Unitarily Invariant Norms under Which the Map $A \to |A|$ Is Lipschitz Continuous

By

Hideki Kosaki*

Abstract

We will characterize the unitarily invariant norms (for compact operators) under which the map $A \to \|A\| = (A^*A)^{1/2}$ is Lipschitz-continuous. Although the map is not Lipschitz-continuous for the trace class norm, we will obtain a certain Lipschitz-type estimate by making use of the Macaev ideal.

§0. Introduction

In [9] E. B. Davies showed the following Lipschitz-type estimates in the Schatten p-norm ($1 < p < +\infty$):

\[
\begin{align*}
\left\| \|A\|X - X|A| \right\|_p & \leq \text{Const}. \|AX - XA\|_p ; & A = A^* \in C_p , \\
\left\| |A| - |B| \right\|_p & \leq \text{Const}. \|A - B\|_p ; & A, B \in C_p .
\end{align*}
\]

Related results can be found in [1], [2], [3], [14] and [15]. For $p = 1$ and $+\infty$ (where $\|\cdot\|_\infty = \|\cdot\|$, the usual operator norm) the above Lipschitz-type estimates are known to fail. Instead some weaker estimates have been investigated by several authors ([7], [13], [16], [18]). See also [6] for some recent results.

An obvious next problem is to characterize unitarily invariant norms (of compact operators) under which the map $A \to |A| = (A^*A)^{1/2}$ is Lipschitz-continuous. In the present article we will obtain quite a complete solution to this problem based on very powerful analysis in [9] and Arazy’s result, [4].

One of the difficulties of dealing with the map $A \to |A|$ is its non-linearity. A very clever trick in [9] is to reduce the desired Lipschitz-continuity to the boundedness of a certain linear operator (Schur-Hadamard multiplier, etc.). Therefore, interpolation (for linear operators) is at our disposal, and in §2 all

* Department of Mathematics, College of General Education, Kyushu University, Fukuoka 810, Japan.
the Lipschitz-type estimates in [9] are shown to remain valid for a symmetri-

cally normed ideal (see §1 for its belief explanation) which is an interpolation

space between some C_{p_1} and C_{p_2}, $1 < p_1 < p_2 < +\infty$.

What is probably more interesting is that the converse is also true. For

example, we can show that the Lipschitz-continuity of the map $A \to |A|$ implies

the boundedness (relative to the relevant norm) of the triangle projection ([17]).

Therefore, we can use Arazy's theorem, [4], stating that a symmetrically normed

ideal possesses the above-mentioned interpolation property if and only if the

triangle projection is bounded. This converse result will be proved in §3.

Although

$$\| |A| - |B| \|_p \leq \text{Const.} \| A - B \|_p$$

is not valid for $p = 1, +\infty$, we will obtain Lipschitz-type estimates involving

these norms in §4. For example, if the above left side is replaced by the

norm of the Macaev ideal (see [11]), the result remains valid for $p = 1$. The

dual version can be also obtained by using the "predual" of the Macaev

ideal. The Macaev ideal plays important roles in analysis on compact opera-
tors ([11], [12]). Its importance is also emphasized in the recent book [8],

where relationship between this ideal and the Dixmier (non-normal) trace is

discussed.

§1. Symmetrically Normed Ideal ([11], [19])

In this section we collect basic facts on symmetrically normed ideals (of

compact operators on a Hilbert space), and details on this subject matter can

be found in [11], [19].

Let f be the space of the sequences with finitely many non-zero terms. A

norm $\Phi(\cdot)$ on f (with normalization $\Phi(1, 0, 0, \ldots) = 1$) is called a symmetric

norm if $\Phi(\xi_1, \xi_2, \ldots)$ is invariant under the permutations (of terms) and

$$\Phi(\xi_1, \xi_2, \ldots) = \Phi(|\xi_1|, |\xi_2|, \ldots).$$

Let S_Φ be the Banach space of sequences $a = \{a_n\}_{n=1, 2, \ldots}$ satisfying

$$\sup_m \Phi(a_1, a_2, \ldots, a_m, 0, 0, \ldots) \leq \Phi(a),$$

and let $S_\Phi^{(0)}$ be the closure of f relative to the norm Φ.

Throughout let H be a separable Hilbert space. For a compact operator

A on H let $s_n(A)$ ($n = 1, 2, \ldots$) be the n-th singular number of A, that is, the
n-th largest (with multiplicities counted) eigenvalue of $|A|$. We now introduce

two Banach spaces $I(S_\Phi)$, $I(S_\Phi^{(0)})$ consisting of compact operators. A compact

operator A belongs to $I(S_\Phi)$ if the associated sequence $s(A) = \{s_n(A)\}_{n=1, 2, \ldots}$ lies

in S_Φ. The space $I(S_\Phi)$ is a Banach space under the norm

$$\| A \|_{I(S_\Phi)} = \Phi(s(A)).$$
The second Banach space $I(S_\phi^{(0)})$ is defined as the closure (in $I(S_\phi)$) of the space of the finite rank operators. The space $I(S_\phi)$ may or may not be a separable Banach space while $I(S_\phi^{(0)})$ is always separable. The both spaces are two sided ideals in $B(H)$, the bounded operators, and $\| \cdot \|_{I(S_\phi)}$ is symmetric in the sense that

$$\| XAY \|_{I(S_\phi)} \leq \| X \| \| A \|_{I(S_\phi)} \| Y \|,$$

where $\| \cdot \|$ denotes the usual operator norm (throughout the article). In particular (and actually equivalently) we get the unitary invariance

$$\| UAV \|_{I(S_\phi)} = \| A \|_{I(S_\phi)}$$

for unitaries U, V.

