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On the Bifurcation Set of a Polynomial
Function and Newton Boundary

By

Andras NfiMETHi* and Alexandria ZAHARIA*

§ 1. Introduction

Let /: Cn-*C be a polynomial function. It is well known that there exists
a finite set TgC, such that /: Cn\f-1(F^C\r is a locally trivial fibration
(see [1], [5], [13], [15], [16]). The smallest such set F we call the bifurcation
set, denoted by Bf (in [1], [2] it is called the set of atypical values). Since
the map / is not proper, the set Bf contains besides the set J^/ of all critical
values of / perhaps some other points (the "critical values at infinity" or
"critical values of second type" [12]). There are some special cases when the
polynomial has no critical values at infinity (hence Bf=If):Pham [13] and
Fedoryuk [4] have imposed lowerbound conditions for ||grad/(x)|| f°r large
values of \\x\\, Kouchnirenko has proved in [6] for convenient polynomials with
nondegenerate Newton principal part at infinity, Broughton [1], [2] for "tame"
polynomials and the first author [8], [9] for the larger class of "quasitame"
polynomials.

In this note we give an explicit set Sf, such that Bf^Sf\JSf. More

precisely, let gradf(z)=(-^—(z), ••• , -^—(z)\ We denote by *5K(/) the Milnor
\ OZi uZn '

set of the polynomial /, namely

M(f}—{z^Cn\ there exists X^C such that grad/(z)=-te}.

We define the set Sf by:

; there exists a sequence { z k } k ^ M ( f ) such that >
*|| = oo and lim/(z*)=c J

k-*oo k-*°°

In the second section we prove:

Theorem 1. Let f: Cn-*C be a polynomial map. Then Bf^If\JSf.
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In the third section we consider the Newton nondegenerate case. In this
situation, the set Sf can be determined very easy and explicitly. Namely, let
/= S avz

v be a polynomial of n variables (where v=(vi, ••• , vn) and zv—z\l .....

z^ as usual) with /(0)=0. As in [6], [11] we denote supp(f)={v^Nn ; av

supp(/)=the convex closure in Rn of supp(/), /*_(/)=the convex closure of
|0}Usupp(/), r(/)=the union of the closed faces of the polyhedron T_(/)
which do not contain the origin. If A ^ f ( f ) is a closed face, we note

and we say that / is nondegenerate on A if the system of

equations -~—(z}= ••• =-^—(z)=Q has no solutions in (C*)n. We say that / is
vZi dzn

Newton nondegenerate if for every compact face A of T(/), / is nondegenerate
on A. By definition, / is convenient if the intersection of supp(/) with each
coordinate axis is non-empty.

A closed face d<^supp(f) is called bad if:
(i) the affine subvariety of dimension=dim A spaned by A contains the

origin, and
(ii) there exists a hyperplane H^Rn with equation a^i+ ••• + 0^*71=0

(where x1} ••• , xn are the coordinates in Rn) such that

a) there exist i and / with at<Q and G^->0

b)

We can express more geometrically the condition (iia) by saying that the
hyperplane H intersects the interior of the positive octant (R+)n.

Let $ denote the set of bad faces of supp(/). If A<^$ we define:

<£j={/X*0);*°e(C*)» and

It is clear that J?j<=J?/j, hence J?j is a yzTziYe set.
We have the following:

Theorem 2. Suppose that f is not convenient, Newton nondegenerate and
/(0)=0. T/zen 5/gI'/U{0}U U Jj.

In the convenient case, Bf=2f (see [6], [2]).
In the last section of this note there are some remarks. Also, for n=2, we

compare our Theorem 2 with the result of Ha and Le, which gives Bf in terms
of the Euler-characteristic of the fibers f~l(c} (see [5]). In particular, for n=2,
our formula is the best possible (see Proposition 6).

§2. Proof of Theorem 1

We need the following lemma, which is a direct consequence of the defini-
tions :
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Lemma 3. Let D^C\Sf be a closed disc. Then f~l(D)r^<3tt(f) is bounded.

