisfies bounds \\Tt\\p_>p<ae(ut for some
a, o>>0. Since K satisfies 'Gaussian7 bounds one may define the kernel R* by

0

for all l^C with Re 1 large enough and introduce the corresponding operator
r, by

r; W)-

Then r* is continuous and by a calculation similar to that used to deduce (19)
one proves that

(& 9) (21)

for all <p, <p<=C™(G). Since C"(G) is a(Lp, Lg)-dense in Lp, where ^ is dual to
p, it follows that (21) is valid for all (/>^LP and ^C7(G).

At this stage we need a lemma which can be stated in a much wider
context.

Lemma 2.4. Let (?£, G, U} be a strongly, or weakly*, continuous representa-
tion and further let alf • • • , ad> be an algebraic basis in the Lie algebra g of G.
Let raeJV. Then for all x<^!£r

m there exists a sequence xlt xz, •••^2C00 such that
for all compact Kd<S, the dual or predual, of T, and all
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, A"xn)=(f, A"x),

uniformly for all f^K. In particular if the representation is strongly continuous
then 3fTO is norm dense in Tin-

Proof. Let TI, TZ, ••• be the bounded approximation of the identity as
defined before Lemma 3.21 in [10]. Also, for <peC?(G) and a=(*i, ••• , * f c)e
J(d') let Ma<p^C~(G) be defined as before Lemma 3.20 in [10]. Then by [10]
Lemma 3.20

for all xe2Ci, where

JG

for all $ e C?(G). The important fact is that there exists c>0 such that
I l -Ma^nl l^c for all a ^ J w ( d f ) and neTVand Uneiv supprn is compact (see [10]
Lemma 3.21).

Let a^.Jm(d'}, \a\^Q and write a = (il} ••• , ik). Then for all
one has

=lim||(ad.4)«(y(T,,))x||=Of
7l-»oo

where V is the strongly continuous representation obtained by restricting U to
the Cm -elements of the strongly continuous component of U and a full vector
space basis of g. But since l|Lr(M«r7l)||^c/||Mar7i||1^cc/ for all n<^N, with cf=
sup{l|[/(g)|| : geUne]vSupprn}<oo and ^ f i a i + i is dense in 3? with repect to the
topology of uniform convergence on compact subsets of 3 (see [8], proof of
Assertion 2) it follows that for all x<=3£ and compact A'ciEF

Hm(/, U(M«rn)*)=Of

uniformly for /eK
Now let a ^ J m ( d f ) and *eXt- Then

A*U(Tn)x= 23

where the sum is again over the multi-indices occurring in the Leibniz formula
for the multi-derivative Aa of a product. So for all compact /icg" one has

, A*U(TnW=\im(f, U(Tn)
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uniformly for f<=K.
If the representation is strongly continuous all limits are uniform in / and

Too is norm dense in 3?^- H

We continue with the proof of Statement III of Theorem 2.1. By Lemma 2.4
it follows that (21) is valid for all <p^Lp and <l>^L'q.m. So r^eZ)((I/4-//t)")
and (M-\-W*}rji<p=<p. But H^=H, so if Re ^ is large enough one has r\ —

. Then for all </>, <p^C°?(G) and Re ^ large enough

=rJo

So (<]>, St<p)=(<f>, Tt(p} and St = Tt. Therefore S has a kernel and this kernel is
K. It follows similarly that the semigroup on L$ has a kernel and that the
kernel is K.

Since K is independent of p and p, it follows automatically that S is a
consistent interpolating semigroup on the Lp-, and Lp-, spaces. This finishes
the proof of Statement I.

Step 4. All the foregoing arguments apply equally well to the formal
adjoint H^ of H. Therefore the closures of //T generate a consistent inter-
polating semigroup Sf on the Lp-, and Lp-, spaces. But //T=//* and hence
ST is dual to S. Therefore

= ( dg( dhKt(g;
JG JG

= \ dg\
JG JG

for all <p^Lp and $^Lq with p'l-^q~l—l. Consequently K and /O are related
as in Statement IV of the theorem.

Step 5. Finally we consider the analyticity of the kernel z^K2(g] h) and
the differentiability properties of Kt and its derivatives d?Kt. We begin with
the kernel.

We have now established that the semigroup S is holomorphic in a sector
Ao with O^Qc- Moreover, we have also shown that the kernel K is defined
in the sector A^c. Now we want to prove that z^Kz(g\ h} is analytic on A0C

for all g, h^G. Note that Ll®Ll is dense in L^GxG; dgxdg). There
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exists a unique strongly continuous holomorphic semigroup T in L ^ G x G ;
dgxdg], holomorphic in A0C, such that Tz(<p®<p)=(Sl<p)®</) for all <p, 0eLi(G;
dg) and 2^Aflc . Then r* is a holomorphic weakly* continuous holomorphic
semigroup on .£„,(,=-££). Moreover, for all zlf z2^A0c one has T^KZ2=KZl+Zz.
So T* acts strongly continuous on KZz and hence the map z^>Kz from A#c

into J?oo is holomorphic, with the norm topology on J7oo. In particular, there
exists /izoeJ?oo such that

lim
2->2o z—^0

for all ZQ^&OC- But (z—zQYl(K,—KZQ) is a continuous function on GxG, so
/C0 is also continuous and

for all g, /zeG and 20^A^C . Hence z^-»/Y2(g; /O is analytic in Aoc for all g,

Since K(^(g; h } = K f ( g h - 1 ) it follows from Proposition 2.3 that Jv £
( 0 ) , with

, is (?n — l)-times pointwise differentiate in the first variable and that one
has bounds

for all g, /?eG, all ?>0 and all a with a <m. The values of the parameters
in these bounds depend only on the coefficients ca with a =m through the
ellipticity constant and the norms | | c a | » ; / I I . Moreover, the same proposition
gives bounds

for all g, /ieG and all £>0. These bounds depend, however, upon all the
coefficients ca with a^J m(d') because the lower order coefficients enter in the
definition of Lt. Nevertheless, it follows from Proposition 2.3 that only the
derivatives of the principal coefficients enter the bounds and in fact only those
derivatives of order less than or equal to m. Thus the a, b and a) depend on
the ellipticity constant and the parameter ||C||m defined in Statement VI of the
theorem. Hence it follows from the arguments of the appendix of [4] that
Kt is (m — l)-times differentiate in the first variable. It also follows from the
argument used in the proof of Theorem 7.1 of [10] that one has bounds

\(AaKt)(g\ h ) \ ^ a t - ( D ' ' L } a " / m e a ' t e - b ( ( [ g h ~ l l ' ) * l t ~ 1 > 1 K m ' ~ " (22)

for all g, /ieG, £>0 and a with \a\<m with the values of a, b and CD de-
pendent on the coefficients of H only through the ellipticity constant and the
parameter
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Next consider the case \a =0 and n>0. Since z^->K2(g; h) is analytic in
the sector A&c the Cauchy representation gives

Cr(t) Z— t

where the integral is over a circle Cr(0 centred at t with radius r<tsm6C'
Hence

(d?Kt)(g; h}=(2Ki}-ln\( dz^^~-
J C 7 r ( t ) (Z—t)

for all n^N. Therefore

and setting r— ts'mcp with y<0c one obtains bounds

\(d?Kt)(g', h)\^acnn\t-D'/m-nemte-b^gh-1

for all g, /ieG and all £>0 as a corollary of the bounds (17) on \ K Z \ .
The general bounds of Statement VI of Theorem 2.1 now follow from these

estimates and the convolution semigroup property. The semigroup property
gives the convolution relation

G ,_.(*; h)

for all se<0, 0 and hence

for all se<0, ty. Since each term has a 'Gaussian' bound, with an appropriate
singularity, and the convolution of two Gaussians is a Gaussian, the required
result follows by combination of the special cases with s — t/2.

Next we prove Statement V. It follows from the convolution property of
the Kt and the adjoint relation of Statement IV that

K*(gl W=( d k K t / 2 ( g ; k } K t l z ( k ; h}

t ( h ; k ) .

