Purely Inseparable Extensions of Complete Intersections

By
Jeffrey LANG*

§ 0. Introduction

Let R be a graded unique factorization domain and $h \in R$ a product of q distinct homogeneous factors in R. Let $S=R[z] /\left(z^{m}-h\right)$. If S is a Krull domain, then what is the divisor class group of S ? In several cases the answer is that the divisor class group is a direct sum of $q-1$ copies of $Z / m Z$. For example, this is true if R is a polynomial ring over a field and h is a product of two variables ([7], page 58); also, if R is a polynomial ring in two or more variables of characteristic $p \neq 0$, the factors of h are homogeneous in R and m is a p-th power ([6], Proposition 3.11, page 627). In this paper the same phenomenon is verified in the following case.

Let k be an algebraically closed field of characteristic $p \neq 0, Y \subset A_{k}^{n}$ a complete intersection of dimension greater than one, and assume that the ideal that defines Y is homogeneous. The above question is considered when R is the coordinate ring of Y and $h \in R$ is the image of a homogeneous element of $k^{[n]}$ of degree not divisible by p. We prove that if m is a p-th power, then $C l(S)$ is a direct sum of $q-1$ copies of $Z / m Z$. This substantially improves a theorem obtained in a previous article ([5], page 569, Theorem 5.7).

§ 1. Preliminaries

This paper assumes familiarity with the subject of divisor class group of a Krull domain. Two excellent references are P. Samuel's 1964 Tata notes [7] and R. Fossum's, "The Divisor Class Group of a Krull Domain" [2]. If A is a Krull domain, we denote the divisor class group of A by $\mathrm{Cl}(A)$. If $Y=\operatorname{Spec} A$, we will refer to "the divisor class group of Y ", denoted $C l(Y)$; by this we mean $C l(A)$. In this section we recall results from [2], [4] and [7].

Theorem 1. Let $S \subset T$ be Krull domains with T integral over S. Then there is a well defined group homomorphism $\psi: C l(S) \rightarrow C l(T)$. ([7], theorem (6.2), page 20).

Theorem 2. Let T be a Krull domain of characteristic $p \neq 0$ and \mathfrak{Q} a finite group of derivation of T. Let $S \subset T$ be the fixed subring of G and let L denote the quotient field of T. Let $\Delta_{1}, \cdots, \Delta_{m}$ be a basis of \mathscr{G} over $Z / p Z$. Then S is a Krull domain, T is integral over S, and the kernel of the homomorphism $\psi: C l(S)$ $\rightarrow C l(T)$ described in (1) is isomorphic to a subgroup of V_{0} / V_{0}^{\prime} where V_{0} and V_{0}^{\prime} are the following additive subgroups of $L^{m}: V_{0}=\left\{\left(t^{-1} \Delta_{1} t, \cdots, t^{-1} \Delta_{m} t\right): t \in L\right.$ and $t^{-1} \Delta_{2} t \in T$ for $\left.1 \leqq i \leqq m\right\}$ and $V_{0}^{\prime}=\left\{\left(u^{-1} \Delta_{1} u, \cdots, u^{-1} \Delta_{m} u\right): u\right.$ is a unit in $\left.T\right\}$. ([2], Corollary 17.3, page 92).

Remark 3. If I is a divisorial ideal of S whose class group is in the kernel of $C l(S) \rightarrow C l(T)$, then $T:(T: I T)$ is a principal ideal, say $t T$, for some $t \in T$. The injection $\operatorname{ker} \phi \rightarrow V_{0} / V_{0}^{\prime}$ maps I to $\left(t^{-1} \Delta_{1} t, \cdots, t^{-1} \Delta_{m} t\right)$.

Theorem 4. Let $T[G]$ denote the S-subalgebra of $\operatorname{End}_{s}(T)$ generated by T and g. If $T[G]=\operatorname{End}_{s}(T)$, then $\operatorname{ker} \psi \rightarrow V_{0} / V_{0}^{\prime}$ is an isomorphism. ([2], theorem 17.4, page 93).

Proposition 5. Let L^{\prime} be the quotient field of S. If $\left[L: L^{\prime}\right]=p$ and $D(T)$ is contained in no height one prime ideal of T, then $\operatorname{ker} \psi \rightarrow V_{0} / V_{0}^{\prime}$ is an isomorphism. ([7], Theorem 2.1, page 62).

Proposition 6. Let A be a graded Krull domain. Let $\operatorname{Div}_{h}(.4)$ denote the subgroup of $\operatorname{Div}(A)$ generated by the homogeneous divisorial (prime) ideals and set $\operatorname{Prin}_{h}(A)=\operatorname{Prin}(A) \cap \operatorname{Div}_{h}(A)$. Then the inclusion $\operatorname{Div}_{h}(A) \rightarrow \operatorname{Div}(A)$ induces a bijection

$$
\operatorname{Div}_{h} A / \operatorname{Prin}_{h}(A) \longrightarrow C l(A)
$$

([2], proposition 10.2, page 42).
Proposition 7. In (2) assume $T=T_{0} \oplus T_{1} \oplus T_{2} \oplus \cdots$ is a graded ring and Δ_{\imath}, $1 \leqq i \leqq m$, are graded derivations of degree e_{\imath} (i.e. $\Delta_{\imath}\left(T_{j}\right) \subset T_{j+e_{i}}$ for each j). For each $j=0,1, \cdots$, let $S_{j}=T_{j} \cap\left(\bigcap_{G} \Delta^{-1}(0)\right)$. Assume $S_{0}=T_{0}$. Then $V_{0}^{\prime}=0$ and S is the graded subring of $T, S=S_{0} \oplus S_{1} \oplus \cdots$. If, in addition, T is a unique factorization domain, then $C l(S)=\operatorname{ker} \psi$ and the image of the mapping $\operatorname{ker} \psi \rightarrow V_{0}$ is spanned by m-tuples $\left(t^{-1} \Delta_{1} t, \cdots, t^{-1} \Delta_{m} t\right) \in T^{m}$, where t is homogeneous irreducible in T.