Basic properties of these Banach spaces are:

1. $I(S_\phi)$ is separable if and only if $I(S_\phi^{(0)}) = I(S_\phi^{(0)\|})$. (This can be checked by just looking at Φ, i.e., mononormalizing in [11] or regular in [19].)

2. Any separable symmetrically normed ideal is of the form $(I(S_\phi^{(0)}), \| \cdot \|_{I(S_\phi)})$ for some symmetric norm Φ. For a given Φ (not equivalent to Φ^∞ defined later) we define the dual norm Φ' by

$$\Phi'(\zeta) = \sup \left\{ \sum_{i=1}^{\infty} \xi_i \zeta_i : \zeta = \{\zeta_i\} \in f \text{ and } \Phi(\zeta) \leq 1 \right\}.$$

Then the dual space $I(S_\phi^{(0)})^*$ can be identified with $I(S_\phi)$. Here the duality is given by the bilinear form

$$(A, B) \in I(S_\phi^{(0)}) \times (I(S_\phi)) \mapsto \text{Tr}(AB) \in \mathbb{C}.$$

If we set $\Phi_p(\zeta) = \left(\sum_{i=1}^{\infty} |\xi_i|^p \right)^{1/p}, 1 \leq p \leq +\infty$ (with the usual convention for $p = +\infty$), we get $I(S_\phi_p) = I(S_\phi^{(0)p}) = C_p$, the Schatten C_p-ideal, and $I(S_\phi^{(0)}) = C_\infty$, the compact operators. In the rest of the article, we will deal with either $I(S_\phi)$ or $I(S_\phi^{(0)})$ which is strictly smaller than C_∞. Whenever there is no possibility of confusion, the norm $\| \cdot \|_{I(S_\phi)}$ will be denoted by $\| \|$. For later use we list some properties of symmetrically normed ideals.

Lemma 1. We have

$$\| \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \| = \| \begin{bmatrix} 0 & A \\ 0 & 0 \end{bmatrix} \| = \| \begin{bmatrix} 0 & 0 \\ A & 0 \end{bmatrix} \| = \| \begin{bmatrix} 0 & 0 \\ 0 & A \end{bmatrix} \| = \| A \|.$$

Proof. The result follows from the obvious facts:

- $s_n \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} = s_n \begin{bmatrix} 0 & 0 \\ 0 & A \end{bmatrix} = s_n(A)$,
- $s_n \begin{bmatrix} 0 & A \\ 0 & 0 \end{bmatrix} = s_n \begin{bmatrix} 0 & 0 \\ A & 0 \end{bmatrix}$.
Lemma 2. We have

\[
\|\begin{bmatrix} A & B \\ C & D \end{bmatrix}\| \leq \|A\| + \|B\| + \|C\| + \|D\| \leq 4 \|\begin{bmatrix} A & B \\ C & D \end{bmatrix}\|.
\]

Proof. The first inequality follows from the triangle inequality and Lemma 1. To show the second, notice

\[
\|\begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}\| = \|\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} A & B \\ C & D \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\|
\leq \|\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\|\|\begin{bmatrix} A & B \\ C & D \end{bmatrix}\|\|\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\|
\leq \|\begin{bmatrix} A & B \\ C & D \end{bmatrix}\|.
\]

Therefore, Lemma 1 shows

\[
\|A\| \leq \|\begin{bmatrix} A & B \\ C & D \end{bmatrix}\|.
\]

We similarly show that \(\|B\|, \|C\|, \text{ and } \|D\|\) are majorized by the same quantity. Q.E.D.

The next two results are Theorems 5.1 and 6.3 in Chap. III, [11], respectively.

Lemma 3. Let \(X\) be a bounded operator. If there is a sequence \(\{X_n\}\) in \(I(S_\phi)\) converging to \(X\) in the weak operator topology and \(\sup_n\|X_n\| < +\infty\), then \(X\) belongs to \(I(S_\phi)\) and \(\|X\| \leq \sup_n\|X_n\|\).

Lemma 4. Assume \(A \in I(S_\phi^{(p)})\). If a sequence \(\{X_n\}\) of self-adjoint operators converges to \(X\) in the strong operator topology, then \(X_nA \to AX, AX_n \to AX, \text{ and } X_nAX_n \to XAX\) in the norm \(\|\cdot\|\).

§ 2. Lipschitz-Type Estimates for Commutators

In this section we show that certain Lipschitz-type estimates are valid in a symmetrically normed ideal \((I(S_\phi), \|\cdot\|)\) which is an interpolation space between \(C_{p_1}\) and \(C_{p_2}\), \(1 < p_1 < p_2 < +\infty\). The reader can find details on the general interpolation theory in [5]. (Information on interpolation spaces be-
between symmetrically normed ideals can be found in [4], [10]. In our set-up (since \(C_{p_1} \subseteq C_{p_2} \)) the assumption means the following: We must have \(C_{p_1} \subseteq I(S_\phi) \subseteq C_{p_2} \) with continuous inclusion operators. Let \(T \) be a linear mapping from \(C_{p_2} \) into itself. Whenever \(T(C_{p_1}) \subseteq C_{p_1} \), and \(T \) is bounded relative to \(\| \cdot \|_{p_2} \) and \(\| \cdot \|_{p_1} \), we must have \(T(I(S_\phi)) \subseteq I(S_\phi) \) and \(T \) has to be bounded relative to \(\| \cdot \| \).