Therefore the derivatives A"Kt with ae/,,,.^') are (m— l)-times differentiable
with respect to the second variable and

= dk(A"Kt!t)(g; k)b(k)-1 S ( *X)(h}(AsKllz}(h ; k)
G

where the B denote left derivatives with respect to the second variable and
the sum arises from the Leibniz formula for the left derivatives A? of the
product h^A(h)Kl/z(h; k). Similarly the B?Kt with jSe/m-iCd7) are (ra-1)-
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times differentiable with respect to the first variable. Note that arguing as
before one obtains bounds

but the use of the formal adjoint in this derivation means that the values of
a, b and a) depend now on the norms \\Ca\\L-ia\ for all a^Jm(d'}. Hence these
bounds are not useful for the subsequent discussion of operators with lower
order coefficients which are not smooth.

Finally Statement VII follows directly from Statement VI. Let a^Jm-i(d').
Let a, b, o>>0 be such that

\ ( A a K t ) ( g ; h)\<Ft(

for all g, h^G and t>0. Then

for all />e[l, oo] and <p^Lp. The argument on the L^-spaces is similar.
D

The kernel bounds of Theorem 2.1 immediately imply that the action of
the semigroup S is smooth. For example, it follows immediately that StCQ^CQ,
for t>Q, and in fact StCo^ConL^m-i- These conclusions are an immediate
consequence of Statements V, VI and VII of the theorem. Moreover, it is also
an easy consequence of the 'Gaussian' bounds on the semigroup kernel that
StLp^C0 and StLp^C0 for all jbe[l, oo> and t>Q. In the next sections we
derive stronger versions of all these properties.

§ 3. Regularity

Let C be an m-th order subcoercive form with ca^Cb.i00 for all a^Jm(d').
The semigroup S constructed in the previous section is holomorphic and hence

for all £e[l, °°] and all £>0. Now we utilize this observation to improve
knowledge of the regularity, or smoothness, properties of the action of S and
the kernel K. Specifically we prove that the C°°-vectors for the left regular
representation on the Lp-, or Lp-, spaces are precisely the C°°-vectors D°°(H)
for the closure H of H. Therefore StLp^Lp.i00 for all £e[l, oo] and all t>Q.
The result for the C°°-vectors is derived from more detailed elliptic regularity
properties of the domains D(Hn). For the case p—2 these latter regularity
properties can be optimized by exploiting the unitarity of the left regular
representation on L2.

We use the same notation as in Section 2. Let n^N. For g^G and suf-
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ficiently large /l>0 define &?>-': G\{e}-+C by

Then R™-*<=Li and

for all (/)^LP. Moreover, for all jl^J nm.-i(d') we have R(^'g^D(A^f in the
Lrsense, and the function h^R(^>g(h} from G\{e] into C is infinitely differen-
tiable. For a discussion of these facts, in the strongly elliptic case, see [20]
Section III.6b. We wish to derive differentiability properties of the function
(g, h)-*(A$ R(

}
n}' s)(h) from GxG\{e\ into C. We denote the derivatives with

respect to g in the direction al by 3t and use multi-index notation, as before.

Lemma 3.1. Let a^Jnm-\(d'), &e{2, • • • , nm + \} and az, •••
where ai\+k — \<^nm.

I. There exist c, co>0 and for all A^L(O there exists b*A, c^>0 such that

-D' + i k n m - \ n i l ~ . - \ a k \ ) e - c i \ h \ ' jf Df>knm—\al\ ak

^(l+ | log | / i | ' | )<r c"» | f if D' = knm- a, ak

b x e ~ c * l h l ' if Dr^knm—\al \ak

for all /ieG, h^e and all g1} • • • , gk^G and

G Jo Jo

II. Fix glf ••• , gk^G. For fi^J \ai\(d
f) and A>a), with a>>0 sufficiently

large depending only on k, define Fp\ G\{e}—>C by

Then F^eLJ;,^,-,^ and ArFp = F<r,^ for all re/, ai, _ , £ , ( < / ' ) . Moreover,
the function Fp is continuous.

III. T/iere e^'s^s (t)>Q such that for all /(>a), all git ••• , gk^G and <p^

C?(G)

(23)

IV. For all compact KdG with e^!\ we have
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lim
si-—, £ / e ->sJo

for all g^G, uniformly for h^K.

Proof. Although the coefficients ca are C°° in this section, for this lemma
we only need that ca is continuous in Statement IV.

It follows as in the proof of (12) in Lemma 2.2.1 that there exist a, b,
such that

[„ dQ(u{,
J ... /; ( t )

for all £>0 and h<=G. Hence

S
oo

00

Now Statement I follows from [20], Theorem III. 6. 7, if a) is large enough.
Moreover,

!~1 / 21 d h ( C ° d t e ~ * i a t ~ D ' / m t k n ~ i ~ ( [ a i } +

J^ Jo

if ^^2tw'. This proves Statement I.
For the proof of Statement II it suffices to prove that for all ^ ^ J \ a ^ \ - \ ( d f )

and z^{l, • • - , d'\ one has Fp&D(At), in the Lrsense, and A.F^F^,^. The
proof is by duality. Let (p^D(Al\ in the Loo-sense, and then by Fubini's theorem
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So Fp^D(At*)=D(At) and AlFp=F<lipy. This proves Statement II, since the
continuity follows as for the kernel.

Next we prove Statement III. First consider the case k=2. There exist
-itd') such that az=(a'z, a?>. Then for </>^C™(G) and large 1

-^!^^

-^i^^

So by Statement II we obtain

^^

^
This proves (23) if k=2.

Now suppose that (23) is valid for some &e{2, ••• , nm} . Let az, -• , ak+l^
Jnm(df). Let ai, a'i^J nm-i(d'} be such that a2=<«2, a?>. Then it follows
from the induction hypothesis that (23) is valid if \a±\=Q by a similar argu-
ment to the above and then again by Statement II for general a^.

Finally, the proof of Statement IV follows from (14), by the reasoning used
in the proof of Lemma 2. 2. III. D

The next result is of the same type as Proposition 2.3.

Proposition 3.2. Suppose ca^Cb.>00 for all a^J m(df).
I. There exists w>0 such that for all 2^cw, all &e{0, ••• , nm—1} and all

/e{0, • • - , nm} such that k+l<nm the function (g, h)^R(^'g(h) from GxG\{e}
is k-times pointwise left-differentiable in g and l-times left-differentiable in h, in
any order, the derivatives are (jointly) continuous and the derivatives with respect
to g commute with those with respect to h.

II. There exist c, a)>Q such that for all /t^co, all g^G, all J8e/nm_1(d /)
and all ?^J nm-\p\(d') such that |j8 + 7- <nm one has estimates
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and the values of c and co depend continuously on the ellipticity constant fj. and

\\{s \\nni — 2-J, II COL II °°; n in \ 2-1 !i£a||°° -

Proof. For k^N, a^Jkm(d') and g^G define c a , A (g)eC in the most
obvious way such that

(Hp
g)
pk

So this equality is even valid in the tensor algebra over g. The c a > k are homo-
geneous polynomials of order k in the c$ with /3 —m.

Fix j8e/ n m_ 1(rf /)- Let glf gz^G, ;>0 large and ^eC?(G). Then

-J S f
j = l\ ] / a;\a\=jm

Hence by Lemma 3.1. Ill

= 23 "--' 23 (
a;\a\=j m

^fl/(:f22, (24)

in the Lrsense, but then also pointwise on G\{e} by continuity (see Lemma
3.1.II).

We shall prove that for all r^Jnm-\?\(df\ I r l ^ O , all k^{2, ••• , \r\+l]
and all az, • • • , ak^Jnm(d') there exist cr^...<ak^C(RxG), polynomials in X and
the .45ca with de/,n(d') and |a|=m, such that

Too poo

*)< t t i - ^»e-^'i+

Jo JO

(25)

for all large /1>0 and g, h^G with /i--^0. Moreover, cjrz*...,a / fe is homogeneous
in ^ of degree (Jfe — l)w— ( |«2 | J ----- hi a* DM- The proof is by induction on \f\
and the case |?|=1 follows from (24) and Lemma 3.1. IV.