Proof. If u is a unit in $T, u \in T_{0}$. Since $S_{0}=T_{0}, V_{0}^{\prime}=0$. Given $j=0,1, \cdots, T_{\text {, }}$ $\cap\left(\Omega_{G} \Delta^{-1}(0)\right) \subset T_{j} \cap\left(\bigcap_{i=1}^{m} \Delta_{i}^{-1}(0)\right)$. The reverse inclusion holds since the Δ_{i} span Q. Therefore $S_{j}=T_{j} \cap\left(\bigcap_{\imath=1}^{m} \Delta_{i}^{-1}(0)\right)$. Since the Δ_{\imath} are homogeneous, an element
$t \in \bigcap_{i=1}^{m} \Delta_{i}^{-1}(0)$ if and only if its homogeneous parts belong to $\bigcap_{i=1}^{m} \Delta_{i}^{-1}(0)$. Thus $S=S_{0} \oplus S_{1} \oplus \cdots$.

If T is a unique factorization domain, then $C l(T)=0$ and obviously $C l(S)=$ $\operatorname{ker} \psi$. By (2), (3) and (6), the image of $\operatorname{ker} \psi$ in V_{0} will be generated by m tuples $\left(t^{-1} \Delta_{1} t, \cdots, t^{-1} \Delta_{m} t\right) \in T^{m}$ where t is a homogeneous element of $T . t$ can be
 elements in T and the n_{i} are positive integers. If one of the $n_{\imath}=0(\bmod p)$, then t can be replaced by $u_{i}^{-n_{i} t}$; so we may assume no $n_{2}=0(\bmod p)$.

If for some $j, t^{-1} \Delta_{j} t \neq 0$, then $t^{-1} \Delta_{j} t=\sum_{i} n_{\imath} w_{i}^{-1} \Delta_{j}\left(w_{2}\right) . t^{-1} \Delta_{j} t \in T$ implies $\sum_{i} n_{\imath} \frac{w_{1} \cdots w_{s}}{w_{i}} \Delta_{j}\left(w_{\imath}\right) \in w_{1} \cdots w_{s} T$. Since the w_{\imath} are pairwise coprime, w_{\imath} must divide $\Delta_{j}\left(w_{2}\right)$ in T. Thus $w_{i}^{-1} \Delta_{j}\left(w_{i}\right) \in T$ for each i and j and $\left(t^{-1} \Delta_{1} t, \cdots, t^{-1} \Delta_{m} t\right)$ $=\sum_{i} n_{\imath}\left(w_{i}^{-1} \Delta_{1} w_{i}, \cdots, w_{i}^{-1} \Delta_{m} w_{\imath}\right)$.

Definition 8. Let K be a field of characteristic $p \neq 0$. A set \mathscr{D} of derivations of K is called a restricted K-Lie algebra of derivations of K if : (1) \mathscr{D} is closed under addition: (2) \mathscr{D} is closed under bracket product (3) \mathscr{D} is closed under p-th powers; (4) \mathscr{D} is closed under multiplication by elements of K.

Theorem 9 (Jacobson). Let K be a field of characteristic $p \neq 0$. Let \mathscr{D} be a restricted K-Lie algebra of derivations of K such that $[\mathscr{D}: K]=m<\infty$. Then: (1) If K^{\prime} is the subfield of \mathscr{D} constants, then K is purely inseparable of exponent $\leqq 1$ over K^{\prime} and $\left[K: K^{\prime}\right]=p^{m}$; (2) if \mathscr{D} is any derivation of K over K^{\prime}, then $D \in \mathscr{D}$; (3) if $\left(D_{1}, \cdots, D_{m}\right)$ is any basis for \mathscr{D} over K, then the set of monomials

$$
D_{1}^{k_{1}} \cdots D_{m}^{k_{m}} ; 0 \leqq k_{i}<p, \quad\left(D_{i}^{0}=1\right)
$$

is a basis for the ring $\operatorname{End}_{K^{\prime}}(K)$ considered as a vector space over K. ([4], theorem 19, page 186).

Lemma 10. Let K be a perfect field of characteristic $p \neq 0$. Let B be a finitely generated K-integral domain of dimension d. Let $C=B^{p}$, the ring of p-th powers of elements of B. Then the degree of B over C is p^{d}.

Proof. $B=K\left[w_{1}, \cdots, w_{t}\right]$ for some $w_{i} \in B$. Then $C=K\left[w_{1}^{p}, \cdots, w_{i}^{p}\right]$. By Noether's normalization theorem, there exists $y_{1}, \cdots, y_{d} \in B$ such that B is separable algebraic over $K\left[y_{1}, \cdots, y_{d}\right]$ and y_{1}, \cdots, y_{d} are algebraically independent over K. Let L_{B}, L_{C} be the fields of quotients of B, C, respectively. Clearly, $\left[L_{B}: K\left(y_{1}, \cdots, y_{d}\right)\right]=\left[L_{C}: K\left(y_{1}^{p}, \cdots, y_{d}^{p}\right)\right]$ and the result follows.

