Lifting Problem of η and Mahowald's Element η_j

* Dedicated to Professor Shôrô Araki on his 60-th birthday

By

Kaoru MORISUGI*

§1. Introduction and Statements of Results

In this paper we consider the following lifting problem: for which n and k is there a lift $\tilde{\eta}$ making the following diagram (1) or (2) commute up to stable homotopy?

\[\begin{array}{ccc}
\tilde{\eta} & \quad & Q_n^{n-k+1} \\
\downarrow & \quad & p \\
S^{4n} & \xrightarrow{\eta} & S^{4n-1} \\
\end{array} \] \hspace{1cm} \begin{array}{ccc}
\tilde{\eta} & \quad & HP_n^{n-k+1} \\
\downarrow & \quad & p \\
S^{4n+1} & \xrightarrow{\eta} & S^{4n} \\
\end{array} \\

Here and throughout this paper we use the following notations;

Notation

HP^n: the quaternionic n-dimensional projective space.

Q^n: the quaternionic quasi-projective space of dimension $4n-1$.

$HP_{n-k+1}^n = HP^n / HP^{n-k}$.

$Q_{n-k+1}^n = Q^n / Q^{n-k}$.

p is the canonical collapsing map.

η is the non-trivial element of $\pi_1^S(S^0)$.

These problems are natural 'next' questions after the stable James number problem (For example, see [3]). Since Q^n is a stable retract of $Sp(n)$ [5] and since HP^n is a stable retract of $\Omega(U(2n + 2)/Sp(n + 1))$ [2], these problems are closely related to the unstable lifting problem of η in the canonical Stiefel
bundles: the problem with respect to Diagram (1) is related to the lifting problem of η to the quaternionic Stiefel bundle $X_{n,k} \to S^{4n-1}$, and the problem with respect to Diagram (2) is related to the relative complex-Quaternionic Stiefel fibration $[5] I_{n+1,k} \to \Omega S^{4n+1}$, where $I_{n,k}$ is the homotopy fiber of the inclusion $X_{n,k} \to W_{2n,2k}$. For the lifting problem of η to the real Stiefel bundle $V_{n,k} \to S^n$, the complete answer is known by M.C.Crabb and W.A.Sutherland[4] and the complex case is easy.

Theorem A. If $n = 2^i$, then for any $k \leq n$ there exists a lift $\tilde{\eta}$ so that the diagram (1) commutes up to stable homotopy.

Theorem B. There exists a lift $\tilde{\eta}$ in diagram (2) if and only if one of the following conditions is satisfied;

1. $k = 1$ or 2,
2. $k = 3$ or 4, and $n \equiv 2 \mod 4$.

Theorem C. Let $i \geq 1$. Let $n = 2^i a$ for some odd integer $a > 1$. If there is a lift $\tilde{\eta}: S^{4n} \to Q_{n-2^i+1}^n$, then the composite

$$S^{4n} \overset{\tilde{\eta}}{\longrightarrow} Q_{n-2^i+1}^n \overset{\partial}{\longrightarrow} S^{4(n-2^i)}$$

is non-trivial, where the map ∂ is the usual one in the following usual cofiber sequence;

$$S^{4(n-2^i)-1} \overset{i}{\longrightarrow} Q_{n-2^i}^n \overset{p}{\longrightarrow} Q_{n-2^i+1}^n \overset{\partial}{\longrightarrow} S^{4(n-2^i)}.$$

Therefore there is no lift for $k = 2^i + 1$ when $n = 2^i a$ (a is odd).

In fact the above composite is detected by the secondary operation associated to the following relation;

$$Sq^{2^i+1}Sq^1 + Sq^2Sq^{2^i+2} + Sq^4Sq^{2^i+2} + Sq^{2^{i+2}}Sq^2 = 0.$$

Therefore we have a family of the stable homotopy groups closely related to what Mahowald constructed in [8]. If we choose a specific lift, we get precisely Mahowald's element $\eta_{5,i+2}$ constructed in [9]. This fact follows from the construction and the result due to Mann-Miller[10] or Mann-Miller-Miller[11]. From Theorems A and C we get the following corollaries.