The central core for analysis in [9] was the next result based on the theory of Volterra operators ([12]).

Lemma 5. (Corollary 5 and Corollary 6 in [9]) There is a constant \(\gamma_p \), \(1 < p < \infty \), satisfying the following:

(i) For any \(\lambda_i, \mu_i > 0, i = 1, 2, \ldots, n \) and any \(n \times n \)-matrix \(A = [A_{ij}] \), the \(n \times n \)-matrix \(B = [B_{ij}] \), \(B_{ij} = (\lambda_i - \mu_i) \times (\lambda_i + \mu_i)^{-1} \times A_{ij} \), satisfies \(\| B \|_p \leq \gamma_p \| A \|_p \).

(ii) For any \(\lambda_i, \mu_i \geq 0, i = 1, 2, \ldots, n \), and any \(n \times n \)-matrix \(C = [C_{ij}] \), we have

\[
\| [(\lambda_i - \mu_j)C_{ij}]_{ij} \|_p \leq \gamma_p \| [(\lambda_i + \mu_j)C_{ij}]_{ij} \|_p.
\]

Obviously (i) and (ii) are equivalent. Let us emphasize that \(\gamma_p \) is an absolute constant which does not depend on \(n, A, \) and the choice of \(\lambda_i \)'s and \(\mu_i \)'s. As was shown in [9], this lemma is based on the facts

\[
\begin{align*}
\| P_{\pi/4}(A) \|_p &\leq \frac{1}{4} \gamma_p \| A \|_p \\
P_\theta(A) &= U_\theta P_{\pi/4}(U_\theta^* A) \\
B &= - A - \int_0^{\pi/2} P_\theta(A) g'(\theta) d\theta
\end{align*}
\]

(see p. 150, 151 for the definitions of \(P_\theta, U_\theta, g(\theta), \) etc.). Our interpolation assumption (applied to the linear operator \(P_{\pi/4} \)) immediately implies \(\| P_{\pi/4}(A) \| \leq \text{Const.} \| A \| \). Therefore, by repeating the arguments in [9], we conclude that Lemma 5 remains valid for \(\| \cdot \| \).

Theorem 6. Assume that a symmetrically normed ideal \((I(S_\phi), \| \cdot \|)\) is an interpolation space between \(C_{p_1} \) and \(C_{p_2} \), \(1 < p_1 < p_2 < +\infty \). For a bounded operator \(X \) we have

(i) \(\| \| X - X \| \| \| B \| \| \leq \text{Const.} \| AX - XB \| \); \(A = A^*, B = B^* \in I(S_\phi) \),

(ii) \(\| \| X - X \| \| \| A \| \| \leq \text{Const.} \| AX - XA \| \); \(A \in I(S_\phi), X = X^* \),

(iii) \(\| A_1 X - X A_2 \| \leq \text{Const.} \| A_1 X + X A_2 \| ; A_1, A_2 \in I(S_\phi) \).

Proof. (i) Since Lemma 5 is valid for \(\| \cdot \| \), the identical arguments as in the proof of Theorem 7, [9], together with Lemma 2 show

\[
\| \| a x - x a \| \| \leq \text{Const.} \| a x - x a \| , \quad a = a^*,
\]
for $n \times n$-matrices a, x. The operator $A \in I(S_{n\phi})$ being compact, we can find an increasing sequence $\{p_n\}$ of projections with $\dim p_n H = n$, $p_n \to I$ strongly and $[p_n, A] = 0$. Setting $a_n = p_n A p_n$ and $x_n = p_n X p_n$, we see $[a_n, x_n] = p_n [A, X] p_n$ and $[|a_n|, x_n] = p_n [|A|, x] p_n$. The above inequality for matrices then implies

$$
\| p_n [|A|, X] p_n \| \leq \text{Const} \cdot \| p_n [A, X] p_n \|
$$

$$
\leq \text{Const} \cdot \| p_n \| \| [A, X] \| \| p_n \|
$$

$$
\leq \text{Const} \cdot \| [A, X] \| .
$$

Since $p_n [|A|, X] p_n \to [|A|, X]$ strongly (hence weakly), Lemma 3 says

$$
\| [A, X] \| \leq \text{Const} \cdot \| [A, X] \| ,
$$

which is exactly (i) with $A = B$. The general case can be obtained by applying this special case to

$$
\hat{A} = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} (= \hat{A}^*), \quad \hat{X} = \begin{bmatrix} 0 & X \\ X^* & 0 \end{bmatrix}.
$$

In fact, we get

$$
\begin{bmatrix} 0 & A |X - X|B| \\ |B|X^* - X^*|A| & 0 \end{bmatrix} \leq \text{Const} \cdot \begin{bmatrix} 0 & AX - XB \\ BX^* - X^*A & 0 \end{bmatrix} .
$$