§ 2. Purely Inseparable Extensions of Complete Intersections

1. Let k be an algebraically closed field of characteristic $p \neq 0$ and let $k^{[n\rfloor}$ denote the polynomial ring in n variables over k. Assume $h_{1}, \cdots, h_{r}(r \leqq n-2)$
are homogeneous polynomials in $k^{[n]}$ such that the ideal P they generate is a height r prime ideal in $k^{[n]}$. Let $R=k^{[n]} / P$ and for $f \in k^{[n]}$ denote its image in R by \bar{f}. For each integer $m \geqq 0$, let $R_{m}=k\left[\bar{x}_{1}^{p m}, \cdots, \bar{x}_{n}^{p^{m}}\right] \subset R . R_{m}$ is a subring of R and is ring isomorphic (not k-isomorphic) to R since k is perfect.

Throughout assume R is a unique factorization domain. Also assume h_{r+1} $\in k^{[n]}$ is homogeneous such that $\operatorname{deg}\left(h_{r+1}\right) \neq 0(\bmod p)$ and h_{r+1} factors as a product $\bar{h}_{r+1}=\bar{u}_{1} \bar{u}_{2} \cdots \bar{u}_{q}$ of q distinct irreducible elements in R. Note that this last assumption implies $\bar{h}_{r+1} \notin R_{1}$.

For each integer $m \geqq 0$, let $S_{m}=R_{m}\left[\bar{h}_{r+1}\right]$ and $X_{m} \subset A_{k}^{n+1}$ be the variety defined by the equations $h_{1}=\cdots=h_{r}=x_{n+1}^{p^{m}-h_{r+1}}=0$.

Lemma 2. For each m, the coordinate ring of X_{m} is isomorphic S_{m}.
Proof. Let $\phi: k\left[x_{1}, \cdots, x_{n+1}\right] \rightarrow S_{m}$ be the surjection that sends x_{2} to $\bar{x}_{r}^{p m}$ for $1 \leqq i \leqq n, \alpha$ to $\alpha^{p m}$ for $\alpha \in k$ and x_{n+1} to \bar{h}_{r+1}. Let $Q \subset k^{[n+1]}$ be the ideal generated by $h_{1}, \cdots, h_{r}, x_{n+1}^{p m}-h_{r+1}$. Since $\bar{h}_{r+1} \notin R_{1}, Q$ is a prime ideal of height $r+1$ contained in $\operatorname{ker} \phi$. We have $\operatorname{dim}\left(R_{m}\left[\bar{h}_{r+1}\right]\right)=\operatorname{dim}(R)=n-r$. Thus ker ϕ is a height $r+1$ prime ideal and $\operatorname{ker} \phi=Q$. Therefore $k^{[n+1]} / Q$ is isomorphic to S_{m}.
3. For each integer $m \geqq 0$, let S_{m}^{\prime} be the ring of p-th powers of elements of S_{m}. S_{m}^{\prime} and S_{m} are isomorphic and $S_{m}^{\prime} \subset S_{m+1} \subset S_{m}$. Denote by E_{m}, F_{m} and F_{m}^{\prime} the quotient fields of R_{m}, S_{m} and S_{m}^{\prime}, respectively.

Lemma 4. For each $m \geqq 0$: (i) $\left[E_{m}: E_{m+1}\right]=\left[F_{m}: F_{m}^{\prime}\right]=p^{n-r}$; (ii) $\left[F_{m+1}: F_{m}^{\prime}\right]$ $=p$; (iii) $\left[F_{m}: F_{m+1}\right]=p^{n-r-1}$; (iv) $\left[F_{m}: E_{m}\right]=p^{m+1}$.

Proof. (i) is an immediate consequence of Lemma (1.10). (ii) is obvious. (iii) follows from (i) and (ii). To prove (iv), note that $F_{m}=E_{m}\left(\bar{h}_{r+1}\right)$. Then $\left.\left[F_{m}: E_{m}\right]=\prod_{i=0}^{m-1}\left[E_{m}\left(\bar{h}_{r+1}^{p^{i}}\right)\right]: E_{m}\left(\bar{h}_{r+1}^{p i+1}\right)\right] . E_{m}\left(\bar{h}_{r+1}^{p i}\right) \cong E_{m-\imath}\left(\bar{h}_{r+1}\right)=F_{m-i}$, and $E_{m}\left(\bar{h}_{r+1}^{p^{i+1}}\right)$ $\cong E_{m-2}\left(\bar{h}_{r+1}^{p}\right)=F_{m-2-1}^{\prime}$, where the two isomorphisms are nothing other than the operation of taking p^{i}-th roots. Thus $\left[F_{m}: E_{m}\right]=\prod_{i=0}^{m-1}\left[F_{m-2}: F_{m-2-1}^{\prime}\right]=p^{m}$ by (ii).
5. From here on assume that X_{1} is regular in codimension one. Then X_{m} is regular in codimension one for each m and S_{m} is noetherian integrally closed; hence S_{m} is a Krull domain. By (1.1) and (1.3) we obtain well defined group homomorphisms $\phi_{m}^{\prime}: C l\left(S_{m}^{\prime}\right) \rightarrow C l\left(S_{m+1}\right)$ and $\phi_{m}: C l\left(S_{m+1}\right) \rightarrow C l\left(S_{m}\right)$, which we'll study via (1.3).

Definition 6. If A is a ring and $f_{1}, \cdots, f_{s} \in A\left[x_{1}, \cdots, x_{s}\right]$, the polynomial ring in s variables over A, let $\partial\left(f_{1}, \cdots, f_{s}\right) / \partial\left(x_{1}, \cdots, x_{s}\right)$ denote the determinant
of the Jacobian matrix $\left[\partial f_{i} / \partial x_{j}\right]$.

