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Hodge Modules, Equlvarlant K-Theory
and Hecke Algebras
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Toshiyuki TANISAKI*

§ 00 Introduction

0.1. The Hecke algebra H(W) of a Coxeter system (W,S) Is an
algebra over the Laurent polynomial ring Z[q, q~1} which has a free basis

and satisfies the following relations :

where / is the length function.

When W is a Weyl group, this algebra appeared in connection with
finite Chevalley groups ([I]) as we formulate in the following. Let G be a
connected reductive algebraic group with Weyl group W defined and split
over a finite field Fqo and X the flag variety of G. We denote by H the C-

vector space consisting of C-valued functions on X(Fqo) x X(Fqo) which are
invariant under the action of G(Fqo). H is endowed with an algebra
structure via the convolution product :

(fc-feXor, y)= 2 hi(x, z)h2(z, y) ,
ZGX(Fq0)

and it is isomorphic to the C-algebra obtained by tensoring C to H( W)

over Z[q, q~l] via the ring homomorphism Z[q, q~1]-* C (q-*qo).

Replacing functions on X(Fqo)xX(Fqo) by Qrsheaves on XxX, we

have a more sophisticated realization of the Hecke algebra (due to Beilin-
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son, Bryllnski and Lusztig-Vogan [LV]). Let C be the category consisting
of constructive Qrsheaves on XxX, whose restrictions to each G-orbit Y
have composition factors of the type Qi,y(n) (n^Z\ where (n) is the Tate
twist. The Grothendieck group K(C) is a Z[q, ̂ "^-module via qn[K] =
[K(-n}l WedefinepisiXxXxX^XxX andr:XxXxX-»XxXx

Xx X by p\*(a, b, c) = (a, c) and r(a, b, c) =(a, b, b, c). By the product :

K(C)is endowed with aZ[q, q~~l] -algebra structure and it is isomorphic to
H(W).

Oo2c It has been conjectured that there exists a theory in char^O,
which corresponds to the theory of the weights for Qz-sheaves in char>0
(Deligne's philosophy, [Br] etc.). This was realized by M. Saito as a
theory of Hodge modules quite recently ([Sal — 5]). He has defined, for a
non-singular algebraic variety Y over C, a certain abelian category
MHM( Y), which is a full subcategory of the category consisting of quartets
(JK, F, K, W), where JA is a regular holonomic Dr-module, F is a good
filtration of JM, K is a perverse sheaf over Q on Y such that DR(JM) =
C®K and W is a filtration of (v5K, F, K). This category corresponds to

the category of mixed perverse sheaves in char>0, philosophically.
Using this theory we can give a realization of H(W) in char^O. Let

G be a connected reductive algebraic group over C whose Weyl group is
W and let X be the flag variety of G. Then there exists a certain abelian
category JL, which is a subcategory of the category consisting of the
objects of MHM(XxX) with G-actions, so that its Grothendieck group
K(JC) has two free bases {[JHw]\w^ W} and {[-Cw]\w^ W} over Z[q, q~l]
(see Section 3). Here 3ttw and £w are certain specified objects of Jl and
the Z[q, ̂ "^-module structure is given by qn[cV] = [cV( — n)], where (n) is
the counterpart of the Tate twist (see Section 1). Define pis and r similar-
ly to the case of char>0. We can show that (Wpw)(M-*™r*)(Wli^2)
e Jl for ̂ i, ^2^ J! and a Z[q, ̂ -1]-algebra structure on K(J£) is defined
by:

Theorem A0 K(JL) is isomorphic to H( W} as a Z[q, q~l]-algebra.
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The isomorphism is given by :

and [-£«,]<-»(- 1) 1"10 23

where Py,w(q) are the Kazhdan-Lusztig polynomials (see [KL1]).

0=3. Recently Kazhdan-Lusztig [KL4] and Ginsburg [G2] have given a
classification of the irreducible representations of the Plecke aJgebra of the
affine Weyl group Wa using equivariant K'-theory (conjecture of Beligne-
Langlands-Lusztig). The first step of their work was to define an (H( Wa),
H( FKa))-bimodule structure on the equivariant /f-homology group
KCXC*(Z) of the variety

Z = {(x, y, A)^XxXxLie(G}\A is nilpotent ,

and to show that this coincides with the two-sided regular representation of
H( Wa). Here Bx is the Borel subgroup of G corresponding to x^X. We
review this briefly following the formulation of Ginsburg. Let p : T*X~*
X be the cotangent bundle. Regarding Z as a subvariety of T*(Xx X) =
T*XxT*X, we can view ^Gxc*(Z) as the Grothendieck group of the
abelian category consisting of coherent Or-^xr**-modules with GxC*-
actions supported in Z. Note that KGXC\Z) is a Z[q, <7~L]-module since
the representation ring of C* is identified with Z[q, q~1]. Let pl3 : T*Xx
T*XxT*X-*T*XxT*X and p2\ T*X*T*XxT*X^T*X be the
obvious projections. It is easily seen that a Z[q, 0"1] -algebra structure on
KGXC*(Z) is defined by:

[Mi] • [M2] = 2( - in&J(RP^*(Pi*Ml®pK*M2®p2*p*Qx}}} ,j

where Qx is the sheaf of the differential forms of the highest degree on X.
The result is that this algebra is isomorphic to H( Wa\ especially isomor-
phic to the two-sided regular representation as an (H( Wa), H( Wa)}-
bimodule (see Section 4.2 for the explicit description of the isomorphism).

0.4. Let CV = (JH,F,K, W) be an object of J!. Then GrFM is a
coherent module over the 0*x*-algebra
Hence

grCV = 0T*XxT*x (8)
(pxp)-i(Gr^Dxxx)

is a coherent Or^xr^-module with Gx C*-action. It is easily seen that
the support of gr ^V is contained in the union A of the conormal bundles of
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the G-orbits on X x X. We define an involution a on T*X x T*X by 0(.r,
y, f , v} = (x, y, £, — ?), where (x, y) is a coordinate of Xx X and (£, 7) is a
coordinate of fibers. Since a(A)=Z, we have a
homomorphism :

Theorem B. 7 is a homomorphism of Z[q, q~l}-algebra, and when we
identify K(JL} and KGxc*(Z) with H(W] and H(Wa] respectively, j coin-
cides with the natural inclusion.

The main difficulty in proving KG*€*(Z}^H(Wa} is to show that the
action of H( W) is well-defined. Ginsburg and Kazhdan-Lusztig used the
localization theorem in equivariant ^-theory and reduced the problem to
the case of KGxc*(XxX). Then the problem turned out to be a com-
binatorial one, which had been already solved in [Lu] (see also Kato's
simpler solution given in [KL4]). In a sence Theorem B gives a different
proof of this fact. Although our proof relies on the deep theory of Hodge
modules, it seems that it gives a more natural explanation of the fact that
the Hecke algebra appears in the context of equivariant K-theory.

0.5. The contents of this paper are as follows. In Section 1 we give
a brief summary of the theory of Hodge modules and state some facts
concerning the Hodge modules with group actions. In Section 2 we review
the definition of the equivariant J^-homology groups and give some relation
between Hodge modules with group actions and equivariant .K'-theory. In
Sections 3 and 4 Theorem A and Theorem B are proved, respectively. In
Section 5 we treat some problems concerning good filtrations of the
modules over the enveloping algebra of the Lie algebra of G associated to
Hodge modules.

In Sections 1 and 2 the letters G and X will be used for a general
algebraic group and a general algebraic variety, respectively, while in
Sections 3 to 5 they will be used for a connected reductive algebraic group
and its flag variety, respectively. The letter W is used for both of the
Weyl group and the weight filtration. We hope that readers will distin-
guish them from the context.

0.6. The author would like to express his deep gratitude to M. Saito
for explaining to him the theory of Hodge modules including results which
are not yet written down and answering (sometimes trivial) questions
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concerning them. He would also like to thank R. Hotta and M. Kashiwara
for useful conversation.

Although the author had to wait for the theory of Hodge modules, he
got the main idea of this paper while he was staying at Harvard University
in 1984. He would like to thank for its hospitality. He also thanks the
comitee on Educational Project for Japanese Mathematical Scientists for
supporting the stay.

§ 1.