Now let f^J n m - i p \ - i ( d ' ) and suppose (25) is valid. Let fe {1, ••• , df} . Then
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for all large X>0 and g^G, with gs=QXp(—sal)g for all se/2 one has for
and ^eG"(G), with the notation a^—^ one obtains by Lemma 3.1. Ill

Using Lemma 3.1.Ill again one obtains an equation of the form (24), valid first
in the L^sense, but by continuity also pointwise on G\{e}. Taking the limit
s->0 one readily establishes equality (25), using Lemma 3.1.IV again. It follows
as in the proof of Proposition 2.3 that the derivatives with respect to g and li
commute, if one uses Lemma 3.1.II and the lemma of Du Bois-Reymond.

The proof of Statement II is easy. D

Before we can prove the main theorem of this section we need one more
technical lemma. The next lemma provides a condition which ensures that
pointwise differentiability implies /^-differentiability.

Lemma 3.3. Let /zeG, FeC(G\{/i})nLi and suppose that F is pointwise
left-differentiable on G\{h} in the directions alt ••• , ad- with pointwise derivatives

i r m r , _ ^ , ^ v i , _ i^ r^ j:or fl// ^^ _ ^ d/^ _ Moreover, suppose that

dg\F(g)\=Q,
B't (7i)

where Bf
s(h)={g^G: \gh~1\<s}. Then F ^ L f

1 ; 1 and A1F = A?>F for all
{1, -, d ' } .

Proof. Let Fe: G\{e}->C be defined by Fe(g)=F(gli). Since



SUBCOERCIVE \ND SUBELLIPTIC OPERATORS 775

d g \ F ( g ) \

and left derivatives commute with right translations, we may as well assume
that h = e. We shall prove that (AL(p, F)=-(^, A(^F) for all ^eCr(G). It
then follows by density ([2] Corollary 3.1.7) and Lemma 2.4 that (A^, F)— —
(<f>, Aip)F) for all 0eL>(.4,), in the Loo-sense, and hence F^D(Al)J in the Li-
sense, and AlF = A[p}F.

First suppose that (/>eC"(G) and g^supp</>. Then it follows easily from
the mean value theorem that (A^, F)= — (<p, A\p}F}.

Secondly, suppose there exist a, &>0, Il} X2, • ••<=CJ 3(G) such that 0^%^!,
' l^n l l» ; i ^ f lw , supp%7lii 5^-1 and {geG : %n(g)=l} is a neighbourhood of e for
all n^N. Using the existence of these functions it follows that for all ^e
C"(C) the function 0(1— Xn)eC?(G) and e£supp0(l— XB) . So

Taking the limit ??— >co one obtains

(.4,0, F)
But

So limra_>0o(^4J?2, F)=0 and (.4^, F)=-(^
It remains to establish the existence of the functions 1lt Iz, • • - . For

let Qn be the linear span of all commutators of alf ••• , ad> of order less than
or equal to n. Then g1cig2c:---czg rr=g. Let di = df, alj—aj and inductively for
2'e{2, ~ - , r } le t a l l f ••• , a t d . eg t be such that an , ••• , a ld l, ••• , a t l, • • • , f l l c Z i is
a basis for gt. The function $((£ j))=exp(Sr=iS£h£t>flu) from Rd^x---xRdr

into G is an analytic diffeomorphism in a neighbourhood of 0. We may assume
that it is a diffeomorphism on at least }'={(£„): | f / i 7 | < 2 for all i and /} . The
function

is analytic on a neighbourhood of (0, 0) and again we may assume that this
neighbourhood contains Vz. We may also assume that the series in the Camp-
bell-Baker-Hausdorff formula is absolutely convergent on V. Now let / : Rd*
X---xRdr-^R be an infinitely differentiate function such that 0^/<J1, supp /
£{(&>): I f u l ^ l } and /((?,,))=! if f ( , l ^2- 1 for all 2 and /. For n^N define
In : G->R by

i if
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Let g^G and suppose that Xn(g)^$. Then there exists (£ti/)eV such that g=
exp(2i=i2y=ilo-0o-) and \ $ t j \ ^ n ~ i for all i and /. Let XtJ be the left in-
variant vector field on G which corresponds to a^-eg. If we take the path
r(0=exp(2i=i2*=if£<jfl<j) from g to g then f(0=2^i2/A£i^lr«>» so b^
[17], Theorem 4, there exists 6>0 such that \g\'^bn~l. Hence supp%n£££n-i.
Finally we prove that supl?!"1!!^!!^!: neJV}<oo. Let k e {1, • • • , d'\, n^N
and g=0(($ij))^0(V). Let F^S^i?^ be the series expansion of ¥ in the
Campbell-Baker-Hausdorff formula, with each WN homogeneous of order N.
Then

-7rat

= S S (/?«./)((««?„))»" 2

Now suppose that (Akln)(g)^§. Then j f ^ - l ^ n " 4 for all i and /. Moreover,
WN is a homogeneous polynomial of order N, so by the Campbell-Baker-Hausdorff
formula ([16] page 112) there exist Ciill,J1,...ilN_1,JN_1^R such that

x^ 3^ ^>^ ^^ ••• ^S^

and

r du d
y^ yi rw r +s /e \\~\ Q i

where the sum is over all /e {0, • • - , ^V— 1}, z'i, • • • , ^V-j^U, • • - , r} and jw<^
{1, ••• , d/^} for all w<={\, "• , N— 1}. Now the commutator is an element of
Ql+ll^...+iN_1, so there exist Au.v,i.i1,j1.....iN-1.jN-1^R, \J-u,v,i,i1,jv...,iN-1,jN-1\^c?
for some Ci>0 such that

F OM

- 2-1 2-1 ^U,V,l,ll,Ji,--,lflf-i,j
= =

with F=rA(l+*'iH ----- h^-J. Then
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^ 2 S IIA,./ll.n" S "S1
u=lv=l N=l Z=0

Now write the last sum as a sum of two contributions, one with N^r—1 and
one with N^r. The first is estimated as follows

2 2l|flu./IUn t t21 21 . 23

In order to estimate the second one first note that /i+ ••• +*'#_i^Af — 1. So

23 2 ll^/ll-n" 2 "21 2

23 211^/IUcI 2
N=r

Since

for all n^Ci, the lemma is proved. D

Theorem 3.4. Let C be an m-th order subcoercive form with coefficients
ca^Cb]00 and let H = dL(C}. Let />e[l, oo]. Then

I. D"(H)=LP..».
II. For all n^N one has D(Hn}<^L'p.nm-i and for all k^{l, ••• , nm-l}

there exists c>0 such that

for all se<0, 1] and (p^D(Hn). The constant c depends continuously on the
ellipticity constant p, j |C| |^m and the |k t t | |« ;{re_i)m with a^Jn-\(d').

HI. // k^N then StLp^Lp.k and there exists ck>0 such that
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for all (p^Lp and t e <0, 1]. The constant ck depends continuously on the
ellipticity constant ^i, | | C | i n m and the \\Ca\\L- u - n m with a^J m-\(d')> where
is larger than k/m.

Similar statements are also valid relative to the Lp-spaces.

Proof. Let n^N. For large /£>0 define r^n- LP—>LP by

If n=0 we define r^,Q=I. By the bounds of Proposition 3. 2. II it follows that
r z , n is a continuous operator.