§ 3. The Calculation of $\operatorname{ker} \phi_{m}^{\prime}$

1. For each $(r+1)$-tuple $I=\left(i_{1}, \cdots, i_{r+1}\right)$ of integers with $1 \leqq i_{j} \leqq n$, let D_{I} be the derivation on $k\left(x_{1}, \cdots, x_{n}\right)$ defined by $D_{I}=\partial\left(, h_{1}, \cdots, h_{r}\right) / \partial\left(x_{2_{1}}, \cdots, x_{i_{r+1}}\right)$. Since $D_{I}\left(h_{i}\right)=0$ for each $i=1, \cdots, r ; D_{I}$ induces a derivation on $E_{0}=k\left(\bar{x}_{1}, \cdots, \bar{x}_{m}\right)$. We will also denote this derivation by D_{I}; it should be clear from the context which one is meant.

Lemma 2. $R \cap\left(\bigcap_{I} D_{I}^{-1}(0)\right)=R_{1}$.
Proof. Since R is factorial, R is regular in codimension one. Thus the maximal minors of the Jacobian matrix $\left[\partial h_{2} / \partial x_{j}\right]_{1 \leq i \leq r}$ have greatest common divisor 1 in R. In particular, at least one maximal minor (actually at least two) has nonzero image in R. Without loss of generality we may assume $\partial\left(h_{1}, \cdots, h_{r}\right) /$ $\partial\left(x_{1}, \cdots, x_{r}\right)$ has nonzero image in R.

For each $s=r+1, \cdots, n$, let $D_{s}=D_{(1, \cdots, r, s)}$. Then $E_{0} \supset E_{0} \cap D_{r+1}^{-1}(0) \supset E_{0} \cap$ $\left(\bigcap_{s=r+1}^{r+2} D_{s}^{-1}(0)\right) \supset \cdots \supset E_{0} \cap\left(\bigcap_{s=r+1}^{n} D_{s}^{-1}(0)\right)$. Each containment is proper since $x_{t} \in$ $\bigcap_{s<t} D_{s}^{-1}(0)$ and $D_{t}\left(\bar{x}_{t}\right) \neq 0$. Also, $E_{1} \subset E_{0} \cap\left(\bigcap_{I} D_{I}^{-1}(0)\right) \subset E_{0} \cap\left(\bigcap_{s=r+1}^{n} D_{s}^{-1}(0)\right)$. By (2.4), $\left[E_{0}: E_{1}\right]=p^{n-r}$, which forces $E_{1}=E_{0} \cap\left(\cap_{I} D_{I}^{-1}(0)\right)$. Thus R_{1} and $R \cap\left(\cap_{I} D_{I}^{-1}(0)\right)$ have the same quotient field. Since R_{1} is integrally closed, $R_{1}=R \cap\left(\cap_{I} D_{I}^{-1}(0)\right)$.

Remark 3. By (1.1), $\bar{h}_{r+1} \notin R_{1}$. By (3.2), there exists an ($r+1$)-tuple I_{0} such that $D_{I_{0}}\left(\bar{h}_{r+1}\right) \neq 0$. Let $\beta=D_{I_{0}}\left(\bar{h}_{r_{+1}}\right)$. For each integer $m \geqq 0$, let Δ_{m} be the restriction of the derivation $\beta^{-1} D_{I_{0}}$ on E_{0} to S_{m}.

Lemma 4. Δ_{m} maps S_{m} into S_{m} and has kernel S_{m-1}^{\prime}.
Proof. Let $\alpha \in S_{m}$. By (2.4), $\alpha=\sum_{i=0}^{p-1} \alpha_{2} \bar{h}_{r+1}^{i}$ for unique $\alpha_{2} \in S_{m-1}^{\prime}$. Then $\Delta_{m}(\alpha)$ $=\sum_{i=0}^{p-1} i \alpha_{i} \bar{h}_{r+1}^{i-1}$. Thus $\Delta_{m}(\alpha) \in S_{m}$ and $\Delta_{m}(\alpha)=0$ if and only if $\alpha_{\imath}=0$ for $1 \leqq i \leqq p-1$; that is, if and only if $\alpha \in S_{m-1}^{\prime}$.

Proposition 5. The mapping $\phi_{m}^{\prime}: \operatorname{Cl}\left(S_{m}^{\prime}\right) \rightarrow C l\left(S_{m+1}\right)$ described in (2.5) is an injection.

Proof. $\Delta_{m}\left(\bar{h}_{r+1}\right)=1$ and $\left[F_{m+1}: F_{m}^{\prime}\right]=p$. By (2.5), (1.7), and (3.4), $\operatorname{ker} \phi_{m}^{\prime}$ is isomorphic to V_{0}, where V_{0} is spanned by the logarithmic derivatives $t^{-1} \Delta_{m} t \in$ S_{m+1}, where $t \in S_{m+1}$ is homogeneous with respect to the grading S_{m+1} inherits from $R . t$ homogeneous and $\operatorname{deg}\left(\bar{h}_{r+1}\right) \neq 0(\bmod p)$ implies $t=\alpha \bar{h}_{r+1}^{j}$ for some
$\alpha \in S_{m}^{\prime}$ and integer $j, 0 \leqq j \leqq p-1$. If $t^{-1} \Delta_{m} t \in S_{m_{+1}}$, then either $j=0$ or $\bar{h}_{r+1}^{-1} \in$ S_{m+1}. Thus $t^{-1} \Delta_{m} t=0$ and $V_{0}=0$.

Proposition 6. Let \mathfrak{G} denote the vector space over E_{0} generated by the D_{I} defined in (3.1). Then if D is a derivation on $E_{0}, D \in \mathcal{G}$.