1.1. Hodge structures (see [D2])
We recall basic notions concerning Hodge structures.
Let H be a finite dimensional vector space over Q and F a decreasing

filtration of Hc= C®H. Hence Fp(Hc] is a C-subspace of He for each
Q

FP(H c)nFp+1(H c), FP(H c) = 0 for a sufficiently large p and
FP(H c) = Hc for a sufficiently small p. (H, F) is called a Hodge structure
of weight n if Hc = Fp®Fn~p+1 for any p. Here barring denotes the
complex conjugate. Setting Hp'q = Fp 0 Fq we have the Hodge decomposi-
tion Hc = ®Hp>n-p. When (H, F) and (H',F') are Hodge structures ofP
weight n, a linear map / : H^H' is called a morphism (of Hodge structures
of weight n) if /(Fp)cF/p for any p. We denote the category of Hodge
structures of weight n by SH(n).

A polarization of (H, F)^SH(n) is a bilinear form S on H, which is
symmetric (resp. skew symmetric) if n is even (resp. odd) and satisfies the
following condition :

S(Hp-n-p,Hpe-*-p') = Q unless p+p'=n,

for

(H, F)^SH(n) is said to be polarizable if there exists a polarization of (H,
F). We denote the full subcategory of SH(n) consisting of polarizable
Hodge structures by SH(n)p. It is a semisimple abelian category.

Let Hbea finite dimensional Q- vector space, F a decreasing filtration
of C®H and W={ Wn] an increasing filtration of (H, F). Then (H, F, W)

Q
is called a mixed Hodge structure if Grn

w(H, F)(= Wn(H, F)/Wn-i(H, F))
) for any n. The category SHM of mixed Hodge structures is
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defined similarly. We denote by SHMP the full subcategory of SHM
consisting of (H, F, W) with GTn

w(H, F)^SH(n}p for any n.
Let X be a non-singular algebraic variety over C. We denote the

sheaf of algebraic differential operators on X by Dx. Let H be a Q-local
system on X. Hence H is a sheaf of Q- vector spaces on the associated
complex manifold Xan (in the classical topology) which is locally constant
and has finite dimensional stalks. By the Riemann-Hilbert correspondence
for local systems due to Deligne [Dl] there exists a unique regular
holonomlc Dx-module 3tt(H] which is locally free as an Ox-module and

satisfies <3^(H}an — Oxan®H. Here Ox is the structure sheaf of X, Oxan is

the sheaf of holomorphic functions on Xan, Dxan=Oxan®Dx and JM(H)an =

Let F be a decreasing filtration of JK(#) by
Ox Dx

Ox-submodules such that Fp(M(H}}lFp+l(M(H)) is locally free for any p.
Then (H, F) is called a variation of Hodge structures of weight n if (Hx,
F(x))^SH(n) for any x^X and d-Fp(M(H))^Fp-l(^t(H}) for any
vector field d and any p. Note that the fiber of Jli(H) at x^X is C®HX

and F induces a filtration F(x) of C®HX. The category of variations of

Hodge structures of weight n is denoted by VSH(X, n). A polarization of

(H, F)e VSH(X, n) is a Q^-linear map H®H^> Qx which gives a polar-

ization of (Hx, F(x)) for any x^X. The full subcategory of VSH(X, n)
consisting (//", F)e= VSH(X, n) which are polarizable is denoted by
VSH(X, n)p. Categories VSHM(X) and VSHM(XY are defined similarly
to SHM and SHMP, respectively.

If / : X -» Y is a morphism of non-singular varieties, we have natural
functors VSH(Yy «)-> FSff(X, »), VSH(Y, n)p^ VSH(X, n)p, VSHM(Y)
-> VSHM(X) and VSffllf ( F)p^ FS/JM(X)P. All of them are denoted by

/*.

L2o Filtered D -modules and functors (see [Be], [Sa2 ; Section 2])
For a non-singular algebraic variety X over C let Mrh(Dx) be the

category of regular holonomic Dx-modules. Since we are working in the
algebraic category, the regularity here includes the regularity at infinity
(see [Be]).

For M^Mrh(Dx} we set B(3tt)= £ xt$fx(3tt, Dx)®&-\ where Qx is
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the sheaf of differential forms of degree dim X. It is known that
Dx)=® for i^dimX and D(M) is a regular holonomic D^-module. More
generally, for a bounded complex JH of DA -modules such that
Mrh(Dx) for each i , we set :

Ox

Let / : X-^ Y be a morphism of non-singular varieties. An (f~~1DY,
Dx)-bimodule DY*-x and a (Dx, /~1Dr)-bimodule DX^Y are defined by :

DY+-x=r\DY®QY-1} ® Qx , Dx-*Y = Ox ® f~lDY .
OY f~lOY f~lOY

Then for each j^Z additive functors :

<#'/* and JCJfi:Mr*(Dx)-*MrH(DY),

MJf and JCJf* : Mrh(DY)-»Mrh(Dx}

are defined as the /-th cohomologies of the functors /*, /, /', /* between
derived categories given by :

We have a natural increasing filtration F of D^ given by the orders of
differential operators. If an increasing filtration F of a D*-module 3A, by
O^-submodules satisfies the conditions :

FP(Dx}Fq(M)c:Fp+q(M} for any p,

) = 0 for a sufficiently small /> ,

then (<3H, F) is called a filtered D^-module. When GrFJl is a coherent
GrFD^-module, F is called a good filtration. Let MFrh(Dx} be the category
consisting of filtered D^-module (JK, F) such that JK is regular holonomic
and F is a good filtration. This is not an abelian category bur an exact
category.

For a projective morphism / : X^> Y and (JK, F)^MFrh(Dx), an object
/*(JK, F) of the derived category consisting of complexes of filtered DY-
modules is defined (see [Sa2 : Section 2]). Forgetting the filtration this
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coincides with Rf*(DY^x®3ti). When /*(J«, F) is strict, that is,
Dx

is injective for any j and p, a good nitration of -K }f*(3K) is given by
F,(JCJft(3l)) = JC'(Ff(f*(3l, F))). This object of MFrh(DY} is denoted by
JC'MM, F).

When / is a closed immersion, JKJf*(JM.)=Q for ;'=£() and f *(•!%, F) is

always strict. f*(3H, F) (= Jf 7*(JK, F)=(/»(£>y^®^<), F)) is given by :

where the filtration of DY+-X is induced from that of DY.
When X= YxZ and /: X-+Y is the projection (Z is a projective

non-singular variety with dimension m), DY+-x®3& is quasi-isomorphic to
DX

the relative de Rham complex:

DRx,r(

where QXIY is the sheaf of relative differential forms of degree i and the last
term QxiY®3& has the complex degree 0. With the filtration :

0X

) = (DRxiY(JH),F) is a complex of filtered /''Dr-modules.
Then /*(JK, F) is strict if and only if the homomorphism
Mj(Rf*(FP(DRx,Y(Mm^3tj(Rf*(DRx,Y(^ is injective
for any j and p, and in this case 3(jf*(3A, F) is given by Fp(JCJf*(<3tt)) =

Example. Let / : X-* Y be a P^bundle. We define a good filtra-
tion of Ox and Or by Gr/O*=0 and Gr/0y=0 for ;X). Then it is easily
seen that f*(Ox, F) is strict and Mjf*(Ox, F)=0 for /=*= ±1, M~lf^(OXj F)
= (Or5 F) and Mlf*(Ox, F) = (0Y, F[-l]). For an increasing filtration F
and n^Z, F[n] is a new filtration given by F[n\p=FP-n.

I03o Pure Hodge modules
Let X be a non-singular algebraic variety over C. We denote by

Perv(CV) (resp. Perv(Q^)) the abelian category of perverse sheaves over C
(resp. Q) on X([BBD]). For a regular holonomic D^-module 3tt
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a
Dx

belongs to Perv(Cx) and the functor :

DRX : Mrh(Dx)

gives an equivalence of abelian categories (the Riemann-Hilbert correspon-
dence, [K], [Mel, 2], see also [Be] for the algebraic version stated above).
It is known that the functor DRX is compatible with direct images and
inverse images, that is, we have :

where PMJ is the perverse cohomology.
Let MFrh(Dx, Q) be the fiber product of the categories MFrh(Dx) and

Perv(Q^) over Perv(C^). An object of MFrh(Dx, Q) Is a triple (JK, F, K\
where Jli is a regular holonomic ^-module, F is a good filtration of M
and K is a perverse sheaf over Q with a given isomorphism DR(JM)-C

®K. A fully faithful functor :

fa* : VSH(XJ n)^MFTh(Dx, Q)

is defined by :

fan(H,F) = (M(H),F9H[dimX]) with FP = F~P

(see Section 1.1).
In [Sal, 2] certain full subcategorles MH(X, k}p and MHZ(X, k}p of

MFrh(DXy Q) are defined. Here k is an integer and Z is an Irreducible
closed subvariety of X. We do not reproduce their definitions but list
some properties which will be used later.