Let <p, ^eC?°(G). It follows as in the proof of (19) that for all large /l>0
and

=(0, n.n-i^+fn-])!-1? dg{ dhrdte~ntn-l$(k)Lt(g', h)<p(h) .
JG JG JO

Now for all g, h<=G fixed, g - f h , one has

te-ntn~lLt(g; h)

where the sum is over all a with a =m and all (ft, f ) ^ L b ( a ) with \
So

ll& (26)

where we can define the operator T"'1: LP-^LP by

(Tfl<p)(g)= S c l l ? . r(
= '

because of the bounds of Proposition 3. 2. II. Here d,p,r=ca if (^, y)
and /3 =^m, and ^1,^,7=0 otherwise. Note that TJ'1 is continuous. Then by
density, Lemma 2.4, it follows that (26) is valid for all (p^Lp and <f>^L'p.m.
So n.n<ps=D((U+HV)=D(M+H) and

(0, (U+H)n.n<p)=(4>, n.n-iy>)+(<f>, T f l & (27)

first for all (p^Lp and </)^Lf
q;m and by density for all <^eLg. Next we prove

by induction that for all £e{2, • • - , n] there exist cl!t^7^Cb(G), where 0, r^
J km(d'\ j8 =£&ra, which are polynomials in the ^ca with d^J (k-i)m(d'} and
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m ( d ' ) , such that if Tfk is the continuous operator on Lp defined by

)= S c * , 9 . 7 t
p.reJkmW*

1 0 1 - km

then
(#^,TJ- *»=«&, TJ'V (28)

for all </>^L'q.m and (p^Lp. Now if <p, ^eC~(G) then

I j8 l^=( fe— Dm

For fixed /ieG the function

from G\{/z} into C satisfies the conditions of Lemma 3.3 because of the first
bounds in Lemma 3.1.1, equation (25) and Proposition 3.2.1 and it follows by
induction that the function 0 is ?n-times differentiate in the Li-sense and
(H^, $) = (</>, H0). From this the existence of the functions c & i 0 i 7 including
the prescribed properties follows from the Leibniz formula. Then (28) is valid
for all <p, ^eC?(G) and by density for all <peLp and 0eLJ ;m. Note that

for all large 1, where c n i A > 0 depends continuously on p, ||C||im and the

i k « l l ~ ; c * - i ) 7 n , where «e/m_1(rf /)-
Next we shall prove that for all £e{l, • • - , n] one has r^n(p^D((^I -r-H)k)

and

for all cp^Lp and (/j^Lq. The case /? = ! is just (27). Now suppose that (29)
is valid for some &e{l, • • • , w — 1}. Then for all <p^Lp and (j}^L'q]m one has

z=i y=

So (U+H}kri,n9^D((U+H^)^D(M+H) and (29) is valid for all <p£^Lp and
(pr^Lq.mf and then, by density, for all 0e:Lg.

By induction it follows that r^n(p^D((^l4-H)n) for all (p£^Lp and
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where

Now

IKW'llp-p^ 2Z=l j

So HQ^IIp-^2-1 for large ^ and the operator I+Q(^ is invertible. Moreover.

if X is large enough. Now it follows as for the operators Tn>k that n,n maps
Lp continuously into L'p.nm_l and \\Aar^n\\p^P^c/i~(nm-lal)/m for large ^ and
all ae^/nm-iW), where c depends only on /^, I|C||BTO and the | |c«l |« ;c n - i>O T with
a(=Jm-i(d'). So (U+H)-n maps Lp continuously into Lp ; n T n _! and ||ylft(^/+
^)~nb-»p^2cA- (7 im- ! f l ! | ) /m for all large 2>0. Now the Lp-statements of the
theorem follow as in the end of the proof of Theorem 5.3 in [10]. The proof
of the Ljs-statements is very similar. D

Corollary 3.5, For all t>Q one has Kt^Cbloo(GxG).

Proof. Let L be the left regular representation of GxG in ~£00=L00(Gx
G ; dgxdg). The Lie algebra of GxG can be identified with g®g and (aif 0),
(0, a^, with i<={l, •" , d'} form an algebraic basis for g©g. We denote the
corresponding infinitesimal generators by Altl and Az,l} respectively. Let T
be the holomorphic semigroup on J71=L1(GxG; dgxdg) used in the proof of
Step 5 of the proof of Theorem 2.1. Let Hl be the generator of T. Then ^(8)</>e
D(Hi) for all peL1;oo and ^«EEL l f and H^y^ty^H^}^. There exists ^>0 such

that XI+TF and lI-\-Hl are invertible. Let raeJV. Then (^I+H^-71 is an ex-
tension of the restriction of (M+lF)~n ® I to L1;oo(g) L^ Now the map ^> ^~>
W/+S^)"M?^from LijcodLi into LL is bounded by Theorem 3.4.II. Let 5n be
its unique continuous extension on Llf which exists since Ll]00 is norm dense in
L!. The map Bn®I from Ll®Ll into J7i extends to a unique continuous map

~Bn®I from J7t into J7i. Now let (^eL^oo, (pz^Lo*.*,, <]>i^Ll and ^2eLoo. Then

So

(30)



SUBCOERCIVE AND SUBELLIPTIC OPERATORS 781

for all g^L^cot&Li and t-z^ !,«>.«>(& L^. But L1;oo®Li is dense in D(A"t J, in the
L^sense, and L^-J^L^ is weakly* dense in X^. Therefore (30) is valid for
all S1^D(A?tl) and faeJ7oo. But then (M+Hf)-n&s=D(A?ti), in the L^-sense,
for all f 2ej?oo and (— 1)M?. t(A7 + #?)"" = (Bn (g) /)*. But this implies that
L>((#*)n)g £(/!;%), in the Loo-sense. In particular, for all f>0 and all
we have

in the Loo-sense.
Next we argue that Kt^D(ASit) for all t>0, n^N and *e{l, • • - , d'\ . If

we have shown this, then

Kts= r\Dao(A1,^r\D00(A2.l)=Loa;oo(GxG'f dgxdg)
i = l

by [10] Corollary 6.2 and we have proved the corollary.
It remains to prove that Kt^D(A%il). For every ra-th order form C let

the form Cc be defined by Cc(a, #)=C(a, g) for all a^J m(df) and ^eG. Then
Cc(<2, ^")=(— l) | f l! |CT(«*, ,§") and since a d - , ••• , G! is an algebraic basis with the
same step as alf • • • , ad'f it follows that Cc is subcoercive of step r if and only
if C is subcoercive of step r. Then if //c, Sc and /Cc are the corresponding

operator, semigroup and kernel it follows that Hc<p=Hfi, Sc
t(p=S^f> and Kc

t=Kt.
We need one more transformation of subcoercive forms. For z'e {1, ••• , d'}
one has AA1A"1=A1— dj, with 8l = (AlA)(e). We use the multi-index notation
da. For every m-th order form C let CA be the w-th order form defined by

where y^Jm(d') and ^eG. The principal part of CA equals the principal part
of C, so CA is subcoercive if, and only if, C is subcoercive. If CA is sub-
coercive and //A, SA and A'A are the corresponding operator, semigroup and
kernel, then H^(p=AHA-l(p for all ^eC^(G). For £>0 define Mt : GxG-»C by

Mt(g; h}=A(g)A(hriKt(g; /O.

Then 7W£ satisfies the same kind of Gaussian bounds as Kt since A(gh~1)<
ae?>^ii-li' for some a, p>Q. Now let Tt be the map from L2 into L2 as in the
proof of Step 3 of the proof of Theorem 2.1, but with Mt instead of Kt. So

Moreover, let

Ri(g', h^dte-t'Mfe} h)

and define the operator
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g; V9w,

for large ^>0 and <p^Lz. By a calculation similar to that used to deduce (21)
one proves that

for all p, (j)<^C™(G) and large ^>0. Now it follows as in the proof of Step 3
of Theorem 2.1 that SA=T t and hence K$=Mt. So

Now we finish the proof of the corollary. Since K is the kernel associated
with the subcoercive form C it follows from Theorem 2.1. IV and the above
that the kernel /C teA corresponding to the form C r c A satisfies

Kt(g; h)=Kl'*(h; g)

for all g, h<=G. As above, K\e^^D(A^) for all n, so Kt^D(A^) for all
and this completes the proof. D

Corollary 3.6. For all a^J(d'}, t>Q and />e[l, oo] one has AnKt^j:Q
p and

)=( dhA*Kt(g-,

for all <p^L% and g^G, where q is dual to p. Moreover, there exists c>0 such
that

for all 0e[l, oo] and t>Q.

Proof. Let ^>0. Then for all y>eC?(G) we have

(St<pXg)=[ dhKt(g; h)<p(h)
JG

for all g&G. Moreover, St<p and Kt are C°°-f unctions. So

(AttSt<pXg)={ dhA«Kt(g; h)<p(h) (31)
JG

for all g^G. Then one obtains

(A«KtXg ; h)

=sup sup dhAaKi(g\ h)<p(h)

-sup sup \(A«St<pXg)\
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But then it follows that the left and right hand side of (31) are continuous
functions of cp in Lf, and by density (31) is valid for all ( p ^ L p . n

Our next aim is to prove regularity on L2 and Lg.

Theorem 3.7. Suppose the semigroup S generated by the closure H of // —
dL(C) on L<L is exponentially decreasing. Then one has the following.