Since $(|B|X^* - X^*|A|)^* = -(|A|X - X|B|)$, we have

$$
\| A |X - X|B| \| = \frac{1}{2} \{ \| A |X - X|B| \| + \| B|X^* - X^*|A| \| \}
$$

$$
\leq \text{the above left side} \quad \text{(by Lemma 2)} .
$$

We similarly get

$$
\text{the above right side} \leq \| AX - XB \| + \| BX^* - X^*A \| \quad \text{(by Lemma 2)}
$$

$$
= 2 \| AX - XB \| .
$$

(ii) For $A, B \in I(S_{n\phi})$, we set

$$
a = \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix} (= a^*), \quad b = \begin{bmatrix} 0 & B^* \\ B & 0 \end{bmatrix} (= b^*), \quad x = \begin{bmatrix} 0 & X \\ X^* & 0 \end{bmatrix} .
$$

Notice that

$$
|a| = \begin{bmatrix} |A^*| & 0 \\ 0 & |A| \end{bmatrix} \quad \text{and} \quad |b| = \begin{bmatrix} |B| & 0 \\ 0 & |B^*| \end{bmatrix} .
$$

Hence (i) applied to a, b, x implies
The estimate and Lemma 2 show

\[\| A^*X - X|B^*| \| \leq \text{Const.} \| AX - XB \| \leq \text{Const.} \| A*X - X*B^* \| . \]

When \(A = B \) and \(X = X^* \), (since \((A*X - XA^*)^* = -(AX - XA) \)) (2) reduces to (ii).

(iii) This can be obtained by applying (i) (with \(A = B \)) to

\[a = \begin{bmatrix} A_1 & 0 \\ 0 & -A_2 \end{bmatrix} (= a^*), \quad x = \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix} . \]

Q.E.D.

The theorem remains valid for a (separable) symmetrically normed ideal \(I(S_{\sigma}) \), the norm of \(I(S_{\sigma}) \) being just the restriction of \(\| \cdot \| = \| \cdot \|_{I(S_{\sigma})} \).

Corollary 7. Let \((I(S_{\sigma}), \| \cdot \|) \) be as in Theorem 6 and \(A, B \in B(H) \). If \(A - B \) belongs to \(I(S_{\sigma}) \), then so does \(|A| - |B| \) and

\[\| |A| - |B| | \| \leq \text{Const.} \| A - B \| . \]

Proof. When \(A, B \in I(S_{\phi}) \), by setting \(X = 1 \) in (2) we get

\[\| |A| - |B| | \| \leq \text{Const.} \{ \| |A| - |B| | \| + \| A^* - B^* | \| \} \]

\[= \text{2 Const.} \| |A| - |B| | \| . \]

To deal with the general case, we choose an increasing sequence \(\{ p_n \}_{n=1,2,...} \) of finite rank projections tending to 1 strongly. Since \(p_nA p_n, p_nB p_n \) are finite rank operators (\(\subseteq I(S_{\sigma}) \)), the above estimate implies

\[\| | p_nA p_n| - | p_nB p_n| | \| \leq \text{Const.} \| p_n(A - B)p_n | \| \]

\[\leq \text{Const.} \| |A - B| | \| (< + \infty \text{ by the assumption}) . \]

Since \(| p_nA p_n| - | p_nB p_n| \to |A| - |B| \) strongly, Lemma 3 guarantees \(|A| - |B| \in I(S_{\sigma}) \) as well as the desired inequality. Q.E.D.

This perturbation result fails for the trace class ideal \(C_1 \) and for \(C_\infty \). However, different perturbation results will be obtained in §4.

§3. The Converse of Theorem 6

Let \(I \) be either \(I(S_{\phi}) \) or \(I(S_{\sigma}) \).

Proposition 8. For a symmetrically normed ideal \(I, \| \cdot \| \) the following seven conditions are equivalent:
(i) There exists a constant K such that for each $n \in \mathbb{N}_+$, $n \times n$-matrix $C = [C_{ij}]$, and $\lambda_i, \mu_i \geq 0$ ($i = 1, 2, \ldots, n$) we have
$$||[(\lambda_i - \mu_i)C_{ij}]|| \leq K ||[(\lambda_i + \mu_i)C_{ij}]||.$$

(ii) $||A|X - X|A|| \leq \text{Const.} \cdot ||AX - XA||$ for $A = A^* \in I$, $X \in B(H)$.

(iii) $||A|X - X|B|| \leq \text{Const.} \cdot ||AX - XB||$ for $A = A^*, B = B^* \in I$, $X \in B(H)$.

(iv) $||A|X - X|B|| \leq \text{Const.} \cdot \{||AX - XB|| + ||A^*X - XB^*||\}$ for $A, B \in I$, $X \in B(H)$.

(v) $||A|X - X|A|| \leq \text{Const.} \cdot ||AX - XA||$ for $A \in I$, $X = X^* \in B(H)$.

(vi) $||A_1X - XA_2|| \leq \text{Const.} \cdot ||A_1X + XA_2||$ for $A_i \in I_+$, $X \in B(H)$.

(vii) $||A| - |B|| \leq \text{Const.} \cdot ||A - B||$ for $A, B \in I$.

Here the six constants in (ii) ~ (vii) do not depend on involved operators.