(pi) MH(X, k)p and MHZ(X, k)p are abelian categories whose mor-
phisms are always strict with respect to F.

(p2) MH(X, k}p=@MHz(X, k)p. That Is, any object of MH(X, k}p

Is decomposed uniquely into the direct sum of the objects of MHZ(X, k)p,
and If cVl^MHZl(X, k}p (i = l, 2) with Zi^Z2, then Hom^i, CV2)=0.

(p3) Let X be the union of open subsets U* and let cV^MF^Dx, Q).
Then CV^MH(XJ k)p if and only If ^\U^MH(U^ k}p for any X.

(p4) If CV = (JH, F, K)^MH(X, k)p, then
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), F[n], K®Q(n)}^

where Q(^)-(2^/z:I)nQcC7 and F[n]p = FP-n.
(p5) <l>x

n(H, F) belongs to M//*(X, n + dimX)p for (
n)p. Especially

-Cx = (Ox,F,Qx[dimX]) with Gr/"0*=0 for

is an object of MH(X, dim-XT)*.
(p6) For an object (JH,F,K) of MHz(X,k)p, there exist a non-

singular open subset U of Z ( Y=Z-U, i : Z<^>X, i0 : U^X- Y) and (#,
F)eFS//(C/,£-dimZ)p such that K=i*JC(H) and (^,F,#)|X- r =
(io*(^K(/y), F), j0*#[dimZ]). Here J C (H) is the Z)GM-extension of //(see
[GM], [BED]).

(p7) Let (JH,F,K) and (M',F',Kf} be objects of MHz(X,k}p.
Choose a non-singular open subset U of Z and C/7, F), (//"', F')^ VSH(U,
k — dimZ)p so that £/ and (//, F) (resp. (//', F')) satisfy the conclusion of
(p6) for (JK, F, /f) (resp. ( JK', F', K')). Then any morphism from (H, F)
to (//', F') in VSH(U, k— dimZ)^ extends uniquely to a morphism from
(Jit, F, /O to ( JK', F', K') in MHZ(X, k)p. Especially ( JK, F, /f) in (p6) is
uniquely determined by U and (//, F).

(p8) For a projective morphism / : X-> Y of non-singular varieties
, F) is strict for CV = (JK, F, K)<^MH(X, k)p and

(p9) Let f \ X^>Y and <7 : F-^Z be projective morphisms of non-
singular varieties. Then &J(g°f)*(W) = ®(JCkg*)(MJ-kf*)(cV) for

Definition,, Let Z be an irreducible closed subvariety of a non-
singular variety X with singular locus Zsmg and natural inclusion i :
Z — ZSing-*X— Zsmg. It follows from (p2), (p6), (p7) and the desingulariza-
tion theorem of Hironaka that there exists a unique object ^V of MHZ(X,
dimZy such that cV\X-ZBin8= i*-Cz-Zsins. We denote this <V by £(Z, X).

Example. If /: X-+ Y is a FJ-bundle of non-singular varieties, we
have Wf*(-Cx) = Q for j*±l, M~l f *(£ x) = JL Y and MlU(Xx) = JCY(-l\

Io4e Mixed Hodge modules
For a non-singular variety X let MHW(X)P be the category consisting
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of quartets (3i, F, K, W) where ( JK, F, K) is an object of MFrh(DXj Q) and
W is a finite increasing filtration of (JK, F, A") in MFrh(DXj Q) such that
Gr^JW, F5 tf) is an object of MH(X, k}p for any A. In view of (p5) we
have a natural functor :

fa: VSHM(XY^MHW(XY .

Saito has defined a certain full subcategory MHM(X) of MHW(X}P

and additive functors :

Wfi : MHM(X} -> M//M( F) , <#'/* : M/M( F) -> MHM(X)

for a morphism / : X-» Y of non-singular varieties (^/* and JCJf are also
defined. But we do not use them.). We list some of their properties in the
following ([Sa3~5]).

(ml) MHM(X) is an abelian category whose morphisms are always
strict for both F and W.

(m2) MHM(X) is closed under subquotients in MHW(X)P.
(m3) If JfJ/i(JK, F, K, W) = (3tt\ F\ K', W), then Jli'=JCJfi(JH) and

(m4) If MJf*(3tt, F, ^T, FF) = (^r, F', #', W), then v3K'= Jfy*(JM) and
^^/*(^).
(m5) If ^=(JK, F, K, W)^MHM(X), then we have :

(n): =(JH®Q(n),F[n],K®Q(n), W[-

(m6) For a short exact sequence 0->cVi-^>cl;2-^cV3->0 in MHM(X) we
have a long exact sequence :

in MHM( F) which coincides with the usual long exact sequence caused by
<#'/. (resp. p^y.) on the level of Mrh(DY} (resp. Perv(Qr)).

(m7) For a short exact sequence 0 -^ ̂ i -^ ̂ 2 -> ̂ 3 -> 0 in MHM( F) we
have a long exact sequence :

in MHM(X) which coincides with the usual long exact sequence caused by
JfJ/* (resp. PJP/*) on the level of Mrh(Dx} (resp. Perv(Q^)).

(m8) Let / : X-* Y be a smooth morphism with relative dimension m.
(Hence ^/* = 0 for ;^w.) Set (J(mf*)(Jk, F, ^, WO
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for (JL, F, K, W)^MHM( Y). Then we have :

JH'=OX §>f-lJk, K'=pJCmf*(K), F,

Wq(JL', F', K')=(31", F", K") with

r*(Wq-,(K)),

(m9) Let /: X-> Y be a projective morphism. For an object CV=
(M,F,K, W} of MHM(X) with Git

wcV=Q for i*k, we have Or,-1"
(Wf,(<V))=Q for i*j + k and GrJU^/,^)) coincides with Mjf*(M,F,
K) in the sence of Section 1.3.

(mlO) For <V=(Ji, F, K, W)(EMHM(X} and <V'=(Jll', F', K', W')fE
MHM(X') we have :

C(^fV'=(J^3li', F", K\x\K', W')^MHM(XxX') ,

with Fp=2F9[x]F;-, and Wf=^Wj^Wp-,.
q <j

(mil) Let / : X-* Y be a morphism of non-singular varieties and T a
non-singular variety. For a natural morphism /xl : XxT-+YxT we
have :

(m!2) For a closed immersion / : X-> F, f\(=3f°f}) gives a category
equivalence between MHM(X) and the full subcategory of MHM( Y) whose
objects are supported in X. Its quasi-inverse is «#°/*.

(m!3) Let i\ Y-»X be a closed immersion of non-singular varieties
with codim Y = I. Set ; : U = X- Y^X. For ̂ ^MHM(X) we have an
exact sequence :

o-^-^q^M^^
(Note that Mki* = Q for k=t=Q, -1 and JfVi=0 for k*Q.)

(m!4) (^, W^) with Gr^(^)=0 (^^=dimX) belongs to MHM(X).
Hence (X(Z, X), W) with G r^(-f(Z, X)) = 0 (^^d imZ) belongs to
MHM(X). (£x, W) and (-T(Z, X), W) will be denoted by Jtx and -£(Z,
X) in the following.

(m!5) If / : X-> Y is a morphism of non-singular varieties and <t>v(H)
tEMHM(Y) for H^VSHM(YY, then M jf*(<f>Y(H)) = Q for ;
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-dim Y and JCamX-<UmY f*(<pY(H)) = ̂ x(f*(H)). Especially we have

(m!6) Let X'-^X-^Y and X'-^Y'-^+Y be morphisms of

non-singular varieties which form a cartesian diagram.
(a) Assume that / is projective and CV^MHM(X). If J«V

(»=*=*) and (^f'p*)(^/,)(CV)=0 (»=*=*) for any ;, then (^
(JP/DC^V*)^) for any ;.

(b) If g is smooth with relative dimension m, then (&mg*)(&'f\) =

(ml 7) Let /: X-> F and #: F-»Z be morphisms of non-singular
varieties.

(a) If CV^MHM(X) satisfies (M 7,)(CV) = 0 for i = * = £ , then

(b) If g is a closed immersion, JCJ(g°f)\=
(m!8) Let f:X->Y and 0: F-»Z be morphisms of non-singular

varieties.
(a) If ^V^MHM(Z) satisfies (Jf I^*)(CV) = 0 for j^= A, then ^"

(b) If / is smooth with relative dimension m, M J(g° /)* = ($( mf*}
(J^-VX

Using the terminology of the derived category the properties (m!6~18)
above can be formulated without assuming vanishing of cohomologies ([Sa
4]). Here we formulate them in a weaker form.