I. The operator dL(C) is closed.
II. // n^N then L'2.n=D(Hn/m) and the norms \\ • \\z.n and (/)^->\\H1l/"l(p\\2 are

equivalent.
III. There exist p, #>0 such that

for all
IY. For all #e<0, $c> there exists co>0 such that liS^^e0"*1 for all z^

C with |argz ^6.
Analogous statements are valid relative to left translations on L2.

Proof. The proof is a minor modification of the corresponding proof for
subcoercive operators with constant coefficients, Theorem 6.3 of [10]. Only
one part of the argument requires more care. In the proof of Theorem 6.3.1
in [10] the Helffer-Nourrigat theorem [15], Theorem 2.1, is used to prove that
C1C is a subcoercive form whenever C is a subcoercive form with constant
coefficients. The Helffer-Nourrigat theorem implies that there exists a constant
c>0 such that

for all purely ra-th order subcoercive forms P with constant coefficients and all
(p^L'2.m(G', dg}. But the constant c depends on P and it is not immediately
clear that c depends continuously on the ca and the ellipticity constant of P.
We need this kind of more uniform constant.

The purely ra-th order forms P (with constant coefficients) form a finite
dimensional vector space V, isomorphic with R(d')m. Let 0 : R(d>)"l-^V be an
isomorphism. Let M, /*>0 and introduce W by

: \\0-\Py\ z^M and the ellipticity constant of P is ^} .

Then W is a compact set. We claim that there exists c>0 such that for all
and all (p^L'2.in(G ; dg) we have

Suppose this is not the case. Then for all n^N there exist Pn^W and-^
£2; m(G ; dg) such that
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Pn)vn\\*<n-lNi.,n(vn). (32)

Since W is compact, the sequence P1} P2, ••• has a convergent subsequence. We
may assume that Plf P2, ••• is already convergent. Let P be its limit. By the
Helffer-Nourrigat theorem there exists c>0 such that

for all £>GE L2.m(G; dg). There exists N e N such that \\3LG(P— PJ<p\\z ^
2-lcN'2im(<p) for all (p^L2im(G). Then for all n^N

c#2 ;m(pn)^ll3£0(/>J^
so

This contradicts (32) for large n.
It follows from this that if C is a subcoercive form with variable C°°-

coefficients then (CrC)(«, g)=(C'gC g)(a) is also a subcoercive form and the L2-
statements of the theorem follow.

The Lg-results can be deduced from the L2-results by using the observation
that if <p<=L2 then A~1/z(p^L2 and \\(p\\2=\\A~1/z(p\\z. For example, if <p^C™ one
then has

where H^=AIIZHA~1/Z, acting on C", is the subcoercive operator obtained from
H by the replacement At -* Al—2~ldll with 57 = (.4tA)(e). Therefore applying
Statement III of the theorem to HA acting on L2 one has

for suitable p' , qf>Q. Similarly the other statements follows, D

§ 4B Not-so-smooth Coefficients

Throughout this section C denotes an ?n-th order subcoercive form with
principal coefficients in L^ ;m and all other coefficients in L^ and we set H =
dL(C). It is convenient to write the operator in the form

where

with cp.r^L'^m and Hi is a differential operator of order m— I with coefficients
in Loo. Explicitly one factors each product Aa with a =m into a product
^4a=r^l^*^4?< and sets cp.7=ca. Then ^/0 differs from the principal part of H by
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an operator of order m—1. Next we consider a sequence of regularizations
H?> of H0.

Let rreeC" be the bounded approximation to the identity used in the proof
of Lemma 2.4 and define C ( n ) and c$\ by left regularizations of cp.r with rn,
i.e.,

where L denotes left translations. Then it follows from the estimates in the
proof of Lemma 2.4 that one has bounds

IIC^ll-jl^ll^,,^;! (33)

for some /c>0 and all /e {0, 1, ••• , m} . Moreover, the form C(HJ is subcoercive
since for all g^G and ^^L2 ;oo(G; dg) one has

where P'/' is defined with respect to C"!). So the ellipticity constants ju"° of
//o™' are bounded below by the ellipticity constant ft of //0- Similarly

[Im(3L6(/>y))?>, 01 = 1 ( rfArB(/i)am S
JG a: | a 1=

where

i;=sup{|Im(3L0(Py))y>.

These latter estimates are useful for the subsequent discussion of holomorphy
sectors.

Next introduce the subcoercive operators //(
0

7i) by replacing the coefficients
of //„ with their regularizations, i. e.,

It follows that the coefficients of //(
0

7l) are in C6;oo and the results of Theorem
2.1 are valid for the sequence of operators. Let S (n) denote the interpolating
semigroup generated by the closures of H[n) as a consequence of Theorem 2.1
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and K(n) the corresponding semigroup kernels. Now we consider the con-
vergence of the S(n) and Kw as n->oo by the methods of [4], Section 11.

If 5(7l) acts on 1$ then by Theorem 3.4 one has S^Lp^l'^ for all t>0.
Hence one easily obtains by the Duhamel formula

for all <p^Lf> and all <p^L$ where q is dual to p. Here we have used A and
S (n ) to denote the adjolnts of .1 and S(?l) with respect to right Haar measure.
Thus Al = — Al-\-dlI where d, = (AlAX^) and 5 (? i ) is the semigroup generated by
the closure of the operator H{f obtained from the formal adjoint of //(

0
70 and

the replacement Al-
j>Al. Therefore

<T/i ^/ ill ^«Sn flX|Px£
Jo

where

ik(ll)~c^i|fl0= s i!c(;:5-4V?iL.
I ;3 i = i y i = m / 2

But it follows from Statement VII of Theorem 2.1 that one has bounds

with a and co uniform in I and n. The values of these parameters can be
chosen to depend on the coefficients of H only through the ellipticity constant
fjt and ||C||m- These estimates establish that

and consequently one deduces that the sequences 5J7i) converge uniformly as
w-* oo, since the op,-, are left differentiate in the subelliptic directions and
hence continuous. Therefore i |c ( 7 i ) — cco ioc-^0 as n, /-*co by the argument given
in the proof of Lemma 2.4. The limits automatically form a continuous semi-
group T. But a similar argument establishes uniform convergence of the S\n}

on the Lp-spaces and hence the limits T are a consistent interpolating semigroup.
The convergence of the semigroups also has implications for the kernels.

Since the S(
t
n) converge uniformly on L^ one has

lim supf dh\K[l\g] h}-K\n\g] li) =0 (35)
I, n-»oo g<=G JG

for all £>0. In addition Statement VI of Theorem 2.1 gives Gaussian bounds
on K(

t
n} and its left derivatives with respect to the first variable which are

uniform in n. But applying similar arguments to the formal adjoint of //(
0

n)

and using the symmetry relation of the kernel given by Statement IV of
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Theorem 2.1 one deduces identical bounds for the left derivatives of the kernel
with respect to the second variable. In particular one has bounds

\ ( B l K (
t

n ) X g l h)\<at-1^meajt (36)

for all £>0 and i—l, ••• , df uniform in g, h and n. Then, however, one readily
deduces from the JTj-convergence (35) of the kernels and the uniform continuity
implied by (36) that

lim sup I\(
t
l>(g', /0-AT°te; /O =0

I 7l->oo g, h^G

for all £>0. Thus the sequences AT} are £\-, and J7oo-, convergent and hence,
by interpolation, £ ^-convergent for all />e[l, oo]. The limits Kfy automati-
cally correspond to the semigroup kernel of the semigroup T and they inherit
Gaussian bounds from the approximants AT0.