Corollary D. There exists a stable lift $\tilde{\eta}: S^{4n} \to Q^n$ if and only if $n = 2^t$ for some t.

Remark. There is no unstable lift of η to the usual bundle projection $Sp(n) \to S^{4n-1}$, because $\pi_{4n}(Sp(n)) \cong \pi_{4n}(Sp)$ is $Z/2$ or 0 according as n is odd or even and because the generator of $\pi_{8m+4}(Sp)$ comes from $Sp(1)$.

Corollary E. Let \(i \geq 1 \). The Mahowald’s elements \(\eta_{5,i+2} \) as above referred are in the image of the \(S^3 \)-transfer homomorphism \(t: \pi_\ast(Q^\infty) \to \pi_\ast(S^0) \).

The following theorem is a partial result about the lifting problem in Diagram (1) in case that \(k \) is small.

Theorem F. Let \(k \leq 6 \). Then in Diagram (1) there exists a stable lift \(\tilde{\eta} \) for \(k \), if and only if one of the following conditions is satisfied.

1. \(k = 1 \) or \(2 \),
2. \(k = 3 \) or \(4 \) and \(n \equiv 0 \mod 4 \),
3. \(k = 5 \) or \(6 \) and \(n \equiv 0 \mod 8 \).

§2. Proof of Theorem A

Throughout this paper, homology and cohomology are assumed to be with \(\mathbb{Z}/2 \)-coefficients.

For the proof of Theorem A we need the following lemmas;

Lemma 2.1.

(i) \(H_\ast(Q^2 S^5) = \mathbb{Z}/2[x_1, x_2, x_3, \ldots] \),
\(x_i = Q_1 Q_1 Q_1 \cdots Q_1(x_1) \) and the dimension of \(x_i = 2i + 1 - 1 \).

(ii) (S. Kochman[7]) In \(H_\ast(Sp) = \Lambda_{\mathbb{Z}/2}(\gamma_1, \gamma_2, \gamma_3, \ldots) \), \(Q_1(\gamma_n) = \gamma_{2n} \)
where \(Q_1 \) is the Dyer-Lashof (subscripted) homology operation.

Let \(x: S^3 \to Sp \) be the representative of a generator of \(\pi_3(Sp) \cong \mathbb{Z} \). Since \(Sp \) is an infinite loop space, we have a canonical extension \(\tilde{x}: \Omega^2 S^3 \to Sp \) of the map \(x \). Let \(\theta: Sp \to \Omega^\infty \Sigma^\infty Q^\infty \) be the James splitting[5]. Taking the adjoint of the composite \(\theta \circ \tilde{x} \), we have a stable map, say, \(g: \Omega^2 S^3 \to Q^\infty \).

Lemma 2.2. Let \(g_\ast: H_\ast(Q^2 S^5) \to H_\ast(Q^\infty) \) be the homology induced homomorphism of \(g \). Then,
\[g_\ast(x_i) = \gamma_{2i - 1} \]
where \(\gamma_i \in H_{4i-1}(Q^\infty) \) is the standard generator.

Proof. Let \(\sigma: H_\ast(\Omega^\infty \Sigma^\infty Q^\infty) \to H_\ast(Q^\infty) \) be the homology suspension. Then \(\sigma \theta_\ast(\tilde{x}) = \gamma_i \) and \(\sigma \theta_\ast(\text{decomposables}) = 0[5] \). Now consider the following commutative diagram;

\[
\begin{array}{ccc}
H_\ast(Q^2 S^5) & \xrightarrow{\tilde{x}_\ast} & H_\ast(Sp) & \xrightarrow{\theta_\ast} & H_\ast(\Omega^\infty \Sigma^\infty Q^\infty) \\
\downarrow{g_\ast} & & & & \downarrow{\sigma} \\
& & & & H_\ast(Q^\infty).
\end{array}
\]
So it is enough to show that $\tilde{\alpha}_*(x_i) = \gamma_{2^i-1}$. When $i = 1$ it is obviously true. Since $\tilde{\alpha}$ is a double loop map, $\tilde{\alpha}_*$ commutes with Q_i-operations. Therefore the cases $i \geq 2$ follow from Lemma 2.1.