For a, b^Cn we note <a, by= S a,£r For #e(0, oo) we put S^

\\z\\=R} and fl*={
Now for the proof of the theorem we fix c<=C\(Zf\JSf) and D a small

open disc centered at c, with the closure D^C\(2fUSf). Let J?e(0, oo) be
sufficiently large such that f-\D}r\<3tt(f)r\{z<E.Cn ; ||2r||^fl}=0 (this is possible
by Lemma 3) and such that SR meets transversally f~l(c') for all c'^D (also
possible if D is small enough). It follows that grad/(z) and z are C-linearly
independent vectors for all z^A, where A—f-\D)r\{z^.Cn ; ||z||^#}, and there-
fore we can find a smooth vector field ^(z) on A such that <^(z), z>=0 and

Let £>0 be such that for every /?'e[/?, /?+e] and for every d^D, we
have /~1(^)iTl5fl ' . Since Dr\2/=(f>, the fibration theorem of Ehresmann gives
that the restriction / : (f-\D)r\BR^9 f-\D)r\SR+^D is a locally trivial fibration
with the fiber F—f~l(c)C\BR+£, a smooth manifold with boundary 8F=f~1(c)r\SR+£.
Hence there exists a diffeomorphism <p\ (FxD, dFxD)-^(f-l(D}C^BR+E, f"\D)r\
5/2+s) such that f°<f> is the projection onto D. Thus the vector field w: FxD
-*T(FXD)^TFXTD, w(z, d)=((z, 0), (d, 1)) will give a vector field z;2 on
f~l(D)C\BR+s such that <^2(^), grad/(z)>=l for every z. Glueing together v±
and vz, we obtain a vector field v on f~l(D] such that <v, grad/>=l and such
that for every z with ||z||^#+e, we have <f(^), z>=0. Now using the solutions

of the differential equation ——=v(z) we obtain that the restriction /: f~\D)
at

->D is a trivial fibration.

§3. Proof of Theorem 2

We need a version of Curve Selection Lemma from Milnor's book [7].
This seems to be well known. For a proof, we refer the reader to [10].

Lemma 4. (Curve Selection Lemma) Let f1} ••• , fq, g1} ••• , gs, hi, ••• , hr

ejR[^Yi, ••• , Xm~] be polynomial functions with real coefficients. Let U={x^Rm;
/t(*)=0, /=!, ••• , q} and W={x^Rm; gi(x)>Q, i=l, ••• , s}. Suppose that there
exists a sequence (xk}^Ur\W such that lim ||zfe|| = oo and for all /e{l, ••• , r},

*-*oo

limhj(xk)=Q. Then there exists a real analytic curve p : (0, e)— >Ur\W with

\im\\p(t)\\ = °o, \\mh3(p(t}}=$for l^j^r and of the form p(t)=ata + alt
a+l+ -

£-»0 t-^0 J

with a^Rm\{Q} and

Using Theorem 1 and Curve Selection Lemma, it is sufficient to prove the
following :
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// / is a Newton nondegenerate polynomial with /(0)=0 and if p(t}^M(f) is
an analytic curve such that

(1) lim ||0(0|| = oo and
i-»0 £-»0

then lim/(0(0)^^/VJ{0}W U Jfj.

To prove this we consider the expansions

(2)

and the identity

The condition p(t}^<M(f) means that there exists an analytic curve
such that for every t, we have

(4) grad /(/>(*))= *(0/>(0-

If grad/(£(0)=0, the identity (3) shows that f(p(t}) is constant with respect
to t, namely f ( p ( t } } ^ I f .

So we can suppose that grad/(/>(0)^0. Similarly, /(/>(0)^0, since other-

wise by derivation X(t)-(--j—, pj—$ which is in contradiction with grad/(£(0)
j , . \ ^*f /

^0 and /-^-, 0Wo. From (4) we get also ^(0*0. Let l(i)=ld*+lj*+l+ ••-

be the expansion of ^(0, where ^0^0. From (1) we can assume that a^O, a<0,
b^Q, /3^0 and c^O. Using (4), the scalar product <a, c>^0, hence from the
expansions (2) and the formula (3) we get that 7+a— 1^0 and thus 7>0.

Renumbering the] coordinates, if necessary, we may assume that p(t)=
(Pi(t\ - , 0»(0)=(u#yi+M#l'1+1+ - , - , u#"*+u#"*+l+ - , 0, ... , 0), where
w^Q, ..- , w°k^0 and a=Vi^va^ ••• ̂ k- Identifying Rk with
xk+1= ••- --=xn=Q} we have supp(/)n^fe^^ since

Consider the continuous function lv(x)= S v^ on 12ra. Let J be the unique

face of supp(/)n#* where the restriction /„ : supp(/)r\^2*->/2 takes the minimal
value, say d, and let me(— oo, 0) be such that

Then f(p(t))=fj(w$tdjr • • • , and for /=!, • • • , k,
where wQ^(wl ••• , w\, 1, • • • , 1).
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If d>0, we have lim/(/>(0)=0.
J-»0