We denote the Grothendieck group of MHM(X) by KH(X\ For a
morphism / : X-> Y of non-singular varieties, Z -linear maps f\ :
KH(Y) and /* : KH(Y)-^KH(X) are defined by

and

(m!6') If g is smooth or / is projective in the cartesian diagram of
(m!6), then the two maps #*°/ and /'.°0'* from KH(X) to KH(Y'} coin-
cide.

(m!7') Let /: X-* Y and ^ : Y-»Z be morphisms of non-singular
varieties. Then the two maps g\°f\ and (g°f)i from KH(X) to KH(Z]
coincide.

(ml80 Let f:X-+Y and fir: F-^Z be morphisms of non-singular
varieties. Then the two maps f*°g* and (g°f}* from KH(Z] to KH(X}
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coincide.

Let pt be the algebraic variety consisting of a single point. Set R =
KH(pt). R is endowed with a ring structure via the tensor product [x]
(commutative with unit [~£pt]} and the Laurent polynomial ring Z[q, q~l] is
a subring of R (#z<-»[-£ pt( — i)]). We have an ^-module structure on
KH(X) via the tensor product [x] and /* and /: are J?-homomorphisms.

1.5. Hodge modules with group actions
Let G be an algebraic group over C acting on a non-singular algebraic

variety X. Let m : G x G-> G and a : G x X-^X be the product in G and
the action of G on X, respectively.

Definition, A Hodge module on X with G-action is a pair (CV, <p),
where ^ is an object of MHM(X) and 9 : (^dimG(T*)(cV)-(^dimG^2*)(cV) is
an isomorphism in MHM(GxX) such that the two morphisms

) and C#dimc(rox !*)*?) from ^2dimG(<7°(lG

)*(q;) to M2dimG(p2op23)*(cV) = M2dimG(p2°(m
in MHM(GxGxX) coincide. Here £2 : GxX-^X and £23 : G
xATare projections.

The above formalism is due to Mumford. We define a category
MHM(X, G) as follows. An object is a Hodge module with G-action. A
morphism from (^V, <p) to (CV, <pr) is a morphism M : CV-+CW in MHM(X)
satisfying ((Mdimcp2*}u) °<p= 9'° ((^dImG^*)w). It is easily seen that
MHM(X, G) is an abelian category. We denote the Grothendieck group of
MHM(X, G) by KHG(X}.

For a G-equivariant morphism / : X-» Y of non-singular varieties we
have additive functors :

: MHM(X, G) -> AfflM( F, G) , Wf* : MHM( F, G)-> MHM(X, G) ,

which induce ^-linear maps :

, f* : KHG(Y)^KHG(X) .

When Xi (/=!, 2) are non-singular d-varieties, we have a bi-exact fun-
ctor :

[x] : MHM(Xi, GO x MHM(X2, G2) -* MHM(Xi x X2> Gi x G2) ,

which induces a Z -linear map :
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\x\

Especially KHG(X) is an R (=KH(pt))-module. It is seen that /. and /*
are ^-homomorphisms and [x] is ^-bilinear.

For a Q-local system S on a non-singular variety X we define HS=(S,
F, W)e VSHM(X) by :

and

If the monodromy representation of S factors through a finite group, then

Hs^ VSHM(XY.
For a homogeneous space X of G we denote by Loc(X, G) the catego-

ry of ©-local systems on X with G-actions. This category is equivalent to
the category of finite dimensional representations over Q of the finite group
GXI(GX}°, where x is a point of X, G* is its stabilizer in G and (G*)0 is the
connected component of Gx containing the identity. For S^Loc(X, G),
Hs belongs to VSHM(X)P and is naturally endowed with a G-action.

Lemma 1.1. Let X be a homogeneous space of G. We assume that
irreducible representations of GXI(GX)° over Q are absolutely irreducible for
some (and hence for any) point x of X.

(i) For S^Loc(X, G) <f>x(Hs) belongs to MHM(X) and is naturally
endowed with an action of G.

(ii) If S and H are simple objects of Loc(X, G) and MHM(pt)
respectively, then <f>x(Hs)\x\H is a simple object of MHM(X, G).

(lii) // CV is an object of MHM(X, G) such that Grt
wcV = Q for i^k,

then CV is a direct sum of the simple objects of the type given in (ii) with

(iv) KHG(X) is a free R-module with basis {(/>x(Hs)\S is a simple
object of Loc(X, G)}.

We prepare a lemma in order to prove Lemma 1.1.

Lemma L20 Let X be a homogeneous space of G. Choose a point x
of X and set pt = {x], i : pt^X and q : X^pt. We assume that Gx is
connected. Then M~dimxi* gives an equivalence of abelian categories
MHM(X, G) and MHM(pt). Its quasi inverse is given by Mdmxq*.

Proof. It follows from (p6) that any object of MHM(X, G) lies in the
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Image of ®x. Let VSHM(X, G}p be the category of objects of VSHM(X}P

with G-actions. We have exact fully faithful functors Fx : MHM(X, G)->
VSHM(X, GY and FPt : MHM(pt)-*SHMp. Since Gx is connected, it is
easily seen that i* : VSHM(X, G)P-*SHMP gives an equivalence of catego-
ries with quasi-inverse q*. By (m!5) we see that i*°Fx = Fpt°(M~dimxi*)

and q*°Fpt = Fx°(MdimX(i*). Hence the lemma.

Proof of Lemma 1.1.
Let / : XQ = G/(GX)°-*X=G/GX be the natural map and So the Q-local

system on X with G-action corresponding to the regular representation of
GX/(GX}\

(i) Since Xx^ MHM(X0, G), we have d>x(HSo)-(M
Qf^(J:XQ) <=

MHM(X, G). Since any representation (over Q) of a finite group is a
direct sum of irreducible representations and since any irreducible
representation is a direct summand of the regular representation, <Px(Hs)^
MHM(X, G) for any SeLoc(X, G) by (m2), and (i) is proved.

(ii) Let SHM(GX/(GXY)P be the category of polarizable mixed Hodge
structures with G-r/(Gx)0-actions. As in the proof of Lemma 1.2 we have
fully faithful functors :

MHM(X, G)-> VSHM(X, G)P-+SHM(GX/(GX)°)P .

Hence it is enough to show that H®V is a simple object of SHM(GXI
(G*)T if H is a simple object of SHMP and V is an irreducible GX/(G*)°-
module over Q. This follows from our assumption on Gxi(Gx)°.

(iii) By Lemma 1.2 there exists an object H of MHM(pt) such that
(JC°f*)(cV) = £xjxlH with Gr>wH=Q (i=f=k-dim X). Since SH(n)p is a
semisimple category, H is a direct sum of simple objects by (m2). There-
fore the assertion follows from the fact that ^ is a direct summand of

(iv) This follows from (ii) and (iii).

Proposition 1=3. Let X be a non-singular G- variety and Y a G- orbit
containing x^X. Set dY=Y—Y and i : Y^X—dY. We assume that
any irreducible representation of GX/(GX)° over Q is absolutely irreducible.
For simple objects H and S of MHM(pt) and Loc(Y, G) respectively, there
exists a unique simple object ^V of MHM(X, G) such ihnt cV\X—dY:=

Proof. Since H is simple, we have Gr/7y=0 (j^=k) for some k. If



HODGE MODULES AND HECKE ALGEBRAS 857

such °V exists, the underlying object °J\ of MHM(X} satisfies the following
condition :

(P) cVl\X-dY = i*(0Y(HsMH), Gr/WHO (;=£« = * + dim F) and
W) is an object of MH?(X, n}p.

If there exists cVi^MHM(X) satisfying (P), the action of G on d>Y(Hs)
uniquely extends to that of G on C(J\ by (p7) and the resulting object

of MHM(X, G) is simple by (m!2). Hence it is enough to prove the
existence of CV\^MHM(X) satisfying (P). This follows from the desin-
gularization theorem of Hironaka and the arguments as in the proof of
Lemma 1.1.

Notation. We denote ^V in Proposition 1.3 by JC( Y, X, S, H\ Set

£(Y,x,S)=j:(Y,x,s,j:pt).
Lemma 1.4. We have JC( F, X, S, H) = £( F, X, SMH.

Proof. It is easy to see that -£( F, X, S)[x]// satisfies the condition (F)
in the proof of Proposition 1.3.

Proposition 1.5. Let X be a non-singular G- variety with finitely many
orbits. We assume that irreducible representations of GXI(GX)° over Q are
absolutely irreducible for any point x of X.