Next we argue that K^ is (m — l)-times differentiate in the first variable
and that the derivatives satisfy Gaussian bounds. Define the function k on G
by setting k(g) = Kt(g\ h) and similarly define /e ( 7 l ) by setting k{n\g) = K [ n } ( g \ h).
Then if <p^L^,n^l and a^J m - i ( d ' ) it follows from the Gaussian bounds on
AaKin) that <£^-></lai-<p, k ( ! l ) y is continuous uniformly m n. Hence k is (w— 1)-
times differentiable in the subelliptic directions in the L^-sense for all />e[l, oo].
Moreover, if q=l one has bounds

for all y j tELj . ,„_! and by continuity for all <p^L\. Now define en for ^o^O by
setting ep(g)=exp(p \gh~l\ ') then for 1^L\ with compact support one has

and taking the supremum over I with ||Z||i=l gives

But using the Gaussian bounds on (Ank(n))(g)~(AaK(tn)(g ', /O which are uni-
form in n one obtains bounds

\(AaIQ(g; li)\^ae-fn"L-1*'t-(D'Jnn"/meol<1+f)m>t

and optimizing over p gives the required Gaussian bounds on \(AaKt)\. An
analogous argument gives bounds on the mixed derivatives | (AaS1fKt) \ .

The foregoing arguments are the key to the extension of Theorem 2.1 to
operators with principal coefficients in LL- m .

Theorem 4.1. Let C be an m-tli order subcoerdre form with coefficients r f te
Loo if aeJV^a but with caeL;;?;[ if \a\=m. Let H = dL(C).

I. H is closable on each of the Lp-, and L?r, spaces and the closures H
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generate a consistent interpolating semigroup S.
II. S is holomorphic in a sector A6={z^C: \argz <6} with 0^6 c-

III. The action of St is determined by an integral kernel Kt^Cb(GxG}
and t^>Kt(g ; h) is analytic from <0, °o> into C for all g, h<=G.

IV. For each n^N the derivative 8?Kt, with t>0 fixed, is (m — l)-times L^~
(left-)differentiable in the first variable and there exist a, b, c>0 and <w^0 such
that

for all n^N, t>Q, g, h^G and all multi-indices a with a <m where the A are
the left derivatives with respect to the first variable. The values of a, b, c and
a) depend on the coefficients ca through the ellipticity constant p and the parameter

V. For each />e[l, oo], t>Q one has StLp ^ Lp]m-i, S £ L^gL^ ; m _ 1 , there
exist a>0 and co^O, depending on the coefficients ca through fjt and \\C\\'m, such
that

and AaKt is the kernel of AaSt, for all a^Jm-i(df).

Proof. Let T be the semigroup constructed above as the limit of the S ( 7 t ) .
The S (n) are all holomorphic and it follows from the construction of the regu-
larizations that their holomorphy sector contains the common sector A^c. But
the proof of uniform convergence of the sequence n^->S£n ) for £>0 applies
equally well to 5T° for all z^A0c because the replacement of t by z—te1® cor-
responds to the replacement of the subcoercive operator H0 by the operator
ei0HQ. Now Oc is chosen such that el°HQ remains subcoercive for 0 <0C and
the replacement H0-»ei6HQ only alters the values of the parameters such as the
ellipticity constant which enter the estimates. Therefore T is also holomorphic
in a sector containing A0C.

Next let H^ denote the generator of T acting on Lp for some fixed />e
[1, oo]. We wish to argue that Htf°> extends HQ. First for ^eL^ ; m and ^^
L'q;m/2 one readily checks that

Therefore for (p^L'p.nl and 0eL$ one has

<<&, S{B)(ffiIl)-Jffo)9>>=lim<0> SWH^

Secondly, using the estimates (34) one obtains bounds
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which are integrable at s=0. Hence an elementary calculation together with
the Lebesgue dominated convergence theorem gives

-0

and it then follows immediately that H™ extends //0.
Jn order to prove that H$°} is in fact the closure HQ of H0 it now suffices

to prove that R(XI+nQ)=L^ for Re ^ large. This we will achieve by use of
the resolvent estimates of Section 2. First it is convenient to reexpress HQ in
the original form

H0= S c'aA«.
a £ J m ( d ' )

Then the c'a can be identified with the principal coefficients cp,r or their left
derivatives of order less than or equal to m/2. Similarly the regularizations
HQU} can be expressed in the form

E/(n)_ yi ,. la
-TC 0 — 2j ^n, a- 1

fte^m(d')

and the cn a are identifiable with left derivatives, of order less than or equal
to m/2, of the regularized coefficients cft\. Then we let r{^ denote the para-
metrix approximation defined by (18) of the resolvent of the constant operator
H(

0
n^'g obtained by fixing the coefficients cn,a with their values at g. Now it

follows from the estimates of Section 2, together with (33) and the inequalities
^ ( / l )^^ for the ellipticity constants, that one has bounds

llr^b.^cCRe^)-1 (37)

if Re X is sufficiently large, with the value of c independent of n and 1. Mo-
reover, if <p^C™ then r^^eZ/^ m for Re 2 large enough (see Step 2 in the
proof of Theorem 2.1). Moreover, one has bounds

with c independent of n and /I. Therefore one has estimates

where we have now defined

l |cn — C z l l o o — S \\Cn,a—~ Cl.a\\oo •

Consequently

1, Jl-»oo
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for all <p<E.C™ and />e[l, oo]. So r^y — Hindoo r(^(p exists for all
Since r^ satisfies the bounds (37), it follows that ||r^||p^c(Re /tr^lyllp for all
^eCT(G). Hence TI extends to a continuous operator on Lp, still denoted by
ri, such that ||rj||i3_^c(Re;0~1. Next note that the formal adjoints HI and
H^ of H0 and H^ are defined on L$ ; m where q is dual to p and

for all <^eZ^;,;l by similar estimations. But //f,n)T has (^-coefficients and hence
it follows from (19) that

for all ( p ^ L ' ^ . m and <p^C™ where the Qx
?i) are bounded operators satisfying

bounds

uniform in n and ^ for sufficiently large Re 1. The uniformity in n again
follows from (33) and the bounds /^ (? i )^/*. Then the foregoing observations
allow one to conclude that

for all (]}^L'ftin and ^eC™. This suffices to conclude that the C?;/0 converge
to a bounded operator Qx satisfying bounds

for sufficiently large Re X. Since r^<p^L'pim and | |rinVlip; m^
uniformly in w, it follows that

for all 0eLj ; / / l and ^>eC~(G). So r^eL^ ;77L for all <p^C?(G). Therefore

W/

for (p<E:C™ and then by closure

y/

for all (p^Lfj. Replacing ^ by (I+Q^~l<p one concludes that

for all sufficiently large Re /I Thus R(2I+H0)=^Lfj and hence H$°>=H0 on L^.
The above calculations have been made relative to the L^-spaces but similar

reasoning establishes the same conclusion, H(
0°°}—H0, on the Lp-spaces. There-

fore at this point we have demonstrated that the Lp-, and Lp-, closures of
HQ generate a consistent interpolating semigroup T. Next we appeal to per-
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turbation theory.
First note that

for all a<=ij m - i ( d ' ) and 0 f E L £ ; m . Since the bound is uniform in n it follows
in the limit n—>°o that TtL^L'^m^ and

for all t>Q. Therefore TtL^D(H^ and

IIJ^Tdlp^fl'r^-1^^ (38)

for all t>Q and a suitable a'>0. Since the right hand side is integrable at
t=Q it follows that HI is a perturbation of the generator of T in the sense of
"time-dependent" perturbation theory (see, for example, [2] Theorem 3.1.33)
on each of the L^-spaces. But an analogous argument demonstrates that H}

is also a perturbation on the Lp-spaces.
The perturbation estimates (38) on the Lp-spaces, and their analogues on

the Lp-spaces, ensure by standard perturbation theory that H=H^-\-Hi and H
generates a continuous semigroup S on each of the spaces. The semigroups
S and T are related by the series expansion

with S(y=Tt and

The perturbation estimates ensure that the series is uniformly convergent on
each of the spaces and hence S is also a consistent interpolating semigroup.
Moreover, 5 is holomorphic with the same holomorphy sector as T. In particular
the holomorphy sector of S contains A&c.