Recall, by Snaith decomposition [16], that the suspension spectrum of $\Omega^2 S^5$ is a wedge of spectra, say, D_k for $k \geq 1$. Homologically, $H_*(D_k)$ corresponds to the submodule of height k in $H_*(\Omega^2 S^5)$. Here the height h is defined as $h(x_i) = 2^i-1$. Thus D_2 is stably $3\cdot 2^i - 1$ connected and of dimension $2^{i+2} - 1$ complex: the bottom cell corresponds to $x_1^2 \in H_3 \Omega^2 S^5 \cong \mathbb{Z}/2$ and the top to $x_{i+1} \in H_{2^{i+2} - 1} \Omega^2 S^5 \cong \mathbb{Z}/2$. According to Mahowald [8], Brown and Peterson [1], D_k is homotopy equivalent to the Brown-Gitler spectrum $\Sigma^{3k} B \left[\begin{array}{c} k \\ 2 \end{array} \right]$. Mahowald [8] proved that there is a stable map $g_i: S^{2i+2} \to D_2$, such that the composite:

$$S^{2i+2} \to D_2, \quad D_2(2^{i+2} - 2) = S^{2i+2} - 1$$

is η. Thus by Lemma 2.2 the stable map $g \circ g_i$ gives the desired lift of η. This completes the proof of Theorem A.

§ 3. Proof of Theorem C

Let $y_i \in H^{4i-1}(Q^\infty)$ be the dual basis of $\gamma_i \in H_{4i-1}(Q^\infty)$. The following lemma easily follows by using the cofiber sequence;

$$CP^\infty \longrightarrow HP^\infty \longrightarrow Q^\infty \longrightarrow \Sigma CP^\infty.$$

Lemma 3.1. $Sq^{4i}(y_i) = \left(\begin{array}{c} 2i-1 \\ 2j \end{array} \right) y_{i+j}$ where Sq^k is the Steenrod operation.

Now the proof of Theorem C follows by standard arguments. However, for my own safety I give the details. Let $n = 2^i a$ for some odd integer $a > 1$. If there is a lift $\tilde{\eta}: S^{4n} \to Q^n_{-2^i+1}$, then we denote the composite

$$S^{4n} \xrightarrow{\tilde{\eta}} Q^n_{-2^i+1} \xrightarrow{\delta} S^{4(n-2^i)}$$

by $h_i \in \pi^2_{2^i-1}(S^0)$. For convenience we denote the normalized spectrum of the mapping cone of h_i, say e_{hi}, by $X_i \cong S^0 \cup_{hi} e^{4-2^i+1}$. Let $u \in H^0(X_i)$ be the bottom generator. All we have to do is to calculate the secondary composition associated to the following sequence;

$$X_i \xrightarrow{u} K(0) \xrightarrow{f} K(1) \times K(2^{i+2}) \times K(2^{i+2} - 2) \times K(2) \xrightarrow{g} K(2^{i+2} + 2),$$

where $f = Sq^1 \times Sq^{2i+2} \times Sq^{2^{i+2} - 2} \times Sq^2$, $g = Sq^{2i+2+1} + Sq^2 + Sq^4 + Sq^{2^{i+2}}$ and $K(m)$ is the m-fold suspension of the Eilenberg-MacLane spectrum.
LIFTING PROBLEM OF η