(i) // <=V is an object of MHM(X, G) such that Gr^-O for i*k}

then CV is a direct sum of the simple objects of the type «T( F, X, S, H),
where Y is a G- orbit, S and H are simple objects of Loc(Y, G) and
MHM(pt) respectively with Grl

wH=Q (i^k-dim F).
(ii) KHG(X) is a free R-module with basis {[-£(F, X, S)]|(F, S)},

where (F, S) is running through pairs of a G- orbit F and a simple object
S of Loc(F, G).

Proof, (i) Since Gr*1^) is an object of MH(X, k)p, we have a
direct sum decomposition Grk

w(cV)=:®cVY (F is a G-orbit and °^Y is an

object of MHy(X, k)p) in MH(X, k)p. Then each ^Y (with Gr/cVx = 0
for j=f=k) is an object of MHM(X, G). Hence we may assume that
Gr^cV) belongs to MH?(X,k)p. Set 3F-F-F and i: Y^X-dY.
By (m!2) there exists an object ^i of MHM(Y, G) such that °J\X-dY =
/'(^i) and GriW(cVi) = Q (i=f=k). Hence the assertion follows from Lemma
1.1, Proposition 1.3 and (p7).

(ii) This follows from (i) and Lemma 1.4.
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§ 20 Equiyariant Jf-theory and Hodge Modules with Group Actions

2.1. Equivariant ^-theory (see [Th])
Let G be an algebraic group and i: X^Y a G-equivariant closed

immersion of G-varieties (not necessarily irreducible nor non-singular).

We denote the abelian category consisting of coherent Or-modules with G-
actions supported in X by CG(X, F). Let K°(X, F) be its Grothendieck

group. When M is a bounded complex of Or-modules with G-action so
that each JC*(M) belongs to C°(X, F), we set [M] = 2(-1)'[JT£(M)]<=i

KG(X, F). Since the exact functor i* : CG(X, X)-* CG(X, F) induces an
isomorphism /* : K°(X, X)-»KG(X, F), KG(X, F) does not depend on the

choice of the ambient space F. When we do not have to specify F we
denote it by KG(X). The abelian group RG=KG(pt) is endowed with a

ring structure and KG(X) is an J?G-module via the tensor product (RG is
called the representation ring of G.).

Let Yi (i = l,2) be G-varieties, Xt G-stable closed subvarieties of Yt

and / : Yi-> F2 be a G-equivariant morphism. When f ( X i ) is contained in

X2 and Xi-*X2 is proper, an Re-linear map:

/*:^GUG, Yi)->KG(X2, F2)

is defined by /*([M]) = [/?/*(Af)]. When f~l(X2) is contained in Xi and F2

is non-singular, an ^c-linear map:

f*:KG(X2, Y2)^KG(Xi9Yi)

is defined by f*([M]) = [Lf*(M)]. Let Xt (i = l,2,3) be G-stable closed
subvarieties of a non-singular G-variety F so that X\r\X2^X^. Then

(8): KG(Xi, Y}®KG(X2, Y)^KG(X^ F)
Re

is defined by [Mi]®[M2] = [Mi®Af2]. Note that /* does not depend on the
0Y

choice of the ambient space while /* and (8) do.
The following well-known facts will be used frequently later.

Lemma 2oL (projection formula). Let f: Fi~» F2 be a G-equivariant

morphism of non-singular G-varieties. When Mi (2 —1, 2) are coherent

Oyl-modules with G-actions so that Supp(Mi)-* F2 is proper, we have :
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Oy,

Lemma 202e (smooth base change theorem). Let f : Y\-+ F2 and g2 :
Y2'^ Y2 be G-equivariant morphisms of non-singular G- varieties. Set Y\ =
Fix Y2 and let g\ : Y\-* Y\ and f : Y\-* F2' be natural maps. We assume

YI
that g2 is smooth. When M is a coherent CYl -module with G-action so that

F2 is proper, we have :

2020 Coherent sheaves on the cotangent bundles associated to

For a non-singular variety X over C, we denote the cotangent bundle
by p: T*X-^>X. The O^-algebra GrFDx is naturally identified with
p*0r*x. For an object ( 3tt, F) of MFrh(Dx) we have a coherent OT<X-
module :

The group C* acts on T*X by z-(x, t~} = (x, z$] (x is a coordinate of X
and f is a coordinate of fibres.). We have a natural C*-action on gr(v5K, F)
by:

z - ( f ( x ,

For a morphism /: X-* Y of non-singular varieties, set QXIY =
Qx®f*(Qy~l\ Consider the following commutative diagram :

Ox

Here morphisms are the natural ones.

Lemma 2030 Let f: X^ Y be a projective morphism of non-singular
varieties and (M, F) an object of MFrh(Dx). If f*(3&, F) is strict, we
have :
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OT*

as a coherent Or^x-module with C*-action, where Vt denotes the one-
dimensional C* -module such that the action of z^C* is given by the
multiplication of z'.

Proof. We first consider the case when / is a projection. By the
assumption ^i(Rf^(FP(DRXIY(JiiW)^Mi(Rf^(DRXiY(M}}) is injective for
each z and p and we have MifJf(JA,F} = (Mi(Rfif(DRxiy(X)}),F) with
FP(M\Rf*(DRxiY(3m)=Mi(Rf*(FP(DRXIY(MW) (see Section 1.2).
Apply Rf* to the distinguished triangle :

and consider the long exact sequence of cohomologies. Then we have a
short exact sequence :

Y(M)) -» 0

for each i and p. Hence G
It is easily seen that the natural actions of Ox and /"' Gr DY on

GrF(DRxiY(M}) induce an /*GrZVmodule structure on GrF(DRXiY(M)~).
By definition we have :

GrDx

where F/=F[dim F-dim X]. Set V= T* YxX and p=pXIY for simplic-

ity. Then we have :
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, F') (g)

Since gr(J^, F[z])=gr(v5K, F)(x) y_ E j the assertion Is proved when / Is a

projection. When / is a closed immersion, our claim is shown by the
similar arguments as above. Since any projective morphism is a composit
of morphisms of these two types (a closed immersion followed by a
projection), our assertion follows from the above two cases.

Remark. Saito informed us that the above Lemma follows directly
from [Sa2 ; Section 2.3].

2o3= For a non-singular G-variety X with finitely many G-orbits let A
( = A(x,c)) be the union of the conormal bundles T0*X of G-orbits O. It Is
a Gx C*-stable closed subvariety of T*X. For an object ct?=(J«, F5 K,
W) of MHM(X, G) we have an object gr^V : =gr( JK, F) of CGXC\A, T*X).
This induces a ^-linear map :

gr : KHG(X)^KGXC\A) = KGXC\AJ T*X) .

KGxc*(A) is an /?cxc*-module, hence an Re-module. We identify /?c- with
Z[q, q~1} via [Vt]~ql. On the other hand KHG(X) Is an R( = KH(pt))-
module, hence a Z[q, ^"^-module (see Section 1.3). It is easily seen from
the definition that gr is a homomorphism of Z[q, ^"^-module. The follow-
ing lemma is clear from Lemma 2.3 (compare with [La]).

Lemma 2 A, Let f : X-+ Y be a projective G-equivariant morphism of
non-singular G- varieties with finitely many G-orbits. Then for
KHG(X) we have :

The following is also clear from the definition.

Lemma 2050 Let f : X-* Y be a smooth G-equivariant morphism of
non-singular G- varieties with finitely many G-orbits. Then for
KH°( Y) we have :
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§ 30 A Realization of Hecke Algebras of Weyl Groups

In Sections 3 to 5 G is a connected reductive algebraic group over C
and X is the flag variety of G.

3.1. It is well-known that the set of G-orbits on XxX is parametr-
ized by the Weyl group W. In fact if we identify X with the quotient G/B
for a fixed Borel subgroup B, Xx X is the disjoint union of the G-orbits Yw

containing (B, wB), where w is running through the elements of W.
Moreover we have dimYw=N+l(w) and Yw^Yy if and only if w^y,
where N=dimX, l(w) is the length of w and ^ is the Bruhat ordering on
W. These facts are direct consequences of the corresponding facts con-
cerning 5-orbits on X.

Let iw\ Yw -» X x X be the natural inclusion. We set :

and JHw=M°iw\(JCYw) .