If d=Q and y*^0, then /(z1? ••• , zk, 0, ••• , 0) does not depend on zlf hence

)=0, In contradiction with (4) and

If J=0 and v/e>0, then for the hyperplane H^Rn with equation Vi^'iH- •••
-m(xk+1-\- ••• - f ^ n ) — 0 and the face A, the condition (ii) is fulfilled. Thus

if (i) is not fulfilled, then A is not a bad face of supp(/) and it follows that
A is a closed face of f(f). By the nondegeneracy condition on A, there exists

Je{l, ••• , k] such that - ( > 0 ) ^ 0 . (We recall that f A(z) does not depend on
oz i

the variables zk+l, ••• , zn.)
But this is in contradiction with the following lemma :

Lemma 5. Lei d, A, WQ be defined as above. Suppose that d<0 and

d-fA(wQ)=Q. Then there exists no /<E{1, ••• , k] such that -^>0)^0.
VZi

Proof of Lemma 5. Suppose that there exists /^{l, ••• , k} such that

-^£(^0)^0. By condition (4) and r>0 we get that d-\-vr— d— ̂ ^>0, hence pz<0.
OZi

Let /={/; i>j=vi}. Again by (4) we have for /e{l, • • - , & } :

g/- , __
and -^>°)=;^$;

hence

Thus, from the Euler relation for the weakly quasihomogeneous polynomial /j,
k dfj

S VjZj-fi—(z) = d-f'A(Z}, we obtain for z=w° the absurd equality VI-AQ S w]\2—0.

This ends the proof of Lemma 5.

It follows that (i) is also fulfilled and Ar^$. By the above lemma,

——(w°)=Q for all fe{l, ••• . k\ and thus we have
£-»0

It remains to consider the case d<Q. With this assumption it follows that
A is a closed face of F(/)« Since /S^O we get /j(^°)=0, hence the nondegen-
eracy condition on A is in contradiction with the above lemma.

§4. Some Remarks

1. S. A. Broughton described in [1] and [2] the class £T of tame polynomials
and proved that for a tame polynomial /, we have Bf=Sf.

In [8] and [9], the first author considered the class Q2 of quasitame poly-
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nomials and also proved that Bf=Sf for any quasitame polynomial /. If we
denote by M% the class of J^-tame polynomials, namely the polynomials /
with S/=0, then £T^C£r^c^ET, the first inclusion being strict. We don't
know if the second inclusion is an equality or not. For other interesting pro-
perties of these classes of polynomials see also [10].

2. Also in [8] and [9], the first author proved that Bf^Aff where

ceC; there exists a sequence {zk}k^Cn such that limgrad/(z*)=0

and

It is not hard to prove that If\JSf^Af, but in general we have no equality,
hence the set If\JSf is a better approximation for Bf. Such an example is
the polynomial f = x5y3jrx5zz-\-xlly*zz-\-x which is Newton nondegenerate (hence
-T/US/ is a finite set) but Af=C. This follows by using an analytic curve

(x(0, :v(0,*(0)e=C8 with x(t)=t,lz(ty]*=~t-*+X-*+pr4+~' and [y(0]'=
5 SU 9(4-90^-89U2)

— 2* rt + ^ t +-.

3. Our conjecture is that for a Newton nondegenerate polynomial / with
/(0)=0 we have U S^Bf ; for the general case of polynomials, we hope that

A&®

S f ^ B f . But without a good description of the (all !) fibers f~l(c] it seems that
there exists no simple way to prove this.

However, for n— 2 we have the following:

Proposition 6. Let /eC[>, y~\ be a not convenient and Newton nondegen-
erate polynomial, not depending only of one variable, and such that /(0)=0. Then

Bf=Sf\J{Q}V U I A

Proof. We prove this proposition in three steps.

Step 1. 2f^Bf. The proof is clear.

Step 2. // /eC[^, y~] is a not convenient polynomial with /(O)— 0, not
depending only of one variable, then Oe5/.

Proof. Since / is not convenient, / has the form f ( x , y)=xg(x, y) (or
f ( x } y}—yg(x, y}, which case can be analysed similarly).