The semigroup T has the kernel K(00} constructed as the limit of the ap-
proximants K(n) and it follows from the estimates on AaKt with a^J m.i(d')
that

KH.K^Xg; / l ) |^ f l r
( Z ) ' + m - 1 >/ m e° ' t e- 6 ( ( l * f t " 1 | l ) T O £ " 1 ) 1 / C m " 1 ) (39)

for all £>0 and g, h^G where the left differential operator Hl acts on the
iirst variable of Kf0^ Therefore estimating as in the appendix of [4] one
deduces that the perturbation series

defined by setting K(^=K(r} and
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is uniformly convergent. Moreover, the recursion relation gives

supi d h e p l g h ~ l 1 ' K(
t
n+l\g] h)\

g(EG JG

1' K\n\g;
g<EGJG

for all p^Q. Therefore using the bounds (39) and solving iteratively one obtains
bounds

for all p, t>0 with the values of a and CD independent of p and t. Minimizing
over p then gives the Gaussian bounds on \Kt\. Similar arguments establish
that Kt is (m—l)-times differentiate in the first variable, the derivatives are
given by the sum of the derivatives of the terms of the perturbation series
and the derivatives satisfy appropriate Gaussian bounds. The bounds on the
derivatives 8?Kt and the mixed derivatives are then derived as in the proof of
Theorem 2.1.

The proof of the remaining properties of K and S are again a repetition
of the arguments of Section 2. D

Under slightly more stringent assumptions on the coefficients of the sub-
coercive operator one can reestablish all the results of Theorem 2.1.

Corollary 4.2. Let H be an m-tli order subcoercive operator with coefficients
ca^L'co-\ai for all a^Jm(d'}. Then all the statements of Theorem 2.1 are valid.

Proof. The assumptions of the corollary are sufficient to ensure that the
formal adjoint of H is defined and satisfies the hypotheses of Theorem 4.1.
Hence all the conclusions of this theorem are valid for the operator and for its
formal adjoint. But then it follows straightforwardly that the semigroup
generated by the closure of the formal adjoint has a kernel which is related
to the kernel of the semigroup generated by the closure of H by the relation
given in Statement IV of Theorem 2.1. Moreover, the extra differentiability
give by Statement V of the theorem follows by use of this adjoint relation
as in the proof of Theorem 2.1. D

Next we aim to establish improved smoothness properties of S and K by
the derivation of more precise regularity properties of H. These are defined
in terms of Lipschitz spaces which interpolate between the L^; TO-spaces. In
particular if (!£l, 3CZ) is an interpolation pair of Banach spaces, fe<0, 1> and
<?e[l, oo] we use (3Clf 3f2)r,?,•/<: to denote the interpolation space constructed by
Peetre's /^-method (see [5], Definition 3.2.4).

Theorem 4.3. Let H be an m-th order subcoercive operator with coefficients
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^m, for all ae/m(d') with \a\=m. Let fe<0, 1> and <?e[l, oo]. Then

and there exists c>0 such that

for all (p^D(H) and £e<0, 1] where the norm on the left denotes the norm on
the interpolation space. Moreover, if S is the corresponding semigroup then

for all />e[l, oo] and

Proof. First we need some general observations on the interpolation spaces.
For brevity let

Now the action of the generators Alf i=l, ••• , d/ can be defined by restriction
on these spaces and we let L'r,q.n denote the subspace r\a^jn(d>}D(Aa) on Lr,q.
Then it follows from [9], Theorem 2.1 Statements I and III, that

with equivalent norms. Next let Lr;q(L) denote the ^eLoo such that

,dg( I g \rD'(( I g I Tr\\ (I- L(g»<p\\ J9< -

where Q is some bounded open neighbourhood of the identity e^G. Then
Lr;q(L) is a Banach space with respect to the norm

Mr^=W- + (Ld£(l^\j u /

These definitions have an obvious modification if q=oo. Moreover, Lrt<L(L)—
Lr.q, with equivalent norms, by [9], Theorem 3.2, for all fe<0, 1> and <?e
[1, oo]. Now we aim to prove that if cp^D(H) then Aa</)^Lriq(L) for all ae
Jm-i(d'). Therefore D(/ / )^L^ g ; ? 7 i_i=L n l_ 1 ; r ,Q by the previous identifications.

We begin by assuming that #=oo and that all coefficients are in C6;0o and
then prove

||(/— L(k))Aa(lIJrH)~l(/)\\oo^c(\ k | ' )U~ ( m ~ | a ' ~ r ) / m ! | ^ l l oo (40)

for all k^B(, a^Jm-l(d
/), re<0, 1>, all large ^>0 and all ^eLoo, with some

constant £>0 which depends on the coefficients of H only through ||C||m and
the ellipticity constant /.«. Subsequently we use an approximation argument to
establish a similar conclusion for the general case with not-so-smooth coeffi-
cients. Finally we use the reiteration theorem to remove the condition on q.
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Once we have established (40) in general the desired conclusion follows im-
mediately. Moreover, the inequalities of the theorem are also a consequence
of these bounds and the equivalence of the norms of the spaces L'riq.m-i and
Lm-\>ti,q.

Let TX be the operator which we denoted by r^ in (18) and by r ^ . i in the
proof of Theorem 3.4. Then (XI +HYl=rx(I -\-QxY1 for large ^>0, with Q x

a continuous operator with norm less than or equal to 2"1. So it is enough to
prove (40) with the operator (M-\-H)~l replaced by r-A, i.e., to prove

under the above restrictions.

Step 1. Suppose c f teC6;oo for all a^J m(d') and #=co.
Let k(E:B[, a^J m-!(d') and (p^L^. Further, let R^ be as in Step 2 of the

proof of Theorem 2.1. Then

f
) J G

= 2

for g almost everywhere in G. Therefore if H^ i loo^ l then

sup
JG

pf
G JG

+ 2J sup
(,3, F ;e l&(a) geG JG

We consider the two terms separately. The second term is the easiest. Let
). Then

dh
G

sup
geG JG

1 ' max \ d
ieti .• . d1} JG

k A '' m ,

where the last inequality follows by the equalities in the proof of Proposition
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3.2 and the independence from g of the bounds in Lemma 2.2.1. The constant
c depends continuously on p and ||C||m-

The first term is more difficult. Let (£, 7)eL6(a). By (25) we can write
1 7 1 - 4 - 1 f°° r°

= S E 42,,a;CgO dfi-
1 = 2 az,-,ai^J«i'} " J O J O

where cl
az,...iai are polynomials in the A3cs with d ^ J \ 7 \ ( d ' ) and e^J(d') with

=m. So we have to estimate

f2*

supf dh
g&GjG JO

=sup sup
8^G <p^C™(G)

i l y > H o o < l

supsup sup

=sup sup i|(/-

for all /e{2, • • - , | ; +1} and all a2 , • • - , aze{l, • • - , ^x}m , where (p(h)=(f>(h~1).
The last equality is by Lemma 3.1. III. Therefore we have effectively reduced
the problem to a comparable problem for operators with constant coefficients.
Now for /e{2, ••• , /} let a', a"^Jm^(d'} be such that «=<«', a"} and

I «i I =/-/+!,

Then for all se<0, 1 —f> we have

sup sup | i ( / -—j

^

M(^)

But



796 A. F. M. TER ELST AND DEREK W. ROBINSON

for all a <ma^m and all 1 large enough, for some constant c>0 independent
of g. A similar estimate is valid on the dual space. Moreover,

sup

) rsup

<c /x(| & I / y^<- T O + z - 1 + 8 + i£ i + r> / m

for some c>0 which depends only on 7- and m, and some c'>0, which is uni-
form for g^G because it is obtained from interpolation of the bounds on
l|SflUoo-.£oo anc^ Ii5fllzoo-»z^.m . Combining these estimates we obtain the bounds

for all k<=B( and

Step 2. Let caeL^ ;m for all aej(d') with |a|=m.
In this step we remove the restriction of the C "'-differentiability of the

coefficients. Let H0, Hl} r{?\ r* and Qx be as in the proof of Theorem 4.1. Let
ae/m-iW) and k^B{. By Step 1 there exists c>0, independent of n and 2
such that

and

for all ^eLoo, neJ¥and large /i>0. Now let (p^L^. Then for all
and a^Jm-i(d') we have

for all large ^>0. So r^^LL-m-i- Moreover, for all k^B( and
one has

for all large 2>0. So

IKJ-
Hence
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since (2I+H0}rz = I-}-Qt and Q^ is a bounded operator with norm less than 2"1

for large 2.
Now we return to the operator H. By (38) the operator Hl is a small

perturbation of the operator HQ, so by the proof of Theorem 3.5 in [6] we
have that H^I-^H^Y1 is a bounded operator with norm less than 2"1 for large
/£ and

for all large 1. So (njrHYl(p^L'00.m-l and

\\(I-L(k))Aa(U+HYl<p\\~^c(\

for all ae/ro-iW), &^5( and large ^. This proves (40) and

(41)

Step 3. Suppose Ca^L'^m for all a^J(d') with |a |=w and #e[l, oo].
It follows by interpolation from (41) that

for all large I, <p^L^ a^Jm^(df) and re=<0, 1>. Hence

for all £>0.