They are objects of MHM(XxX, G). Note that Mjiwl(j:Yw)=0 for
since iw is an affine morphism. By Proposition 1.5 the /^-module KHG(X
xX) has a free basis {[X^JI^e W}. Since [Mw] belongs to [-Cw]
+ 2 R[-Cy], {[^iw]\w^ W} is also a free basis of KHG(XxX).

y<w

We define pu : XxXxX^XxX and r : XxXxX->XxXxXxX
by pi3(a, b, c)*=(a, c) and r(a, b, c) = (a, b, b, c\ For u, v^KHG(XxX]
set

It follows from (ml6') that this product satisfies the associativity. For s^
S = {simple reflection of W} let Xs be the generalized flag variety consist-
ing of parabolic subgroups with semisimple rank 1 corresponding to 5 and
TTS : X-+XS the natural morphism.

Lemma 3.1. For u^KHG(XxX)> s^S and w<= W we have :

(l) [-Ce\°U = U<'[-Ce\ = U ,

(ii) [^a]-M = -Uxl)*U f lxl) I(w),

(iiO u • [-£*] = - (1 x x8)*(l XtoUu),

(iii) [Ms] = [j:s] + [J:e] and [JCs}
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(hftf .]•[-£.]= -(<7 + DU%],

] if sw>w,

] if ws>w.

Proof. First note that Ys is non-singular and hence -Cs= i S>(-£V) with
Js: Ys^XxX. Thus (i), (ii), (ii'), (v) (v') follow from (m!6'), and (iii)
follows from (m!3). (iv) is a consequence of (ii), (m!6') and Example in
1.3.

We see from Lemma 1.1 that KHG(YW} is a free 7?-module of rank one
generated by [-TyJ. We define an R-linear map :

h: KHc(XxX)->R (g> H(W)
Zlq,q-l]

by:

h(u)= 2 (-l)l
(
w)hw(u)Tw with i«,*(«) = M

WfEW

Proposition 302» h is an isomorphism of R-algebras.

Proof. We see easily from (m3), (m4), (m!2) that h([Jliw]) =
( — I)\w}Tw. Hence the assertion follows from Lemma 3.1.

Lemma 3030 Let °Vi and °^2 be objects of MHM(XxX, G).
(i) Wr*(cVl\x\cV2) = Q for j*-N.

Hence [<^i] - [CV2] = 2( -^
(ii) WP(^-

Proof. Fix Xo^X and let f/ be the unipotent radical of a Borel
subgroup which is opposite to the Borel subgroup corresponding to XQ. We
define

9\\ Xx U-^ XxX, <p2: U XX-* XxX , 0: ^Tx f /x^-^Xx^xX ,

Ai: X-^x^, fe : X-+XXX

by

^?i(x, u) = (u°x, U-XQ) , <p2(u,y) = (u'Xo, u-y) ,

^(x, M, 3^)=:::(wox, ^ex0 , w^) ,

k\(x) = (x, xQ) , k2(y) = (XQ, y) .

9\, 92, $ are open immersions and ki, k2 are closed immersions. Consider
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the commutative diagram:

XxX

pl I r2

x —^-» xxx ,

where £(z, w) = (w, x, .TO) and cr^, x, y) = ( f f c x , £?•>•). For an object ^ of
MHM(XxX, G) we have :

in MHM(Xx U). Since ?>i is an open immersion, ^!^i*(cV)=0 for z=
Hence ^"!'fe*(cV) = 0 for i = # = -TV, M~Nkf is an exact functor from MHM(X
XX, G) to MHM(X) and ̂ (^M^-'W^lxUV Under this identi-
fication we have :

and hence ^(^-/v^i*(cV)) = Jf-%*( WP+H(<V)). In consequence we have :

Similarly we have :

Let A : U -> U x U be the diagonal embedding. Since r°^ = (
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x 1), it is easily seen that :

=0 for i*-N ,

Hence the lemma.

382o Kazhdan-Lusztig Polynomials JLW

For each w^W there exists a unique element Cw" of H(W) of the
form :

such that P«;,a;(^) = l and Py,w(q) is a polynomial in 0 with
-l(y)-l)/2 for y<M;([KLl]). For y<w with l(w)-l(y) odd, we denote
the coefficient of q<w-M-w in Py.w(^) by ^(y, w). The following two
lemmas are known.

Lemma 3.4 ([KLl]). Let s^S and
(i) If sw>w, we have :

where z is running through elements of W so that z<w, sz<z and l(w)
— l(z) is odd.

(ii)If sw< w, we have :

Lemma 3.5 ([KL2], [Sp]). Let s^S and w, y^ W.
(i) // j+l(w)-l(y) is odd, then
(ii) If sw>w, we have :

x

where z is running through elements of W so that z<w, sz<z and l(w)
— l(z) is odd.
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(iii) If sw<w, we have :

Lemma 3e60 Assume sw>w for s^S and

(i) Jf1(^xi)*Jf- /(^xl)I(^w) = 0 for

(ii) GrkW(Ml(xaXl)*JC°(xsXl)i(-Cw)) =
(iii) ~TSM, fs $ direct summand of M1(

Proof, (i) is clear from Lemma 3.5. (ii) follows from the fact that
;rsxl is projective and smooth with relative dimension 1.

(iii) It follows from (m!6) that Xsw and i#^xl)^#°(;rsX !),(.£„,)

coincide on (XxX) — (Ysw — YSw). Hence the assertion follows from (ii).

For a non-singular G-variety V we denote by KHG( V)+ (resp. R+) the

set of the elements in KHG( V) (resp. /?) represented by objects of MHM( V,

G) (resp. MHM(pt)). Let {H7(i)\r^r, i^Z] be the set of isomorphism
classes of simple objects of MHM(pt). For each 7^.F an integer n7 is
determined by Grl

w(H7) = Q for i=f=n7. We may assume that H7o = ~Cpt.

Then we have :

KHG(XxX)+=

Proposition 3.7. Le^ seS awrf y, wG W.
(i) /Zj,(U^])e(-l)^
(ii) //" sw>w, we have :

where z is running through elements of W so that z<w, sz<z and l(w)

— l(z) is odd.
(iii) If sw<w, we have :
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(iv)
Proof. We first prove (i) and (ii). Assume sw>w for w^W and se

S. By induction we have only to show the statement :

(*) A,([-£«])e(-l) '<" )- '< J '> + 1Z io[<7, ?-'] for any y^W and

where z Is running through elements of W so that z< w, sz<z and

— l(z) Is odd,

assuming :

(* *) hy([JC*\)&(-\)LW-l(y)Z**[q, q~l] for any y, z^ W with /

Set ^=i#Xtfsxl)*^°(flsx !)'(-£«>)• It follows from Lemma 3.6 (ii),
(iii) that we have cV = ~CSw®( 0 (H7(i)®

mz'7'lJ^Xz) for some integers

mz,7il, where J={(z, 7, i)^WxrxZ\z<w, sz<z, l(w) — l ( z ) = I(mod 2),

n7=l(w)—l(z) + 2i + l}. Since hy([-Csw]) = ( — l ) l ( w } ~ l ( y ) + l *2lf7(q)[H7] for

some fr(q)^Z^[q, q~l] by Lemma 3.5(i), we have:

with

On the other hand we have

^H(W) and hence kr(q) = Q for 7^/0. Since fr(q), (-

Z*Q[q, q~1} and mz,7,i^Z*Q, we have /7(Qr)=::0 for 7^70 and mXl7ti = Q for (2,

7, /)^/ with 7=^70. Thus our assertion follows from Lemma 3.5(ii) and

Lemma 3.6(ii).
(iv) This is easily proved by Induction on l(w) In view of (ii) and

Lemma 3.4(1).
(iii) Since Grh

w(Jt X^xl)* Jf ̂ xl), (X.)) -0 for k*N+l(w)+j

+ 1, the assertion follows from (iv) and Lemma 3.5 (ii).
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Definition. Let Jl be the full subcategory of MHM(X x X, G) consist-

ing of CV^MHM(XXX9 G) so that GrkW(V is a direct sum of the simple
objects of the form -Cw(n) with l(

It is easily seen that Jl is an abelian category.

Lemma 3.8. For c^^MHM(XxXf G), h([c^]}^H(W) if and only

if C[?EiJl. Especially, we have JMw^Jt for any

Proof. If [W]= 2 frM[HMC»] (/r.»(*)eZ*>[0, tf-1]) for anrer
w&w

object <=V of MHM(XXX, G), then h([<V])= 2 /7.«.(«)[^r]C»". Thus

if and only if composition factors of ^ are of the form -C
(n) with w^ W and n^Z. Hence the lemma.