$HZ/2$. By the definition there is a cofibration:

$$C_\eta \to C_h \xrightarrow{w} \Sigma Q_{n-2}^n.$$

Let $v \in H^0(\Sigma^{4(2^i-n)+1}Q_{n-2}^n)$ be the bottom generator. Then there is a commutative (up to stable homotopy) diagram;

$$\begin{array}{cccc}
X_{l+1} & \xrightarrow{u} & K(0) & \xrightarrow{f} K(1) \times K(2^i+2) \times K(2^{i+2}-2) \times K(2) \xrightarrow{g} K(2^{i+2}+2) \\
\uparrow \quad \downarrow v \\
X_{l+1} \xrightarrow{w} \Sigma^{4(2^i-n)+1}Q_{n-2}^n, & \xrightarrow{f \circ v} K(1) \times K(2^i+2) \times K(2^{i+2}-2) \times K(2) \xrightarrow{g} K(2^{i+2}+2).
\end{array}$$

So it is enough to compute the bracket $\langle g, f, u \rangle$. From Lemma 3.1 it is easy to see that $\langle g, f, u \rangle = \langle g, f \circ v, \omega \rangle \neq 0$ without indeterminacy. This completes the proof of Theorem C.

Now we shall prove Corollaries. First, let $M_k = \text{the order of } J(\xi_k), \text{where } \xi_k \text{ is the canonical symplectic line bundle over } HP^{k-1} \text{ and } J \text{ is the classical } J-\text{homomorphism.}$ Then by James periodicity and by Theorem A, we see that there is a lift $\tilde{\eta}$ in diagram (1) for $n = 2^i + M_2$, and $k = 2^i$. In this case, since $n = 2^i a \text{ for some odd integer } a \text{ (see Sigrist and Suter [15]), by Theorem C we get a non-trivial family } h_{i \in \pi_{2i+1}^3(S^0)}. \text{ Now according to B. M. Mann and E. Y. Miller [10] or B. M. Mann, E. Y. Miller and H. Miller [11], there is a commutative diagram up to homotopy;}

$$\begin{array}{ccc}
Sp & \xrightarrow{\theta} & \Omega^\infty \Sigma^\infty Q^\infty \\
\downarrow & & \downarrow t \\
SO & \xrightarrow{J} & \Omega^\infty S^\infty.
\end{array}$$

Here t is the representative as an infinite loop map of the S^3-transfer homomorphism. Note [6][14] that the S^3-transfer homomorphism $t : \pi_k^3(Q^\infty) \to \pi_k^3(S^0)$ for $k \leq 4l+1$ is induced by the map $\tilde{c} : Q_{M_l+1}^{M_{l+1}} \to S^{kM_l}$ using James periodicity [5]. Thus if we take the lift as in the proof of Theorem A, then from the constructions of Mahowald’s element $\eta_{5,i+2}[8][9]$ and our element h_0, we see that our h_i coincides to the Mahowald element $\eta_{5,i+2}$. This proves Corollary E.

§4. Proof of Theorem B and F

First we prove Theorem B. For $k = 1$ or 2, it is trivial. So there is a lift $\tilde{\eta}$: $S^{4n+1} \to HP_{n-1}^n$. Consider the cofibration;

$$\begin{array}{cccc}
S^{4(n-k)} & \xrightarrow{i_k} & HP_{n-k}^n & \xrightarrow{p_k} HP_{n-k+1}^n \xrightarrow{\tilde{c}_k} S^{4(n-k)+1},
\end{array}$$
where i_k is the bottom inclusion and p_k is the collapsing map. Let $k = 2$.
Consider the composite $\partial_2 \circ \tilde{\eta}$. Then we have

Lemma 4.1.

$$
\partial_2 \circ \tilde{\eta} = \begin{cases}
\tilde{v} & \text{if } n \equiv 0 \mod 4 \\
\eta\sigma & \text{if } n \equiv 1 \mod 4 \\
0 & \text{if } n \equiv 2 \mod 4 \\
\varepsilon & \text{if } n \equiv 3 \mod 4.
\end{cases}
$$