Proof. In §2 we actually showed the implications (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v), (ii) \Rightarrow (vi), and (iv) \Rightarrow (vii). Since (vi) \Rightarrow (i) is obvious, it suffices to prove (v) \Rightarrow (ii) and (vii) \Rightarrow (ii).

(v) \Rightarrow (ii). For $A = A^* \in I$ and $X \in B(H)$ we set
$$a = \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}, \quad x = \begin{bmatrix} 0 & X^* \\ X & 0 \end{bmatrix} (= x^*) .$$

Applying (v) to a, x, we get
$$\left\| \begin{bmatrix} 0 & |A|X - X|A| \\ |A^*X - X^*A| & 0 \end{bmatrix} \right\| \leq \text{Const.} \left\| \begin{bmatrix} 0 & AX - XA \\ AX^* - X^*A & 0 \end{bmatrix} \right\| .$$

Since $(|A|X^* - X^*|A|)^* = -(|A|X - X|A|)$ and $(AX^* - X^*A)^* = -(AX - XA)^* = -(AX - XA)$, as before we obtain (ii) by using Lemma 2.

(vii) \Rightarrow (ii). The "semi-group theory trick" in the proof of Theorem 1, [1], shows (ii) with the additional assumption $X = X^*$. Then by using the same trick as in (v) \Rightarrow (ii) we can drop the self-adjointness of X.

Q.E.D.

Theorem 9. Assume that for a separable symmetrically normed ideal $(I = I(S_0^0), ||\cdot||)$ one (hence all) of the seven equivalent estimates in Proposition 8 is satisfied. Then I is an interpolation space between C_{p_1} and C_{p_2}, $1 < p_1 < p_2 < +\infty$.

To prove the theorem, we prepare the following lemma:

Lemma 10. Under the same assumption as in the above theorem, there is a constant \tilde{K} such that for each $n \in \mathbb{N}_+$ and $n \times n$-matrix $C = [C_{ij}]$ we have
$$\left\| \begin{bmatrix} C_{11} & \cdots & C_{1n} \\ C_{22} & \ddots & \vdots \\ 0 & \cdots & C_{nn} \end{bmatrix} \right\| \leq \tilde{K} ||C|| .$$
Proof. For each \(k \in \mathbb{N}_+ \), we set
\[
D_k(= D_k(C)) = \left[\begin{array}{c}
\frac{k^i - k^j}{k^i + k^j} C_{ij}
\end{array} \right].
\]
Proposition 8, (i), implies \(\|D_k\| \leq K\|C\| \), where \(K \) does not depend upon \(k \) (and \(n \)). Letting \(k \to \infty \), we have
\[
\left\| \begin{array}{c}
0 & -C_{ij} \\
C_{ij} & 0
\end{array} \right\| \leq K\|C\|.
\]
Notice that
\[
\begin{bmatrix}
C_{11} & \cdots & C_{ij} \\
\vdots & \ddots & \vdots \\
0 & \cdots & C_{nn}
\end{bmatrix} = \frac{1}{2} \left\{ C \left[\begin{array}{c}
0 & -C_{ij} \\
C_{ij} & 0
\end{array} \right] + \left[\begin{array}{c}
C_{11} & 0 \\
0 & C_{nn}
\end{array} \right] \right\}.
\]
Since
\[
\left\| \begin{array}{c}
C_{11} & 0 \\
0 & C_{nn}
\end{array} \right\| \leq \|C\| \quad \text{(for any } \| \cdot \|)
\]
is known, \(\tilde{K} = 2^{-1}(1 + K + 1) \) does the job. Q.E.D.

Proof of Theorem 9. Let us identify \(H \) with \(l^2(\mathbb{N}_+) \). By using the canonical basis \(\{e_i\}_{i=1,2,\ldots} \), one can represent an operator as an (infinite) matrix. For an infinite matrix \(C = [C_{ij}] \), we set
\[
T(C) = \left[\begin{array}{c}
C_{11} & C_{ij} \\
C_{22} & \ddots \\
\vdots & \ddots & \ddots \\
0 & \cdots & \cdots & \ddots \\
1 & \cdots & \cdots & \cdots & 1 \\
0 & \cdots & \cdots & \cdots & 0
\end{array} \right].
\]
We also set
\[
p_n = \left[\begin{array}{c}
1 & \cdots & n \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1 \\
0 & \cdots & 0
\end{array} \right] \quad \text{(n-dimensional projection)}.
\]
For each \(C \in I = I(S_0^{(0)}) \), Lemma 4 guarantees that \(\{p_nCp_n\} \) is Cauchy in \(\| \cdot \| \). Since the constant \(\tilde{K} \) in Lemma 10 does not depend on \(n \), \(\{T(p_nCp_n)\} \) is also Cauchy in \(I \) and there is an element \(Y \) in \(I \) such that \(\lim_{n \to \infty} \|T(p_nCp_n) - Y\| = 0 \).
Take a vector \(\zeta \) in \(p_mH \) (\(m \in \mathbb{N}_+ \)). Since \(\| \cdot \| \leq \| \cdot \|_H \), we have
\[
\|T(p_nCp_n)\zeta - Y\zeta\|_H \leq \|T(p_nCp_n) - Y\|\|\zeta\|_H \to 0.
\]
as \(n \to \infty \). For \(n \geq m \), \(T(p_n C p_n)\xi \) obviously does not depend upon \(n \) so that we conclude

\[
T(p_n C p_n)\xi = Y\xi \quad \text{for} \quad n \geq m \quad (\xi \in p_m H).
\]