Proof. Let \mathscr{D} denote the vector space of derivations on E_{0}. The map $D \rightarrow$ ($D \bar{x}_{1}, \cdots, D \bar{x}_{n}$) is a E_{0}-vector space monomorphism from \mathscr{D} to E_{0}^{n}. If $D \in \mathscr{D}$, $0=D\left(\bar{h}_{2}\right)=\sum_{i} \frac{\overline{\partial h_{2}}}{\partial x_{j}} D \bar{x}_{j}$. Thus $D \in \mathscr{D}$ implies $\left[\frac{\overline{\partial h_{i}}}{\partial x_{j}}\right] D(\bar{x})=0$. Since R is factorial, R is regular in codimension 1 , which implies the rank of $\left[\frac{\overline{\partial h_{i}}}{\partial x_{j}}\right]$ is r. Therefore \mathscr{D} is of dimension at most $n-r$ over E_{0}.

Assuming again that $\partial\left(h_{1}, \cdots, h_{r}\right) / \partial\left(x_{1}, \cdots, x_{r}\right)$ has nonzero image in R, we get that the column matrix $\left[D_{s}\right]_{r+1 \leq s \leq n}$ (where D_{s} is defined in the proof of (3.2)) is mapped to an $(n-r) \times n$ matrix under $\mathscr{D} \rightarrow E_{0}^{n}$ that contains an $(n-r) \times(n-r)$ nonzero scalar submatrix $\overline{\partial\left(h_{1}, \cdots, h_{r}\right) / \partial\left(x_{1}, \cdots, x_{r}\right)} \cdot I_{n-r}$. Thus G has dimension at least $n-r$ over E_{0}, which shows that $\mathscr{D}=\underline{q}$.

Corollary 7. Let G denote the vector space over E_{0} generated by the D_{I}. Then \mathcal{G} is a restricted Lie algebra of derivations over E_{0}. Furthermore, $R[g]=$ $\operatorname{End}_{R_{1}}(R)$.

Proof. \mathscr{D}, the space of derivations on E_{0}, is a restricted Lie algebra of derivations over E_{0}. By (3.6), $\mathscr{D}=G$. Both $R[G]$ and $\operatorname{End}_{R_{1}}(R)$ are locally free R_{1} modules ([1], page 86, exercise 16 and page 99, exercise 5). By (1.9) and a rank argument $R[\mathcal{G}]=\operatorname{End}_{R_{1}}(R)$.

Corollary 8. Let $t \in E_{0}$. If $t^{-1} D_{I} t \in R$ for all I, then $D_{I}(t)=0$ for all I.
Proof. Let $W=\left\{\left(t^{-1} D_{I} t\right): t \in E_{0}\right.$ and $t^{-1} D_{I} t \in R$ for all $\left.I\right\}$. Since the units of R are the nonzero elements of k, by (1.2), (1.4), (3.2) and (3.7), $W=0$.

§4. The Calculation of $C l\left(S_{1}\right)$

1. For each $(r+2)$-tuple $J=\left(i_{1}, \cdots, i_{r+2}\right)$ of integers with $1 \leqq i_{j} \leqq n$, let D_{J} be the derivation on $k\left(x_{1}, \cdots, x_{n}\right)$ defined by $D_{J}=\partial\left(, h_{1}, \cdots, h_{r+1}\right) / \partial\left(x_{i_{1}}, \cdots, x_{i_{r+2}}\right)$. Since $D_{J}\left(h_{\imath}\right)=0$ for $1 \leqq i \leqq r, D_{J}$ induces a derivation on E_{0}, which we will also denote by D_{J}.

Lemma 2. $R \cap\left(\cap_{J}^{-1} D_{J}^{-1}(0)\right)=S_{1}$.
Proof. Similar to (3.2).
Proposition 3. Let W_{0} be the additive group generated by $\left\{\left(t^{-1} D_{J} t\right): t \in R\right.$ is
irreducible and homogeneous and $t^{-1} D_{J} t \in R$ for each $\left.J\right\}$. Then $C l\left(S_{1}\right)$ is isomorphic to a subgroup of W_{0}.

Proof. Follows from (1.7) and (4.2).
4. Recall that $\bar{h}_{r+1}=\bar{u}_{1} \cdots \bar{u}_{q}$ is a product of q distinct irreducible elements in R and $\operatorname{deg}\left(h_{r+1}\right) \neq 0(\bmod p)$.

Lemma 5. For each $i=1, \cdots, q-1$, let Q_{i} be the height one prime ideal in S_{1} generated by x_{n+1} and u_{i}. Then the classes of the Q_{i} generate a subgroup of $\mathrm{Cl}\left(S_{1}\right)$ of order p^{q-1}.

Proof. By (4.3), $C l\left(S_{1}\right) \rightarrow W_{0}$ is an injection. By (1.3), Q_{i} maps to $\left(\bar{u}_{i}^{-1} D_{J}\left(\bar{u}_{i}\right)\right)$ in W_{0}.

Claim. The elements $\left(\bar{u}_{i}^{-1} D_{J}\left(\bar{u}_{i}\right)\right), 1 \leqq i \leqq q-1$, are F_{p}-independent; F_{p} the prime subfield of k.