The above lemma has been known [12][13], but here we give a very simple (at least, theoretically) proof. Recall $\pi^s_0(S^0) \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$ generated by \tilde{v} and ε. Put

$$
\partial_2 \circ \tilde{\eta} = av + be.
$$

Note that the integer a and b are independent of choice of $\tilde{\eta}$. By using e-invariant methods or the Hurewicz homomorphism of $\text{Im} J$ theory, occasionally denoted by h^4, we see that $b = 0$ if and only if n is even. Here the symbol A means A-theory, which is defined as the fiber spectrum of $\Phi^3 - 1: ko \to k\text{spin}$, where ko (resp. $k\text{spin}$) is the connective (resp. 2-connected) cover of (2)-localized KO-theory. On the other hand, by using the well-known structure of $H^*(HP^n_{n-k})$ as a module over the Steenrod algebra, we see that $\partial_2 \circ \tilde{\eta}$ is detected by the secondary operation cited ($i = 1$) in §2 if and only if $n \equiv 0$ or $1 \mod 4$. This implies that $a \neq 0$ if and only if $n \equiv 0$ or $1 \mod 4$. This proves Lemma 4.1.

Thus from the above lemma we see that for $k = 3$ there is a lift of η if and only if $n \equiv 2 \mod 4$. Since $\pi^s_1(S^0) = 0$, we see that for $k = 4$ there is a lift of η if and only if $n \equiv 2 \mod 4$. Now we shall prove that there is no lift of η for $k \geq 5$. For this purpose we use KO theory and Adams operation. Assume that there exists a map $f: S^{4n+1} \to HP^n_{n-k+1}$ such that the following diagram commutes;

$$
\begin{array}{ccc}
KO^*(S^{4n+1}) & \leftarrow & KO^*(S^{4n}) \\
\downarrow f^* & & \downarrow p^* \\
KO^*(HP^n_{n-k+1}) & &
\end{array}
$$

Recall that $KO^*(HP^n_{n-k+1}) \cong KO^*(S^0) \{x^s | n - k + 1 \leq s \leq n\}$, where $x^s \in KO^s(HP^n_{n-k+1})$. Let $\alpha_k \in KO^{-4k-1}(S^0)$ be the element such that

$$
f^*(x^s) = \alpha_{n-s} \cdot l_{4n+1},
$$

where α_k is the bottom inclusion and p_k is the collapsing map. Let $k = 2$. Consider the composite $\partial_2 \circ \tilde{\eta}$. Then we have

Lemma 4.1.

$$
\partial_2 \circ \tilde{\eta} = \begin{cases}
\tilde{v} & \text{if } n \equiv 0 \mod 4 \\
\eta\sigma & \text{if } n \equiv 1 \mod 4 \\
0 & \text{if } n \equiv 2 \mod 4 \\
\varepsilon & \text{if } n \equiv 3 \mod 4.
\end{cases}
$$

The above lemma has been known [12][13], but here we give a very simple (at least, theoretically) proof. Recall $\pi^s_0(S^0) \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$ generated by \tilde{v} and ε. Put

$$
\partial_2 \circ \tilde{\eta} = av + be.
$$

Note that the integer a and b are independent of choice of $\tilde{\eta}$. By using e-invariant methods or the Hurewicz homomorphism of $\text{Im} J$ theory, occasionally denoted by h^4, we see that $b = 0$ if and only if n is even. Here the symbol A means A-theory, which is defined as the fiber spectrum of $\Phi^3 - 1: ko \to k\text{spin}$, where ko (resp. $k\text{spin}$) is the connective (resp. 2-connected) cover of (2)-localized KO-theory. On the other hand, by using the well-known structure of $H^*(HP^n_{n-k})$ as a module over the Steenrod algebra, we see that $\partial_2 \circ \tilde{\eta}$ is detected by the secondary operation cited ($i = 1$) in §2 if and only if $n \equiv 0$ or $1 \mod 4$. This implies that $a \neq 0$ if and only if $n \equiv 0$ or $1 \mod 4$. This proves Lemma 4.1.