Finally note that since S is holomorphic on each of the Lp-spaces it follows
that StLp^D(H) for all f>0. Therefore S,Lpg(L;.m_1, L^.7n)r,g;/f. A similar
conclusion is valid for L#. G

If one applies the foregoing arguments to the subcoercive operator H acting
on C0 instead of on the Lp-spaces then one draws an analogous conclusion

But S t LpECo for £e[l, oo> as a consequence of the 'Gaussian' bounds on the
semigroup kernel. Hence StLp^St/zCQ^D(H). Thus we can improve the last
statement of Theorem 2.1.

Corollary 4.4. Let H be an m-th order subcoercive operator with coefficients
ca^L'oo-m for all a ^ . J ( d f } with \a\=m and S the corresponding interpolating
semigroup. Then

OtLp^(C 0 ; 771-1, C/0; m)r,q; K) «J t L f> £ (C o; 777 -1, C 0; m)r, ?! A'

/or all
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The estimates (40) also give bounds on 'Lipschitz derivatives' of Leo-func-
tions and the semigroup kernel.

Corollary 4.5. Let H be an m-th order subcoercive operator acting on LTO

with coefficients Ca^LL-m for all a^J(d') with \a\=m. Then for 7e<0, 1>
there exist c>Q such that

for all k^B(, ae/m-^d'), (p^D(H) and se<0, 1]. Consequently the correspond-
ing semigroup kernel K satisfies bounds

\((I-L(k}}AaKt}(g] h}\<

for all k^Bi, ae/m..i(d'), ^>0 and uniformly for all g,

Proof. The Loo-inequalities are a reexpression of the estimates (40) with
s=X~1. The kernel bounds for small t then follow from the observation that

h) | £ | (/- L(k))A*St !! u»

together with the kernel bounds of Theorem 4.1 and the choice e=t. The
bounds for large t follow by use of the semigroup property from the small t
bounds. D

§ 5. Conclusion

Although the foregoing results provide a fairly satisfactory basis for the
theory of subcoercive operators with variable coefficients they do leave open a
number of obvious questions concerning regularity properties. First, we have
shown that the semigroup kernels associated with m-th order operators with
smooth coefficients are themselves smooth but we have only obtained "Gaussian"
bounds on derivatives of order less than or equal to m—1. Naturally one ex-
pects such bounds in general. Secondly, we have established that if the principal
coefficients of the m-th order operator are ra-times diflerentiable then the range
of the corresponding semigroup S consists of functions which are "almost" m-
times differentiate. But if the lower order coefficients are also sufficiently dif-
ferentiable then one might expect the range of S to consist of functions which
are more than m-times differentiate, i. e., one would expect the action of S to
be smoother than the principal coefficients. Properties of the latter type have
been established in the special case of second-order operators with real coeffi-
cients in [4]. Thirdly, it would be ideal if one could completely relate smoo-
thness of the coefficients and the action of the semigroup. For example, if the
leading coefficients are n-times differentiable and the lower order ones (n—m)-
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Limes, with n>m, does S map into functions which are 'almost7 (n + m)-times
differentiable? In this respect it is worth noting that Theorem 3.6 of [1] gives
conditions under which the semigroup S associated with a strongly elliptic
second-order operator maps into the (n + l)-times differentiate functions in L2.

We conclude with some remarks on the simplest and most significant case
of second-order operators. In particular we compare and contrast our results
in this case with the complementary results obtained earlier in [4]. Note that
each second-order operator H can be expressed in the form

H=- 1] c^lj+Sc^ + Coi,j=i t=i

and subcoercivity corresponds to uniform strict positive-defmiteness of the real
part of the matrix C—(cl3) of principal coefficients, i.e., there is a /^>0, the
ellipticity constant, such that 2~1(C + C*)^7, in the sense of matrices, uni-
formly over the group (see [10] Proposition 6.7).

The principal result, Theorem 1.1, of [4] imposes the two additional re-
strictions

a. the cl3 are real-valued and c l j = c j l f

b. the c^^L'oo-i,
and concludes that

1. H has a family of closed extensions H on the Lp-, and Lp-, spaces
which generate a consistent interpolating semigroup S,

2. S is holomorphic on each of the spaces Lp or Lp,
3. the range of each St, ^>0, consists of functions which are 'almost'

twice left-differentiable in the subelliptic directions.
By the last statement we mean that the functions are once left-differentiable

in the subelliptic directions and the derivatives are Lipschitz continuous with
exponent, measured relative to the subelliptic directions, arbitrarily close to one.

In contrast Theorem 4.1, with m=2, states that if
a', the c,j are complex- valued,
b'. the c i ;eL^ ;2,

then
1'. the closures of H generate a consistent interpolating semigroup S,
2'. if vI^(2iY\C — C*)^-vI and 0c=arctan p/v then S is holomorphic on

each Lp~, and Lp-, space in a sector with angle 0^6 c,
3'. the range of each St, t>0, consists of functions which are 'almost'

twice left-differentiable in the subelliptic directions.
Thus our current assumption a', is less restrictive than the assumption a.

of [4] but b'. is more restrictive than b. The current conclusions 1'. and 2'.
are, however, stronger than the comparable conclusions 1. and 2. of [4] whilst
3. and 3'. are identical. It is remarkable that under the assumptions a. and b.
of [4] the action of the semigroup S is smoother than the principal coefficients



800 A. F. M. TER ELST AND DEREK W. ROBINSON

and it is this phenomenon of increased smoothing that needs to be better un-
derstood.

There are also several other similar implications contained in [4] and the
foregoing sections. For example, the identification H=H is established on L^
in [4] for real-valued e^-eLi,^ but much greater smoothness is required both
of the principal coefficients and the lower order coefficients to obtain a similar
result on the Lp-spaces with p<oo, and in this respect Theorem 4.1 is a distinct
improvement. In addition both Theorem 1.1 of [4] and Theorem 4.1 give
existence of a semigroup kernel with Gaussian bounds etc.

It is possible to improve both the above results by combination of the
techniques used in their proofs. The strong points of the [4] result are based
on approximation arguments, similar to those used in Section 4, which involve
a priori inequalities for subelliptic operators with smooth real-valued coefficients.
There are three types of a priori inequality used, the Lz-, and Loo-, bounds of
Proposition 3.1 and 3.2 of [4] and the Gaussian bounds on the semigroup kernel
in Proposition 10.1 of [4]. The important feature of all these bounds is they
only involve first derivatives of the ci-? in the subelliptic directions. But the
Lz-bounds can easily be established for second-order operators with complex
coefficients by repetition of the arguments of [4]. Positive-definiteness of the
matrix (clj) is replaced by positive-definiteness of its real part. The proof of
appropriate Loo-bounds is slightly more delicate. The proof in [4] relies on
some basic L^-bounds for operators with constant coefficients given by Rothschild
and Stein [21] and repetition of the arguments of [4] requires an extension of
the Rothschild-Stein bounds to complex-valued operators. In fact the Rothschild-
Stein proof of their inequalities does not require reality of the operators but
also applies to operators for which the matrix of principal coefficients is her-
mitian. But the general case is a consequence of Folland's inequalities, [12],
Theorem 6.1, for stratified groups and the Rothschild-Stein lifting technique.
Finally the derivation of kernel bounds which are only weakly dependent on
the smoothness of the coefficients can be achieved by modification of the deriva-
tion given in [4] for the real-valued operators. This argument is based on the
adaptation by Fabes and Stroock [11] of a technique of Davies [7]. The
Davies method uses L2-positivity techniques on the Lp-spaces with p^2 com-
bined with Nash inequalities to bound the norm of S as an operator from Lg
to Loo. This approach can be adapted to operators with complex coefficients
and this will be discussed in a later paper.
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