Proposition 3.9. (MJpKiK&~"r*)(W3E!FV2)GJl for any j and

Proof. By Lemma 3.3(i) we may assume that Grk
wcVi = Q for k^ni (i

= 1, 2). Then by Lemma 3.3 (ii) we have
=0 for k=tn+j with n = ni + H2~N. Hence we have:

]= 2

where L={(w,r,t)G: WxTxZ\N+ l(w)+ n7 + 2i=n+ j} and
On the other hand we have :

by Lemma 3.8. Hence mj
w,7,i=Q for 7^70 and the assertion is proved.

In consequence we have the following.

Theorem A. (i) The Grothendieck group K(JL) of the abelian
category Jl is endowed with a Z[q, q~l]-algebra structure by :
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(ii) K(JL) is isomorphic to H(W} as a Z[q, q~l}-algebra via the corre-
spondence :

[3ttw]H-Dl(w}Tw and [-f,]~(-l)zw 2 PyMTy .
y^w

3.3* Let K be a closed subgroup of G which is either
(a) a Borel subgroup of G,

or
(b) a subgroup of G9 containing (G*)°, where $ is an involutive

automorphism of G.

Then it is known that the number of K- orb its on X is finite and for any
x^X the component gvoup KX/(KX)° of the stabilizer Kx is isomovphic to
(ZI2ZY for some N^O (see [Ma],[LV]).

For a K -orbit O on X and a simple object S of Loc(0, K), we set :

£(O,S) = -C(6,X,S) and 3t(0,S) = JCQii(00(Hs)) ,

where / : 0-+X is the natural inclusion (see Section 1.5). Let JIK be the
full subcategory of MHM(X, K) consisting of C^^MHM(X, K} such that
for any k^Z Grk

w(cV) is a direct sum of the objects of the form X (O, S)(n)
with k = dimO-2n. We define pi : XxX-*X and q : XxX-*XxXxX
by p\(a, b) = a and q(a, b) = (a, b, b).

Theorem A', (i) JH(O,
(ii) Both of {[-C(0, S)]|(0, S)} and {[M(0, S)]|(0, S)} ^ bases of

K(JLK] over Z[q, q~ll
(iii) For CVE^JI and 7l^JlK we have (Mjq*)(W^m} = § for j*-N

and (^^i,)(Jf-^*)(cV[x!3Z)e JIK for any i.
(iv) An action of the Z[q, q~l]-algebra K(JC) on K(JIK) is defined by :

Hence K(JLK) is an H(W)-module.
(v) When K is of type (a) (hence a Borel subgroup B), K(JIB] is

isomorphic to K(JL) as a left H(W}- module via the correspondence :

[^««-i] and

Here Xw is the Schubert cell BwB/B.
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(vi) When K is of type (b), let M be the H(W)-module constructed in
[LV]. It has two free bases (8\8^S)} and (CS\S^3)} over Z[q, q"1], where
3) is the set of the pairs (O, S) of K- orbits O and simple objects S of Loc(O,
K}. Then K(JIK) is isomorphic to M as an H(W)- module via the corre-
spondence :

and

with S = (0, S).

The proof is similar to that of Theorem A.

§ 4. Equivariant JT-Theory Heeke Algebras of Affine Weyl Groups

4X Heeke algebras of affine Weyl groups
Let B be a Borel subgroup of G and T a maximal torus of G contained

in B. We choose an ordering on the root system so that the weights of
Lie(G)/LieCB) are positive roots. The Weyl group W (=NG(T)/T) acts
naturally on the weight lattice P (=Hom(B, C*}=Hom(T, C*)). We
denote the semidirect product W^P by Wa and call it the affine Weyl
group of G.

When G is an adjoint group, Wa is a Coxeter group and the Hecke
algebra H( Wa) is defined. Besides the usual Iwahori-Matsumoto relation
([IM]), there is another presentation of H( Wa) due to Bernstein. Let us
recall Bernstein's description of H( Wa). (It is also defined for general G.)
Let as be the simple root corresponding to s^S. The Hecke algebra
H(Wa) is a Z[q, g^-algebra which satisfies the following conditions (hi)

(M) H(Wa) = H(W) (g) Z[q,q-l][P] as a Z[q,
Z[q,q~l]

(h2) H(W)-*H(Wa) (h^h®l} and Z[q, q
are algebra homomorphisms.

We view H(W) and Z[q, q~l][P] as subalgebras of H(Wa). The
element of Z[q, q~l][P] corresponding to A^P is denoted by d* when it is
regarded as an element of H( Wa).

for s^S and
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4020 A of Ginsburg Kazhdan-Lusztig
For x^X let Bx be the corresponding Borel subgroup and ru the Lie

algebra of the unipotent radical of Bx. We consider the equivariant K-
homology group KGxc\Z} of the variety

= x, y,

where the action of G x C* is given by :

(<7, *)•(*, y, A) = ( g ° x , g * y , zAd(g)A) .

Since the representation ring Re* of C* is identified with Z[q, q~1} via
U->*']«->0', KGXC\Z) is a Z[0, ̂ -module. Ginsburg and Kazhdan-
Lusztig have defined an (H(Wa),H(Wa))-bimodu\e structure on KCxc\Z)
and shown that it is isomorphic to the two-sided regular representation
([KL4], [Gi2]). We explain this slightly modifying the formulation of
Ginsburg.

Since the dual space of Lie(G)/Lie(-B.r) is naturally identified with nx

via the Killing form, the cotangent bundle T*X of X is identified with the
variety {(x, A)^XxLie(G)\A^nx}. Hence we can view Z as a Gx <C*-
stable closed subvariety of T*Xx T*X={(x, y, A, A')\A^nx, Af(=ny} by
(x,y,A)<->(x,y,A,A). Let pv : T*XxT*XxT*X->T*X*T*X and
p l: T*XXT*XXT*X-*T*X be the projections and p: T*X-X the
cotangent bundle. It is easily seen from Lemma 2.1 and 2.2 that a

Z[q, (T^-module structure on KGxc*(Z) ( = KGxc\Z, T*Xx T*X)) is given
by:

For A^p let 0(X) be the invertible O^-module consisting of sections of
the line bundle on X with G-action such that the action of Bx on the fiber
at x^X is given by A. For s^S we denote the closure of {(x, y, A)^Z\
(x, y)£i Ys] by Zs. It is a G-equivariant vector bundle over Ys via the
natural projection ps: Zs^> Ys. Let ; : T*X-» T*Xx T*X be the diagonal
embedding and js : Zs-* T*Xx T*X the natural inclusion. We set :

e(A)=j*p*([0(A)®Qx-
1]) and as=js*ps*([@Ys

IXxx})

for A^p and seS. They are elements of KGX C\Z) = KGX C\Z, T*Xx

T*X).
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Theorem 4.1.([Gi, 2]). KG* C\Z} is isomorphic to H(Wa) as a
Z[q, q~l}-algebra via the correspondence :

<?as~-(Ts + l)(s<ES) and e(-A)~d* (A^p) .

4.3. Let a be the involution on T*Xx T*X given by a(x, y, A, A') =
(x, y, A, -A). Since A(XxX.G) = {(x9 y, A, -A)^ T*Xx T*X\AGnxr\ny},
we have a(Z) = A(xxx,o. We set :

Theorem B. 7 is a homomorphism of Z[qy q'1]- algebras. If we iden-
tify K(JL) and KG*C*(Z) with H(W) and H(Wa), respectively, then 7
coincides with the natural inclusion.

Let K be a closed subgroup of G which is either of type (a) or (b) in
Section 3.3. Let qt : T*Xx T*X-+ T*X be the obvious projections (i=l
2). It is easily seen that an action of KG*C*(Z) on KKXC*(A(X,K)) is defined
by:

Especially, KK*c*(A(x,K>) is an H( PF)-module.

Theorem B'. gr ; K(Jl Ar)-> KKXC*(A(X,K)) is a homomorphism of
H(W}- modules.

We give the proof of Theorem B. Theorem B' is proved similarly.

Proof of Theorem B. Let a : Ye^>T*Ye be the zero section. Since
-£e = ie*(-CYe) and gr(-TKe) = ^(Ore), we see from Lemma 2.5 that /([-£*]) =
0(0). Similarly we have y([-£s]) = qas for s^S. Hence it is sufficient to
show y([-£s]

mm) = qas'7(m) for m^K(Jl}. We set Ui = qi°js for i = l, 2.
It is easily seen from Lemma 2.1 and Lemma 2.2 that :

for n<^KG*c*(Z). On the other hand we have [Jrs]*w=-(;rsxl)*(;rsx
I)*(m). Thus we can see easily from Lemma 2.4 and 2.5 that :

r([-C*\ -m) = q(ulx l)*(ut x l}*(r(m)®(p x p)*([GxixJ^Ox])) .