If g(0, 0)=0, then Oe J/gB/.
If g(0, 0)^0, then g(x, y)=a*+aly+ ••• +amym+x(/>(x, y) with a0^0.
Suppose that there exists G^O, z"e{l, ••• , m} ; by an easy computation we

obtain that OCE^/, hence Q<=Bf.
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Suppose that at=Q for all i=l, •- , m; hence f ( x , y)--=x(at+x<j)(x, y}} and
<])(x, y) does depend on the variable y. The fiber f~\0) contains a connected
component diffeomorphic to C. But the generic fiber f~l(X), ^0, doesn't contain
any contractible component. To see this, suppose that T is a contractible
component of f~\X), ^=£0; consider the projection it of T to the jc-axis. Then
the image n(T) is equal to C*\ {finite number of points} ; hence T is a contracti-
ble (branched) covering of 7r(T) with finite fibers and 7Ti(im7r)^0 and is free,
contradiction. Consequently /-1(0) and the generic fiber are not diffeomorphic,
hence OeB/.

Step 3. Let f^C[_x, y~] be a not convenient and Newton nondegenerate poly-
nomial, not depending only of one variable, and such that /(0)=0. //
c^ \J S^\(Sf\J{Q}\ then

Proof. Indeed, in this case the Euler-characteristic of the special fiber
f~\c) and of the generic fiber f~\csen) differ. The Euler-characteristic of a
fiber f~\l) can be computed by the following formula:

where f~\Z) is the projective closure of f~l(X), H^ is the hyperplane at infinity
and 1XU) is the sum of the Milnor numbers of the singularities of f~\X) at
infinity (see [5]).

We show that 2fJti(c)>2fjti(ceen). This follows from the followings two
lemmas: the first one describes the singularities at infinity and the second one
is applied for these singularities.

Lemma 7. Let f be as above and let d be the degree of f and F(x, y, z) the
homogeneousated polynomial of f. Then only (1:0: 0) and (0:1:0) can be singula-
rities of /'*(%) at infinity. If (1:0:0) is a singularity of f~l(X) at infinity, then
his equation is g(y, z)=F(l, y, z)—lzd—0 and the Newton polygon of this sin-
gularity can be obtained from the Newton diagram of f in the following way:
let P, R, 0 be the points in the diagram of f with coordinates (d, 0), (0, d} and
respectively (0, 0). Then the origin in the diagram of g is P, the positive semiaxes
are PR and PO, corresponding to the y-axis and respectively to the z-axis, and
supp(g) corresponds to /*_(/)• The nondegeneracy of f on the faces of f - ( f }
means the nondegeneracy of g on the corresponding faces of supp(g). // A is a
bad face of supp(/) giving rise to the face 2 of the Newton polygon of the
singularity in 0 of g, then the values Ae2'j\{0} are exactely the values of 1 such
that the conditions of nondegeneracy on 3 are not fulfilled.

Lemma 8. Let h^C\_x, y~] be a convenient polynomial with grad/z(0)—0
and let F be the Newton polygon of h in origin (see [6], [11] for the definition).
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Suppose that h is nondegenerate on all the faces of F, excepting the l-dimensional
face A of F which has an endpoint on the axis Ox, where the nondegeneracy con-
dition is not fulfilled. Then the Milnor number fjt(h, 0) of h in 0 is strictly
greater than the Newton number v(F). (See [6], [11] for the definition of v(F).)

We omit the proof of Lemma 7, since it is a straightforward verification.
For the proof of Lemma 8, let (a, 0) and (b, c) be the coordinates of the terminal
points of A. We consider the covering <p: (C2, 0)-»(C2, 0), <p(x, y } — ( x c , y) and
the singularity h'(x, y)=h(<p(x, y)) with Newton polygon F'; the relations (15)
and (12) from [3] between p(h'', 0) and p(h, 0), respectively p(F) and v(F')

Q ^enable us to suppose that c divides a—b. Let m— . We have /j=

axb(y-{-^xm) 0>+j8c*
m) with a , f i l y • • • , /3ceC*. The degeneracy condition

on A means that there exist i, j^{l, ••• , c}, ii^j, such that ftt—ftj. Hence we
can consider that f A=axc(y+$&*)*•&+pr+ixm) (y+pcx

m) for some r^2.
We change the variables: x=x, y=y+f}ixm. Then all the faces of F, except-
ing A, will be faces of the new Newton polygon F" and F"^F, F"^F.
Now it is easy to see that v(F"}>v(r} and we finish the proof of Lemma 8
using Kouchnirenko's results [6].

Note that the analogue of Lemma 8 for polynomials with n^3 variables in
general is not true (see Remarque 1.21 from [6]).

4. Our Proposition 6 (and the inequality from Step 3) can be compared
with a result of Ha and Le (which says that, for n=2, a bifurcation point 1 is
either critical point or %(/~1(/i))^X(/"1(Cgen))J and a result of M. Suzuki (which
says that ^(/-ia))^«/-1(cgej), see [14], Theoreme 1).
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