Suppose $e_{2} \in F_{p}, 1 \leqq i \leqq q-1$, such that $\sum_{i} e_{\imath}\left(\bar{u}_{i}^{-1} D_{J} \bar{u}_{i}\right)=0$. Let $H=\prod_{i} u_{i}^{e_{i}}$. Then $D_{J}(\bar{H})=0$ for each J, which implies by (4.2) that $E_{1} \subset E_{1}(\bar{H}) \subset F_{1}=E_{1}\left(\bar{h}_{r+1}\right)$. If $\bar{H} \notin E_{1}$, then $E_{1}(\bar{H})=E_{1}\left(\bar{h}_{r+1}\right)$, which implies there exists $\alpha_{j} \in k^{[n]}$ such that $\bar{\alpha}_{p}^{p} \bar{H}=\sum_{j=0}^{p-1} \bar{\alpha}_{l}^{p} \bar{h}_{r+1}^{\prime}$. Since H and h_{r+1} are homogeneous elements and P a homogeneous ideal in $k^{[n]}$, we may assume that the α_{j} are homogeneous polynomials as well. Since $\operatorname{deg}\left(\alpha_{j}^{p} h_{r+1}^{j}\right)=j\left(\operatorname{deg}\left(h_{r+1}\right)\right)(\bmod p)$ and $\operatorname{deg}\left(h_{r+1}\right) \neq 0(\bmod p)$, it follows $\bar{\alpha}_{0}^{p} \bar{H}=\bar{\alpha}_{j_{0}}^{p} \bar{h}_{r+1}^{j_{0}}$ for some $j_{0}=0,1, \cdots, p-1$. If $j_{0} \neq 0$, then this implies $\bar{u}_{q} \in E_{1}$, which contradicts the irreducibility of \bar{u}_{q} in R. If $j_{0}=0$, then \bar{H} must in fact belong to E_{1}. But if $\bar{H} \in E_{1}$, then each $e_{i}=0(\bmod p)$. This proves the claim and hence the lemma.

Theorem 6. $C l\left(S_{1}\right)$ is a direct sum of $q-1$ copies of $Z / p Z$.
Proof. By (4.3) and (4.5) it is enough to show that W_{0} has order at most p^{q-1}. Let $\bar{u} \in R$ be irreducible homogeneous such that $\bar{w}_{J}=\bar{u}^{-1} D_{J}(\bar{u}) \in R$ for each J. Then \bar{l} divides the images in R of all of the maximal minors of the matrix

$$
M=\left|\begin{array}{cccc}
\frac{\partial u}{\partial x_{1}} & \frac{\partial u}{\partial x_{2}} & \cdots & \frac{\partial u}{\partial x_{n}} \\
\frac{\partial h_{1}}{\partial x_{1}} & \frac{\partial h_{1}}{\partial x_{2}} & \cdots & \frac{\partial h_{1}}{\partial x_{n}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial h_{r+1}}{\partial x_{1}} & \frac{\partial h_{r+1}}{\partial x_{2}} & \cdots & \frac{\partial h_{r+1}}{\partial x_{n}}
\end{array}\right| .
$$

By Euler's formula, \bar{u} divides in R the images of the maximal minors of the
matrix obtained from M by replacing the j-th column by the $(r+2) \times 1$ vector

$$
\left[\begin{array}{c}
d \cdot u \\
0 \\
\vdots \\
0 \\
d^{\prime} \cdot h_{r+1}
\end{array}\right]
$$

where $d=\operatorname{deg}(u)$ and $d^{\prime}=\operatorname{deg}\left(h_{r+1}\right)$. Therefore \bar{u} is a factor of \bar{h}_{r+1} or \bar{u} is a common factor of the images in R of each of the maximal minors of the matrix

$$
\left[\begin{array}{cccc}
\frac{\partial u}{\partial x_{1}} & \frac{\partial u}{\partial x_{2}} & \cdots & \frac{\partial u}{\partial x_{n}} \\
\frac{\partial h_{1}}{\partial x_{1}} & \frac{\partial h_{1}}{\partial x_{2}} & \cdots & \frac{\partial h_{1}}{\partial x_{n}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial h_{r}}{\partial x_{1}} & \frac{\partial h_{r}}{\partial x_{2}} & \cdots & \frac{\partial h_{r}}{\partial x_{n}}
\end{array}\right] .
$$

The latter implies $\bar{u}^{-1} D_{I} \bar{u} \in R$ for each of the derivations D_{I} described in (3.1), which by (3.2) and (3.8) implies $\bar{u} \in R_{1}$. Since \bar{u} is irreducible in R, it must be that \bar{u} is a k^{*} multiple of one of the \bar{u}_{i}. By (4.3) we get W_{0} is generated by $\left(\bar{u}_{i}^{-1} D_{J} \bar{u}_{i}\right), 1 \leqq i \leqq q$. We have for each $J, \sum_{i=1}^{q} \bar{u}_{i}^{-1} D_{J} \bar{u}_{i}=\bar{h}_{r+1}^{-1} D_{J}\left(\bar{h}_{r+1}\right)=0$. Therefore W_{0} is generated by $\left(\bar{u}_{i}^{-1} D_{J} \bar{u}_{i}\right), 1 \leqq i \leqq q-1$. Since W_{0} is a p-group, the order of W_{0} is at most p^{q-1}.

Corollary 7. $C l\left(X_{1}\right)$ is generated by the codimension one cycles on X_{1} defined by $u_{i}=0,1 \leqq i \leqq q-1$.

Proof. By the proof of (4.5) and by theorem (4.6).