Hence the assertion is proved.

Remark. Theorem B and Theorem B' are generalization of the results
in [KT] and [Ta].
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§ 5, Good Filtrations of [/(g)-Modules Associated to Hodge Modules

5.1. We denote the enveloping algebra of g=Lie(G) by t/(g).
By [BeB] the category of coherent Dx-modules Is equivalent to the

category of finitely generated t/(g)-modules with trivial central character.
The [/(g)-module corresponding to a coherent Dx-module 3A, is F(X, JA\
the space of its global sections. Note that Hl(X, JJO=0 for 2 >0([BeB]).
When a good filtration F of a coherent Dx -module 3h is given (for example
when 3& is an underlying D^-module of a Hodge module), the correspond-
ing C/(g)-module M = F(X, JK) is equipped with a good filtration via FP(M]
= F(X,FP3tt). A good filtration of a finitely generated £7(g)-module is
defined similarly to the case of a coherent D-module using the order
filtration of £/(g). Let MF(g) be the category consisting of pairs (M, F) of
finitely generated [/(g)-modules M with trivial central character and their
good filtrations F. By the above arguments we have a functor:

FF: MHM(X)-MF(o).

gory MF(g)
A sequence:

i r . ivinivi \j\)->ivir \QJ .

The category MF(g) is not an abelian category but an exact category,
sequence:

in MF(g) is exact if and only if the associated graded sequence :

[•••-GrFMz--i-GrFM,-GrFMz-+i->-]

is exact in the abelian category of Grf/(g) (:=S(g))-modules.
It is natural to ask whether IF is an exact functor. Hence we are led

to the following :

Question. Is it true that

(J3) Hl(X,

for CV = (JH, F, K, W)^MHM(X)?

Similar problems are treated in [BoB].
By the exact sequence [0-*Fp-i^-»FpJM-^GrpFJM-»0] we see easily

that (B) is equivalent to :
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(Bf) Hi(X,GrFM)=Q (

and if this is true, then we have GrFM = T(X1 GrF3tt) for (M, F) =
and the functor FF is exact.

Remark. Kashiwara has proved (B) for X=Pn using Saito's Kodaira
vanishing theorem ([Sa3]).

582o Identifying the cotangent bundle T*X with {(#,
/(LieCRr)) = 0} we define r: T*X-»g* by r(x,f)=f (the moment map).
We fix a Borel subgroup B of G. It is easily seen that A(x,B)=T'1(b±)
where b is the Lie algebra of B and b-L=={/E:g*|/(b)==0}. b1" can be
identified with [b, b] via the Killing form. Consider the maps :

jftT/?xc"(b"L) can be identified with the representation ring RB*c*=Z[q, q~l][P]
= @Z[q, q-l]e» via the Thorn isomorphism ?* : RB*c4=KB*c\pt))^KBx

H€Ep

cXbx), where j-.b^pt.

Lemma 5.1. ([Lu], see also Kato's proof given in [KL4]).
An action of the Hecke algebra H(Wa) on Z[q, q'^iP] is given by :

^ x — s(x}e~2a x — s(x)ea

Ts-x= - f -- q — —

where a is the simple root corresponding to

Proposition 5.2e For w^W we have :

in KBxc*(b-L)=Z[q, q~l][P], where p is the half of the sum of the positive
roots.

Although p is not necessarily an element of P, 2p and wp-\- p for
W are elements of P.

The proof of Proposition 5.2 will be given in Section 5.3.
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Let (Lw, F) = rF(-C(Xw,X)). It is known that Lw is the irreducible
lowest weight module with lowest weight wp + p ([BK], [BeB]). Note that
we have chosen the ordering on the root system so that the set of positive
roots Zf+ coincides with the weights in g/b.

Definition o For a finitely generated [/(g)-module M with fi-action
and a S-stable good filtration F of M we define the '^-character' ch9(M , F)
of (M, F) by :

ch9(M, F)=
j

Here ch(Gr/Af)eZ[P] is the character of the B-module Gr/Af .

Corollary 5,3a If the condition (B) holds for CV = -C(XW, X\ then we
have :

Proof. In general for cV=(3i, F, K, W)^MHM(X] we have

Hence when the condition (B) holds for V, we have :

GrFM = r(X, GrFM) ( = RT(X,

= r(fl*, r,(gr(cV))) (

for (M,F) = rF(cV). Therefore

and the assertion follows from Proposition 5.2. Here ( H (l-*?"1^))"1^
areJ-1-

II (2^"*e*a) appears as the character of the Bx C7*-module r(bx, Ob-).

5o30 Proof of Proposition 5.2
The arguments below are inspired by [BoB].
We first give some relations of Jl and JIB. Let x0^X be the point

corresponding to B. We define k : X-*XxX by k(x) = (x, x0).
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Lemma 5.40 (i) (JC Jk*)(cV)=Q for <V ̂ MHM(XxX, G) and

(ii) (M-Nk^(Xw} = X(Xw-it X) for w^ W.
(iii) M~Nk* induces exact functors :

MHM(X x X, G) -* MHM(X, B) and Jl->JlB .

Proof, (i) is shown in the proof of Lemma 3.3. Choose a Borel
subgroup which is opposit to B and denote its unipotent radical by U. We
define <p\ XxU-*XxX by <p(x, u) = (uux, U-XQ). It is an open immer-
esion. By the proof of Lemma 3.3 we have <p*cV^(JC-Nk*)(cVy&\JCu for
<VE:MHM(XxXf G). Since <p-l(Yw)=Xw-*xU, we have:

,-* x [/, Xx U)

—( <\f-Nb*\( r Yvi r— \U\ R )\JL W)\X\J^ u ,

and (ii) is proved, (iii) is a consequence of (i) and (ii).

We identify (T*X)*0, the fiber of T*X at x0, with n = [ba;o, bx0]. Let
:|IX) be the in-

clusion and p : T*Xxn^> T*X the projection. Identifying T*X with {(x,
we have :

We define subvarieties A+ and A~ of T*Xxn by :

Since p induces an isomorphism A~^A(XtB)9 and since W~l(A(XxX,c))
we have the natural maps :

V* : K
GXC*(A{X*X.G), T*(XXX))-*KBXC\A-, T*Xxn)

P* : KB^(A'9 T*Xxn)^KBxc*(A(x,B), T*X) .

Lemma 5.5. For ^^MHM(XxX, G) we have :

This follows from the fact that <p*cV = (JC-ffk*)(cVMJ:u for <Ve
MHM(XxX, G) in the notation of the proof of Lemma 5.4. Details are
left to the readers.
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Consider the following commutative diagram.

AC-Nk*
K(MHM(XxX, G)) >K(MHM(X, B))

Here w, w, r, / are natural inclusions and

a(x, y, A, A')=(x, y, A, -A) ,

r((x,A),A') = A'.

Note that ^|Z and f\A+ are projective morphisms. The commutativity of
(#) follows easily from Lemma 2.1 and Lemma 2.2 since u is a closed
immersion and #2 is smooth.

By Lemma 5.4 we have r*(gr([-C(XWj X)])) = #2*(<2*(gr(JT
«>-0))#i*(0*(gr([-£a;]))) in Z[q, q'^P]. The last equality follows from an
easy calculation involving the G-equivariant automorphism of X x X given
by ( x , y ) - + ( y , x ) . By Theorem 4.1 #CXC'(Z) is identified with //(Wi).
Define F : //( H4)->Z[<7, q'1]^] by the commutativity of :
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-^-^KG*C'(T*X)

By Theorem A and Theorem B we have r*(gr([-£(Xu,,
Hence Proposition 5.2 is a consequence of the following :

Lemma 5.60 (i) F is a homomorphism of H(Wa)- modules. Here the
H(Wa)- module structure of H(Wa) is given by the left multiplication and
that of Z[q, q~l][P] is the one given in Lemma 5.1.

(ii)

Proof. It is easily seen that a KG*c*(Z)-module structure on KGXC*
(T*X) is defined by:

h-m =

, T * ( X X X ) ) , m^KGxc*(T*X, T*X)) .

By a standard argument we see that q\* is a homomorphism of K Gxc*(Z)-
modules and that the KGX C*(Z) ( = H(Wa))-module structure on KGX c*
(T*X) ( = Z[q, Q~l][P]) coincides with the one given in Lemma 5.1. (i) is
proved, (ii) is a consequence of qi*(e(Q))=p*([Qx~1]).
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