For each \(i, j \), by choosing \(n \geq i, j \) we get

\[
y_{ij} = (Ye_i, e_j) = (T(p_n C p_n)e_i, e_j)
= \begin{cases}
C_{ij} & \text{if } i \leq j, \\
0 & \text{otherwise}.
\end{cases}
\]

Therefore, we conclude \(Y = T(C) \) (and hence \(T(C) \in I \)) and \(\| T(C) \| = \lim_{n \to \infty} \| T(p_n C p_n) \| \). Since

\[
\| T(p_n C p_n) \| \leq \bar{K} \| p_n C p_n \|
\leq \bar{K} \| C \|
\]

we conclude that \(\| T(C) \| \leq \bar{K} \| C \| \), that is, \(T: I \to I \) is bounded. Thanks to Arazy's characterization (Corollaries 3.4, 4.12, [4]) the ideal \(I \) is an interpolation space between \(C_{p_1} \) and \(C_{p_2} \), \(1 < p_1 < p_2 < +\infty \). Q.E.D.

Many other characterizations for \(I(S_{\phi}^{(0)}) \) to be such an interpolation space are given in [4]. Also as remarked in p. 458, [4], these characterizations are valid for a (not necessarily separable) ideal \(I(S_{\phi}) \) by the simple duality argument.

We remark that Theorem 9 also remains valid for \(I = I(S_{\phi}) \) by the duality. In fact, let us assume that \(\| \cdot \|_{I(S_{\phi})} \) satisfies the inequality

\[
\left\| \begin{bmatrix} \lambda_i - \mu_j \\ \lambda_i + \mu_j \end{bmatrix} C_{ij} \right\|_{I(S_{\phi})} \leq K \| [C_{ij}] \|_{I(S_{\phi})}.
\]

Then the dual norm \(\Phi' \) (see §1) satisfies

\[
\left\| \begin{bmatrix} \lambda_i - \mu_j \\ \lambda_i + \mu_j \end{bmatrix} C_{ij} \right\|_{I(S_{\phi})} = \sup_D \left\| \text{Tr} \left(\begin{bmatrix} \lambda_i - \mu_j \\ \lambda_i + \mu_j \end{bmatrix} [D_{ij}] \right) \right\|
\]

where the sup is taken over all \(n \times n \)-matrices \(D \) with \(\|D\|_{I(S_{\phi})} \leq 1 \). It is elementary to see

\[
\text{Tr} \left(\begin{bmatrix} \lambda_i - \mu_j \\ \lambda_i + \mu_j \end{bmatrix} [D_{ij}] \right) = -\text{Tr} \left([C_{ij}] \begin{bmatrix} \mu_i - \lambda_j \\ \mu_i + \lambda_j \end{bmatrix} [D_{ij}] \right)
\]

Hence we get

\[
\left| \text{Tr} \left(\begin{bmatrix} \lambda_i - \mu_j \\ \lambda_i + \mu_j \end{bmatrix} C_{ij} \right) \right| \leq \| C \|_{I(S_{\phi})} \times \left\| \begin{bmatrix} \mu_i - \lambda_j \\ \mu_i + \lambda_j \end{bmatrix} D_{ij} \right\|_{I(S_{\phi})}
\leq \| C \|_{I(S_{\phi})} \times K \| D \|_{I(S_{\phi})} \quad \text{(by the assumption)},
\]
and
\[
\left\| \frac{\lambda_i - \mu_j}{\lambda_i + \mu_j} C_{ij} \right\|_{I(S^0)} \leq K \|C\|_{I(S^0)}.
\]

Proposition 8, (i), thus remains valid for the dual norm \(\|\cdot\|_{I(S^0)}\), and Theorem 9 shows that the separable \(I(S^0)\) is an interpolation space between \(C_{q_1}\) and \(C_{q_2}\), \(1 < q_2 < q_1 < +\infty\). But this means that \(I(S^0)^* = I(S_\phi)\) is an interpolation space between \(C_{p_1}\) and \(C_{p_2}\) with \(1 < p_1 < p_2 < +\infty\), \(p_1^{-1} + q_1^{-1} = 1\). Combining the above with other characterizations given in [4], we have proved the following main result in the article:

Theorem 11. Let \(I\) be either \(I(S^0)\) or \(I(S_\phi)\). The following conditions are equivalent:

(a) One of the seven estimates in Proposition 8 is valid (for example, \(\|A - B\| \leq \text{Const.} \|A - B\|\) for \(A, B \in I\)).

(b) \(I\) is an interpolation space between \(C_{p_1}\) and \(C_{p_2}\), \(1 < p_1 < p_2 < +\infty\).

(c) The triangle projection \(T\) is bounded relative to \(\|\cdot\|\).

(d) The Macaev theorem remains valid for \(I\), that is, whenever a Volterra operator \(A\) satisfies \(\text{Im} A \in I\), we must have \(\text{Re} A \in I\) and

\[
\|\text{Re} A\| \leq \text{Const.} \|\text{Im} A\|.
\]

(e) The Boyd indices (see [4] for details) of \(\Phi\) are non-trivial.