§ 5. The Calculation of $C l\left(S_{m}\right)$

1. Given $\alpha \in F_{m}$, by (2.4) there exist unique $\alpha_{2} \in E_{0}$, such that $\alpha=\sum_{i=0}^{p m-1} \alpha_{i}^{p m} \bar{h}_{r+1}^{i}$. For each derivation D_{J} defined in (4.1) and each integer $m \geqq 0$, define a mapping $D_{J}^{(m)}$ on F_{m} by the formula

$$
D_{J}^{(m)}(\alpha)=\sum_{i=0}^{p m-1}\left(D_{J}\left(\alpha_{i}\right)\right)^{p m} \bar{h}_{r+1}^{i}
$$

Lemma 2. $D_{J}^{(m)}$ is a derivation on F_{m}.
Proof. $D_{J}^{(m)}$ is clearly additive. Given $\alpha=\sum_{i=0}^{p m-1} \alpha_{i}^{p m} \bar{h}_{r+1}^{i}$ and $\beta=\sum_{i=0}^{p m-1} \beta_{i}^{p m} \bar{h}_{r+1}^{i}$
in F_{m}, we must show that $D_{J}^{(m)}(\alpha \beta)=\alpha D_{J}^{(m)} \beta+\beta D_{J}^{(m)} \alpha$. We argue by induction on the number of nonzero coefficients appearing in α plus the number of nonzero coefficients appearing in β.

Suppose this sum is 2. Then $\alpha=\alpha_{i}^{p m} \bar{h}_{r+1}^{i}$ and $\beta=\beta_{j}^{p^{m}} \bar{h}_{r+1}^{j}$ for some α_{i}, β_{j} $\in E_{0}$ and nonnegative integers i and j. Then $D_{J}^{(m)}(\alpha \beta)=D_{J}^{(m)}\left(\alpha_{i} \beta_{j}\right)^{p m} h_{r+1}^{i+j}=$ $\left(D_{J}\left(\alpha_{i} \beta_{j}\right)\right)^{p^{m}} \bar{h}_{r+1}^{i+j}=\left(\alpha_{i} D_{J} \beta_{j}+\beta_{j} D_{J} \alpha_{i}\right)^{p m} \bar{h}_{r+1}^{i+j}=\alpha_{i}^{p^{m}} \bar{h}_{r+1}^{i} D_{J^{(m)}}\left(\beta_{j}^{p m} \bar{h}_{r+1}^{j}\right)+$ $\beta_{j}^{p^{m}} \bar{h}_{r+1}^{j} D_{J}^{(m)}\left(\alpha_{i}^{p m} \bar{h}_{r+1}^{i}\right)=\alpha D_{J}^{(m)} \beta+\beta D_{J}^{(m)} \alpha$.

Now assume that the total number of nonzero coefficients appearing in α and β is greater than 2. Let j_{0} be the highest power of \bar{h}_{r+1} with nonzero coefficient in β. Then $D_{J}^{(m)}(\alpha \beta)=D_{J}^{(m)}\left(\alpha\left(\beta-\beta_{j_{0}}^{p^{m}} \bar{h}_{r+1}^{j_{0}}\right)\right)+D_{J}^{(m)}\left(\alpha \beta_{j_{0}}^{p^{m}} \bar{h}_{r+1}^{j_{0}}\right)$, which by the induction hypothesis and the additivity of $D_{J}^{(m)}$, equals to $\alpha D_{J}^{(m)} \beta+$ $\beta D_{J}^{(m)} \alpha$.

Lemma 3. S_{m+1} is the fixed subring of the derivations $D_{J}^{(m)}$ acting on S_{m}.
Proof. Given $\alpha \in S_{m}, \alpha=\sum \alpha_{i}^{p m} \bar{h}_{r+1}^{i}, \alpha_{2} \in R . \quad D_{J^{(m)}}(\alpha)=0$ for each J if and only if $D_{J}\left(\alpha_{i}\right)=0$ for each J and $0 \leqq i \leqq p^{m}-1$. By (4.2) we get $D_{J}^{(m)}(\alpha)=0$ for each J implies each $\alpha_{\imath} \in S_{1}$ and hence $\alpha \in S_{m+1}$.

Definition 4. For each integer $m \geqq 1$, let W_{m} be the additive group generated by $\left\{\left(t^{-1} D_{J}^{(m)} t\right): t\right.$ is a homogeneous element in S_{m} and $t^{-1} D_{J}^{(m)} t \in S_{m}$ for each $\left.J\right\}$.

Lemma 5. If $\left(u_{J}\right) \subseteq W_{0}$ then $\left(u_{J}^{p^{m}}\right) \equiv W_{m}$ and the mapping $\left(u_{J}\right) \rightarrow\left(u_{J}^{p^{m}}\right)$ from W_{0} to W_{m} is an isomorphism.

Proof. If $t \equiv E_{0}$ and $t^{-1} D_{J} t=u_{J} \equiv R$, then $t^{p m} \in F_{m}$ and $t^{-p^{m}} D_{J}^{(m)}\left(t^{p m}\right)=$ $\left(t^{-1} D_{J} t\right)^{p m}=u_{J}^{p^{m}} \in R_{m} \subset S_{m}$. This also shows that $\left(u_{J}\right) \rightarrow\left(u_{J}^{p^{m}}\right)$ defines an injection from W_{0} to W_{m}.

Suppose $t^{\prime} \in S_{m}$ is homogeneous. Since $\operatorname{deg}\left(h_{r+1}\right) \neq 0(\bmod p), t^{\prime}=\bar{\alpha}^{p m} \bar{h}_{r+1}^{i}$, where $\alpha \doteq k^{[n]}$ is homogeneous and i is a nonnegative integer. If $\left(t^{\prime}\right)^{-1} D_{J^{(m)}\left(t^{\prime}\right)}$ is a nonzero element of S_{m}, then $\left(t^{\prime}\right)^{-1} D_{J}^{(m)}\left(t^{\prime}\right)=\left(\alpha^{-1} D_{J} \alpha\right)^{p m} \in S_{m} \cap E_{m}=R_{m}$. Thus $\alpha^{-1} D_{J} \alpha \cong R$. Therefore $W_{0} \rightarrow W_{m}$ is also a surjection.