Thus from the above lemma we see that for $k = 3$ there is a lift of η if and only if $n \equiv 2 \mod 4$. Since $\pi^s_1(S^0) = 0$, we see that for $k = 4$ there is a lift of η if and only if $n \equiv 2 \mod 4$. Now we shall prove that there is no lift of η for $k \geq 5$. For this purpose we use KO theory and Adams operation. Assume that there exists a map $f: S^{4n+1} \to HP^n_{n-k+1}$ such that the following diagram commutes;

$$
\begin{array}{ccc}
KO^*(S^{4n+1}) & \leftarrow & KO^*(S^{4n}) \\
\downarrow f^* & & \downarrow p^* \\
KO^*(HP^n_{n-k+1}) & &
\end{array}
$$

Recall that $KO^*(HP^n_{n-k+1}) \cong KO^*(S^0) \{x^s | n - k + 1 \leq s \leq n\}$, where $x^s \in KO^s(HP^n_{n-k+1})$. Let $\alpha_k \in KO^{-4k-1}(S^0)$ be the element such that

$$
f^*(x^s) = \alpha_{n-s} \cdot l_{4n+1},\]
where \(t_m \in KO^m(S^m) \) is the standard generator. Note that \(p^*(x^n) = \tau_{4n} \) and that \(x_0 \neq 0 \). Let \(\Phi^3 \) be the stable Adams operation in \(KO \)-theory. It is not difficult to show that

\[
\Phi^3(x^n) \equiv \sum_{i=0}^{\lfloor \frac{n-s}{2} \rfloor} \binom{s}{i} x^{2i+s} \mod 2,
\]

in \(KO^*(HP_{n-k+1}) \), where \(y \in KO^{-n}(S^0) \) is the standard generator. From the commutativity between Adams operation and an induced homomorphism, we see that, for any \(s \) such that \(n - k + 1 \leq s \leq n \), the following relations hold

\[
\sum_{i=1}^{\lfloor \frac{n-s}{2} \rfloor} \binom{s}{i} y^i x^{2i-s} = 0.
\]

Also note that \(x_{odd} = 0 \). Let \(k = 5 \). Then, applying the above equation, we have

\[(n - 4)y x_2 + \binom{n-4}{2} y^2 x_0 = 0.\]

Since \(n \) must be even if \(k \geq 3 \), we get that \(\binom{n-4}{2} \equiv 0 \mod 2 \). Thus we see that \(n \equiv 0 \mod 4 \). But this contradicts the condition that \(n \equiv 2 \mod 4 \) for \(k = 4 \). Therefore there is no lift of \(\eta \) for \(k = 5 \). This completes the proof of Theorem B.

Now we shall study necessary conditions for the existence of a lift of \(\eta \) with respect to Diagram (1). For convenience, we take the S-dual of Diagram (1). Then we get the following diagram for some integer \(m \);

Diagram (3)

Recall that \(A \)-theory is defined as the fiber spectrum of \(\Phi^3 - 1: k_0 \to k_{spin} \), where \(k_0 \) (resp. \(k_{spin} \)) is the connective (resp. 2-connected) cover of \(KO \). Then by similar consideration, using \(A \)-theory, as in the proof of Theorem B, we get the following necessary condition;

\[
\left\lfloor \frac{k-1}{2} \right\rfloor < 2^{v_2(m)}
\]

where \(v_2(m) \) is the exponent of 2 in the prime decomposition of \(m \). Thus taking S-dual again, we see that the following condition is necessary for the existence of a lift in Diagram (1);
Remark that the condition obtained from Theorem C is more restrictive than this condition. This implies that the essential obstruction of co-extending η is not in the image of the classical J-homomorphism. So the problem does not seem to be solved by e-invariant methods. However, for the case that k is small, by using both e-invariant and secondary operation in §2, we can solve the problem. Thus we obtain Theorem F. Details are omitted.

Acknowledgement. This work was partially done during my stay at York University in Canada. I wish to thank York University for its hospitality, especially Stan Kochman for teaching his result in Lemma 2.1 to me. Also many thanks to Mitsunori Imaoka for permitting my use of his calculations of $A^*(HP^k_{n-k+1})$ and for valuable discussion with him, and to Goro Nishida for informing me about the result of Mann, E. Miller and H. Miller.

References