The last condition is very useful because one can check Lipschitz-continuity of the map \(A \to |A|\) by just looking at the norm \(\Phi\) on the sequence space \(f\). Define the discrete dilation operators \(D_m, D_{1/m}\) \((m = 1, 2, \ldots)\) on \(f\) by

\[
D_m(\xi) = \left(\xi_1, \ldots, \frac{\xi_1}{m}, \frac{\xi_2}{m}, \ldots, \frac{\xi_2}{m}, \ldots\right),
\]

\[
D_{1/m}(\xi) = \left(\frac{\xi_1}{m}, \ldots, \frac{\xi_1}{m}, \frac{\xi_2}{m}, \ldots, \frac{\xi_2}{m}, \ldots\right).
\]

Then compute the norms \(\|D_m\|\) and \(\|D_{1/m}\|\) (relative to \(\Phi(\cdot)\)). The Boyd indices \((p_\Phi, q_\Phi)\) are defined by

\[
p_\Phi = \sup_m \frac{\log m}{\log\|D_m\|} \quad \left(= \lim_{m \to \infty} \frac{\log m}{\log\|D_m\|}\right),
\]

\[
q_\Phi = \inf_m \frac{\log(1/m)}{\log\|D_{1/m}\|} \quad \left(= \lim_{m \to \infty} \frac{\log(1/m)}{\log\|D_{1/m}\|}\right).
\]

It is easy to see \(1 \leq p_\Phi \leq q_\Phi \leq +\infty\). (For \(\Phi_p\) corresponding to the Schatten ideal \(C_p\), we easily see \(p_{\Phi_p} = q_{\Phi_p} = p\).) Non-triviality in the last condition (e) means \(1 \nleq p_\Phi \nleq q_\Phi \nleq +\infty\).
Let C_{pq} $(1 \leq p \leq +\infty, 1 \leq q \leq +\infty)$ be the non-commutative analogue of the Lorentz space (see [4] or [19]) consisting of all compact operators such that
\[
\|A\|_{pq} = \left(\sum_{i=1}^{\infty} i^{(q/p)-1} s_i(A)^q \right)^{1/q}
\]
\[
(= \sup_i (i^{1/p} s_i(A)) \text{ if } q = +\infty)
\]
is finite. Note that $\|\cdot\|_{pq}$ is a norm only if $q \leq p$, but when $p > 1$ there is a norm on C_{pq} equivalent to $\|\cdot\|_{pq}$. It is well-known that C_{pq} $(1 < p < \infty, 1 \leq q \leq +\infty)$ is an interpolation space (the K-method can be used, [5]) between C_{p_1} and C_{p_2} $(1 < p_1 < p < p_2 < +\infty)$. Therefore, the map $A \to |A|$ is Lipschitz-continuous relative to $\|\cdot\|_{pq}$ $(1 < p < +\infty, 1 \leq q \leq +\infty)$.

The above characterization roughly says that the map $A \to |A|$ is Lipschitz-continuous when the “geometry” of a symmetrically normed ideal in question is “good”. However, the example presented after Corollary 4.6, [4], shows: there exists a non-uniformly convex symmetrically normed ideal in which the map $A \to |A|$ is Lipschitz-continuous.

§ 4. Estimates in the Operator and Trace Class Norms

As was mentioned in §0, the map $A \to |A|$ is not Lipschitz-continuous for $\|\cdot\|$ and $\|\cdot\|_1$. Instead the following estimates are known ([13], [16]):
\[
\begin{align*}
\| |A| - |B| \| & \leq \frac{2}{\pi} \| A - B \| \left(2 + \log \frac{\|A\| + \|B\|}{\|A - B\|} \right); \quad A, B \in B(H), \\
\| |A| - |B| \|_1 & \leq \sqrt{2} \| A + B \|^{1/2} \| A - B \|^{1/2}; \quad A, B \in C_1.
\end{align*}
\]
In this section we obtain different (and probably more natural) estimates for $|A| - |B|$ by making use of the ideals introduced by V. I. Macaev.

For a sequence $\xi = \{\xi_i\}_{i=1,2,...}$, let $\{\xi^*_i\}_{i=1,2,...}$ be the non-increasing rearrangement of $\{|\xi_1|, |\xi_2|, \ldots\}$. We introduce the (dual) symmetric norms Φ_Ω, Φ_ω (on f) defined by
\[
\Phi_\Omega(\xi) = \sup_n \left(\sum_{i=1}^{n} \frac{\xi_i}{(2i - 1)^{-1}} \right),
\]
\[
\Phi_\omega(\xi) = \sum_{i=1}^{\infty} (2i - 1)^{-1} \xi^*_i.
\]
The corresponding symmetrically normed ideals $I(S_{\Phi_\omega}) (= I(S_{\Phi_\omega}^0))$ and $I(S_{\Phi_\omega}) \supset I(S_{\Phi_\omega})^0 = \{ A \in C_\infty : \lim_{n \to \infty} \left(\sum_{i=1}^{n} s_i(A) / \sum_{i=1}^{n} (2i - 1)^{-1} \right) = 0 \}$ satisfy
\[
\begin{align*}
I(S_{\Phi_\omega}^0)^* & = I(S_{\Phi_\omega}), \\
I(S_{\Phi_\omega})^* & = I(S_{\Phi_\omega}).
\end{align*}
\]
These ideals were introduced by V. I. Macaev and play important roles in analysis of compact operators (see [11], [12] for details and typical applications). Notice that $I(S_{\phi_0})$ (resp. $I(S_{\phi_a})$) is "slightly" larger (resp. smaller) than C_1 (resp. C_α):

$$\begin{align*}
I(S_{\phi_0}) &\subseteq C_p, & p > 1, \\
C_p &\subseteq I(S_{\phi_\alpha}), & p < +\infty.
\end{align*}$$