Theorem 6. $C l\left(S_{m}\right)$ is a direct sum of $q-1$ copies of $Z / p^{m} Z$, generated by the height one primes $Q_{i}^{(m)}=\bar{h}_{r+1} S_{m}+\bar{u}_{i}^{p m} S_{m}$ in $S_{m}, 1 \leqq i \leqq q-1$.

Proof. For each $i=1, \cdots, q-1$ and positive integer m, let $P_{i}^{(m)}=\bar{h}_{r+1}^{p} S_{m}^{\prime}+$ $\bar{u}_{i}^{p+1} S_{m}^{\prime}$. Then $Q_{i}^{(m)} \cap S_{m+1}=Q_{i}^{(m+1)}$ and $Q_{i}^{(m+1)} \cap S_{m}^{\prime}=P_{i}^{(m)}$. Also, the ramification index of $Q_{i}^{(m)}$ over $Q_{i}^{(m+1)}$ is 1 and the ramification index of $Q_{i}^{(m+1)}$ over $P_{i}^{(m)}$ is p. Thus $\phi_{m}: C l\left(S_{m+1}\right) \rightarrow C l\left(S_{m}\right)$ sends $Q_{i}^{(m+1)}$ to $Q_{i}^{(m)}$ and $\phi_{m}^{\prime}: C l\left(S_{m}^{\prime}\right) \rightarrow$ $C l\left(S_{m+1}\right)$ sends $P_{i}^{(m)}$ to $p Q_{i}^{(m+1)}$.

By (1.2), (1.3) and (1.6) it follows that the $\operatorname{ker} \phi_{m}$ is isomorphic to a subgroup of W_{m}. By (5.5) and the proof of (4.6), we have the $\operatorname{ker} \phi_{m}$ has order at most p^{q-1}.

Proceeding by induction we have that the primes $Q_{i}^{(m)}$ generate $C l\left(S_{m}\right)$ and are each of order p^{m}, hence the same is true of the primes $P_{i}^{(m)}$ in S_{m}^{\prime}. Since $\phi_{m}^{\prime}: C l\left(S_{m}^{\prime}\right) \rightarrow C l\left(S_{m+1}\right)$ is injective by (3.5), we see that the elements $p^{m} Q_{i}^{(m+1)}$ are a $Z / p Z$-basis for $\operatorname{ker} \phi_{m}$. Since the ramification index of $Q_{2}^{(m)}$ over $Q_{2}^{(m+1)}$ is $1, \phi_{m}$ is surjective, and the conclusion of the theorem follows.

Corollary 7. $\mathrm{Cl}\left(X_{m}\right)$ is generated by the codimension one cycles on X_{m} defined by $u_{i}=0,1 \leqq i \leqq q-1$.

Proof. By (2.2) and (5.6).
8. Let A be a Krull ring of characteristic $p \neq 0$ with quotient field k. Let $h_{1}, \cdots, h_{r+1} \in A\left[x_{1}, \cdots, x_{n}\right]$ satisfy all of the conditions of (2.1) and (2.5) as elements of $k\left[x_{1}, \cdots, x_{n}\right]$. Let $T=A\left[x_{1}, \cdots, x_{n+1}\right] /\left(h_{1}, \cdots, h_{r}, x_{n+1}^{p}-h_{r+1}\right)$. Assume T is a Krull ring.

Corollary 9. Let T be as in (5.8), $C l(T)$ is isomorphic to $C l(A) \oplus\left(\underset{i=1}{\oplus_{i=1}} Z / p Z\right)$.
Proof. Let U be the multiplicative set of nonzero elements of A. Since A is a Krull ring, so is $S=U^{-1} T$. By a theorem of Nagata ([7], theorem 6.3, page 21), we obtain an exact sequence

$$
0 \longrightarrow C l(A) \longrightarrow C l(T) \longrightarrow C l(S) \longrightarrow 0 .
$$

The surjection $C l(T) \rightarrow C l(S)$ is a split surjection. Thus $C l(T) \cong C l(A) \oplus C l(S)$.
Corollary 10. Let R be as in (2.1) and assume $g \in k^{[n]}$ is homogeneous such that \bar{g} is irreducible in R. Let $Y \subset A_{k}^{m}$ be defined by the equations $h_{1}=\cdots=h_{r}$ $=x_{n+1}^{p^{m}}-g=0$, where m is a positive integer. Then the coordinate ring of Y is factorial if and only if Y is regular in codimension one.

References

[1] Atiyah, M.F. and Macdonald, I. G., Introduction to Commutative Algebra, AddisonWesley, 1969.
[2] Fossum, Robert, The Divisor Class Group of a Krull Domain, Springer-Verlag, 1973.
[3] Hartshorne, Robin, Algebraic Geometry, Springer-Verlag, 1977.
[4] Jacobson, Nathan, Lectures in Abstract Algebras III, Springer-Verlag, 1964.
[5] Lang, Jeffrey, Purely inseparable extensions of unique factorization domains, Kyoto Journal, 26 (1990) 453-471.
[6] , The divisor classes of the hypersurface $z^{p^{m}}=G\left(x_{1}, \cdots, x_{n}\right)$, Tran. Amer. Math. Soc., 278 (1983).
[7] Samuel, Pierre, Lectures on unique factorization domains, in Tata Lecture Notes, Tata Inst. of Fundamental Res. Bombay, 1964.