In what follows, the norms of $I(S_{\phi_0})$ and $I(S_{\phi_a})$ will be denoted by $\| \cdot \|_\Omega$ and $\| \cdot \|_{\infty}$ respectively. Recall that the proof of (1) (in §2) was based on Theorem 6.3 in Chap. III, [12]. If one starts from Theorem 2.2 in Chap. III, [12], instead, one obtains

$$\|P_{n+4}(A)\|_\Omega \leq \|A\|_1.$$

Therefore, by repeating the arguments in p. 150, [9], we get

(4)

$$\left\| \frac{\lambda_i - \mu_j}{\lambda_i + \mu_j} C_{ij} \right\|_{\Omega} \leq \text{Const.} \|C\|_1.$$

(Here the obvious fact $\| \cdot \|_\Omega \leq \| \cdot \|_1$ is used.) Hence, the same arguments as in §2 show (among other commutator estimates) the next perturbation result.

Theorem 12. If $A, B \in B(H)$ satisfy $A - B \in C_1$ then $|A| - |B|$ belongs to the ideal $I(S_{\phi_0})$ and

$$\|A| - |B|\|_{\Omega} \leq \text{Const.} \|A - B\|_1.$$

By the obvious modification of the proof of (3), from (4) we get

$$\left\| \frac{\lambda_i - \mu_j}{\lambda_i + \mu_j} C_{ij} \right\|_{\infty} \leq \text{Const.} \|C\|_{\infty}.$$

We then would like to show a dual version of the previous theorem. However, notice that Lemma 3 is not valid for C_∞ the compact operators. Starting from the assumption $A = A^* \in I(S_{\phi_0}), X \in B(H)$, we get

$$\|p_n[|A|, X]p_n\| \leq \text{Const.} \|[A, X]\|_{\infty}$$

as in the proof of Theorem 6. Since $Y \in B(H) \rightarrow \|Y\| = \sup \{\|Y\|_H : \xi \in H, \|\xi\|_H \leq 1\}$ is lower semi-continuous relative to the strong operator topology, (without using Lemma 3) we conclude

$$\|[|A|, X]\| \leq \liminf_{n \rightarrow \infty} \|p_n[|A|, X]p_n\|$$

$$\leq \text{Const.} \|[A, X]\|_{\infty}.$$

Hence, (2) in the proof of Theorem 6 is still valid and we get

$$\| |A| - |B| \| \leq \text{Const.} \|A - B\|_{\infty}; \quad A, B \in I(S_{\phi_0}).$$
Theorem 13. If $A, B \in B(H)$ satisfy $A - B \in I(S_{\omega})$, then $|A| - |B|$ is a compact operator and

$$\| |A| - |B| \| \leq \text{Const.} \| A - B \|_{\omega}.$$

Proof. The arguments in the second half of the proof of Corollary 7 (but Lemma 3 is replaced by the above-mentioned lower semi-continuity of $Y \to \| Y \|$) show the desired inequality. The compactness of $|A| - |B|$ follows from the following standard argument: Let $B(H)/C_\omega$ be the Calkin algebra and $\pi: B(H) \to B(H)/C_\omega$ be the natural projection. We have $\pi(A) = \pi(B)$ because $A - B$ is compact. Since π is a C^*-algebra homomorphism, we conclude $\pi(|A|) = |\pi(A)| = |\pi(B)| = \pi(|B|)$, i.e., $|A| - |B| \in C_\omega$. (Q.E.D.)

When A is an $n \times n$-matrix, $s_i(A) = 0$ for $i \geq n + 1$. Consequently we get

$$\left\{ \sum_{i=1}^{n} s_i(A) \right\} / \sum_{i=1}^{n} (2i - 1)^{-1} \left(= \| A \|_1 / \sum_{i=1}^{n} (2i - 1)^{-1} \right) \leq \| A \|_2,$$

$$\| A \|_\omega = \sum_{i=1}^{n} (2i - 1)^{-1} s_i(A) \leq \| A \| \sum_{i=1}^{n} (2i - 1)^{-1}.$$

For the second estimate the obvious fact $s_1(A) = \| A \| \geq s_2(A) \geq s_3(A) \geq \cdots$ was used. We thus get the next result for (finite) matrices.

Corollary 14. (Theorem 14, [9]) There exists a constant K such that for any $n \times n$-matrices A, B ($n \geq 2$) we have

$$\left\{ \| |A| - |B| \| \leq (\log n) K \| A - B \| \right.$$

$$\left\{ \| |A| - |B| \|_1 \leq (\log n) K \| A - B \|_1 \right.$$.

References

The Map $A \to |A|$

